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ABSTRACT

Reliability of deep learning models is critical for deployment in high-stakes ap-
plications, where out-of-distribution or adversarial inputs may lead to detrimental
outcomes. Evidential Deep Learning, an efficient paradigm for uncertainty quan-
tification, models predictions as Dirichlet distributions of a single forward pass.
However, EDL is particularly vulnerable to adversarially perturbed inputs, mak-
ing overconfident errors. Conflict-aware Evidential Deep Learning (C-EDL) is a
lightweight post-hoc uncertainty quantification approach that mitigates these issues,
enhancing adversarial and OOD robustness without retraining. C-EDL generates
diverse, task-preserving transformations per input and quantifies representational
disagreement to calibrate uncertainty estimates when needed. C-EDL’s conflict-
aware prediction adjustment improves detection of OOD and adversarial inputs,
maintaining high in-distribution accuracy and low computational overhead. Our
experimental evaluation shows that C-EDL significantly outperforms state-of-the-
art EDL variants and competitive baselines, achieving substantial reductions in
coverage for OOD data (up to ≈ 55%) and adversarial data (up to ≈ 90%), across
a range of datasets, attack types, and uncertainty metrics.

1 INTRODUCTION

Advances in Artificial Intelligence (AI) have led to impressive performance in diverse domains
such as computer vision Dosovitskiy et al. (2020) and natural language processing Achiam et al.
(2023). Yet in high-stakes applications, such as healthcare Seoni et al. (2023); Loftus et al. (2022) and
autonomous driving Wang et al. (2025; 2023), ensuring AI model reliability is critical for trustworthy
decision-making. In such settings, models must recognise when their predictions are uncertain,
particularly in the presence of out-of-distribution (OOD) inputs, which differ significantly from the
training distribution, and adversarial input that are subtly perturbed to mislead the model.

Uncertainty Quantification (UQ) is a core research area Abdar et al. (2021) aimed at equipping
models with the ability to recognise when their predictions may be unreliable. In particular, UQ seeks
to capture two uncertainty types: aleatoric uncertainty, arising from inherent noise in the data, and
epistemic uncertainty, stemming from limited or biased training data. Popular UQ approaches include
Bayesian neural networks Goan & Fookes (2020), variational inference Blei et al. (2017), and Laplace
approximations Fortuin (2022), which provide principled uncertainty estimates but often at significant
computational cost. More scalable approaches, like Monte Carlo Dropout Gal & Ghahramani
(2016), deep ensembles Lakshminarayanan et al. (2017), and test-time augmentation Ayhan &
Berens (2018), trade accuracy or interpretability for efficiency, while hybrid approaches capture both
uncertainty types simultaneously and seek appropriate performance trade-offs Pearce et al. (2018);
Angelopoulos et al. (2023). Despite their merits, these alternative approaches are too costly for use
in resource-constrained environments, demanding more lightweight solutions that can support the
explicit efficiency and resiliency needs of edge AI-based systems Moskalenko et al. (2023).

Evidential Deep Learning (EDL)Sensoy et al. (2018) is an efficient alternative UQ paradigm by
modelling class probabilities with a Dirichlet distribution, enabling simultaneous capture of epistemic
and aleatoric uncertainty in a single deterministic pass. This unique EDL characteristic makes it
well-suited for
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Figure 1: Uncertainty on ID (MNIST) vs. OOD
(FashionMNIST). Both methods stay low on ID,
but C-EDL assigns higher values to OOD where
EDL remains low.

detecting OOD inputs (Figure1) and for deploy-
ment in real-time or resource-constrained settings.
However, its deterministic nature can lead to over-
confident predictions under adversarial perturba-
tions. Recent extensions to EDL Deng et al.
(2023); Qu et al. (2024); Chen et al. (2024); Yoon
& Kim (2024) aim to reduce overconfidence by en-
couraging alternative uncertainty estimation strate-
gies.

While these improve OOD detection, gradient-
based adversarial attacks can still mislead the
model into treating inputs as in-distribution
(ID), as illustrated in Figure 2. Post-hoc ap-

proaches Yang et al. (2022) offer a promising alternative by decoupling uncertainty estimation
from model training, making them more robust to such attacks and easier to deploy. For instance,
Smoothed EDL Kopetzki et al. (2021), regularises predictions against local perturbations to boost
adversarial robustness. However, despite improvements, the approach continues to exhibit significant
overconfidence under adversarial perturbations, indicating a clear need for more effective post-hoc
defences that maintain the efficiency advantages of EDL.
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Figure 2: Evidence on a FashionMNIST OOD
input under increasing L2PGD perturbations.
Solid bars: EDL, gridded bars: C-EDL, dotted
line: ID–OOD threshold. C-EDL stays low un-
der attack, while EDL misclassifies as ID.

We introduce Conflict-aware Evidential Deep
Learning (C-EDL), a lightweight post-hoc ap-
proach that enhances out-of-distribution (OOD)
and adversarial detection by operating on pre-
trained EDL models. Inspired by the Dempster-
Shafer theory (DST) principle that aggregating
multiple sources of evidence yields more reliable
beliefs Shafer (1976), C-EDL generates diverse
views of the input and quantifies distributional
disagreement to increase predictive uncertainty
when appropriate. This mechanism retains in-
distribution (ID) accuracy while boosting robust-
ness to OOD inputs and adversarial perturbations.
We conduct extensive experiments across vari-
ous ID/OOD datasets, near- and far-OOD scenar-
ios, and both gradient- and non-gradient-based
attacks at multiple perturbation strengths. C-EDL
achieves state-of-the-art results across the board,
reducing OOD coverage by up to ≈ 55% and
adversarial coverage by up to ≈ 90%, while pre-
serving ID accuracy with minimal reduction in ID
coverage.

Our key contributions are: (1) the C-EDL post-
hoc approach for enhancing EDL-based uncertainty estimation; (2) theoretical guarantees on the
robustness of our conflict-awareness measure; and (3) a comprehensive benchmarking across diverse
datasets, decision thresholds, and adversarial attacks, demonstrating that C-EDL reduces coverage
for OOD and adversarial data up to 55% and 90%, respectively, significantly outperforming state-of-
the-art EDL variants and competitive approaches.

2 RELATED WORK

Uncertainty Quantification. Uncertainty quantification (UQ) is essential for improving the re-
liability of deep learning models, particularly in safety-critical applications He & Jiang (2023).
Epistemic uncertainty is commonly addressed by estimating distributions over predictions, with
Bayesian neural networks Goan & Fookes (2020), variational inference Blei et al. (2017), and Laplace
approximations Fortuin (2022) offering principled but computationally expensive solutions. Scalable
alternatives such as Monte Carlo Dropout Gal & Ghahramani (2016), deep ensembles Lakshmi-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

narayanan et al. (2017), adversarial perturbations Schweighofer et al. (2023), and distance-aware
models Liu et al. (2020); Van Amersfoort et al. (2020) come with trade-offs in expressiveness or
efficiency. Aleatoric uncertainty is typically modelled through discriminative methods predicting
input-dependent variability Kendall & Gal (2017); Guo et al. (2017), non-parametric prediction inter-
vals Khosravi et al. (2010); Tagasovska & Lopez-Paz (2019), or generative models that reconstruct
data distributions Kingma et al. (2013); Goodfellow et al. (2014). Test-time augmentation Ayhan &
Berens (2018) offers a simple, model-agnostic alternative but does not explicitly separate uncertainty
types. As both uncertainty typescan coexist, it is often most effective to model them simultane-
ously He & Jiang (2023). Hybrid approaches, like ensembles with prediction intervals Pearce et al.
(2018) or conformal prediction Angelopoulos et al. (2023), albeit modelling both uncertainty types,
they often incur high computational cost or require additional calibration.

Evidential Deep Learning. Evidential deep learning (EDL) leverages Dempster-Shafer theory
(DST) Dempster (1968) to quantify uncertainty in a single forward pass. EDL models class probabili-
ties using a Dirichlet distribution, where the model produces non-negative evidence for each class.
The approach uses a single forward pass to estimate both epistemic and aleatoric uncertainty, making
it computationally efficient. The full mathematical formulation of EDL is provided in Section 3. EDL
is effective for out-of-distribution (OOD) detection, as it learns to avoid overconfident predictions
on uncertain inputs, typically by thresholding uncertainty metrics such as mutual information or
differential entropy. However, because it relies on a single deterministic forward pass, it cannot
benefit from multiple stochastic perspectives of the same input as seen in methods like Monte Carlo
Dropout or deep ensembles. As a result, if the model makes an overconfident error, it cannot correct
for it, limiting its performance especially under adversarial perturbations where stronger uncertainty
signals are often needed Kopetzki et al. (2021). Figure 2 exemplifies this effect, where higher levels
of L2 perturbation sees the EDL model seeing the OOD input as in-distribution (ID).

Subsequent work has extended EDL to improve OOD detection, with methods primarily proposing
refinements that enhance the model’s ability to recognise unfamiliar inputs Deng et al. (2023); Qu
et al. (2024); Chen et al. (2024); Yoon & Kim (2024). However, these approaches largely retain
EDL’s main limitation under adversarial perturbations, as they do not address the deterministic nature
of single-pass uncertainty estimation. Smoothed EDL (S-EDL)Kopetzki et al. (2021) is one of the
few methods that explicitly targets adversarial robustness by regularising predictions against local
input perturbations, but it does not fully resolve the issue, particularly against stronger attacks. There
is a clear need for an improvement to EDL that thoroughly addresses adversarial robustness while
remaining lightweight and computationally efficient. Post-hoc approaches have also been shown
to outperform approaches that modify the training process, offering developers easier integration
into existing systems Yang et al. (2022), and additionally allowing uncertainty improvements to be
applied flexibly across a wide range of pre-trained models without retraining. To this end, the C-EDL
approach introduced in this paper is designed to meet all these requirements.

3 PRELIMINARIES

We consider the standard supervised classification setting, aiming to learn a predictive model over a
finite set of class labels. Let X ⊆ Rd denote the input space and Y = {1, . . . ,K} the label space
withK classes. Given a dataset D = {(xi, yi)}Ni=1, where each pair (xi, yi) ∈ X ×Y is sampled i.i.d.
from an underlying distribution p(x, y) = p(x) p(y | x), the objective is to learn the class-conditional
probabilities p(y | x). In addition to making accurate predictions, we are interested in quantifying
the model’s predictive uncertainty. In this work, we focus exclusively on the classification case.

EDL models class probabilities using a Dirichlet distribution, parameterised by α = [α1, . . . , αK ].
Given an input x, a neural network produces Dirichlet parameters αk = ek + 1, where ek ≥ 0
represents the evidence collected for class k. The belief mass and uncertainty are derived as

bk =
αk − 1

S
, u =

K

S
, (1)

where S is the Dirichlet strength defined by S =
∑K
k=1 αk. A higher S corresponds to stronger

model confidence, leading to sharper probability distributions. The Dirichlet distribution itself is
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Augment  Input

Input  Data
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Input  Data

Confl ict  
Adjustment
(Eq. 5-10)

OOD Input
0      1        2   . . .   u

ID Input
0      1        2   . . .   u
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EDL Output
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Figure 3: Overview of Conflict-aware Evidential Deep Learning (C-EDL) approach, with its key
post-hoc steps that advance regular EDL highlighted in blue . For each new input, C-EDL performs
T metamorphic transformations, yielding a label-preserving evidence set, and then executes conflict
adjustment on the accumulated evidence to calibrate the final prediction. When applied to in-
distribution inputs, C-EDL closely matches the original EDL output, while given out-of-distribution
inputs, C-EDL amplifies uncertainty to better reflect model disagreement.

expressed as

Dir(p | α) = Γ(S)∏K
k=1 Γ(αk)

K∏
k=1

pαk−1
k , (2)

where Γ(·) is the gamma function. The expected class probability, corresponding to the mean of the
Dirichlet distribution, is

E[pk] =
αk
S
. (3)

While EDL allows for uncertainty estimation in a single forward pass, it struggles with out-of-
distribution detection and adversarial robustness. The reliance on a single prediction can lead to
overconfident outputs for unseen samples, as the method does not explicitly account for inconsisten-
cies in evidence when the input is perturbed or transformed.

4 C-EDL

Our Conflict-aware Evidential Deep Learning (C-EDL) approach, whose high-level workflow is
shown in Figure 3, improves robustness to OOD and adversarially attacked inputs. Motivated by
the DST principle that multiple sources of evidence yield more reliable beliefs Shafer (1976), C-
EDL generates diverse views of each input through label-preserving metamorphic transformations,
coalesces the resulting evidence sets, and quantifies their discernment. When conflict is detected
across these views, C-EDL reduces the overall evidence to signify greater uncertainty, resulting in
better detection of OOD and adversarially attacked inputs without affecting the ID data detection and
accuracy.

4.1 INPUT AUGMENTATION AND EVIDENCE SET GENERATION

To generate a diverse set of evidence for a given input, C-EDL applies a set of T metamorphic transfor-
mations {τ1, . . . , τT } to an input instance x, where each transformation satisfies the label-preserving
constraint f∗(τt(x)) = f∗(x) ∀1 ≤ t ≤ T . Each τt(x) serves as a distinct but semantically equiva-
lent view of the original input. Although these transformations induce only small changes in input
space, they can yield substantially different responses in the model’s internal feature representations
due to its sensitivity to local structure Goodfellow et al. (2016). This property enables C-EDL to
probe the stability of the model’s beliefs under controlled, task-instrumented perturbations, offering a
principled way to elicit and assess representational discernment and disagreement. These transforma-
tions span an equivalence class of inputs that share the same label under the ground-truth function f∗,
but differ in their statistics at the input level; for instance, in the case of images, the difference would
be at the pixel-level. Since the pretrained evidential model may be susceptible to spurious features or
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lack generalisability capabilities to transformation invariance, its outputs across {τt(x)}Tt=1 can differ,
providing a signal of uncertainty that we later quantify through conflict analysis and adjustment.

Each transformed instance τt(x) is independently passed through a pretrained evidential model,
which produces a corresponding Dirichlet vector α(t) = (α

(t)
1 , . . . , α

(t)
K ), where each α

(t)
k en-

codes the strength of belief assigned to class k. This results in a set of T evidence sets
A = {α(1), α(2), . . . , α(T )}, which captures the model’s output variability across representational
shifts in the input data.

4.2 CONFLICT ADJUSTMENT

After collecting diverse evidence sets A, we quantify disagreement across these views through two
complementary measures of conflict: intra-class variability and inter-class contradiction. Together,
these provide a rigorous signal of conflict.

Intra-class variability captures how much the evidence for each class fluctuates across the applied
transformations. For each class k, the standard deviation and mean of the Dirichlet parameters α(t)

k
across the transformations T . The coefficient of this is then averaged across all classes:

Cintra =
1

K

K∑
k=1

σ({α(t)
k }Tt=1)

µ({α(t)
k }Tt=1) + ϵ

, (4)

where σ(·) and µ(·) denote the standard deviation and mean respectively, and ϵ is a small positive
constant used for numerical stability. The rationale underpinning Cintra is that its value increases
when the model assigns inconsistent beliefs to the same class across the performed transformations.

Inter-class conflict measures instances where the model supports competing classes (e.g., two or more
classes have equally high probability/evidence), highlighting cases where the model is unsure about
its prediction. For each set of Dirichlet parameters α(t)

k , the pairwise contradictions between classes
k and j are computed, highlighting cases where both classes are supported with high evidence. This
is formalised as:

Cinter =
1

T

T∑
t=1

1− exp

−β
K∑
k=1

K∑
j=k+1

(
min(α

(t)
k , α

(t)
j )

max(α
(t)
k , α

(t)
j )

×
min(α

(t)
k , α

(t)
j )∑K

k=1 α
(t)
k

× 2

)2
 , (5)

where β > 0 is a scaling parameter that adjusts the sharpness of the penalty assigned to the
contradiction, and the final multiplication by 2 ensures the combined term is bounded within [0, 1].

To obtain the final measurement of conflict, both terms are combined into a single total score C:
C = Cinter + Cintra − CinterCintra − λ(Cinter − Cintra)

2 (6)
using the inclusion-exclusion principle, which ensures a combined measure of conflict by accounting
for overlap between Cintra and Cinter, where λ ∈ [0, 1] controls the penalisation of asymmetric
disagreement. This formulation ensures C ∈ (0, 1] tends towards 0 if and only if all transformations
produce identical Dirichlet parameters concentrated on a single class, and increases monotonically
with either source of conflict.
Theorem 1. The conflict measure C is bounded between (0, 1], tends towards 0 if and only if
all transformations produce identical Dirichlet parameters concentrated on a single class, and
monotonically non-decreasing with increasing intra and inter-class conflict with λ ∈ [0, 12 ].

See the corresponding proof in Appendix A. This conflict score C serves as the basis for the post-hoc
uncertainty augmentation and evidence reduction of C-EDL. Firstly, the Dirichlet parameters across
all transformations are aggregated:

ᾱk =
1

T

T∑
t=1

α
(t)
k , ∀k ∈ {1, ...,K}. (7)

C-EDL applies an exponential decay to each element of the aggregated Dirichlet parameters, specifi-
cally, each parameter αk is scaled to reduce overconfident predictions when high conflict is detected
and preserve predictions when low conflict is detected:

α̃k = ᾱk × exp(−δC). (8)
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where δ > 0 is a tunable hyperparameter controlling the sensitivity of the adjustment. This decay
operation ensures that the shape of the original distribution remains unchanged, while the magnitude
of the evidence is reduced proportionally to the conflict. Doing so retains the model’s most likely
prediction but expresses reduced certainty. The remaining EDL calculations, specifically the Dirichlet
strength, belief per class, uncertainty mass, and expected probabilities, are only modified to use the
reduced Dirichlet parameters:

S̃ =

K∑
k=1

α̃k, b̃k =
α̃k − 1

S̃
, ũ =

K

S̃
, E[p̃k] =

α̃k

S̃
. (9)

In cases where the conflict C is high, the total Dirichlet strength S̃ is reduced and, consequently,
the uncertainty mass ũ is amplified. In contrast, when conflict is low, the total Dirichlet strength S̃
resembles the original strength S and uncertainty is therefore minimally affected.

5 EVALUATION

We evaluate C-EDL in a comprehensive series of experiments comparing it against state-of-the-art
EDL-based and other competitive UQ approaches over 10 independent runs. Our evaluation focuses
on both performance and uncertainty estimates produced per approach for OOD and adversarially
attacked data. The C-EDL code and replication package are available at our open-source repository 1.

Comparative Approaches. We compare C-EDL against Posterior Networks Charpentier et al. (2020),
Evidential Deep Learning (EDL) Sensoy et al. (2018), Fisher Information-based EDL (I-EDL) Deng
et al. (2023), Smoothed EDL (S-EDL) Kopetzki et al. (2021), Hyper-Opinion EDL (H-EDL) Qu et al.
(2024) Relaxed EDL (R-EDL) Chen et al. (2024), and Density-Aware EDL (DA-EDL) Yoon & Kim
(2024), to represent a range of approaches in EDL and UQ that allow for a fair comparison.

Datasets. Adopting the procedure on EDL-based evaluation from recent research Deng et al.
(2023); Chen et al. (2024), we evaluate all approaches on the MNIST LeCun et al. (1998), Fash-
ionMNIST Xiao et al. (2017), KMNIST Clanuwat et al. (2018), EMNIST Cohen et al. (2017),
CIFAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky et al. (2009), SVHN Netzer et al. (2011),
Oxford Flowers Netzer et al. (2011), Deep Weeds Olsen et al. (2019), Tiny-ImageNet Le & Yang
(2015), and CUB Welinder et al. (2010) datasets which were selected to cover a diverse set of domains
and challenges. In the following experiments, near-OOD datasets are those that share some degree of
class overlap with the ID dataset Yang et al. (2022).

Alongside C-EDL, we evaluate three variants to isolate component effects: EDL++, which omits
conflict adjustment and averages Dirichlet parameters after input transformations; and MC versions
of both EDL++ and C-EDL, denoted EDL++ (MC) and C-EDL (MC), which replace metamorphic
transformations with Monte Carlo Dropout for diverse evidence. Full training, hyperparameters,
attack setups, and datasets are detailed in Appendix C. We also compare C-EDL to other UQ methods
(Table 4) and assess Tiny-ImageNet with CUB few-shot on ResNet50 (Table 5, Appendix B.1).
Training and inference time results are in Appendix B.4.

5.1 CORE RESULTS

For our core set of experiments, we evaluate the accuracy, ID coverage, OOD detection, including
both near- and far-OOD settings, and adversarial robustness of both C-EDL and its variants and
comparative baselines across a diverse suite of ID/OOD dataset pairs, in order to assess overall
reliability under distributional shift and attack. These results are summarised in Table 1 and further
analysis can be found in Appendix B.1.

Firstly, across all datasets, every approach (including C-EDL and its variants) maintains near-ceiling
accuracy across all datasets (e.g., 95-99%), showing that none of the UQ approaches compromise
classification performance on clean ID data. This key outcome provides concrete evidence reassuring
that any observed gains in robustness through using C-EDL are not due to underlying degradation in
classification performance in ID data.

1Our open-source repository is available at: https://anonymous.4open.science/r/cedl-01C7
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Table 1: The accuracy, OOD detection, and adversarial attack detection performance of the com-
parative approaches with a variety of ID and OOD datasets in order of dataset difficulty. The
adversarial attack is an L2PGD attack 2 Highlighted cells denote the best performance for each
metric. * indicates datasets classed as Near-OOD.

Comparative Methods Ablated C-EDL Methods Proposed C-EDL
Posterior Network EDL I-EDL S-EDL H-EDL R-EDL DA-EDL EDL++ (MC) C-EDL (MC) EDL++ (Meta) C-EDL (Meta)

MNIST → FashionMNIST
ID Acc ↑ 99.96%± 0.01 99.96%± 0.02 99.95%± 0.02 99.95%± 0.02 99.96%± 0.02 99.96%± 0.01 99.89%± 0.05 99.97%± 0.01 99.98%± 0.02 99.97%± 0.02 99.96%± 0.01
ID Cov ↑ 94.72%± 0.96 96.61%± 0.57 96.08%± 0.67 96.06%± 0.72 96.18%± 0.92 96.27%± 0.48 95.16%± 0.76 93.35%± 1.28 92.14%± 1.43 94.93%± 0.60 94.18%± 1.03

OOD Cov ↓ 3.55%± 0.67 2.52%± 0.68 2.74%± 0.96 2.41%± 0.66 2.28%± 0.98 2.34%± 0.86 2.98%± 2.02 7.55%± 1.33 1.77%± 0.63 1.96%± 0.59 2.00%± 0.80
Adv Cov ↓ 61.14%± 9.38 52.21%± 9.49 47.58%± 8.79 48.80%± 8.75 50.40%± 14.60 49.05%± 11.90 28.74%± 7.93 38.81%± 4.23 21.62%± 4.89 16.43%± 5.52 15.51%± 6.09

MNIST → KMNIST
ID Acc ↑ 99.97%± 0.01 99.97%± 0.01 99.96%± 0.01 99.97%± 0.01 99.97%± 0.01 99.96%± 0.01 99.90%± 0.03 99.98%± 0.01 99.98%± 0.02 99.98%± 0.01 99.98%± 0.01
ID Cov ↑ 94.72%± 0.51 95.42%± 0.62 95.47%± 0.55 95.08%± 0.78 95.59%± 0.48 95.32%± 0.53 94.12%± 1.20 91.94%± 0.99 90.20%± 1.66 93.73%± 0.82 92.42%± 0.65

OOD Cov ↓ 3.78%± 0.81 3.23%± 0.76 3.54%± 0.74 3.16%± 0.56 3.33%± 0.59 3.21%± 0.37 3.37%± 2.35 11.67%± 1.19 3.69%± 1.01 2.21%± 0.58 1.90%± 0.32
Adv Cov ↓ 23.91%± 3.70 20.88%± 5.95 19.57%± 4.27 14.96%± 4.11 20.03%± 2.91 16.40%± 4.49 10.06%± 4.21 27.79%± 2.66 12.40%± 2.09 4.20%± 1.93 3.01%± 0.94

MNIST → EMNIST*
ID Acc ↑ 99.98%± 0.01 99.98%± 0.01 99.99%± 0.01 99.99%± 0.01 99.98%± 0.01 99.98%± 0.02 99.92%± 0.04 99.99%± 0.01 99.99%± 0.01 99.99%± 0.01 99.98%± 0.01
ID Cov ↑ 93.14%± 0.87 92.73%± 0.94 93.17%± 0.46 92.65%± 1.10 93.18%± 1.16 93.27%± 0.82 90.53%± 1.30 86.11%± 2.86 82.75%± 2.96 90.65%± 1.34 89.89%± 1.44

OOD Cov ↓ 14.96%± 1.02 10.74%± 1.34 10.62%± 0.93 10.31%± 1.33 11.29%± 1.59 10.06%± 1.02 14.14%± 8.47 17.16%± 1.34 6.83%± 1.37 8.88%± 1.04 8.93%± 0.75
Adv Cov ↓ 15.76%± 3.95 7.81%± 3.53 6.53%± 1.72 6.60%± 2.02 9.05%± 4.11 6.40%± 2.96 12.30%± 10.93 22.63%± 2.74 7.14%± 1.61 1.47%± 0.59 1.41%± 0.40

CIFAR10 → SVHN
ID Acc ↑ 95.63%± 0.72 95.88%± 0.54 96.19%± 0.70 96.07%± 0.69 96.09%± 0.55 96.82%± 0.54 91.25%± 0.96 97.39%± 0.53 98.40%± 0.39 97.29%± 0.31 97.98%± 0.42
ID Cov ↑ 65.74%± 3.11 67.34%± 3.15 66.57%± 2.41 65.57%± 3.36 66.74%± 2.75 62.59%± 2.41 43.83%± 16.97 56.65%± 3.01 47.04%± 3.64 60.53%± 2.32 54.70%± 2.11

OOD Cov ↓ 11.82%± 2.52 10.91%± 2.23 9.68%± 1.84 10.40%± 1.94 9.84%± 1.63 8.92%± 1.76 20.40%± 9.25 12.01%± 1.88 6.66%± 1.06 6.59%± 1.17 4.69%± 1.00
Adv Cov ↓ 15.57%± 6.19 20.00%± 6.89 19.25%± 6.37 3.32%± 1.46 19.64%± 4.86 14.61%± 6.79 21.48%± 8.98 15.22%± 2.32 9.39%± 1.18 2.35%± 0.96 1.25%± 0.56

CIFAR10 → CIFAR100*
ID Acc ↑ 96.17%± 0.36 96.66%± 0.70 96.67%± 0.45 96.69%± 0.54 96.76%± 0.46 97.40%± 0.41 89.28%± 0.81 97.87%± 0.28 98.64%± 0.40 97.51%± 0.40 98.22%± 0.27
ID Cov ↑ 62.91%± 2.71 63.33%± 3.89 63.84%± 2.75 63.13%± 2.35 62.25%± 2.11 60.21%± 2.39 66.98%± 3.51 54.50%± 2.37 45.02%± 3.37 59.47%± 2.31 53.18%± 2.31

OOD Cov ↓ 17.73%± 2.42 17.24%± 4.01 17.73%± 2.72 17.48%± 2.56 16.12%± 2.01 14.46%± 2.02 33.85%± 4.14 19.50%± 1.74 11.44%± 1.81 13.34%± 1.83 9.61%± 1.26
Adv Cov ↓ 12.30%± 2.71 14.02%± 5.06 14.10%± 4.05 7.73%± 1.88 12.73%± 3.17 9.40%± 2.49 31.88%± 4.39 16.32%± 2.01 7.20%± 1.70 5.46%± 1.20 3.17%± 0.51

Oxford Flowers (low-shot) → Deep Weeds
ID Acc ↑ 98.59%± 0.38 99.00%± 0.57 98.89%± 0.49 99.09%± 0.50 98.97%± 0.46 99.78%± 0.15 92.38%± 3.17 99.72%± 0.25 100.00%± 0.00 99.20%± 0.51 99.59%± 0.58
ID Cov ↑ 69.86%± 2.32 63.67%± 4.40 60.73%± 8.23 61.70%± 5.89 63.17%± 6.37 64.78%± 2.51 71.40%± 5.39 54.20%± 8.25 42.33%± 5.71 51.73%± 4.12 47.50%± 7.44

OOD Cov ↓ 5.27%± 1.26 8.87%± 4.80 8.17%± 1.78 8.13%± 1.73 6.01%± 1.34 2.34%± 1.64 3.76%± 2.28 6.00%± 2.23 1.02%± 0.41 5.61%± 2.80 1.78%± 1.92
Adv Cov ↓ 8.24%± 2.53 13.57%± 5.92 12.74%± 3.86 11.56%± 3.65 8.61%± 3.26 1.25%± 0.78 4.69%± 2.90 5.55%± 1.84 1.14%± 0.38 6.94%± 2.81 1.93%± 2.19

Figure 4: Visualised adversarial AUROC plots including the binary decision threshold for OOD/Adv
rejection, for comparative methods where the ID dataset is MNIST and the OOD dataset is Fashion-
MNIST. Full plots are in Appendix B.1.

In terms of ID coverage (the proportion of ID inputs retained after abstention), approaches such as
EDL, H-EDL, and R-EDL attain higher coverage (< 96% on MNIST → FashionMNIST), but this
comes at a cost of worse or only a marginal improvement in OOD and adversarial coverage. This
shows that there still remains a large overconfidence in predictions. In contrast, C-EDL and its variants,
offer a significantly better trade-off. More specifically, C-EDL achieves a substantially lower OOD
and adversarial coverage, often halving, tripling or more compared to state-of-the-art approaches,
with only a marginal reduction in ID coverage. For example, on the MNIST → FashionMNIST
datasets pair, EDL achieves an adversarial coverage of 52.21%± 9.49 whilst C-EDL (Meta) reduces
this substantially to 15.51% ± 6.09. On more complex datasets, such as the CIFAR10 → SVHN
pairing, EDL achieves an adversarial coverage of 20.00% ± 6.89 whilst C-EDL (Meta) reduces
this substantially to 1.25% ± 0.56. To better visualise the trade-off and the superior performance
of the C-EDL variants, Figure 4 provides adversarial AUROC plots for the adversarially attacked
FashionMNIST dataset.

The EDL++ variants isolate the effect of the metamorphic and MC Dropout transformations with
the conflict-aware adjustment. While the EDL++ variants can reduce OOD and adversarial coverage
to some degree, the C-EDL variants reduce them even further. For example, on the CIFAR10 →
SVHN pairing, EDL++ (Meta) achieves OOD coverage 6.59% ± 1.17 and adversarial coverage
2.35%± 0.96 whilst C-EDL (Meta) achieves OOD coverage 4.69%± 1.00 and adversarial coverage
1.25%± 0.56. The improved performance of C-EDL across nearly every setting corroborates that it
is not just the diversity of evidence that matters. Instead, the conflict-aware adjustment of C-EDL
that quantifies the disagreement and uses this information to reduce the magnitude of belief is also
highly important.

2Details of the maximum L2PGD perturbation for each dataset are discussed in Appendix C.6
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Figure 5: Adversarial coverage (circle size) compared to mean difference between the computed
abstention metric (∆, circle colour; Table 3) for all approaches on all evaluated datasets. Positive
values indicate predictions tend to be above the threshold, while negative values indicate predictions
fall below the threshold (as expected for adversarially attacked data). Smaller circle and more negative
∆ values (darker green) are ideal, reflecting stronger confidence that the input is adversarial.

These core results also reinforce the strength of post-hoc uncertainty calibration strategies in compar-
ison to in-training strategies. Among all evaluated approaches, post-hoc approaches (S-EDL and our
C-EDL variants) outperform those that modify the training process (e.g., DA-EDL, H-EDL, R-EDL),
highlighting the advantages of decoupling prediction and uncertainty estimation.

The comparison between C-EDL (MC) and C-EDL (Meta) shows that metamorphic transformations
consistently outperform Monte Carlo sampling. While both generate diverse evidence to assess belief
stability, the structured and semantically controlled perturbations in C-EDL (Meta) yield better OOD
and adversarial detection. This supports the intuition that task-preserving augmentations form a more
principled basis for detecting epistemic uncertainty, providing concrete evidence for the benefit of
C-EDL’s input augmentation and evidence set generation step (Section 4.1).

To further highlight the quality of abstention decisions, particularly in the adversarial context, we
examine the computed scoring metrics (∆) against the coverage for each approach (Figure 5 and
Table 3). These metrics combined represent the mean difference between the model’s uncertainty
scores and the ID-OOD decision threshold; positive for retained (ID) samples, negative for abstained
(OOD or adversarial) samples. A large positive ∆ for ID data and large negative ∆ for adversarial or
OOD inputs indicate well-separated and calibrated decisions. As shown in Figure 5, C-EDL (Meta)
consistently shows the most desirable profile. For instance, on MNIST → FashionMNIST, its
adversarial ∆ is −5.50± 1.24, compared to −3.55± 1.46 and −2.89± 1.13 for I-EDL and EDL,
respectively, showing a much stronger rejection on adversarial examples. These results yield strong
evidence highlighting that C-EDL is not only effective in reducing adversarial coverage, but also
reliably confident when rejecting uncertain inputs.

Extended analysis of the core results can be found in Appendix B.1, and ablation results of the
hyperparameters introduced by the C-EDL and its variants can be found in Appendix B.4.

5.2 ADVERSARIAL ATTACK ANALYSIS

We evaluate adversarial coverage for the investigated approaches with increasing perturbation
strengths ϵ for three distinct gradient (L2PGD and FGSM) and non-gradient (Salt-and-Pepper noise)
adversarial attack types in Figure 6. Across all attack types and ϵ values, C-EDL (Meta) consistently
achieves the lowest adversarial coverage, confirming robustness to multiple attacks and attack types.

For the most challenging gradient-based attack (L2PGD - left), adversarial coverage for EDL rises
sharply to nearly 70% at ϵ = 1.0, while C-EDL (Meta) remains below 20%, signifying a considerable
improvement. The gap is similarly large for C-EDL (MC). For a weaker gradient-based attack (FGSM
- middle), adversarial coverage is lower on average and, as expected, multiple comparative approaches
struggle as ϵ increases. Both C-EDL variants remain very close to 0%. Finally, for a non-gradient-
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Figure 6: Adversarial coverage (%) across varying perturbation strengths (ϵ) for three attack types
(L2PGD, FGSM, and Salt and Pepper noise). Lower coverage indicates better robustness.

Figure 7: Adversarial coverage (%) for different ID-OOD threshold metrics where the ID dataset is
MNIST, the OOD dataset is FashionMNIST, and the adversarial attack is L2PGD (ϵ = 1.0).

based attack (Salt-and-Pepper noise - right), all comparative approaches struggle at smaller ϵ, which
is to be expected with non-gradient-based attacks. All C-EDL variants maintain minimal coverage
throughout. This result shows that C-EDL’s conflict-aware strategy generalises across fundamentally
different types of adversarial attacks, not just those tailored for gradient manipulation. Detailed
results for the performance of all approaches under each attack are provided in Appendix B.2.

5.3 THRESHOLD ANALYSIS

Similar to Sensoy et al. (2018); Wang et al. (2024); Deng et al. (2023), we evaluate the performance of
the investigated approaches under varying ID-OOD decision threshold methods, i.e., differential en-
tropy, total evidence and mutual information. Details on each threshold are provided in Appendix C.2.
The adversarial coverage per approach for each decision threshold is shown in Figure 7 and the results
obtained reveal interesting trends. Firstly, most of the majority (e.g., Posterior Network, EDL, I-EDL)
have limited sensitivity to the decision threshold, and further perform poorly, consistently predicting
on more than half of the adversarial data. In contrast, C-EDL and its variants achieve a significantly
lower coverage across all three thresholds. These results demonstrate that the performance of C-EDL
is robust to the choice of decision threshold methods. Further analysis can be found in Appendix B.3.

6 CONCLUSION AND FUTURE WORK

We introduced Conflict-aware Evidential Deep Learning (C-EDL), a post-hoc uncertainty quantifi-
cation method that augments any pre-trained EDL classifier with principled, transformation-driven
conflict analysis. By generating label-preserving metamorphic variants of each input, quantifying
intra- and inter-class disagreement, and scaling evidence accordingly, C-EDL reliably detects OOD
and adversarial inputs, thereby improving robustness. Experiments on diverse datasets show that
C-EDL reduces prediction coverage on adversarial inputs by up to six-fold over state-of-the-art
methods. Despite the added transformations, inference overhead remains negligible, making C-EDL
lightweight and practical for deployment. These findings highlight C-EDL as a generalisable and
robust solution against OOD and adversarial data across a variety of attacks and decision thresholds,
with future work aimed at extending it to detection tasks and minimising augmentation requirements.

9
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A THEORETICAL ANALYSIS

This appendix provides the proofs to complement Theorem 1 presented in Section 4. More specifically,
we provide proofs regarding the C, Cintra, and Cinter bounds, and the quality of the conflict
measurement C in terms of monotonicity and how it behaves in specific scenarios.

A.1 THEOREM 1

Theorem 1. The conflict measure C is bounded between (0, 1], tends towards 0 if and only if
all transformations produce identical Dirichlet parameters concentrated on a single class, and is
monotonically non-decreasing with increasing intra and inter-class conflict with λ ∈ [0, 12 ].

Proof. We prove this in three parts: (1) C is bounded within (0, 1]; (2) C → 0 in the case of identical
Dirichlet parameters; and (3) C is monotonically non-decreasing with increasing Cintra and Cinter.

Firstly, to prove that C is bound within (0, 1] we recall the Cintra and Cinter definitions from
Equations equation 4 and equation 5, respectively:

Cintra =
1

K

K∑
k=1

σ({α(t)
k }Tt=1)

µ({α(t)
k }Tt=1) + ϵ

, (10)

Cinter =
1

T

T∑
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1− exp

−β
K∑
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K∑
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(t)
j )

max(α
(t)
k , α

(t)
j )

×
min(α

(t)
k , α

(t)
j )∑K

k=1 α
(t)
k

× 2

)2
 (11)

where β > 0 and α(t)
k > 0.

Concerning Cintra, since by construction each Dirichlet parameter α(t)
k is strictly positive and ϵ

is a small positive constant (used for numerical stability), the mean µ({α(t)
k }Tt=1) is itself strictly

positive. Thus, the denominator in Cintra is always positive and bounded above 0. The numerator is
the standard deviation of the Dirichlet parameters σ({α(t)

k }Tt=1), thus, it is always non-negative or
exactly zero in the case of identical Dirichlet parameters. The ratio σ(...)

µ(...)+ϵ represents a normalised
measure of dispersion. This ratio is well-known to lie between 0 (no variability) and 1, due to the
nature of variance-to-mean ratios of strictly positive distributions. As a result, we establish:

0 ≤ Cintra ≤ 1 (12)

Concerning Cinter which is comprised of 1− exp(−x) and the argument:

x = −β
K∑
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max(α
(t)
k , α

(t)
j )

×
min(α

(t)
k , α

(t)
j )∑K

k=1 α
(t)
k

× 2

)2

(13)

Since by construction α(t)
k ≥ 1, therefore min(α

(t)
k , α

(t)
j ) and max(α

(t)
k , α

(t)
j ) must be ≥ 1 and

S(t) ≥ K. Every squared factor inside the double sum us strictly positive, making the argument
x > 0. Since 0 < exp(−x) < 1 for all x > 0, each term 1− exp(−x) lie strictly between 0 and 1.
Thus, we establish:

0 < Cinter ≤ 1 (14)

To quantify the tightness of the lower bound, we analyse the case where nearly all evidence is placed
in a single class (the case that will bring Cinter closest to 0. Assume every transformation produces
the same Dirichlet vector:
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ac = A >> 1, aj = 1(j ̸= c), S = A+K − 1 (15)

where class c is the favoured class, A is the Dirichlet parameter assigned to class c, and all other class
carry the implied prior constructed by the EDL process. Only the K − 1 pairs {c, j} contribute the
Cinter. For any such pair:

min(αc, αj) = 1, max(αc, αj) = A (16)

the squared factor becomes:

z = (
1

A

1

A+K − 1
2)2

= (K − 1)(
2

A(A+K − 1)
)2

(17)

as there are K − 1 pairs. Substituting this into Cinter gives:

Cinter = 1− exp(−βz) = 1− exp(−β(K − 1)(
2

A(A+K − 1)
)2) (18)

assuming K = 2, the second term vanishes and z = O(A−4), hence in the case of a dominating
single class, Cinter = O(A−4). Therefore, it can be said that Cinter is strictly positive but can be
driven arbitrarily closer to 0 at a quartic rate.

Given that both Cintra is bounded [0, 1] and Cinter is bounded (0, 1], we can determine the bounds
of C.

In the case of the lower bound (Cintra = 0 and Cinter = ϵ) where ϵ ∈ (0, 1], the conflict measure C
is:

C = ϵ+ 0− (ϵ)(0)− λ(ϵ− 0)2

= ϵ− λϵ2

= ϵ(1− λϵ)

(19)

Since we have shown that ϵ→ 0+, it is strictly positive. In this case of the upper bound (Cintra = 1
and Cinter = 1), the conflict measure C is:

C = 1 + 1− (1)(1)− λ(1− 1)2

= 2− 1− 0

= 0

(20)

Thus, C is bounded on (0, 1], satisfying the first part of the theorem.

Next, we prove that C → 0 if and only if the Dirichlet parameters across transformations are
identical and concentrated on a single class. Given a set of transformation t ∈ {1, . . . , T} and classes
k ∈ {1, . . . ,K}, a set of identical Dirichlet parameters α(t)

k = αk for all t are produced. We have
shown above that in this case Cintra → 0 with the decay rate O(A−4) when K = 2. Because the
Dirichlet parameters are identical, the intra-class conflict vanishes, thus Cintra = 0. Hence, C shares
the same properties. In this case of identical concentrated Dirichlet parameters, it tends towards 0 with
the same decay rate. As a result, C → 0 has little effect on the final evidence reduction/uncertainty
boosting methodology.

Finally, we prove that C is monotonically non-decreasing with increasing Cintra and Cinter when
λ ∈ [0, 12 ]. Since C is continuously differentiable, monotonicity is equivalent to non-negativity of its
partial derivatives. This is:
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∂C

∂Cinter
= 1− Cintra − 2λ(Cinter − Cintra)

∂C

∂Cintra
= 1− Cinter − 2λ(Cinter − Cintra)

(21)

Each derivative is affine, therefore, its minimum over the rectangle [0, 1]2 is attained at one of the
four corners 0, 12. Given ∂C

∂Cinter
, evaluating the corners gives:

(0, 0) : 1, (1, 0) : 1− 2λ, (0, 1) : 2λ, (1, 1) : 0 (22)

with the smallest corner being (1, 0) with the value 1 − 2λ. Under λ ∈ [0, 12 ], we get 1 − 2λ ≥ 0,
thus:

∂C

∂Cinter
≥ 0 for every (Cinter, Cintra) ∈ (0, 1]2 (23)

Increasing Cinter while holding Cintra never decreases C when λ ≤ 1
2 . Given ∂C

∂Cintra
, evaluating

the corners gives:

(0, 0) : 1, (1, 0) : 0, (0, 1) : 1− 2λ, (1, 1) : 2λ (24)

with the smallest corner being (0, 1) with the value 1 − 2λ. Under λ ∈ [0, 12 ], we get 1 − 2λ ≥ 0,
thus:

∂C

∂Cintra
≥ 0 for every (Cinter, Cintra) ∈ (0, 1]2 (25)

Increasing Cintra while holding Cinter never decreases C when λ ≤ 1
2 . This proves that C is

monotonic for λ ≤ 1
2 , this is qualitatively backed up with the C visualisation w.r.t Cinter, Cintra,

and λ in Figure 15.

It is to be noted that C remains non-negative on [0, 1]2 for λ ∈ [0, 1], yet monotonicity is lost when
λ > 1

2 . Looking at Figure 15, the quadratic penalty −λ(Cinter − Cintra)
2 bends the surface down

along the diagonal. Restricting λ to at most 1
2 limits this curvature so that it does not overpower the

linear ascent from Cinter + Cintra − CinterCintra. This proof is also part of the justification why
we chose λ = 1

2 in our experimental evaluation.

B ADDITIONAL EXPERIMENTS

This appendix provides additional experimental insights and analyses to complement the core results
presented in Section 5. Specifically, we include extended analysis of metrics, adversarial attacks,
thresholds, and ablations of hyperparameters introduced in C-EDL.

B.1 EXTENDED ANALYSIS OF CORE RESULTS

Table 2 shows the difference in ID accuracy, ID, OOD, and adversarial coverage of all approaches
from the baseline (EDL) across the different datasets to complement Table 1.

Analysing this table shows us that EDL serves as a strong improvement to the Posterior Network, not
only improving ID coverage but also OOD coverage. Thus, EDL learns to create a better uncertainty
split between ID and OOD data across all datasets.

Notably, C-EDL (Meta) consistently achieves the largest reductions in OOD and adversarial coverage
compared to EDL, while retaining competitive ID coverage across all dataset pairings. For instance,
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Table 2: Difference from EDL baseline. Positive numbers improve ↑ metrics and worsen ↓ metrics;
negative numbers do the opposite. The adversarial attack is an L2PGD attack 3 Highlighted cells
denote the best performance for each metric. * indicates datasets classed as Near-OOD.

Comparative Methods Ablated C-EDL Methods Proposed C-EDL
Posterior Network EDL I-EDL S-EDL H-EDL R-EDL DA-EDL EDL++ (MC) C-EDL (MC) EDL++ (Meta) C-EDL (Meta)

MNIST → FashionMNIST
ID Acc ↑ +0.00±−0.01 0 −0.01±+0.00 −0.01±+0.00 +0.00±+0.00 +0.00±−0.01 −0.07±+0.03 +0.01±−0.01 +0.02±+0.00 +0.01±+0.00 +0.00±−0.01
ID Cov ↑ −1.89±+0.39 0 −0.53±+0.10 −0.55±+0.15 −0.43±+0.35 −0.34±−0.09 −1.45±−0.20 −3.26±+0.72 −4.47±+0.86 −1.68±+0.03 −2.43±+0.46

OOD Cov ↓ +1.03±−0.01 0 +0.22±+0.28 −0.11±−0.02 −0.24±+0.30 −0.18±+0.18 +0.46±+1.34 +5.03±+0.65 −0.75±−0.05 −0.56±−0.09 −0.52±+0.12
Adv Cov ↓ +8.93±−0.11 0 −4.63±−0.70 −3.41±−0.74 −1.81±+5.11 −3.16±+2.41 −23.47±−1.56 −13.40±−5.26 −30.59±−4.60 −35.78±−3.97 −36.70±−3.40

MNIST → KMNIST
ID Acc ↑ +0.00±+0.00 0 −0.01±+0.00 +0.00±+0.00 +0.00±+0.00 −0.01±+0.00 −0.07±+0.02 +0.01±+0.00 +0.01±+0.01 +0.01±+0.00 +0.01±+0.00
ID Cov ↑ −0.70±−0.11 0 +0.05±−0.07 −0.34±+0.17 +0.17±−0.14 −0.10±−0.09 −1.30±+0.58 −3.48±+0.37 −5.22±+1.04 −1.69±+0.20 −3.00±+0.03

OOD Cov ↓ +0.55±+0.05 0 +0.31±−0.02 −0.07±−0.20 +0.10±−0.17 −0.02±−0.39 +0.14±+1.59 +8.44±+0.43 +0.46±+0.25 −1.02±−0.18 −1.33±−0.44
Adv Cov ↓ +3.03±−2.25 0 −1.31±−1.68 −5.92±−1.84 −0.85±−3.04 −4.48±−1.46 −10.82±−1.74 +6.91±−3.29 −8.48±−3.86 −16.68±−4.02 −17.87±−5.01

MNIST → EMNIST*
ID Acc ↑ +0.00±+0.00 0 +0.01±+0.00 +0.01±+0.00 +0.00±+0.00 +0.00±+0.01 −0.06±+0.03 +0.01±+0.00 +0.01±+0.00 +0.01±+0.00 +0.00±+0.00
ID Cov ↑ +0.41±−0.07 0 +0.44±−0.48 −0.08±+0.16 +0.45±+0.22 +0.54±−0.12 −2.20±+0.36 −6.62±+1.92 −9.98±+2.02 −2.08±+0.40 −2.84±+0.50

OOD Cov ↓ +4.22±−0.32 0 −0.12±−0.41 −0.43±−0.01 +0.55±+0.25 −0.68±−0.32 +3.40±+7.13 +6.42±−0.00 −3.91±+0.03 −1.86±−0.30 −1.81±−0.59
Adv Cov ↓ +7.94±+0.42 0 −1.28±−1.81 −1.21±−1.51 +1.24±+0.58 −1.41±−0.57 +4.49±+7.40 +14.82±−0.79 −0.67±−1.92 −6.34±−2.94 −6.40±−3.13

CIFAR10 → SVHN
ID Acc ↑ −0.25±+0.18 0 +0.31±+0.15 +0.19±+0.15 +0.21±+0.01 +0.94±+0.00 −4.63±+0.42 +1.51±−0.01 +2.52±−0.15 +1.41±−0.23 +2.10±−0.12
ID Cov ↑ −1.60±−0.04 0 −0.77±−0.74 −1.77±+0.21 −0.60±−0.40 −4.75±−0.74 −23.51±+13.82 −10.69±−0.14 −20.30±−0.49 −6.81±−0.83 −12.64±−1.00

OOD Cov ↓ +0.91±+0.29 0 −1.23±−0.39 −0.51±−0.29 −1.07±−0.60 −1.99±−0.47 +9.49±+7.02 +1.10±−0.35 −4.25±−1.17 −4.32±−1.06 −6.22±−1.23
Adv Cov ↓ −4.43±−0.70 0 −0.75±−0.52 −16.68±−5.43 −0.36±−2.03 −5.39±−0.10 +1.48±+2.09 −4.78±−4.57 −10.61±−5.71 −17.65±−5.93 −18.75±−6.33

CIFAR10 → CIFAR100*
ID Acc ↑ −0.50±−0.34 0 +0.01±−0.25 +0.03±−0.16 +0.10±−0.24 +0.74±−0.29 −7.38±+0.11 +1.21±−0.08 +1.98±−0.30 +0.85±−0.30 +1.56±−0.43
ID Cov ↑ −0.42±−1.18 0 +0.51±−1.14 −0.20±−1.54 −1.08±−1.78 −3.12±−1.50 +3.65±−0.38 −8.83±−1.18 −18.31±−2.08 −3.86±−1.58 −10.15±−1.58

OOD Cov ↓ +0.49±−1.59 0 +0.49±−1.29 +0.24±−1.45 −1.12±−1.01 −2.78±−1.99 +16.61±+0.13 +2.26±−2.27 −5.80±−2.20 −3.90±−2.18 −7.63±−2.75
Adv Cov ↓ −1.72±−2.35 0 +0.08±−1.01 −6.29±−3.18 −1.29±−1.89 −4.62±−2.57 +17.86±−0.67 +2.30±−3.05 −6.82±−3.36 −8.56±−3.86 −10.85±−4.55

Oxford Flowers → Deep Weeds
ID Acc ↑ −0.41±−0.19 0 −0.11±−0.08 +0.09±−0.07 −0.03±−0.11 +0.78±−0.42 −6.62±+2.60 +0.72±−0.32 +1.00±−0.57 +0.20±−0.06 +0.59±+0.01
ID Cov ↑ +6.19±−2.08 0 −2.94±−3.83 −1.97±−1.49 −0.50±−0.03 +1.11±−1.89 +7.73±+0.99 −9.47±+3.85 −21.34±+1.29 −11.94±−0.28 −16.17±+3.04

OOD Cov ↓ −3.60±−3.54 0 −0.70±−3.02 −0.74±−3.07 −2.86±−3.46 −6.53±−3.16 −5.11±−2.52 −2.87±−2.57 −7.85±−4.39 −3.26±−1.99 −7.09±−2.88
Adv Cov ↓ −5.33±−3.39 0 −0.83±−2.06 −2.01±−2.27 −4.96±−2.66 −12.32±−5.14 −8.88±−3.02 −8.02±−4.08 −12.43±−5.54 −6.63±−3.11 −11.64±−4.10

on the MNIST → EMNIST task, it reduces adversarial coverage by −6.40± 2.96, and on CIFAR10
→ SVHN by −18.75 ± 1.53, the most substantial improvement among all approaches. These
differences reinforce the point that C-EDL’s superior robustness is both due to the added diversity and
the conflict-aware adjustment. Furthermore, the consistently positive differences in ID accuracy and
coverage for C-EDL (Meta) suggest that these gains do not come at the expense of model reliability
on clean data.

Figure 8 shows a boxplot comparison of ID, OOD, and adversarial coverage across a subset of
representative ID/near- and far-OOD dataset pairs, these result complement Figure 8a shown in
Section 5.

In the MNIST → KMNIST dataset pair (far-OOD), all comparative approaches achieve high ID
coverage, with EDL-based approaches generally outperforming the Posterior Network, as expected.
C-EDL (Meta) also maintains competitive ID coverage, with only a modest drop of approximately
2% to 3%. In terms of OOD coverage, approaches that extend EDL, such as R-EDL and DA-EDL,
achieve moderate reductions. However, C-EDL (Meta) surpasses all baselines, achieving the lowest
OOD coverage with 1.90%± 0.32.

The most pronounced performance gain appears in adversarial coverage, where C-EDL offers a
significant improvement over all comparative approaches. Most EDL-based models struggle to abstain
on adversarially perturbed data, predicting on approximately 20% of such inputs. For instance, EDL
yields an adversarial coverage of 20.88%± 5.95. In contrast, C-EDL (Meta) reduces this by more
than a factor of four, attaining a superior coverage of only 3.01%± 0.94.

These trends persist in other far-OOD settings, such as CIFAR10 → SVHN, where C-EDL sacrifices
only a negligible amount of ID coverage but achieves the lowest OOD coverage and a near-zero
adversarial coverage. Similar results are observed in the MNIST → EMNIST pairing (near-OOD),
where C-EDL (Meta) once again delivers the lowest OOD coverage and near-zero adversarial
coverage, marking a substantial improvement over all comparative baselines.

These results provide strong empirical evidence into the reliability of C-EDL across diverse settings.
Despite only a negligible reduction in ID coverage, C-EDL consistently achieves the lowest OOD
and adversarial coverage. This makes it particularly well-suited for deployment in environments
where distributional shift or adversarial attacks are likely, offering a level of robustness unmatched by
existing approaches.

To complement the adversarial coverage plots shown in the main paper (Figure 5), we present a
detailed analysis of abstention margins (∆) across all evaluated dataset pairs, with raw values shown
in Table 3. These plots visualise the mean difference between each sample’s uncertainty score and
the learned ID/OOD decision threshold, alongside the corresponding coverage rates. Positive values

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) MNIST (ID) → FMNIST (OOD).

(b) MNIST (ID) → KMNIST (OOD).

(c) MNIST (ID) → EMNIST (Near-OOD).

Figure 8: ID, OOD, and adversarial coverage (%) across comparative approaches for evaluated
MNIST datasets from Table 1. C-EDL and its variants are in blue and show significantly lower
adversarial and OOD coverage than baselines.

of ∆ (expected for ID data) indicate retained predictions lie confidently above the threshold, while
negative values (expected for OOD or adversarial inputs) reflect confident abstention.

For ID coverage (Figure 10a), we observe that C-EDL (Meta) achieves a high positive ∆ comparable
to the EDL variants. For example, in MNIST → FashionMNIST, EDL achieves ∆ = 3.2 whilst
C-EDL (Meta) achieves ∆ = 2.7, which is competitive. It does this with competitive ID coverage
also, only dropping ≈ 2%, reflecting confidence retention of ID examples. Interestingly to note is
DA-EDL, which achieves extremely high ID ∆ values compared to other approaches, which indicates
extreme confidence in the data being ID. However, the coverage does not improve much from EDL
results. This result can be explained by looking at Figure 10b simultaneously, which shows the OOD
coverage and ∆. DA-EDL shows similar OOD ∆ to comparative approaches. This can explain the
high confidence but no/marginal improvement in ID and OOD coverage as the density-based scaling
predominantly affects confidence estimates in dense ID regions, rather than uniformly impacting all
input regions.

For OOD coverage (Figure 10b), C-EDL (Meta) shows the most desirable behaviour: large negative
∆ and the smallest OOD coverage across every dataset. For example, C-EDL (Meta) achieves
∆ = −13.3 on MNIST → FashionMNIST and ∆ = −7.8 on CIFAR10 → CIFAR100, which is one
of the smallest on these datasets. But unlike other approaches, C-EDL achieves tiny coverage and
low ∆ on all datasets equally instead of on some. This means it not only abstains effectively, but does
so with high confidence and margin, which is essential for robust deployment.

These ∆ results and visualisations provide analysis to understand the quality of abstentions made by
the different models and how C-EDL provides consistent, robust, significant improvements.

Figure 11 presents exclusion-based attention overlays generated by the C-EDL model, comparing
OOD inputs from FashionMNIST (left) to ID inputs from MNIST (right). These heatmaps highlight
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(a) CIFAR-10 (ID) → SVHN (OOD).

(b) CIFAR-10 (ID) → CIFAR-100 (Near-OOD).

(c) Oxford Flowers (ID) → Deep Weeds.

Figure 9: ID, OOD, and adversarial coverage (%) across comparative approaches for evaluated
CIFAR-10, and Flowers datasets from Table 1. C-EDL and its variants are in blue and show
significantly lower adversarial and OOD coverage than baselines.

Table 3: Mean difference between the computed abstention metric for each sample and the computed
ID/OOD threshold for each approach from Table 1. Positive values indicate predictions tend to be
above the threshold (expected for ID data), while negative values indicate predictions fall below the
threshold (as expected for OOD and Adversarially attacked data). * indicates datasets classed as
Near-OOD.

Comparative Methods Ablated C-EDL Methods Proposed C-EDL
Posterior Network EDL I-EDL S-EDL H-EDL R-EDL DA-EDL EDL++ (MC) C-EDL (MC) EDL++ (Meta) C-EDL (Meta)

MNIST → FashionMNIST
ID ↑ 2.31± 0.37 3.17± 0.39 2.91± 0.44 2.91± 0.46 2.97± 0.51 3.99± 0.39 352.94± 381.70 2.49± 0.33 2.13± 0.43 2.79± 0.38 2.67± 0.42

OOD ↓ −10.38± 1.21 −12.46± 1.11 −12.08± 1.52 −11.32± 0.93 −11.99± 1.22 −16.42± 0.92 −18.06± 13.60 −6.37± 0.37 −10.63± 0.63 −11.82± 1.21 −13.35± 0.93
Adv ↓ −3.06± 1.63 −2.89± 1.13 −3.55± 1.46 −2.57± 1.28 −2.10± 1.19 −0.65± 0.72 1.86± 9.29 −2.51± 0.51 −5.10± 0.57 −4.47± 1.23 −5.50± 1.24

MNIST → KMNIST
ID ↑ 2.37± 0.27 2.47± 0.18 2.59± 0.26 2.46± 0.26 2.64± 0.24 3.38± 0.30 277.81± 172.05 2.05± 0.20 1.75± 0.28 2.33± 0.26 2.00± 0.21

OOD ↓ −11.26± 1.03 −10.55± 0.60 −10.43± 0.50 −10.79± 0.53 −10.43± 0.43 −15.96± 0.32 −22.18± 21.55 −5.63± 0.27 −9.76± 0.34 −10.66± 0.33 −12.55± 0.39
Adv ↓ −6.66± 1.77 −3.70± 0.66 −3.83± 0.49 −4.17± 0.54 −3.82± 0.43 −3.76± 0.49 −13.84± 9.73 −3.13± 0.30 −6.37± 0.37 −6.23± 0.62 −7.97± 0.49

MNIST → EMNIST*
ID ↑ 1.91± 0.21 1.83± 0.19 1.92± 0.12 1.84± 0.20 1.98± 0.26 2.72± 0.24 307.70± 174.56 1.32± 0.30 0.90± 0.22 1.63± 0.26 1.56± 0.27

OOD ↓ −8.81± 0.50 −8.69± 0.38 −8.80± 0.25 −9.00± 0.30 −8.52± 0.35 −12.79± 0.38 −4.27± 25.72 −5.70± 0.28 −9.64± 0.23 −8.80± 0.30 −10.44± 0.23
Adv ↓ −7.84± 1.45 −5.70± 0.46 −5.84± 0.53 −5.88± 0.52 −5.45± 0.61 −6.06± 0.70 −6.32± 27.76 −3.82± 0.31 −7.53± 0.42 −7.54± 0.33 −9.13± 0.54

CIFAR10 → SVHN
ID ↑ 2.20± 0.60 1.97± 0.63 1.81± 0.54 1.66± 0.70 1.82± 0.52 −0.04± 0.99 −281.83± 1489.45 0.66± 0.54 −1.10± 0.79 0.96± 0.49 −0.18± 0.58

OOD ↓ −4.78± 0.61 −4.88± 0.34 −4.86± 0.30 −5.30± 0.37 −4.94± 0.30 −11.52± 0.54 −483.99± 1506.94 −6.72± 0.91 −9.30± 0.69 −5.37± 0.44 −7.81± 0.47
Adv ↓ −3.82± 0.80 −3.03± 0.69 −3.09± 0.48 −5.91± 0.45 −3.00± 0.45 −7.45± 1.55 −478.49± 1488.76 −6.05± 0.90 −8.64± 0.69 −5.24± 0.45 −7.78± 0.53

CIFAR10 → CIFAR100*
ID ↑ 1.60± 0.49 1.21± 0.81 1.28± 0.52 1.12± 0.45 0.97± 0.43 −1.11± 0.68 242.41± 106.62 0.24± 0.44 −1.72± 0.81 0.69± 0.43 −0.67± 0.51

OOD ↓ −4.67± 0.50 −4.82± 0.77 −4.68± 0.50 −4.83± 0.49 −4.97± 0.38 −11.33± 0.65 56.73± 32.73 −4.27± 0.48 −7.43± 0.77 −5.27± 0.45 −7.80± 0.48
Adv ↓ −4.39± 0.51 −3.93± 0.68 −3.93± 0.56 −4.97± 0.43 −4.13± 0.47 −9.18± 0.68 52.42± 31.52 −4.28± 0.48 −7.64± 0.75 −5.46± 0.47 −8.25± 0.48

Oxford Flowers → Deep Weeds
ID ↑ 5.20± 4.87 1.78± 5.00 −0.22± 6.95 0.22± 6.28 2.79± 7.62 −10.60± 7.55 539.10± 195.46 −6.54± 6.92 −19.88± 6.70 −7.83± 3.79 −12.05± 9.10

OOD ↓ −41.61± 4.34 −33.16± 4.97 −30.55± 6.44 −31.71± 5.55 −31.80± 7.54 −62.86± 5.06 −0.61± 0.94 −60.01± 6.49 −85.02± 9.72 −34.99± 7.07 −49.65± 11.09
Adv ↓ −43.08± 5.77 −32.65± 5.71 −29.68± 7.87 −31.64± 7.05 −32.40± 10.28 −68.67± 7.34 −0.54± 0.89 −61.10± 6.97 −83.18± 8.36 −34.89± 7.55 −60.74± 7.45

spatial regions where the model’s attention distributions differ across metamorphic transformations,
providing an intuitive visual explanation/insight of to where conflict could potentially lead to an
increase in the conflict score C.
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(a) ID coverage vs ∆

(b) OOD coverage vs ∆

Figure 10: Coverage (bubble size) compared to mean difference between the computed abstention
metric (bubble colour - Table 3) for all approaches on all evaluated datasets.

Figure 11: Exclusion-based attention overlays from the C-EDL model for OOD (FashionMNIST,
left) and ID (MNIST, right) inputs. The heatmaps highlight spatial regions where attention distribu-
tions differ across metamorphic transformations. These overlays qualitatively highlight regions of
disagreement that could potentially lead to an increase in the conflict measure C.

For OOD samples (left three images), we can observe high regions of disagreement across the
OOD images. For example, in the third image showing a coat, the lower and upper regions show
disagreement across the transformation T , which in turn leads to a high conflict score C = 0.341.
In contrast, ID samples (right three images) exhibit little to no areas of disagreement across the
transformations. Correspondingly, the conflict scores are near-zero (e.g., C = 0.000 to C = 0.001),
confirming that the model’s evidence remains stable and coherent for familiar inputs.

AUROC plots and adversarial AUROC plots for all comparative methods can be visualised in
Figures 12 and 13 respectively.

C-EDL and its variants were also compared against broader UQ methods that comprise state-of-the-art
in a broader UQ sense; results are shown in Table 4. We compared C-EDL and its ablated variants
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Figure 12: Visualised AUROC plots, including the binary decision threshold for OOD/Adv rejection,
for comparative methods where the ID dataset is MNIST and the OOD dataset is FashionMNIST.

Figure 13: Visualised adversarial AUROC plots, including the binary decision threshold for OOD/Adv
rejection, for comparative methods where the ID dataset is MNIST and the OOD dataset is Fashion-
MNIST.

against a standard deterministic network, ABNN Franchi et al. (2024), a standard deterministic
backbone that is then fine-tuned with an EDL head Sensoy et al. (2018), and EMM Shen et al. (2023).

Table 4: The accuracy, OOD detection, and adversarial attack detection performance of the C-EDL
and broader UQ methods on the MNIST to FashionMNIST pairing. The adversarial attack is an
L2PGD attack. Highlighted cells denote the best performance for each metric.

Standard Network ABNN EDL-Head EMM EDL++ (MC) C-EDL (MC) EDL++ (Meta) C-EDL (Meta)
ID Acc ↑ 99.80%± 0.05 99.78%± 0.81 99.43%± 0.11 99.55%± 0.06 99.98%± 0.01 99.98%± 0.01 99.97%± 0.02 99.96%± 0.02
ID Cov ↑ 79.26%± 3.12 74.88%± 5.41 77.44%± 1.21 90.58%± 2.78 93.51%± 1.12 92.05%± 1.72 95.03%± 0.71 94.22%± 1.05

OOD Cov ↓ 24.89%± 6.53 18.23%± 5.83 22.51%± 3.76 31.87%± 17.98 35.73%± 3.62 5.80%± 1.42 1.92%± 0.93 1.53%± 0.80
Adv Cov ↓ 25.84%± 5.34 24.35%± 6.98 19.86%± 2.96 22.18%± 15.34 54.42%± 3.77 23.39%± 5.70 17.62%± 7.64 17.68%± 4.81

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: The accuracy, OOD detection, AUROC, and adversarial attack detection performance of EDL
and C-EDL (meta) on few-shot Tiny-ImageNet and CUB pairing using a pretrained ResNet50-Wide
backbone. The adversarial attack is L2PGD (0.1 maximum perturbation). Highlighted cells denote
the best performance for each metric.

5-Way 1-Shot 5-Way 5-Shot
EDL C-EDL (Meta) EDL C-EDL (Meta)

ID Acc ↑ 51.63%± 3.17 53.19%± 4.67 77.90%± 8.23 74.85%± 5.07
ID Cov ↑ 67.20%± 18.54 65.07%± 18.37 44.53%± 7.58 45.60%± 21.71

OOD Cov ↓ 50.13%± 16.67 34.67%± 23.25 29.87%± 8.77 16.14%± 10.84
AUROC ↑ 64.50%± 4.27 69.76%± 5.00 62.94%± 6.40 67.48%± 4.56
Adv Cov ↓ 43.33%± 19.41 31.11%± 27.94 26.67%± 4.65 20.56%± 15.16

Table 6: Adversarial attack detection of the comparative approaches for a variety of adversarial attacks
and maximum perturbations ϵ where the ID dataset is MNIST and the OOD dataset is FashionMNIST.
Highlighted cells denote the best performance.

Comparative Methods Ablated C-EDL Methods Proposed C-EDL
ϵ Posterior Network EDL I-EDL S-EDL H-EDL R-EDL DA-EDL EDL++ (MC) C-EDL (MC) EDL++ (Meta) C-EDL (Meta)

L2PGD
0.1 1.97%± 1.04 1.16%± 0.35 1.15%± 0.45 1.15%± 0.41 1.13%± 0.55 0.94%± 0.20 5.69%± 10.56 5.63%± 1.34 1.34%± 0.41 1.04%± 0.43 1.04%± 0.41
0.5 3.84%± 2.44 1.51%± 0.74 1.65%± 0.96 1.01%± 0.60 1.67%± 0.96 1.63%± 1.86 2.55%± 2.29 14.43%± 2.43 5.28%± 2.29 0.38%± 0.26 0.33%± 0.29
1.0 61.14%± 9.38 52.21%± 9.49 47.58%± 8.79 48.80%± 8.75 50.40%± 14.60 49.05%± 11.90 28.74%± 7.93 38.81%± 4.23 21.62%± 4.89 16.43%± 5.52 15.51%± 6.09

FGSM
0.1 6.84%± 2.41 2.53%± 1.08 2.43%± 1.46 2.68%± 0.01 2.50%± 0.01 3.56%± 0.03 3.10%± 0.05 12.13%± 0.03 4.70%± 0.02 1.35%± 0.01 1.01%± 0.00
0.5 5.48%± 4.32 2.10%± 1.63 2.12%± 1.51 2.76%± 0.04 1.31%± 0.01 4.06%± 0.08 2.27%± 0.05 3.89%± 0.01 0.97%± 0.00 2.78%± 0.13 1.13%± 0.04
1.0 2.72%± 2.41 4.36%± 6.01 5.00%± 6.89 3.67%± 0.10 2.04%± 0.03 3.93%± 0.12 1.38%± 0.10 1.50%± 0.00 0.25%± 0.00 6.16%± 1.24 0.67%± 0.01

SaltAndPepperNoise
0.1 2.99%± 0.00 1.72%± 0.00 2.45%± 0.02 1.91%± 0.01 2.63%± 0.01 2.04%± 0.00 1.95%± 0.01 6.29%± 0.02 1.34%± 0.00 1.78%± 0.00 1.53%± 0.00
0.5 1.08%± 0.00 0.63%± 0.00 0.74%± 0.00 0.55%± 0.00 0.68%± 0.00 0.57%± 0.00 1.26%± 0.01 3.23%± 0.01 0.65%± 0.00 0.62%± 0.00 0.49%± 0.00
1.0 0.39%± 0.00 0.20%± 0.00 0.22%± 0.00 0.17%± 0.00 0.20%± 0.00 0.18%± 0.00 0.88%± 0.01 2.54%± 0.01 0.24%± 0.00 0.20%± 0.00 0.14%± 0.00

C-EDL and it EDL were also tested against Tiny-ImageNet and CUB in a few-shot setting to test
their ability and robustness under a tiny training regime, a poorly trained classifier, and extremely
difficult dataset pairing; results are shown in Table 5.

B.2 ADVERSARIAL ATTACK ANALYSIS

Table 6 complements Figure 6 by providing results of adversarial coverage across the range of attacks
and perturbation levels. These results further strengthen the case for C-EDL (Meta). Across all
attack types and perturbation strengths, C-EDL (Meta) consistently achieves the lowest adversarial
coverage, frequently by a substantial margin. For the strongest gradient-based attack (L2PGD at
ϵ = 1.0), C-EDL (Meta) attains a remarkably low adversarial coverage of 15.51%± 6.09, compared
to 52.21%± 9.49 for EDL. Even S-EDL, a similar post-hoc EDL approach designed specifically for
adversarial robustness, only reaches 48.80%± 8.75, further underscoring the advantage of C-EDL’s
conflict-aware calibration.

Notably, C-EDL (Meta) also retains its superiority under the non-gradient-based Salt-and-Pepper
noise attack, where it achieves the lowest coverage at every tested perturbation. In non-gradient-based
attacks, smaller perturbations are typically harder to detect than greater ones and therefore have a
greater chance to fool the model; the inverse of gradient-based attacks. For instance, at ϵ = 1.0,
C-EDL (Meta) achieves 0.14%± 0.00, a considerable reduction.

B.3 THRESHOLD ANALYSIS

Table 7 complements Figure 7 from the main body by providing the full quantitative breakdown of
how different thresholding strategies affect ID, OOD, and adversarial coverage across approaches.
Figure 14 shows the ID and OOD coverage of all approaches under different decision thresholds.

In Figure 14a, despite its conservative abstention strategy, C-EDL (Meta) preserves a high ID coverage
rate across all thresholds, indicating that it experiences little to no conflict across transformations
corroborating the results shown in Figure 11. While EDL, I-EDL, and R-EDL achieve slightly higher
ID coverage, they do so at the cost of worse OOD and adversarial rejection, often allowing 2˘3×
more OOD examples through.
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(a) ID coverage

(b) OOD coverage

Figure 14: Coverage (%) across comparative approaches for different ID-OOD threshold metrics
where the ID dataset is MNIST, the OOD dataset is FashionMNIST, and the adversarial attack is an
L2PGD attack (maximum ϵ = 1.0).

Table 7: Accuracy, OOD detection, and adversarial attack detection performance of the comparative
approaches with different threshold metrics. The adversarial attack is L2PGD (1.0 maximum
perturbation), and the ID and OOD datasets are MNIST and FashionMNIST. Highlighted cells
denote the best performance for each metric.

Comparative Methods Ablated C-EDL Methods Proposed C-EDL
Posterior Network EDL I-EDL S-EDL H-EDL R-EDL DA-EDL EDL++ (MC) C-EDL (MC) EDL++ (Meta) C-EDL (Meta)

Differential Entropy
ID Acc ↑ 99.96%± 0.01 99.96%± 0.02 99.95%± 0.02 99.95%± 0.02 99.96%± 0.02 99.96%± 0.01 99.89%± 0.05 99.97%± 0.01 99.98%± 0.02 99.97%± 0.02 99.96%± 0.01
ID Cov ↑ 94.72%± 0.96 96.61%± 0.57 96.08%± 0.67 96.06%± 0.72 96.18%± 0.92 96.27%± 0.48 95.16%± 0.76 93.35%± 1.28 92.14%± 1.43 94.93%± 0.60 94.18%± 1.03

OOD Cov ↓ 3.55%± 0.67 2.52%± 0.68 2.74%± 0.96 2.41%± 0.66 2.28%± 0.98 2.34%± 0.86 2.98%± 2.02 7.55%± 1.33 1.77%± 0.63 1.96%± 0.59 2.00%± 0.80
Adv Cov ↓ 61.14%± 9.38 52.21%± 9.49 47.58%± 8.79 48.80%± 8.75 50.40%± 14.60 49.05%± 11.90 28.74%± 7.93 38.81%± 4.23 21.62%± 4.89 16.43%± 5.52 15.51%± 6.09

Total Evidence
ID Acc ↑ 99.97%± 0.01 99.96%± 0.01 99.96%± 0.01 99.96%± 0.03 99.96%± 0.02 99.95%± 0.02 99.94%± 0.04 99.99%± 0.02 99.98%± 0.01 99.96%± 0.02 99.97%± 0.01
ID Cov ↑ 95.25%± 1.00 95.97%± 0.82 96.18%± 0.56 96.42%± 0.56 96.48%± 0.57 96.47%± 0.57 95.32%± 0.72 92.95%± 1.85 93.10%± 0.75 94.90%± 0.47 94.21%± 1.07

OOD Cov ↓ 3.20%± 0.90 3.15%± 1.69 2.53%± 0.85 2.23%± 0.63 2.15%± 0.79 2.00%± 0.94 2.48%± 0.84 38.32%± 2.74 7.90%± 1.76 1.92%± 1.03 1.67%± 0.61
Adv Cov ↓ 58.34%± 7.98 43.41%± 10.42 47.41%± 14.94 42.18%± 6.51 49.67%± 8.29 43.03%± 7.43 39.95%± 6.69 53.36%± 2.67 29.42%± 7.05 14.68%± 3.56 14.28%± 5.81

Mutual Information
ID Acc ↑ 99.96%± 0.02 99.96%± 0.02 99.97%± 0.02 99.96%± 0.01 99.96%± 0.02 99.96%± 0.01 99.92%± 0.03 99.98%± 0.01 99.98%± 0.01 99.97%± 0.02 99.96%± 0.02
ID Cov ↑ 95.13%± 0.95 95.83%± 1.19 96.11%± 0.64 96.18%± 0.73 96.52%± 0.41 96.11%± 0.43 95.79%± 1.50 93.51%± 1.12 92.05%± 1.72 95.03%± 0.71 94.22%± 1.05

OOD Cov ↓ 3.51%± 0.78 2.71%± 1.61 2.40%± 0.65 2.47%± 0.90 2.95%± 1.39 2.06%± 0.56 2.16%± 0.63 35.73%± 3.62 5.80%± 1.42 1.92%± 0.93 1.53%± 0.80
Adv Cov ↓ 61.12%± 8.29 49.13%± 13.12 52.02%± 10.24 43.79%± 12.54 44.07%± 8.79 45.64%± 6.96 43.19%± 10.65 54.42%± 3.77 23.39%± 5.70 17.68%± 7.64 17.62%± 4.81

In Figure 14b, OOD coverage for C-EDL (Meta) remains tightly clustered below 2% across Differ-
ential Entropy, Total Evidence, and Mutual Information, with the lowest value being 1.80%± 0.89
under Mutual Information. In contrast, other approaches such as DA-EDL and EDL exhibit far
greater variance (depending on the chosen metric), often with elevated OOD leakage above 3–4%,
highlighting weaker separation between ID and OOD inputs.

B.4 ABLATION ANALYSIS

Since C-EDL introduces a small number of additional hyperparameters, we conduct an ablation
study to understand their individual effects on model performance. This analysis helps assess
the robustness of C-EDL to hyperparameter choice and provides practical guidance for tuning in
real-world deployments.

Figure 15 illustrates the theoretical behaviour of the conflict score C as formalised in Theorem 1. The
surface plots confirm that C remains bounded in the open interval (0, 1] and increases monotonically
with both Cintra and Cinter when λ ≤ 1

2 , validating the theorem’s conditions. As λ increases beyond
this bound, the quadratic penalty term −λ(Cinter − Cintra)

2 induces a curvature that distorts the
surface and weakens monotonicity, especially along the diagonal. This justifies our design choice
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Figure 15: Visualisation of the conflict score C as a function of Cintra, Cinter, and λ. As shown, C
increases smoothly with both Cintra and Cinter, with monotonicity preserved for λ ≤ 0.5.

Table 8: The accuracy, OOD detection, and adversarial attack detection performance of C-EDL
variants under ablations of hyperparameters (β, λ, δ, T ) introduced. The adversarial attack is L2PGD
(1.0 maximum perturbation), and the ID and OOD datasets are MNIST and FashionMNIST.

C-EDL (MC) C-EDL (Meta)
β Ablation

0.50 1.00 1.50 2.00 2.50 0.50 1.00 1.50 2.00 2.50
ID Acc ↑ 99.99%± 0.02 99.99%± 0.01 99.98%± 0.02 99.98%± 0.01 99.99%± 0.01 99.97%± 0.02 99.97%± 0.01 99.96%± 0.01 99.98%± 0.01 99.97%± 0.01
ID Cov ↑ 92.10%± 1.58 92.40%± 1.44 92.14%± 1.43 92.57%± 1.40 92.01%± 1.53 93.77%± 0.76 94.25%± 0.65 94.18%± 1.03 93.83%± 1.05 93.41%± 1.00

OOD Cov ↓ 1.92%± 0.41 2.15%± 0.77 1.77%± 0.63 1.77%± 0.49 1.88%± 0.48 1.83%± 0.77 2.04%± 0.85 2.00%± 0.80 1.66%± 0.80 1.61%± 0.94
Adv Cov ↓ 22.38%± 4.90 26.04%± 5.21 21.62%± 4.89 21.51%± 6.30 21.51%± 4.31 10.31%± 2.81 12.60%± 5.52 15.51%± 6.09 12.74%± 5.37 13.99%± 7.45

λ Ablation
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

ID Acc ↑ 99.99%± 0.01 99.99%± 0.01 99.98%± 0.02 99.99%± 0.01 99.99%± 0.01 99.97%± 0.02 99.99%± 0.01 99.96%± 0.01 99.97%± 0.02 99.97%± 0.01
ID Cov ↑ 92.01%± 1.08 92.11%± 1.08 92.14%± 1.43 91.92%± 1.25 92.95%± 0.59 94.40%± 0.62 92.11%± 1.08 94.18%± 1.03 93.96%± 0.59 94.55%± 0.52

OOD Cov ↓ 1.37%± 0.57 1.63%± 0.57 1.77%± 0.63 2.17%± 0.69 2.76%± 0.54 2.21%± 1.02 1.63%± 0.57 2.00%± 0.80 1.70%± 0.48 1.70%± 0.65
Adv Cov ↓ 14.23%± 3.95 19.74%± 6.20 21.62%± 4.89 21.55%± 5.19 21.76%± 2.86 14.66%± 4.77 19.74%± 6.20 15.51%± 6.09 13.43%± 5.19 15.56%± 3.96

δ Ablation
0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00

ID Acc ↑ 99.98%± 0.02 99.98%± 0.02 99.98%± 0.02 99.98%± 0.01 99.98%± 0.01 99.98%± 0.01 99.97%± 0.01 99.96%± 0.01 99.96%± 0.01 99.98%± 0.01
ID Cov ↑ 93.57%± 1.34 92.43%± 1.78 92.14%± 1.43 90.59%± 0.91 92.43%± 1.89 94.64%± 0.80 94.25%± 0.71 94.18%± 1.03 93.83%± 0.93 93.87%± 0.87

OOD Cov ↓ 4.82%± 1.40 3.93%± 1.06 1.77%± 0.63 1.32%± 0.61 0.80%± 0.27 1.62%± 0.56 1.62%± 0.44 2.00%± 0.80 1.79%± 0.68 1.24%± 0.64
Adv Cov ↓ 31.83%± 4.92 27.21%± 4.92 21.62%± 4.89 17.14%± 5.98 11.63%± 6.36 12.08%± 4.89 17.20%± 6.16 15.51%± 6.09 15.24%± 6.93 10.54%± 3.29

T Ablation
2.00 5.00 10.00 25.00 50.00 2.00 5.00 10.00 25.00 50.00

ID Acc ↑ 99.97%± 0.02 99.98%± 0.02 99.99%± 0.01 100.00%± 0.01 100.00%± 0.00 99.97%± 0.02 99.96%± 0.01 99.97%± 0.02 99.99%± 0.01 99.99%± 0.01
ID Cov ↑ 91.82%± 1.53 92.14%± 1.43 91.69%± 1.73 84.77%± 4.06 77.51%± 5.86 94.85%± 1.16 94.18%± 1.03 93.08%± 0.86 91.60%± 0.53 90.79%± 1.04

OOD Cov ↓ 7.46%± 1.34 1.77%± 0.63 0.78%± 0.31 1.25%± 0.35 1.66%± 0.54 2.75%± 1.20 2.00%± 0.80 1.54%± 0.60 1.25%± 0.71 1.50%± 1.01
Adv Cov ↓ 31.95%± 4.93 21.62%± 4.89 11.42%± 3.62 15.49%± 3.59 25.07%± 4.50 23.39%± 7.27 15.51%± 6.09 8.22%± 3.47 6.23%± 3.44 4.32%± 1.95

Inference Time 1.51s ± 0.11 2.26s ± 0.12 3.86s ± 0.12 8.32s ± 0.01 16.93s ± 0.16 2.53s ± 0.14 5.12s ± 0.10 9.18s ± 0.21 24.32s ± 0.24 48.32s ± 0.46

to set λ = 0.5, balancing the influence of asymmetric disagreement while preserving the desirable
theoretical properties of the conflict score.

Table 8 presents an ablation study over the core hyperparameters introduced by C-EDL: the sharp-
ness of Cinter penalty β, the C penalty λ, the scaling factor δ, and the number of metamorphic
transformations T .

We observe that as β ∈ [0.5, 2.5] increases, both C-EDL variants show more conservatism. Adversar-
ial coverage reduces, but so does ID coverage. The C penalty λ, as seen in Figure 15, controls how
increases in Cintra and Cinter affect the total measure C. We observe that as λ increases up to 0.5,
ID coverage increases at the expense of adversarial coverage, showing that both Cintra and Cinter
need to be higher to have a greater effect on C. As λ increases < 0.5, the guarantee of monotonicity
is non-existent, and therefore, results begin to vary. The scaling factor δ controls how much evidence
is reduced under high conflict. As δ increases, adversarial coverage drops for both C-EDL variants.
For example, at δ = 0.25, C-EDL (MC) has an adversarial coverage of 31.83% ± 4.92, while at
δ = 2.00 it improves to 11.63%± 6.36. OOD coverage improves in a similar trend, at the expense of
small drops in ID coverage. Finally, as the number of transformations T increases, the adversarial and
OOD coverage decreases, again, at the expense of small drops in ID coverage. However, inference
time also grows, highlighting the trade-off between performance and efficiency. For reference, EDL
has an average inference time of 1.15s±0.10. This and the inference time results displayed in Table 8
are based on inferring on the dataset as a whole, not individual data.

Table 9 investigates the sensitivity of EDL++ (MC) and C-EDL (MC) to varying dropout strengths.
Across both models, increasing the dropout strength from 0.1 to 0.50 induces a consistent trend:
OOD and adversarial coverage decrease rapidly, while ID coverage moderately decreases. For EDL++
(MC) that lacks the conflict reduction, the trend is less pronounced, once again showing that the
conflict-aware reduction is necessary to improves robustness to anomalous data.

Following the investigation of the dropout strength in EDL++ (MC) and C-EDL (MC) (Table 9),
Table 10 investigates the impact of metamorphic transformations in the EDL++ (Meta) and C-EDL
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Table 9: The accuracy, OOD detection, and adversarial attack detection performance of dropout
strength in the EDL++ (MC) and C-EDL (MC) models. The adversarial attack is L2PGD (1.0
maximum perturbation), and the ID and OOD datasets are MNIST and FashionMNIST.

EDL++ (MC) C-EDL (MC)
Dropout Rate

0.10 0.25 0.50 0.10 0.25 0.50
ID Acc ↑ 99.97%± 0.02 99.97%± 0.01 99.99%± 0.01 99.97%± 0.01 99.98%± 0.02 99.99%± 0.01
ID Cov ↑ 94.00%± 1.33 93.35%± 1.28 87.74%± 1.63 93.79%± 1.37 92.14%± 1.43 85.60%± 1.88

OOD Cov ↓ 13.76%± 2.55 7.55%± 1.33 4.82%± 0.97 3.82%± 1.77 1.77%± 0.63 1.42%± 0.46
Adv Cov ↓ 48.26%± 6.38 38.81%± 4.23 26.16%± 3.78 33.83%± 7.85 21.62%± 4.89 14.59%± 3.91

Table 10: The accuracy, OOD detection, and adversarial attack detection performance of augmentation
types and strength in the EDL++ (Meta) and C-EDL (Meta) models. The adversarial attack is L2PGD
(1.0 maximum perturbation), and the ID and OOD datasets are MNIST and FashionMNIST.

EDL++ (Meta) C-EDL (Meta)
Rotate Only

±5◦ ±15◦ ±30◦ ±5◦ ±15◦ ±30◦

ID Acc ↑ 99.95%± 0.02 99.96%± 0.01 99.97%± 0.02 99.96%± 0.02 99.96%± 0.02 99.97%± 0.02
ID Cov ↑ 95.99%± 0.60 94.84%± 0.77 87.37%± 1.93 95.72%± 0.94 94.28%± 0.67 84.04%± 1.49

OOD Cov ↓ 2.12%± 0.50 1.70%± 0.60 1.32%± 0.71 2.33%± 0.97 1.75%± 0.68 0.78%± 0.37
Adv Cov ↓ 22.48%± 4.39 6.34%± 4.55 1.45%± 1.73 18.55%± 7.41 4.07%± 2.00 0.97%± 0.95

Shift Only
±1 ±2 ±4 ±1 ±2 ±4

ID Acc ↑ 99.96%± 0.02 99.98%± 0.01 99.99%± 0.01 99.97%± 0.01 99.98%± 0.02 99.99%± 0.02
ID Cov ↑ 95.63%± 0.77 92.84%± 1.31 71.71%± 2.42 95.12%± 0.86 91.80%± 0.92 62.58%± 3.10

OOD Cov ↓ 2.19%± 0.81 2.09%± 1.17 0.93%± 0.30 2.25%± 0.73 1.46%± 0.49 1.07%± 0.44
Adv Cov ↓ 16.92%± 5.88 11.68%± 5.49 3.53%± 1.56 12.10%± 3.66 8.87%± 3.88 2.06%± 0.89

Noise Only
0.005 0.010 0.020 0.005 0.010 0.020

ID Acc ↑ 99.96%± 0.01 99.96%± 0.02 99.96%± 0.01 99.95%± 0.02 99.95%± 0.02 99.96%± 0.01
ID Cov ↑ 95.88%± 1.02 96.43%± 0.68 96.25%± 0.47 96.03%± 0.79 96.46%± 0.24 95.99%± 0.64

OOD Cov ↓ 2.28%± 0.63 2.07%± 0.85 1.86%± 0.77 2.40%± 0.99 1.81%± 0.66 2.37%± 1.12
Adv Cov ↓ 49.88%± 9.61 43.44%± 9.52 31.64%± 7.10 45.59%± 7.03 42.20%± 12.14 34.28%± 11.10

All Combined (Rotate ±15◦, Shift ±2, Noise 0.010)
ID Acc ↑ 99.98%± 0.02 99.96%± 0.01
ID Cov ↑ 92.14%± 1.43 94.18%± 1.03

OOD Cov ↓ 1.77%± 0.63 2.00%± 0.80
Adv Cov ↓ 21.62%± 4.89 15.51%± 6.09

(Meta) variants. Across all transformation types and intensities, we observe that both EDL++ (Meta)
and C-EDL (Meta) exhibit less OOD and adversarial coverage at the expense of ID coverage. For
example, when only the rotation transformation is used and increases from ±5◦ to ±30◦, adversarial
coverage for EDL++ (Meta) reduces by −21.03% ± 2.66 at the expense of a −8.62% ± −1.33
reduction in ID coverage.

The ablation of individual transformations shows that on their own, all transformation types aid
in detecting anomalous data with different magnitudes in reduction of ID, OOD, and adversarial
coverage. However, when combined, ID coverage remains moderately high, with a large prediction in
OOD and adversarial coverage showing that the combination of transformations effectively balances
all coverage types.

The inference time against the adversarial coverage of comparative methods can be seen in Table 11.
C-EDL (MC T = 2) achieves an adversarial coverage of 31.95% with a total inference time of 1.51
seconds for the entire dataset, corresponding to approximately 0.11 seconds per input. In contrast,
C-EDL (Meta T = 5) yields substantially lower adversarial coverage of 15.51% while requiring
5.12 seconds for full-dataset inference, or about 0.15 seconds per input. For reference, the baseline
EDL method consumes roughly 0.103 seconds per input (equivalent to around ten inferences per
second), whereas the alternative post-hoc approach S-EDL (with five perturbed samples to ensure
comparability) requires about 0.49 seconds per input, amounting to only two inferences per second.
These results indicate that while C-EDL introduces some computational overhead, the increase is
relatively modest and remains significantly more efficient than S-EDL, the only other state-of-the-art

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: The adversarial attack detection performance and inference time of comparative methods.
The adversarial attack is L2PGD (1.0 maximum perturbation), and the ID and OOD datasets are
MNIST and FashionMNIST.

Post Net EDL I-EDL S-EDL H-EDL R-EDL DA-EDL C-EDL (MC T=2) C-EDL (MC T=5) C-EDL (Meta T=2) C-EDL (Meta T=5)
Adversarial Coverage 61.14% 52.21% 47.58% 48.80% 50.40% 49.05% 28.74% 31.95% 21.62% 23.39% 15.51%
Inference Time (entire dataset) 1.17s 1.15s 1.19s 63.36s 1.17s 1.17s 0.78s 1.51s 2.26s 2.53s 5.12s

post-hoc method considered. This highlight a clear trade-off between inference time and adversarial
coverage, with a practical balance emerging around T = 5. Nevertheless, the choice of T should
ultimately be guided by the anticipated real-time constraints of the deployment setting, allowing
practitioners to adjust inference time per input while maintaining the best attainable coverage.

C EXPERIMENT DETAILS

This section provides comprehensive details of our experimental setup to support reproducibility and
clarify the evaluation procedures used throughout the paper. We begin by describing the datasets used
across ID and OOD in the evaluation, followed by details of the threshold scoring metrics used for
uncertainty-based rejection. We then describe the comparative approaches included in our evaluation
and provide detailed information about model training. Finally, we include task-specific experimental
configurations and implementation details relevant to each setup.

C.1 DATASETS

We evaluate our approaches across a diverse collection of widely used computer vision benchmarks,
spanning a range of domains and task difficulties. This enables a comprehensive evaluation of model
robustness and uncertainty estimation under varying conditions. To rigorously test the ability of
models to distinguish ID from OOD samples, we evaluate in both near-OOD and far-OOD settings.
Near-OOD datasets exhibit some degree of class overlap with the ID data, while far-OOD datasets
involve distinct visual domains. Dataset-specific details, including sample sizes, input resolutions,
class labels, and split protocols, are provided below. Example images from each dataset can be found
in Figure 16.

• MNIST LeCun et al. (1998): consists of 28x28 greyscale images of handwritten digits
(0-9) spanning 10 classes. We utilise the widely used standard split of 60,000 training
samples, 8000 test samples, and 2000 validation samples. Pixel normalisation was applied,
bounded [0, 1]. In our experimental evaluation, MNIST serves as one of the ID datasets.
MNIST was paired with FashionMNIST and KMNIST as far-OOD datasets due to them
sharing no overlapping classes, but exhibit similar visual characteristics, including greyscale
appearance, low resolution, and hand-drawn style. MNIST was also paired with EMNIST as
a near-OOD dataset due to it sharing the same visual characteristics and sharing overlapping
classes with EMNIST containing handwritten digits in addition to handwritten letters.

• FashionMNIST Xiao et al. (2017): consists of 28x28 greyscale images of clothing items
(e.g., coats, bags, t-shirts, etc.) spanning 10 classes. We utilise the widely used standard
split of 60,000 training sample, 8000 test samples, and 2000 validation samples. Pixel
normalisation was applied, bounded [0, 1]. In our experimental evaluation, we use this
dataset as a far-OOD pairing with the ID MNIST dataset.

• KMNIST Clanuwat et al. (2018): consists of 28x28 greyscale images of handwritten
Japanese characters (specifically Kuzushiji characters from classical Japanese literature)
spanning 10 classes. We utilise the widely used standard split of 60,000 training samples,
8000 test samples, and 2000 validation samples. Pixel normalisation was applied, bounded
[0, 1]. In our experimental evaluation, we use this dataset as a far-OOD pairing with the ID
MNIST dataset.

• EMNIST Cohen et al. (2017): consists of 28x28 greyscale images of both handwritten
letters (from the Latin alphabet) and digits (0-9) spanning 47 classes. We use a split
of 112,800 training samples, 15,040 test samples, and 3760 validation samples. Pixel
normalisation was applied, bounded [0, 1]. In our experimental evaluation, we use this
dataset as a near-OOD pairing with the ID MNIST dataset due to it sharing the same visual
characteristics and overlapping classes with MNIST (handwritten digits).
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• CIFAR10 Krizhevsky et al. (2009): consists of 32x32 RGB images of real-world objects
(e.g, birds, trucks, airplanes, frogs, etc) spanning 10 classes. We utilise the widely used
standard split of 50,000 training samples, 8000 test samples, and 2000 validation samples.
Pixel normalisation was applied, bounded [0, 1] across all three RGB channels. In our
experimental evaluation, CIFAR10 serves as one of the ID datasets. CIFAR10 was paired
with FashionMNIST and SVHN as a far-OOD dataset due to them sharing no overlapping
classes, but exhibiting similar visual characteristics, including coloured appearance, real-
world pictures. CIFAR-10 was also paired with CIFAR-100 as a near-OOD dataset, due to
the datasets sharing the same visual characteristics and overlapping classes. Specifically,
CIFAR-10 contains broad object categories (e.g., cat, dog, truck, ship), which correspond to
finer-grained classes like (e.g., house cat, beagle, pickup truck, cruise ship) in CIFAR-100.

• CIFAR100 Krizhevsky et al. (2009): consists of 32x32 RGB images of real-world objects
spanning of 100 classes that are fine-grained counterparts of the classes from CIFAR10. For
example, CIFAR10 has the class truck, whilst CIFAR100 has the classes pickup truck and
train. We utilise the widely used standard split of 50,000 training samples, 8000 test samples,
and 2000 validation samples. Pixel normalisation was applied, bounded [0, 1] across all
three RGB channels. In our experimental evaluation, we use this dataset as a near-OOD
pairing with the ID CIFAR10 dataset due to it sharing the same visual characteristics and
overlapping classes.

• SVHN Netzer et al. (2011): consists of 32x32 RGB images of house numbers collected
from Google Street View spanning 10 classes (0-9). We use a split of 73,257 training
samples, 10,832 test samples, and 5200 validation samples. Pixel normalisation was applied,
bounded [0, 1] across all three RGB channels. In our experimental evaluation, we use this
dataset as a far-OOD pairing with the ID CIFAR10 dataset due to the substantial domain
shift between street-level digit photographs and object-centric natural images.

• Oxford Flowers Nilsback & Zisserman (2008): consists of 64x64 RGB images of flowers
commonly found in the United Kingdom, spanning 102 (e.g., Water Lily, Wild Pansy, etc)
classes. We utilise a split of 9826 training samples, 1638 test samples, and 1638 validation
samples. This is double the size of the original dataset, as each image has been duplicated
with a random augmentation to aid generalisation within training. Pixel normalisation was
applied, bounded [0, 1] across all three RGB channels. In our experimental evaluation, we
use this dataset as an ID dataset. Oxford Flowers was paired with Deep Weeds because they
share no overlapping classes but exhibit similar visual characteristics, including features
found in nature (leaves, flowers, etc.). Though smaller in total images, this dataset offers
higher class granularity and lower per-class shot count than TinyImageNet, making it a
compelling test for fine-grained UQ.

• Deep Weeds Olsen et al. (2019): consists of 64x64 RGB images of species of weeds found
in Australia, spanning over 8 classes (e.g., Snake weed, Rubber vine, etc). We use the
standard split of 10,505 training samples, 3502 test samples, and 3502 validation samples.
Pixel normalisation was applied, bounded [0, 1] across all three RGB channels. In our
experimental evaluation, Deep Weeds serves as a far-OOD pairing with the ID Oxford
Flowers dataset due to the substantial domain shift between photographs of flowers and
photographs of weeds.

• Tiny-ImageNet Le & Yang (2015): consists of 64x64 RGB images across 200 object
classes, each corresponding to a subset of ImageNet. The dataset contains 100,000 training
samples (500 per class), 10,000 validation samples (50 per class), and 10,000 test samples
without publicly available labels. Pixel values were normalised to the range [0, 1] across
all RGB channels. In our experimental evaluation, Tiny-ImageNet is used as an ID dataset.
Tiny-ImageNet was paired with Caltech-UCSD Birds-200-2011 because they share very
limited overlapping classes but exhibit similar visual characteristics.

• Caltech-UCSD Birds-200-2011 (CUB) Welinder et al. (2010): consists of 64x64 RGB
images of 200 bird species, collected from various natural environments. The dataset
contains a total of 11,788 images, with a standard split of 5,994 training samples and 5,794
test samples. Pixel values were normalised to the range [0, 1] across all RGB channels. In
our experimental evaluation, CUB is used as an OOD dataset paired with Tiny-ImageNet.

In some cases where the dataset splits were not already provided, manual splits were stratified to
preserve class distribution within each subset. Additionally, for all experiments, validation splits from
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(a) MNIST (b) FMNIST

(c) KMNIST (d) EMNIST

(e) CIFAR10 (f) SVHN

(g) CIFAR100 (h) Oxford Flowers

(i) Deep Weeds (j) Tiny-ImageNet

(k) Caltech-UCSD Birds-200-2011 (CUB)

Figure 16: Example images from the datasets evaluated upon.

each dataset were used to determine the ID-OOD threshold for uncertainty-based abstention, which
allowed ID and OOD coverage to be determined on the test splits.

C.2 ID-OOD THRESHOLDS

To enable abstention of uncertain predictions, an optimal ID–OOD threshold was calculated using
the validation datasets associated with each experimental setting. We consider multiple ID-OOD
scoring metrics in our experimental evaluation to allow for a robust evaluation of C-EDL and the
comparative approaches.

• Differential Entropy: quantifies the spread or uncertainty of the Dirichlet distribution. It is
computed as:∑K

k=1 ln Γ(αk)− ln Γ(S)−
∑K
k=1(αk − 1)(Ψ(αk)−Ψ(S))

where B(α) is the multivariate Beta function, S is the total concentration parameter, and
Ψ(·) denotes the digamma function. A higher differential entropy corresponds to greater
uncertainty, and thus larger values are expected for OOD samples. This scoring metric only
works on Dirichlet-based models (e.g., posterior networks, evidential networks).

• Total Evidence: quantifies the sum of total Dirichlet parameters α across all classes K.
It is computed as

∑K
k=1 αk. A higher total evidence corresponds to less uncertainty in

Dirichlet-based models, and thus larger values are expected for ID samples. This scoring
metric only works on Dirichlet-based models (e.g., posterior networks, evidential networks).

• Mutual Information: quantifies epistemic uncertainty by measuring how much information
the model parameters provide about the predictive distribution, computed as the difference
between the total predictive entropy and the expected conditional entropy under the posterior
over parameters.
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−
∑K
k=1

αk

S

(
ln αk

S − ψ(αk + 1) + ψ(S + 1)
)

where Ψ(·) denotes the digamma function.

Following prior work Deng et al. (2023); Kopetzki et al. (2021); Yoon & Kim (2024), to calculate
the optimal ID-OOD threshold, a scoring metric (chosen above) was used to derive scores for the
ID and OOD validation datasets. Then, a receiver operating characteristic (ROC) curve based on
these scores is constructed where ID samples are treated as positive instances, and OOD samples are
treated as negative instances. This curve provides a way to visualise the separation between the ID
and OOD distributions based on the chosen scoring metric. We extend this analysis by computing
the score threshold that maximises TPR − FPR to provide the optimal ID-OOD separation point.
This procedure ensures a balanced trade-off between correctly retaining ID samples and correctly
rejecting OOD samples without manual tuning and facilitates the reporting of ID and OOD coverage
for deployment/realistic scenarios.

Once obtained, the optimal threshold is fixed and used during evaluation on the test datasets. Test
samples are rejected if their score (based on the chosen scoring metric) exceeds the threshold, allowing
for consistent evaluation of both ID retention and OOD rejection performance across all approaches
and datasets.

C.3 COMPARATIVE APPROACHES

To evaluate the effectiveness of C-EDL, we compare it against a range of recent EDL and uncertainty
quantification approaches that are representative of the current state-of-the-art. Each approach is
briefly described below, alongside any implementation-specific details or hyperparameter choices
used in our experiments:

• Posterior Networks Charpentier et al. (2020): represent a foundational approach to uncer-
tainty estimation in classification that predates and informs the development of evidential
deep learning. They avoid the need for OOD data during training by directly modelling
a closed-form posterior over categorical distributions. Specifically, it predicts Dirichlet
concentration parameters α = βprior + β for each input x, where β are pseudo-counts
derived from class-conditional density estimates in a learned latent space, and βprior is a fixed
symmetric prior. The resulting Dirichlet distribution encodes both aleatoric and epistemic
uncertainty in closed form.

• Evidential Deep Learning (EDL) Sensoy et al. (2018): proposes a deterministic alternative
to Bayesian neural networks for uncertainty estimation by modelling class probabilities
with a Dirichlet distribution whose parameters are derived from the model’s non-negative
outputs. The model is trained to minimise a loss by combining squared prediction error,
variance, and a KL divergence with a uniform prior. This evidential formulation allows the
model to quantify both aleatoric and epistemic uncertainty in closed form, without requiring
sampling or OOD examples during training. This approach serves as the base EDL approach
for the following comparative approaches, including our proposed EDL++ and C-EDL
approaches. Due to this being the base approach, hyperparameters are shared across the
remaining comparative approaches for fair comparison and are discussed in Section C.5.

• Fisher Information-Based Evidential Deep Learning (I-EDL) Deng et al. (2023): ex-
tends EDL by incorporating the Fisher Information Matrix (FIM) to adaptively weight the
loss based on the informativeness of predicted evidence. The key idea is that classes with
higher evidence carry less Fisher information and should be regularised less strictly. The
approach introduces a regularisation term that penalises the log-determinant of the FIM to
prevent overconfident predictions:

L|I|
i =

∑K
j=1 logψ

(1)(αij) + log

(
1− ψ(1)(αi0)∑K

j=1 ψ
(1)(αij)

)
In our experiments, we set λ|I| = 0.001 and annealed it linearly over the first 10 epochs,
following guidance in Appendix C.2 of the original paper and our manual tuning.

• Smoothed Evidential Deep Learning (S-EDL) Kopetzki et al. (2021): enhances the
robustness of standard evidential models by applying median smoothing to their uncertainty
estimates. Given an input x, a set of noisy samples {xs} ∼ N (x, σ) is generated. The
final uncertainty estimate is obtained by taking the median over this set, which improves
robustness to adversarial perturbations by mitigating the influence of outliers. In our
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experiments, we followed the original setup and set the Gaussian noise scale to σ = 0.01,
using 50 samples per input following guidance of the original paper and our manual tuning. S-
EDL is a purely post-hoc approach, similar to the proposed EDL++ and C-EDL approaches.

• Hyper-Opinion Evidential Deep Learning (H-EDL) Qu et al. (2024): augments classical
EDL by incorporating hyper-opinions, a generalisation of multinomial opinions from Sub-
jective Logic that can express uncertainty over both singleton classes and composite subsets.
This enables H-EDL to extract not only sharp evidence (supporting one class) but also vague
evidence (supporting multiple plausible classes), thereby improving robustness to ambigu-
ous inputs. A novel opinion projection mechanism is introduced to convert hyper-opinions
into standard Dirichlet-based predictions, enabling training within the conventional EDL
framework. This projection addresses the vanishing gradient issue that limits traditional
EDL on fine-grained tasks. In our experiments, we adopted the two-stage training procedure
described in the original paper, without introducing additional hyperparameters.

• Relaxed Evidential Deep Learning (R-EDL) Chen et al. (2024): addresses overconfidence
in standard EDL by relaxing two nonessential assumptions. First, it replaces the fixed prior
weight (typically set to the number of classes) with a tunable scalar hyperparameter λ,
controlling the contribution of the base rate α in the Dirichlet construction:

α(x) = e(x) + λ

Second, R-EDL removes the variance-penalising regularisation from the EDL loss, instead
directly optimising the projected class probabilities P (x) = α(x)

S to match one-hot labels.
This simplification better balances evidence magnitude and proportion, particularly in OOD
settings. In our experiments, we followed the guidance from Appendix C.2 and Figure 1(b)
of the original paper and set λ = 0.1 as a fixed prior weight throughout training.

• Density-Aware Evidential Deep Learning (DA-EDL) Yoon & Kim (2024): extends
EDL by incorporating feature space density into the uncertainty estimation process, thereby
enabling distance-aware predictions. During training, DA-EDL follows the same loss
function as standard EDL. At test time, it estimates the feature space density s(x) ∈ [0, 1] of
a test input using Gaussian Discriminant Analysis (GDA) fitted on the training features. This
density is then used to scale the logits before applying the exponential activation, yielding
concentration parameters:

α(x) = exp(gϕ(fθ(x)) · s(x))
where fθ is the feature extractor and gθ is the classifier. This adjustment ensures predictive
uncertainty increases as the distance from the training data increases.

C.4 ADVERSARIAL ATTACKS

This section outlines the adversarial attacks evaluated in our study to assess the robustness of
uncertainty-based models. Adversarial attacks refer to small, intentionally crafted perturbations that
can cause a model to behave incorrectly while maintaining high prediction confidence. This poses a
significant threat to uncertainty-aware systems, as such perturbations can manipulate both aleatoric
and epistemic uncertainty, making adversarial examples appear indistinguishable from ID samples or
evading detection thresholds.

To comprehensively evaluate robustness, we consider both gradient-based and non-gradient-based
attacks. Gradient-based attacks are typically used in white-box scenarios and leverage access to the
model’s gradients to construct targeted perturbations. Non-gradient-based attacks, in contrast, apply
random or structured noise to inputs and are more commonly used in black-box threat models. We
utilise Foolbox Rauber et al. (2017) to implement the following attack strategies:

• L2 Projected Gradient Descent (L2PGD): is an iterative, white-box adversarial attack
that perturbs inputs within a bounded L2-norm ball to maximise the model’s loss. At each
iteration, the input is updated in the direction of the gradient of the loss with respect to
the input, followed by projection back onto the L2-ball of radius ϵ. This results in smooth,
high-precision perturbations that remain less perceptible to humans:

x′t+1 = ProjL2
ϵ (x′t + α · ∇xJ(x

′
t, y))

where α is the step size and J(x, y) is the loss function.
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• Fast Gradient Sign Method (FGSM): is a single-step white-box adversarial attack that
perturbs the input in the direction of the sign of the gradient of the loss:

x′ = x+ ϵ · sign(∇xJ(x, y))

where ϵ controls the perturbation magnitude. FGSM generates perceptible but targeted
perturbations with minimal computational overhead.

• Salt & Pepper Noise: is a non-gradient-based black-box perturbation that randomly sets a
proportion of input pixels to their minimum or maximum value. This form of structured
noise simulates impulsive corruption and tests the model’s resilience to sparse, high-intensity
artefacts. It does not rely on model gradients and is agnostic to internal model parameters.

C.5 TRAINING DETAILS

To ensure consistency and reproducibility across all experiments, we adopt a fixed training configura-
tion and architectural setup for all evidential models, including our proposed C-EDL variants and
baseline comparators.

All models were trained using a custom convolutional neural network architecture, very closely in
design to a LeNet architecture. The model consists of two convolutional blocks with 32 and 64 filters
respectively, each using 3 × 3 kernels with ReLU activations and L2 regularisation (λ = 1e − 4).
Each block include batch normalisation layers, 2 × 2 max pooling layers, and dropout layers
(λ = 0.25) Srivastava et al. (2014). The final feature maps are flattened and passed through two
fully connected dense layers of 120 and 84 units, each followed by the same batch normalisation
and dropout layers used earlier. The output layer consists of K units (one per class according to
the respective ID dataset), with a Softplus activation to ensure non-negative evidence outputs for
evidential modelling.

Each evidential model is trained using the evidential loss Sensoy et al. (2018) (except where additional
modifications are specified in Section C.3) based on the mean squared error between the target
one-hot label and the expected class probabilities under the Dirichlet posterior, augmented with a
Kullback–Leibler (KL) divergence regularisation term between the predicted Dirichlet distribution
and a non-informative prior:

L = EDir(α)

[
∥y − p∥2

]︸ ︷︷ ︸
Prediction error

+EDir(α) [Var(p)]︸ ︷︷ ︸
Uncertainty penalty

+λ · KL [Dir(α) ∥ Dir(1)]︸ ︷︷ ︸
Regularisation

=

K∑
k=1

(
(yk −mk)

2 +
mk(1−mk)

S + 1

)
+ λ · KL(Dir(α) ∥ Dir(1))

(26)

where α = e + 1 is the Dirichlet concentration, mk = αk/S is the expected probability, Dir(1)
is the non-informative prior (β in Posterior Networks), and λ is the annealed KL weight. The KL
divergence term is weighted by a scalar coefficient, which is annealed linearly from 0 to 1 over the
first 10 epochs to encourage stable training. The KL formulation follows the standard evidence-based
Dirichlet variational regularisation commonly used in evidential deep learning:

KL(Dir(α) ∥ Dir(1)) = log
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

+

K∑
k=1

(αk − 1)

ψ(αk)− ψ

 K∑
j=1

αj

 (27)

where Γ(·) is the gamma function, ψ(·) is the digamma function, and 1 is a uniform Dirichlet prior.

Models are trained using the Adam optimiser Kingma & Ba (2014) with an initial learning rate
of 0.001. We apply a learning rate scheduling strategy via ReduceLROnPlateau, which halves the
learning rate upon stagnation in validation loss (patience = 5 epochs, min learning rate = 1e−8). All
models are trained for 250 epochs with a batch size of 64. A KL annealing callback is implemented
to gradually scale the regularisation weight across early epochs, improving convergence.

All experiments were implemented in TensorFlow 2.15 and executed on a large performance GPU
cluster using a maximum of three Nvidia A40 GPUs, 32 CPU cores, 167GB of memory (per GPU).
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All models were trained from scratch, and no pretraining or external data was used. All runs used
random seeds.

C.6 EXPERIMENTAL SETUPS

This subsection outlines additional implementation details and experimental choices that are specific
to certain experiments that may help with reproducibility and transparency.

Firstly, for all experiments unless stated otherwise, EDL++ utilises the hyperparameter combination
of T = 5. EDL++ (MC) has a dropout strength of 0.25, and EDL++ (Meta) uses the rotate (±15◦),
shift (±2), and noise (0.01) transformations. Both C-EDL variants use the same setup but with the
additional hyperparameter combination of β = 1.5, λ = 0.5, and δ = 1.0.

In Table 1, the adversarial attack used is a gradient-based L2PGD attack. For MNIST to Fash-
ionMNIST, KMNIST, and EMNIST, a maximum perturbation of 1.0 was used. For CIFAR10 to
SVHN, CIFAR10 to CIFAR100, and Oxford Flowers to Deep Weeds, a maximum perturbation of
0.1 was used. This choice reflects the fact that adversarial examples on natural image datasets such
as CIFAR-10 require smaller perturbations to significantly degrade model performance, due to the
increased complexity and lower inherent separability of the visual features. In contrast, MNIST-like
datasets typically require larger perturbations to achieve a comparable adversarial effect.

For the ∆ experiments (Table 3, and Figures 5, 10a, and 10b), we consider all data within the test
dataset not just the data that falls above or below the abstention threshold.
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