
A Geometric Approach to Personalized Recommendation with Set-Theoretic
Constraints Using Box Embeddings

Shib Dasgupta 1 Michael Boratko 1 Andrew McCallum 1

Abstract
Personalized item recommendation typically suf-
fers from data sparsity, which is most often ad-
dressed by learning vector representations of
users and items via low-rank matrix factorization.
While this effectively densifies the matrix by as-
suming users and movies can be represented by
linearly dependent latent features, it does not cap-
ture more complicated interactions. For example,
vector representations struggle with set-theoretic
relationships, such as negation and intersection,
e.g. recommending a movie that is “comedy and
action, but not romance”. In this work, we for-
mulate the problem of personalized item recom-
mendation as matrix completion where rows are
set-theoretically dependent. To capture this set-
theoretic dependence we represent each user and
attribute by a hyper-rectangle or box (i.e. a Carte-
sian product of intervals). Box embeddings can
intuitively be understood as trainable Venn di-
agrams, and thus not only inherently represent
similarity (via the Jaccard index), but also natu-
rally and faithfully support arbitrary set-theoretic
relationships. Queries involving set-theoretic con-
straints can be efficiently computed directly on
the embedding space by performing geometric
operations on the representations. We empirically
demonstrate the superiority of box embeddings
over vector-based neural methods on both simple
and complex item recommendation queries by up
to 30% overall.

1. Introduction
Recommendation systems are a standard component of most
online platforms, providing personalized suggestions for

1Manning College of Information & Computer Sciences,
UMass Amherst. Correspondence to: Shib Dasgupta <ssdas-
gupta@cs.umass.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

products, movies, articles, and more. In addition to generic
recommendation, these platforms often present the option
for the user to search for items, either via natural language
or structured queries. While collaborative filtering methods
like matrix factorization have proven successful in address-
ing data sparsity for unconditional generation, they often
fall short when attempting to combine them with more com-
plicated queries. This is not unexpected, as vector embed-
dings, while effectively capturing linear relationships, are
ill-equipped to handle the complex set-theoretic relation-
ships. Even advanced neural network-based approaches,
which are designed to capture intricate relationships, have
been shown to struggle with set-theoretic compositionally
that underlie many real-world preferences.

Let us consider an example where a user named Bob wants
to watch a comedy which is not a romantic comedy. Assum-
ing we have a prior watch history for users, standard collab-
orative filtering techniques (e.g. low-rank matrix factoriza-
tion) would yield a learned score function score(m,Bob)
for each movie m. If we also have movie-attribute annota-
tions, we could form the set of comedies C and set of ro-
mance movies R and simply filter to those movies in C \R,
however this assumes that the movie-attribute annotations
are complete, which is rarely the case in practice. In fact,
Dasgupta et al. (2023) show that item-attribute matrices,
even manually curated, are often incomplete, and remain
sparse and noisy due to limited coverage and annotation
effort.

A standard approach in a setting with sparse data is to learn
a low-rank approximation for the attribute × movie ma-
trix A, yielding a dense matrix Â. We can then form sets
of movies based on this dense matrix using an (attribute-
specific) threshold, e.g. Ĉ := {m | Âcomedy,m > τcomedy}
and R̂ := {m | Âromance,m > τromance}, and then rank
movies m ∈ Ĉ \ R̂ according to score(m,Bob). While this
approach does allow for performing the sort of queries we
are after, it suffers from three fundamental issues:

1. Limited user-attribute interaction: Since the attribute
classification is done independently from the user, any
latent relationships between the user and attribute can-
not be taken into account.

1

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Figure 1: Standard matrix completion assumes you are
given partial information about the user × movie matrix U,
and potentially incomplete information about the attribute

× movie matrix A.

Figure 2: Box embeddings represent the movies, users, and
attributes as “boxes” (Cartesian products of intervals) in

Rn.

2. Error compounding: Errors in the completion of at-
tribute sets accumulate as the number of sets involved
in the query increase.

3. Mismatched inductive-bias: Our queries can be viewed
as set-theoretic combinations of the rows, not linear
combinations. As such, using a low-rank approxima-
tion of the matrix may be misaligned with the eventual
use.

In this paper, we formulate the problem of attribute-specific
recommendation as matrix completion where rows are not
necessarily linear combinations of each other but, rather,
are set-theoretic combinations of each other. More pre-
cisely, given some user × movie interaction matrix U and
attribute × movie matrix A, the queries we are considering
are set-theoretic combinations of these rows (see Figure 1).
For example, the ground-truth data for comedies which are
not romance movies which Bob likes would be the vector
x ∈ {0, 1}|M |, where xm = 1 if and only if UBob,m = 1
and Acomedy,m = 1 and Aromance,m = 0. Note that this is
not a linear combination of the previous rows, and so while
the inductive bias of low-rank factorization has proven im-
mensely effective for collaborative filtering we should not
expect it to be directly applicable in this setting.

Instead, we propose to learn representations for the users
and attributes that are consistent with specific set-theoretic
axioms. These representations must also be compactly pa-
rameterizable in a lower-dimensional space, differentiable
with respect to some appropriate score function, and allow
for efficient computation of various set operations. Box Em-
beddings (Vilnis et al., 2018; Dasgupta et al., 2020), which
are axis-parallel n-dimensional hyperrectangles, meet these
criteria (see Figure 2). The volume of a box is easily calcu-
lated as the product of its side-lengths. Furthermore, box
embeddings are closed under intersection (i.e. the intersec-
tion of two boxes is another box). Inclusion-exclusion thus
allows us to calculate the volume of arbitrary set-theoretic
combinations of boxes.

The contributions of our paper are as follows -

1. We model the problem of attribute-specific query rec-
ommendation as “set-theoretic matrix completion”,
where attributes and users are treated as sets of items.
We discuss the challenges faced by existing machine-
learning approaches for this problem setup.

2. We demonstrate the inconsistency of existing vector
embedding models for this task. Additionally, we estab-
lish box embeddings as a suitable embedding method
for addressing such set-theoretic problems.

3. We conduct an extensive empirical study comparing
various vector and box embedding models for the task
of set-theoretic query recommendation.

2

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Box embeddings, with their geometric set operations, sig-
nificantly outperform all vector-based methods. We also
evaluate score multiplication and threshold-based prediction
for both vector and box embedding models, and find that
performing set operations directly on the box embeddings
performs best, solidifying our claim that the inductive bias
of box embeddings provides the necessary generalization
capabilities to address set-theoretic queries.

2. Task Formulation
2.1. Background

Matrix completion is a fundamental problem in machine
learning, and arises in a wide array of tasks, from rec-
ommender systems to image reconstruction. Formally,
this problem is typically modeled as follows: Given a
matrix X ∈ Rm×n where only a subset of the entries are
observed, find a complete matrix X̂ ∈ Rm×n which closely
approximates X on the observed entries. For the task of
recommendation, this involves predicting user interactions
with items they have not previously interacted with, and a
common assumption is that the preferences of users and
characteristics of the items can be expressed by a small
number of latent factors, with the alignment of these latent
factors captured via dot-product. This justifies the search
for a low-rank approximation X̂ = BC, where B ∈ Rm×D

and C ∈ RD×n. In the case where the original matrix is
binary, X ∈ {0, 1}m×n, it is common to perform logistic
matrix factorization, where an elementwise sigmoid is
applied after the dot-product of latent factors, which we
denote (with slight abuse of notation) as X̂ = σ(BC).

2.2. Set-Theoretic Matrix Completion

We will describe the task of set-theoretic matrix completion
on the setting of movies, users, and attributes, though the
formulation and our proposed model can be generalized to
arbitrary domains. We are given a set DU ⊆ U ×M of
user-movie interactions, and a setDA ⊆ A×M of attribute-
movie pairs. We assume both of these sets are incomplete.

Our goal is to eventually be able to recommend movies
based on some query, for example “comedy and not ro-
mance”. Such a query for a particular user can be repre-
sented as u ∧ a1 ∧ ¬a2, where u is the user, a1 = comedy
and a2 = romance. We let Q be the set of all queries
of interest, which depends on which queries we anticipate
evaluating at inference time. In this work, we will take Q
to be queries of the form u, a1, u ∧ a1, u ∧ a1 ∧ a2, and
u ∧ a1 ∧ ¬a2, where u ∈ U and a1, a2 ∈ A.

With this formulation, we can view our task as matrix com-
pletion for a matrix X ∈ {0, 1}|Q|×|M |, where the rows
are derived by applying bitwise operators on the rows of

user and attribute data. While we could, in theory, proceed
directly with logistic matrix factorization on this matrix,
there are both practical and theoretical reasons to search
for an alternative. First, the number of rows of this matrix
is very large relative to the original data - in our case we
have |Q| = O(|U ||A|2), but in general |Q| = O(3|U ||A|).
This poses practical issues, both at training time (as there
are an exponential number of elements of X to traverse)
and inference time (storing the low-rank approximations re-
quiresO(|Q|) memory, which is much larger than |U |+|A|).
There are also theoretical issues with the underlying assump-
tion, as it is no longer reasonable to assume the rows of
σ−1(X) are linear combinations of some latent factors.

3. Method
Our proposed solution to address these issues starts by defin-
ing the sets of movies which comprise the queries of in-
terest. Let, P(M) be the power set of movies M . Specif-
ically, for each user u we can define the set Mu = {m |
(u,m) ∈ DU}, and for each attribute a we can define the
set Ma = {m | (a,m) ∈ DA}. If we let M ⊆ P(M)
be the collection of all such sets, then the set of movies
corresponding to a given query q are direct set-theoretic
combinations of elements inM. Hence, the reasonable un-
derlying assumption, in this case, is to model the elements
ofM as sets via a map f :M→ R where R is also a set
of sets, and the map f respects set-theoretic operations, i.e.
f(S∩T) = f(S)∩f(T) and f(S \T) = f(S)\f(T), etc.
Such a map is referred to as a homomorphism of Boolean
algebras, and the problem of learning such a function was
explored in general in (Boratko et al., 2022). In our work,
we propose box embeddings as the function f which can
be trained to obey the homomorphism constraints. As a
result, user-attribute-item representations based on box em-
beddings could serve as an optimal inductive bias for the
proposed set-theoretic matrix completion task.

3.1. Set-theoretic Representation Box Embeddings

As introduced in Vilnis et al. (2018), box embeddings rep-
resent entities by a hyperrectangle in RD, i.e. a Cartesian
product of intervals. Let the box embedding for user u be:

Box(u) =

D∏
d=1

[u⌞
d, u

⌝
d] = [u⌞

1, u
⌝
1]× . . .× [u⌞

D, u⌝
D] ⊆ RD,

where [u⌞
d, u

⌝
d] is the interval for d-th dimension, u⌞

d < u⌝
d

for d ∈ {1, . . . , D}.
The volume of an interval is defined as the length of the
interval Vol((u⌞

d, u
⌝
d)) = max(u⌝

d − u⌞
d, 0).

Let, Box(m) =
∏D

d=1[m
⌞
d,m

⌝
d] be the box embeddings for

a movie m. At dimension d, the volume of intersection

3

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

between user u and movie m is defined as -

VolInt((u⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d))

= max
(
min(u⌝

d,m
⌝
d)−max(u⌞

d,m
⌞
d), 0

)
.

When the movie interval [m⌞
d,m

⌝
d] is completely contained

by user interval [u⌞
d, u

⌝
d], then VolInt((u⌞

d,u
⌝
d),(m

⌞
d,m

⌝
d))

Vol((m⌞
d,m

⌝
d))

= 1.
This objective creates a set-theoretic interpretation with
box embeddings, where user Box(u) contains all the movie
boxes related to u (Figure 2). The score for containment for
a single dimension d is formulated as:

FBox((u
⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d))

:=
VolInt((u⌞

d, u
⌝
d), (m

⌞
d,m

⌝
d))

Vol((m⌞
d,m

⌝
d))

:=
max(min(u⌝

d,m
⌝
d)−max(u⌞

d,m
⌞
d), 0)

max(m⌝
d −m⌞

d, 0)
. (1)

The overall containment score is the multiplication of FBox

for each dimension. The log of this score is referred to as
the energy function as given:

EBox(u,m) := − log

D∏
d=1

FBox((u
⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d)). (2)

This energy function is minimized when the user Box(u)
contains the movie Box(m). Previous works have high-
lighted the difficulty of optimizing an objective including
these hard min and max functions (Li et al., 2019; Das-
gupta et al., 2020). In our work, we use the latter solution,
termed GUMBELBOX, which treats the endpoints x⌞ and
x⌝ as mean of GumbelMax and GumbelMin random vari-
ables, respectively. Given 1-dimensional box parameters
{[x⌞

n, x
⌝
n]}Nn=1, we define the associated GumbelMax ran-

dom variables X⌞
n with mean x⌞

n and scale β, as well as
the GumbelMin random variables X⌝

n with mean x⌝
n and

scale β. Dasgupta et al. (2020) calculates that the expected
volume of intersection of intervals {[X⌞

n, X
⌝
n]} can be ap-

proximated by

E
[
max

(
min
n

X⌝
n −max

n
X⌞

n, 0
)]

≈LSEβ

(
LSE−β(x

⌝
1, . . . , x

⌝
N)− LSEβ(x

⌞
1, . . . , x

⌞
N), 0

)
.

essentially replacing the hard min and max operators with
a smooth approximation, LSEt(x) := t log(

∑
i e

xi/t). Ex-
pected intersection volume in higher dimensions is just
a product of the preceding equation, as the random vari-
ables are independent. We use this GUMBELBOX (ab-
brev GB) formulation in our work changing the notations
FBox,Vol,VolInt to FGB ,VolGB ,VolIntGB . We modify
the per-dimension score function FBox in (2) by replacing

the ratio of hard volume calculations with the approximation
to the expected volume,

FGB((u
⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d); (τ, ν))

:=
LSEν(LSE−τ (u

⌝
d,m

⌝
d)− LSEτ (u

⌞
d,m

⌞
d), 0)

LSEν(m⌝
d −m⌞

d, 0)

=:
VolIntGB((u

⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d); (τ, ν))

VolGB((m⌝
d −m⌞

d); ν)
. (3)

3.2. Training

We model each user, attribute, and movie as a box in RD,
and denote the map from these entities to their associated
box parameters as θ, i.e., the trainable box embedding for
user u is θ(u) := Box(u). Our goal is to train these box
representations to represent certain sets of movies which
allow us to perform the sort of queries we are interested in.
As motivated above, for a given user u, we train Box(u) to
approximate the set Mu via a noise-contrastive estimation
objective. Namely, for each (u,m) ∈ DU , we have a loss
term

ℓ(u,m)(θ) :=EGB(u,m; θ)

− Em̃∼M

[
log

(
1− exp(−EGB(u, m̃; θ))

)]
.

The first term is minimized when Box(u) contains Box(m).
We approximate the second term via sampling, which en-
courages Box(u) to be disjoint from Box(m̃) for a uni-
formly randomly sampled movie m̃. We define an analo-
gous loss function ℓ(a,m)(θ) for attribute-movie interactions,
which trains Box(a) to contain the box Box(m) for each m
such that (u,m) ∈ DU .

The overall loss function is a convex combination of these
loss terms:

L(θ;DU ,DA) := w ∗
∑

(u,m)∈DU

ℓ(u,m)(θ)

+ (1− w) ∗
∑

(a,m)∈DA

ℓ(a,m)(θ).

for a hyperparameter w ∈ [0, 1]. This optimization ensures
that the movie boxes are contained within the corresponding
user and attribute boxes, thereby establishing a set-theoretic
inductive bias. Both numbers of negative samples and w
are hyperparameters for training (Please Refer to Section 4,
Appendix A.2) for further details. Training box embeddings
is generally efficient, as the computation of box intersection
volumes can be parallelized across dimensions. We provide
training time details for the box embedding model and other
vector-based baselines in Table 11 in Appendix C

3.3. Inference

During inference, given the trained embedding model θ and
a user u we determine the user’s preference for the movie

4

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

m by negating and exponentiating the energy function,

score(m,u; θ) := exp (−EGB(u,m; θ))

=

D∏
d=1

FGB (θ(u)d, θ(m)d; (τ, ν)) ∈ R≥0,

where θ(x)d = (x⌞
d, x

⌝
d). Since the calculation is simply

a product over dimensions, for notational clarity we will
restrict our discussion for more complex queries to the one-
dimensional case, and omit the explicit dependence on tem-
perature hyperparameters, so

score(m,u; θ) :=
VolIntGB (θ(m), θ(u))

VolGB (θ(m)))

which is the proportion of θ(m) which is contained within
θ(u) (see Figure 2). It achieves it’s maximum at 1 if θ(u)
contains θ(m), and is minimized at 0 when they are disjoint,
corresponding to the motivation that θ(u) represents the set
of movies that user u has interacted with.

Given a query with a conjunction between attributes (e.g.
“comedy and action”) we denote the attributes involved a1
and a2. Similarly to the score for a single user query, we
define the score for these attributes as the proportion of
the movie box θ(m) which is contained inside of the (soft)
intersection of boxes θ(u), θ(a1), and θ(a2), i.e.

score(m,u∧a1∧a2; θ) :=
VolIntGB (θ(m), θ(u), θ(a1), θ(a2))

VolGB (θ(m))
.

Again, this score is maximized if θ(m) is contained inside
θ(u), θ(a1), and θ(a2), and minimized when it is disjoint.

In order to address queries with set differences, recall that,
given two measurable sets S and T , we can compute the
volume of S \ T as Vol(S \ T) = Vol(S) − Vol(S ∩ T).
Thus, if the query involves a negated attribute (e.g. “comedy
and not action”), we define

score(m,u ∧ a1 ∧ ¬a2;θ) :=
VolIntGB (θ(m), θ(u), θ(a1))

VolGB (θ(m))

− VolIntGB (θ(m), θ(u), θ(a1), θ(a2))

VolGB (θ(m))

This score is maximized when θ(m) is contained inside θ(u)
and θ(a1) while being disjoint from θ(a2), and decreases
when these conditions are not met.

Our containment-based scoring framework naturally gen-
eralizes to more complex logical queries involving arbi-
trary Boolean combinations of attributes. By leveraging the
inclusion-exclusion principle, any Boolean query can be
converted into Disjunctive Normal Form (DNF). For exam-
ple, the score for a complex query such as u ∧ a1 ∨ a2 ∧
¬a3 ∨ a4 can be rewritten as a sum of scores over several

conjunction clauses. Each clause is handled by computing
the volume of the intersection of the involved box embed-
dings. Importantly, the model is trained only on pairwise
user–item and attribute–item interactions, yet naturally ex-
tends its mechanism to arbitrary, unseen structured logical
queries at inference time.

Time complexity Each DNF clause requires computing
the intersection of multiple boxes. For box embeddings,
this is implemented via log-sum-exp (LSE) over coordinate-
wise minima and maxima. For a clause involving k variables
(user or attributes), the intersection cost is O(kD), where
D is the embedding dimension. To score a full Boolean
query with T DNF clauses, the total complexity is O(TD).
In the worst case, where all combinations of n variables
appear in disjunction, T = 2n. However, real-world queries
are usually structured as conjunctions and simple negations,
leading to far fewer terms. Additionally, we parallelize
the LSE computations across dimensions and query terms,
enabling efficient batched evaluation of logical queries. Our
codebase includes these optimizations.

4. Experiments
In our experiments, we evaluate all the models on item rec-
ommendation across three domains: movies, songs, and
restaurants. (4.1). We systematically generate queries of
varying complexity from these datasets to evaluate perfor-
mance on set-theoretic tasks (4.2.1, 4.2.2). We train and
select models based on the performance of the traditional
personalized item prediction (4.3). Finally, we demonstrate
that our set-based representation method is better suited for
handling set-theoretic constraints in recommendation tasks
(5.1, 5.2).

4.1. Dataset
The datasets used in our study must contain two pri-
mary components: Item-User interactions DU and Item-
Attribute interactions DA . We select datasets that offer
rich ground truth annotations for both components. We uti-
lize the MovieLens 1M and 20M datasets for personalized
movie recommendations (Harper & Konstan, 2015). For the
song domain, we employ a subset of the Last-FM dataset,
which is the official song tag dataset of the Million Song
Dataset (Bertin-Mahieux et al., 2011). In the restaurant do-
main, we use the NYC-R dataset introduced by (Wang et al.,
2018).

We utilize the data curated by Dasgupta et al. (2023) to
construct DA for the Movielens data. This dataset employs
Wikidata (Vrandečić & Krötzsch, 2014) to generate ground
truth attribute labels for movies1. For the Last-FM dataset,
the authors use the Last.fm API (’getTopTags’)2 to create

1https://github.com/google-research-datasets/genre2movies
2https://www.last.fm/

5

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

attribute tags. Likewise, the authors in (Wang et al., 2018)
crawl restaurant review data from TripAdvisor3 to curate
tags and ratings for restaurants in NYC. The sparsity of
DA and DU is comparable in the Movielens datasets. In
contrast, the Last.fm and NYC-R datasets, designed with tag
annotations in mind, exhibit much denser attribute-movie
interaction. Thus, the selection of these three datasets not
only encompasses diverse domains but also offers varying
ground-truth distributions for our experiments.

We use the binarized implicit feedback data (Hu et al., 2008),
indicating whether the user or the attribute has been associ-
ated with the specific item. To ensure the quality of the data,
we retain users/items with 5 or more interactions and at-
tributes with frequency 20 or more in all the datasets. Refer
to Table 1 for a detailed description of the dataset statistics.

4.2. Dataset Splits & Query Generation

To select models for each method, we train on a dataset
split Dtrain

U & Dtrain
A while evaluating on a held-out set Deval

U

& Deval
A . However, we use these eval set pairs to construct

compositional queries. Simple random sampling or leave-
one-out data splits do not ensure a substantial number of
these queries. Therefore, we devise a data splitting tech-
nique closely linked to query generation, which we discuss
next.

4.2.1. PERSONALIZED SIMPLE QUERY

This type of query corresponds to a single attribute for a
particular user, e.g. Bob wants to watch a comedy movie.
More formally, given a user u and an attribute a, the query
type would be - u ∩ a. Note that, these simple queries
are set-theoretic combinations between the item sets corre-
sponding to the users and the attributes. Let us denote the
data corresponding to these queries as QU∩A.

While constructing the QU∩A pairs we need to ensure
that - if an item is held out for evaluation for a sim-
ple query, the individual user-item and attribute-item pair
should belong to the evaluation set as well. More formally,
(u, a, i) ∈ QU∩A ⇐⇒ (u, i) ∈ Deval

U ∧ (a, i) ∈ Deval
A .

To ensure this train/test isolation, we use the sampling al-
gorithm 1 that takes in DU and DA and outputs QU∩A,
Dtrain

U ,Dtrain
A ,Deval

U ,Deval
A (Refer to Appendix A.1 for more

details). The detailed statistics for the splits are provided
in Table 1. Also, the statistics for the QU∩A are present in
Table 2

4.2.2. PERSONALIZED COMPLEX QUERY

The set-theoretic compositions that we consider here are the
intersection and negation of attributes for a particular user.
Given a user u and attributes a1 and a2, we consider the

3https://www.tripadvisor.com

query types- u ∩ a1 ∩ a2 and u ∩ a1 ∩ ¬a2, e.g, Bob want
to watch an Action Comedy movie, Alice want to watch a
Children but not Monster movie. Creating meaningful at-
tribute compositions requires careful consideration, as not
all combinations make sense. For instance, ’Sci-Fi’ & ’Doc-
umentary’ might not be a meaningful combination, whereas
’Sci-Fi’ & ’Time-Travel’ is. Similarly, ’Sci-Fi’ ¬’ Fiction’
doesn’t make sense, but ’Fiction’ ¬ ’Sci-Fi’ does. Some-
times, even if the intersection is valid, it could be trivial and
non-interesting, e.g., ’Fiction’ & ’Sci-Fi’.
Intuitively, for two attributes a1 & a2, their intersection is
interesting if |a1 ∩ a2| is greater than combining any two
random items set. Also, for their intersection to be non-
trivial the size of the intersection |a1 ∩ a2| must be less than
the individual sizes of the attributes i.e., α|a1| and α|a2|.
Here,|.| denotes the size of the item set corresponding to the
attributes. α ∈ [0, 1] is a design parameter, dedicated after
manual inspection of the quality of the item sets for the com-
binations . In case of difference queries such as a1 ∩ ¬a2,
we consider ¬a2 to be the second attribute and carry out the
same filtering strategy as done for the intersection queries.
We denote the set of non-trivial and viable attribute pairs
for the intersection to be A∩ = {(a1, a2)||a1 ∩ a2| >
ϵ, |a1 ∩ a2| < α|a1|, |a1 ∩ a2| < α|a2|}, and for the differ-
ence to be A\ = {(a1, a2)||a1 ∩ ¬a2| > ϵ, |a1 ∩ ¬a2| <
α|a1|, |a1 ∩ ¬a2| < α|¬a2|}. Using the above formulation,
we generate the test set for the personalized complex queries
QU∩A1∩A2

and QU∩A1∩¬A2
using algorithm 2. Please refer

to Table 2 for the detailed statistics. The link for the dataset
is available at https://github.com/ssdasgupta/
set-based-collaborative-filtering.

4.3. Training Details & Evaluation Criteria

We train all the methods on users and attributes jointly using
Dtrain = Dtrain

U ∪ Dtrain
A . We use dimensions d = 128 for

vector-based models, and d = 64 for box models so that
the number of parameters per user, attribute, and movie
is equal.4 We perform extensive hyperparameter tuning
for the learning rate, batch size, volume and intersection
temperature of boxes, loss combination constant, etc. Please
refer to the Appendix A.2 for details. We follow the standard
sampled evaluation procedure described in Rendle et al.
(2020), only for model selection purpose. For each user-
item tuple (u,m) in Deval

U , the model ranks m amongst a
set of items consisting of the m together with 100 other
true negative items w.r.t the user. Then we report on two
different evaluation metrics namely Hit Ratio@k (HR@k)
and NDCG. (a) HitRatio@k: If the rank of m is less than
or equals to k then the value of HR@k is 1 or 0 otherwise.
(2) NDCG: if r is the rank of m, then 1/ log(r + 1) is the
NDCG.

4Recall that box embeddings are parameterized with two vec-
tors, one for each min and max coordinate.

6

https://github.com/ssdasgupta/set-based-collaborative-filtering
https://github.com/ssdasgupta/set-based-collaborative-filtering

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Table 1: Dataset Statistics, the Item-User interaction DU & the Item-Attribute interaction DA.
The Train/Test split is created using algorithm 1 to test set-theoretic generalization.

Dataset #Users #Items #Attributes
#Train
DU

#Eval
DU

#Train
DA

#Eval
DA

Last-FM 1,872 2417 490 60,497 8,857 34,374 4,240
NYC-R 9,597 3764 579 82,734 8,502 34,908 4,376
MovieLens 1M 6,040 3,705 57 963,554 36,655 10,273 1,545
MovieLens-20M 138,493 26,744 95 19,722,646 277,617 80,178 1,734

The model is selected based on the best-performing model
on NDCG for the item prediction over the user-item valida-
tion setDeval

U , with the best-performing checkpoint saved for
further evaluation on compositional queries. We follow the
same evaluation protocol for the compositional queries as
well, except, we rank m amongst all items in the vocabulary
rather than a sampled subset.

4.4. Baselines

The recommendation systems literature offers a wide range
of methods that represent users, and items in Rd. These
methods then propose a compatibility score function be-
tween the user and item, ϕ : Rd × Rd → R. A common
and effective choice for ϕ is the dot product, which under-
pins matrix factorization (Rendle et al., 2020; Koren & Bell,
2015). To capture more complex interactions among users,
items, and attributes, (He et al., 2017) extend matrix factor-
ization by replacing the dot product with a neural network-
based similarity function. This method, called Neural Ma-
trix Factorization (NEUMF), combines the dot product with
an MLP. Similarly, (He et al., 2020) propose LightGCN
(LGCN) to captures the user, items, and attribute interac-
tion using Graph Convolution Network (Kipf & Welling,
2017) over a joint graph of user-item-attribute. We use MF,
and, NEUMF LGCN as our baselines.

For a personalized query, be it simple or complex, we need
to devise a method to combine the individual scores of the
user and the attributes involved in the query. In this work,
we compare three approaches to obtain an aggregated score:

1. FILTER: In this approach, we retrieve a list of items
corresponding to the attributes based on the scores pro-
vided by the embedding models. The list is generated by
thresholding the scores, where the threshold is optimized
by minimizing the F1 score between the training data and
predicted scores. We refer to the methods using this ag-
gregation technique as BOX-FILTER for box embeddings
and MF-FILTER, NEUMF-FILTER, LGCN-FILTERfor
vector-based methods.

2. PRODUCT: In this method, the compositional score is
computed by multiplying the scores for the individual
queries. For vector-based embeddings, the scores for

Table 2: Compositional Query Statistics

Dataset
Personalized
Simple Query

Personalized
Complex Query

u ∩ a u ∩ a1 ∩ a2 u ∩ a1 ∩ ¬a2
Last-FM 9,867 45,142 10,814
NYC-R 9,482 7,460 2,369
ML-1M 21,392 51,299 37,769
ML-20M 35,368 42,355 47,374

each movie related to a user or attribute are normalized
using the sigmoid function. For box embeddings, the en-
ergy function is normalized by conditioning on the movie
box volume (see Section 3.3). The score for negation is
calculated by subtracting the normalized score from 1.
The three methods using this technique are referred to as
BOX-PRODUCT, MF-PRODUCT, NEUMF-PRODUCT,
and LGCN-PRODUCT.

3. GEOMETRIC: This approach leverages the geometry of
the embedding space. For vector-based embeddings,
learned through Matrix Factorization, addition, and sub-
traction are often used for query composition (Mikolov
et al., 2013). Box embeddings, on the other hand, nat-
urally represent intersection operations, allowing us to
compute scores for any set-theoretic combination using
box intersection and inclusion-exclusion principles. We
refer to these methods as BOX-GEOMETRIC and MF-
GEOMETRIC.

5. Results
After conducting an extensive hyper-parameter search on
Deval

U , we select the top-performing model for each method
based on NDCG scores (see Table 6 in the Appendix for
the model selection details). This ensures that the chosen
model is optimal for set-theoretic query inference, with the
following performance results.

5.1. Set-Theoretic Generalization

We test the selected models for each method with the curated
set-theoretic personalized queries (Detailed stats for the

7

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Table 3: Hit Rate(%)↑ on Set-theoretic queries for datasets
Last-FM, MovieLens 1M, NYC-R.

Methods U ∩A U ∩A1 ∩A2 U ∩A1 ∩ ¬A2

h@10 h@20 h@50 h@10 h@20 h@50 h@10 h@20 h@50

LAST-FM

MF-FILTER 14.8 25.1 37.4 26.8 46.8 62.8 15.2 24.4 35.5
MF-PRODUCT 9.0 21.7 48.0 14.3 36.8 73.2 4.8 14.8 43.4
MF-GEOMETRIC 6.1 12.2 29.7 3.4 7.6 27.5 1.7 4.8 15.9

NEUMF-FILTER 13.5 21.9 32.3 20.0 19.6 55.7 11.3 18.8 28.7
NEUMF-PRODUCT 13.6 25.6 47.6 19.5 35.7 63.3 9.0 16.8 40.5

LGCN-FILTER 20.4 28.5 39.1 42.4 54.2 67.4 15.8 21.5 27.6
LGCN-PRODUCT 20.5 31.0 48.6 43.8 58.0 80.7 0.8 1.3 3.5

BOX-FILTER 22.9 31.5 39.0 32.7 46.5 55.9 22.0 32.1 40.3
BOX-PRODUCT 27.9 44.5 68.0 38.2 57.7 82.7 17.8 32.4 60.3
BOX-GEOMETRIC 28.3 44.8 68.3 38.8 58.3 83.1 17.5 32.5 60.0

MOVIELENS-1M

MF-FILTER 5.0 10.2 22.3 11.4 17.9 27.5 4.7 9.8 22.5
MF-PRODUCT 4.3 8.5 20.4 5.1 10.6 26.1 3.4 7.3 19.3
MF-GEOMETRIC 0.4 0.9 3.0 0.1 0.2 0.8 0.5 1.0 2.7

NEUMF-FILTER 9.3 15.5 28.5 13.3 21.5 35.9 8.8 14.7 26.7
NEUMF-PRODUCT 10.3 16.8 31.4 15.3 24.5 43.5 5.7 9.7 20.2

LGCN-FILTER 8.2 12.3 20.9 11.4 15.6 24.0 9.9 13.8 21.9
LGCN-PRODUCT 5.9 9.0 14.9 7.6 11.7 20.1 5.5 8.6 14.1

BOX-FILTER 11.7 19.1 32.3 14.5 20.5 28.6 11.4 19.5 34.0
BOX-PRODUCT 9.95 16.7 31.5 10.6 17.8 34.2 8.9 15.1 29.4
BOX-GEOMETRIC 11.0 18.3 34.2 16.9 26.6 46.1 8.6 15.2 31.0

NYC-R

MF-FILTER 1.4 2.4 4.6 2.7 4.8 8.0 2.1 3.5 6.3
MF-PRODUCT 1.1 2.9 8.6 3.7 8.2 23.3 8.9 13.1 17.6
MF-GEOMETRIC 0.5 1.5 4.3 0.2 0.8 3.5 0.5 1.2 3.7

NEUMF-FILTER 3.8 5.6 9.2 2.5 3.2 4.5 4.2 6.3 10.8
NEUMF-PRODUCT 4.6 7.3 13.7 6.6 11.2 20.8 2.7 5.2 11.2

LGCN-FILTER 4.8 7.8 17.2 12.7 16.9 21.8 5.4 8.6 16.4
LGCN-PRODUCT 5.0 8.7 18.1 12.1 17.6 35.1 4.9 8.0 13.2

BOX-FILTER 4.9 7.8 13.4 9.9 13.5 20.4 4.4 7.1 12.5
BOX-PRODUCT 5.0 8.9 17.9 10.9 19.5 37.3 5.3 9.1 18.8
BOX-GEOMETRIC 4.9 8.7 17.6 12.2 21.5 39.2 5.5 9.2 19.2

queries in Table 2). We report the ranking performance in
terms of Hit Rates at 10, 20, and 50. Please refer to 3 for
the results.

The Box Embedding-based method outperforms vector-
based methods by a significant margin, showing on av-
erage 30% improvement when comparing the aggregated
HR@50 performance of the best vector model (MF-
PRODUCT/NEUMF-PRODUCT/LGCN-FILTER) to the box
model (BOX-GEOMETRIC) across all the three different
domains.

The U∩A1∩A2 query is the most challenging, as it requires
accuracy in all three individual queries. For this difficult
query, BOX-GEOMETRIC shows the largest performance
gap compared to other methods. Additionally, using vector
addition and subtraction as geometric proxies for intersec-
tion and difference performs significantly worse than all
other vector-based methods, while geometric operations in
the box embedding space outperform even other box embed-
ding methods. This validates the set-theoretic inductive bias
of box embeddings and confirms that geometric operations
in this space provide valid set-theoretic operations, unlike
vectors.

The FILTER aggregation technique performs similarly to
or better than other methods only for Hits@10. However,

Table 4: Generalization Spectrum Gap for PERSONALIZED
COMPLEX QUERY U ∩A1 ∩A2

Methods Hit Rate @50 ↑ Spectrum Gap ↓

(W − S) / W
Weakest

(W)
Weak-User

(W-U)
Weak-Attribute

(W-A)
Set-Theoretic

(S)

MF-FILTER 55.2 41.9 30.5 27.5 50.2%
MF-PRODUCT 67.4 38.5 39.3 26.1 61.2 %
MF-GEOMETRIC 18.5 12.9 1.8 0.8 95.6%

NEUMF-FILTER 48.4 33.1 40.4 35.9 38.5%
NEUMF-PRODUCT 67.8 48.7 40.6 43.5 35.9%

BOX-FILTER 52.7 44.5 30.3 28.5 45.9%
BOX-PRODUCT 64.6 52.8 39.0 34.2 47.1%
BOX-GEOMETRIC 62.6 53.3 50.1 46.1 26.4%

as k increases, its performance declines across all model
types (Box, MF, NeuMF) and datasets. This observation
highlights the limitation of a fixed threshold filter and advo-
cates smoother aggregation techniques like PRODUCT and
GEOMETRIC.

5.2. Spectrum of Generalization

The query generation process (refer Section 4.2.1) en-
sures that for the target item m corresponding to a query
involving user u and attribute a, the pair (u,m) and
(a,m) must not be in the training set (u,m) /∈ Dtrain

U

and (a,m) /∈ Dtrain
A . The set-theoretic evaluation weak-

ens when such pairs are added back to the training set.
There are three different weakening settings applicable
here, which we refer to as a spectrum – WEAKEST GEN-
ERALIZATION ((u,m) ∈ Dtrain

U and (a,m) ∈ Dtrain
A),

WEAK GENERALIZATION-USER ((u,m) ∈ Deval
U and

(a,m) /∈ Dtrain
A), WEAK GENERALIZATION-ATTRIBUTE

((u,m) /∈ Dtrain
U and (a,m) ∈ Deval

A). We report Hi-
tRate@50 performance on query type U ∩ A1 ∩ A2 for
the MovieLens-1M dataset in Table 4 (More query types in
Appendix - Table 9, 8).
The weaker the generalization setting the easier it is for the
models to achieve higher performance on the test set. In-
deed, we observe that this is true across all the methods w.r.t
each of the aggregation settings, validating the correctness
of the trained models.
However, we are interested in observing the performance
gap when we go from the weakest to the strongest set-
theoretic generalization. We refer to the percentage gap Gen-
eralization Spectrum Gap (hr(Weakest) - hr(Set-theoretic)
/ hr(Weakest) %). From Table 4 we observe that the best-
performing box model BOX-GEOMETRIC achieves the best
Generalization Spectrum Gap for HR@50.

6. Related Work
6.1. Box Embeddings

Some of the recent works have tried to incorporate box
embeddings in a recommendation systems setup.Xu et al.
(2024); Wu et al. (2024); Zhang et al. (2021) use the side-
length of the box embeddings as a preference range to obtain

8

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

diverse set recommendations for users, Mei et al. (2022a)
utilizes the axis parallel nature of the box embeddings for
faster retrieval. Sun et al. (2020a;b); Ren et al. (2020) are
some of the recent works that focus on logical query over
knowledge bases (KB). However, in this work, we frame
collaborative filtering as a set-theoretic matrix completion
problem, which helps us to achieve better generalization for
the composition of personalized queries.

6.2. Set-based queries in Search and group
recommendation systems.

While set-theoretic queries are commonplace in search, pop-
ular question-answering (QA) benchmarks often do not in-
clude them. We found QUEST (Malaviya et al., 2023) the
most closely related study, introducing a benchmark for
entity-seeking queries with implicit set-based semantics.
However, QUEST does not focus on explicit constraints or
personalization, which are central to our work.

6.3. Context Aware Recommendation

The concept of context-aware recommendation, as intro-
duced in (Adomavicius et al., 2011), provides a general
framework where “context” is broadly defined as any aux-
iliary information. This framework emphasizes that user
preferences for items can vary based on the context in which
interactions occur, reflecting a user-centric view of contex-
tual information.
Building on this foundation, recent works have explored
specific instances of context-aware recommendation, such
as “attribute-aware recommendation.” These approaches
often leverage item or user attributes as contextual infor-
mation to address various goals, including improving user
profiling (Adomavicius et al., 2011), predicting missing
item attributes (Wu et al., 2020; Chen et al., 2022), enhanc-
ing recommendations for cold-start scenarios(Deldjoo et al.,
2019), or providing attribute-based explanations for recom-
mendations (Xian et al., 2021).

Our work differs significantly in its focus and objectives.
we term “attribute-constrained recommendation,” which
involves generating recommendations explicitly constrained
by logical combinations of attributes. Unlike attribute-aware
approaches, which aim to improve recommendation quality
by incorporating attribute information as auxiliary data, our
work directly targets the task of satisfying explicit attribute-
based constraints posed by users.

6.4. Compositional Queries with Vector Embeddings

It is common in machine learning to represent discrete en-
tities such as items or attributes by vectors (Bengio et al.,
2013) and to learn them by fitting the training data. Besides
semantic similarity, some have claimed that learned vectors

have compositional properties through vector arithmetic, for
example in the empirical analysis of word2vec (Mikolov
et al., 2013) and GLOVE (Pennington et al., 2014), and
some theoretical analysis (Levy & Goldberg, 2014; Arora
et al., 2018). However, anecdotally, many have found that
the compositional behavior of vectors is far from reliable
(Rogers et al., 2017). Our paper provides a comprehensive
evaluation of vector embeddings on compositional queries
and compares the results to a region-based alternative.

7. Conclusion & Future Work
In this work we presented the task of personalized recom-
mendation with set-theoretic queries. We discussed how this
problem can be viewed as set-theoretic matrix completion,
and why the common approach of logistic matrix factoriza-
tion is not aligned with the set-theoretic operations we wish
to perform at inference time. We observed substantial im-
provements over the vector/neural baselines when using box
embeddings as the representation, validating our intuition
regarding the necessary set-theoretic bias. Our empirical
results confirm that box embeddings are ideally suited to
the task of recommendation with set-theoretic queries.

In real-world recommendation systems — such as stream-
ing platforms, e-commerce sites, or travel services — free-
text queries (e.g., “funny action movies without clowns”)
are typically mapped to a curated set of item tags (e.g.,
genre, theme, metadata) via a natural language understand-
ing (NLU) module. Our model operates downstream of this
step, assuming a structured query (e.g., Action ∧ Comedy
∧ ¬ Clowns) has already been derived. While our current
focus is on the execution of structured set-theoretic queries,
future work could explore tighter integration with front-end
NLU systems. Large language models (e.g., GPT-4o) have
demonstrated strong performance in parsing natural lan-
guage constraints, and we view such models as complemen-
tary: performing query parsing and attribute identification,
while our method serves as a reliable and efficient back-end
executor for the resulting set-theoretic logic. Bridging the
gap between these stages offers a promising direction for
building end-to-end systems that are both expressive and
controllable.

As noted in Section 3.3, our model supports efficient eval-
uation of complex queries. We construct a benchmark of
semantically plausible queries using statistical heuristics
and manual filtering (Section 4.2.2), ensuring realistic and
diverse combinations. While this allows us to test com-
positional generalization, curating a benchmark of natural
user-issued queries remains an important direction for future
work.

9

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Acknowledgments
The authors would like to thank the members of the In-
formation and Extraction Synthesis Laboratory (IESL) at
UMass Amherst, Steffen Rendle, and Li Zhang, for helpful
discussions. This work was supported by IBM Research
AI through the AI Horizons Network and National Science
Foundation (NSF) under the Grant Numbers IIS-2106391.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of IBM or NSF.

Impact Statement
This paper aims to advance the field of Machine Learn-
ing by introducing a geometric approach to personalized
recommendation under set-theoretic constraints. Our pri-
mary contribution is methodological, focusing on improving
representation learning for structured preference modeling.
While recommendation systems have broad societal reach
and their deployment may influence user behavior, fairness,
or exposure to information, this work does not involve di-
rect deployment or sensitive user data. As such, we do not
identify any immediate or domain-specific societal risks
associated with this research. Nonetheless, we acknowledge
the importance of responsible use and encourage future ap-
plications of our method to consider fairness, transparency,
and user control as core design considerations.

References
Adomavicius, G., Mobasher, B., Ricci, F., and

Tuzhilin, A. Context-aware recommender
systems. AI Magazine, 32(3):67–80, Oct.
2011. doi: 10.1609/aimag.v32i3.2364. URL
https://ojs.aaai.org/aimagazine/index.
php/aimagazine/article/view/2364.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. Linear
algebraic structure of word senses, with applications to
polysemy. Transactions of the Association for Computa-
tional Linguistics, 6:483–495, 2018.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere,
P. The million song dataset. In Proceedings of the 12th
International Conference on Music Information Retrieval
(ISMIR 2011), 2011.

Boratko, M., Patel, D., Dasgupta, S. S., and McCal-
lum, A. Measure-theoretic set representation learn-
ing. preprint from https://www.mboratko.com/
mtsrl.pdf, 2022.

Chen, L., Cao, J., Wang, Y., Liang, W., and Zhu,
G. Multi-view graph attention network for travel
recommendation. Expert Systems with Appli-
cations, 191:116234, 2022. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2021.116234.
URL https://www.sciencedirect.com/
science/article/pii/S0957417421015402.

Dasgupta, S., McCallum, A., Rendle, S., and Zhang, L.
Answering compositional queries with set-theoretic em-
beddings, 2023.

Dasgupta, S. S., Boratko, M., Zhang, D., Vilnis, L., Li,
X. L., and McCallum, A. Improving local identifiability
in probabilistic box embeddings. In Advances in Neural
Information Processing Systems, 2020.

Deldjoo, Y., Ferrari Dacrema, M., Constantin, M. G.,
Eghbal-Zadeh, H., Cereda, S., Schedl, M., Ionescu,
B., and Cremonesi, P. Movie genome: alleviat-
ing new item cold start in movie recommendation.
User Modeling and User-Adapted Interaction, 29(2):
291–343, April 2019. ISSN 0924-1868. doi: 10.1007/
s11257-019-09221-y. URL https://doi.org/10.
1007/s11257-019-09221-y.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4):19:1–19:19, December 2015. ISSN 2160-6455. doi:

10

https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2364
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2364
https://www.mboratko.com/mtsrl.pdf
https://www.mboratko.com/mtsrl.pdf
https://www.sciencedirect.com/science/article/pii/S0957417421015402
https://www.sciencedirect.com/science/article/pii/S0957417421015402
https://doi.org/10.1007/s11257-019-09221-y
https://doi.org/10.1007/s11257-019-09221-y

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

10.1145/2827872. URL http://doi.acm.org/10.
1145/2827872.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua,
T.-S. Neural collaborative filtering. In Proceedings of
the 26th International Conference on World Wide Web,
WWW ’17, pp. 173–182, Republic and Canton of Geneva,
CHE, 2017. International World Wide Web Conferences
Steering Committee. ISBN 9781450349130. doi: 10.
1145/3038912.3052569. URL https://doi.org/
10.1145/3038912.3052569.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M.
Lightgcn: Simplifying and powering graph convolution
network for recommendation. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’20, pp.
639–648, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450380164. doi: 10.
1145/3397271.3401063. URL https://doi.org/
10.1145/3397271.3401063.

Hu, Y., Koren, Y., and Volinsky, C. Collaborative filtering
for implicit feedback datasets. In Proceedings of the 2008
Eighth IEEE International Conference on Data Mining,
ICDM ’08, pp. 263–272, 2008.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Koren, Y. and Bell, R. Advances in Collaborative
Filtering, pp. 77–118. Springer US, Boston, MA,
2015. ISBN 978-1-4899-7637-6. doi: 10.1007/
978-1-4899-7637-6_3. URL https://doi.org/10.
1007/978-1-4899-7637-6_3.

Levy, O. and Goldberg, Y. Neural word embedding as
implicit matrix factorization. Advances in neural infor-
mation processing systems, 27, 2014.

Li, X., Vilnis, L., Zhang, D., Boratko, M., and McCallum, A.
Smoothing the geometry of probabilistic box embeddings.
ICLR, 2019.

Malaviya, C., Shaw, P., Chang, M.-W., Lee, K., and
Toutanova, K. Quest: A retrieval dataset of entity-
seeking queries with implicit set operations, 2023. URL
https://arxiv.org/abs/2305.11694.

Mei, L., Mao, J., Guo, G., and Wen, J.-R. Learning proba-
bilistic box embeddings for effective and efficient ranking.
In Proceedings of the ACM Web Conference 2022, WWW
’22, pp. 473–482, New York, NY, USA, 2022a. Associa-
tion for Computing Machinery. ISBN 9781450390965.

doi: 10.1145/3485447.3512073. URL https://doi.
org/10.1145/3485447.3512073.

Mei, L., Mao, J., Guo, G., and Wen, J.-R. Learning proba-
bilistic box embeddings for effective and efficient ranking.
In Proceedings of the ACM Web Conference 2022, WWW
’22, pp. 473–482, New York, NY, USA, 2022b. Associa-
tion for Computing Machinery. ISBN 9781450390965.
doi: 10.1145/3485447.3512073. URL https://doi.
org/10.1145/3485447.3512073.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.

Ren, H., Hu, W., and Leskovec, J. Query2box: Reasoning
over knowledge graphs in vector space using box em-
beddings. In 8th International Conference on Learning
Representations. OpenReview.net, 2020.

Rendle, S., Krichene, W., Zhang, L., and Anderson, J.
Neural collaborative filtering vs. matrix factorization re-
visited. In Proceedings of the 14th ACM Conference
on Recommender Systems, RecSys ’20, pp. 240–248,
New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450375832. doi: 10.1145/
3383313.3412488. URL https://doi.org/10.
1145/3383313.3412488.

Rogers, A., Drozd, A., and Li, B. The (too many) problems
of analogical reasoning with word vectors. In Proceed-
ings of the 6th Joint Conference on Lexical and Com-
putational Semantics (*SEM 2017), pp. 135–148, Van-
couver, Canada, August 2017. Association for Compu-
tational Linguistics. doi: 10.18653/v1/S17-1017. URL
https://aclanthology.org/S17-1017.

Sun, H., Arnold, A. O., Bedrax-Weiss, T., Pereira, F.,
and Cohen, W. W. Faithful embeddings for knowledge
base queries. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020a. Curran Associates
Inc. ISBN 9781713829546.

Sun, H., Arnold, A. O., Bedrax-Weiss, T., Pereira, F., and
Cohen, W. W. Guessing what’s plausible but remember-
ing what’s true: Accurate neural reasoning for question-
answering. 2020b.

Vilnis, L., Li, X., Murty, S., and McCallum, A. Proba-
bilistic embedding of knowledge graphs with box lattice
measures. In Association for Computational Linguistics,
2018.

11

http://doi.acm.org/10.1145/2827872
http://doi.acm.org/10.1145/2827872
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1145/3397271.3401063
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-1-4899-7637-6_3
https://doi.org/10.1007/978-1-4899-7637-6_3
https://arxiv.org/abs/2305.11694
https://doi.org/10.1145/3485447.3512073
https://doi.org/10.1145/3485447.3512073
https://doi.org/10.1145/3485447.3512073
https://doi.org/10.1145/3485447.3512073
https://doi.org/10.1145/3383313.3412488
https://doi.org/10.1145/3383313.3412488
https://aclanthology.org/S17-1017

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Vrandečić, D. and Krötzsch, M. Wikidata: a free collabo-
rative knowledgebase. Communications of the ACM, 57
(10):78–85, 2014.

Wang, X., He, X., Feng, F., Nie, L., and Chua, T.-
S. Tem: Tree-enhanced embedding model for ex-
plainable recommendation. In Proceedings of the
2018 World Wide Web Conference, WWW ’18, pp.
1543–1552, Republic and Canton of Geneva, CHE, 2018.
International World Wide Web Conferences Steering
Committee. ISBN 9781450356398. doi: 10.1145/
3178876.3186066. URL https://doi.org/10.
1145/3178876.3186066.

Wu, C., Shi, S., Wang, C., Liu, Z., Peng, W., Wu, W.,
Kong, D., Li, H., and Gai, K. Enhancing recom-
mendation accuracy and diversity with box embedding:
A universal framework. In Proceedings of the ACM
on Web Conference 2024, WWW ’24, pp. 3756–3766,
New York, NY, USA, 2024. Association for Comput-
ing Machinery. ISBN 9798400701719. doi: 10.1145/
3589334.3645577. URL https://doi.org/10.
1145/3589334.3645577.

Wu, L., Yang, Y., Zhang, K., Hong, R., Fu, Y., and
Wang, M. Joint item recommendation and attribute
inference: An adaptive graph convolutional network
approach. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’20, pp. 679–688,
New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450380164. doi: 10.1145/
3397271.3401144. URL https://doi.org/10.
1145/3397271.3401144.

Xian, Y., Zhao, T., Li, J., Chan, J., Kan, A., Ma, J., Dong,
X. L., Faloutsos, C., Karypis, G., Muthukrishnan, S.,
and Zhang, Y. Ex3: Explainable attribute-aware item-
set recommendations. In Proceedings of the 15th ACM
Conference on Recommender Systems, RecSys ’21, pp.
484–494, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450384582. doi: 10.
1145/3460231.3474240. URL https://doi.org/
10.1145/3460231.3474240.

Xu, Z., Qu, Y., Zhang, W., Liang, L., and zeng Chen,
H. Inbox: Recommendation with knowledge graph us-
ing interest box embedding. ArXiv, abs/2403.12649,
2024. URL https://api.semanticscholar.
org/CorpusID:268532286.

Zhang, S., Liu, H., Zhang, A., Hu, Y., Zhang, C., Li,
Y., Zhu, T., He, S., and Ou, W. Learning user rep-
resentations with hypercuboids for recommender sys-
tems. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, WSDM

’21, pp. 716–724, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450382977.
doi: 10.1145/3437963.3441768. URL https://doi.
org/10.1145/3437963.3441768.

12

https://doi.org/10.1145/3178876.3186066
https://doi.org/10.1145/3178876.3186066
https://doi.org/10.1145/3589334.3645577
https://doi.org/10.1145/3589334.3645577
https://doi.org/10.1145/3397271.3401144
https://doi.org/10.1145/3397271.3401144
https://doi.org/10.1145/3460231.3474240
https://doi.org/10.1145/3460231.3474240
https://api.semanticscholar.org/CorpusID:268532286
https://api.semanticscholar.org/CorpusID:268532286
https://doi.org/10.1145/3437963.3441768
https://doi.org/10.1145/3437963.3441768

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Table 6: Test NDCG on Deval
U for selected models.

Dataset MF NEUMF LGCN BOX

Last-FM 0.51 0.52 0.56 0.65
NYC-R 0.31 0.33 0.37 0.39
ML-1M 0.51 0.53 0.55 0.58
ML-20M 0.71 0.70 0.72 0.73

A. Experiment Details
A.1. Data Splits & Query Generation

Algorithm 1 PERSONALISED SIMPLE QUERY (u ∩ a) gen-
eration algorithm u ∩ a

1: Let the set of users, attributes, and movies be U ,A,M
2: Marginal probability of an attribute a in A, P (a) =∑

m Aa,m/
∑

a′
∑

m Aa′,m

3: Marginal probability of an user u in U , P (u) =∑
m Uu,m/

∑
u′
∑

m Uu′,m

4: Marginal probability of an movie m in U , P (m) =∑
u Uu,m/

∑
u

∑
m′ Uu,m′

5: Let U be the User× Item matrix and A be the Attribute
× Item matrix.

6: UTrain ← U , ATrain ← A
7: UEval ← 0, AEval ← 0
8: Set of simple personalized queries, QU∩A ← ϕ
9: while |QU∩A| < MAX SAMPLE SIZE do

10: Sample an attribute a from A according to P (a).
11: Sample a movie m from for the attribute a, i.e., Sam-

ple from {m′|Aa,m′ = 1}, according to P (m)
12: Sample a user u from who has rated movie m, i.e.,

Sample from {u′|Um,u′ = 1}, according to P (u)
13: UTrain

u,m = 0, ATrain
a,m = 0, UEval

u,m = 1, AEval
a,m = 1

14: QU∩A.INSERT((u, a,m))
15: end while

A.2. Training Details

Table 5: Hyper Parameter range for all the dataset. We run
100 runs for both models and select the best model on

User-Movie validation set NDCG metric

Hyperparameters
Range
Box

Best Value
Box

Range
Vector

Best Value
Vector

Embedding dim 64 64 128 128
Learning Rate 1e-1, 1e-2, 1e-3, 1e-4, 1e-5 0.001 1e-1, 1e-2, 1e-3, 1e-4, 1e-5 0.001

Batch Size 64, 128, 256, 512, 1024 128 64, 128, 256, 512, 1024 128
Negatives 1, 5, 10, 20 20 1, 5, 10, 20 5

Intersection Temp 10, 2, 1, 1e-1, 1e-2, 1e-3, 1e-5 2.0 - -
Volume Temp 10, 5, 1, 0.1, 0.01, 0.001 0.01 - -
Attribute Loss const 0.1, 0.3, 0.5, 0.7, 0.9 0.7 0.1, 0.3, 0.5, 0.7, 0.9 0.5

Hyperparameters are reported in Table 5. Best parameter
values are reported for Box Embeddings and MF method.

Algorithm 2 PERSONALISED COMPLEX QUERY Genera-
tion Algorithm

1: Compositional Query sets QU∩A1∩A2
, QU∩A1∩¬A2

2: Non-Trivial attribute combination set A◦
3: for each user-movie tuple in Eval set, i.e., (u,m) ∈
{(u,m)|UEval

u,m = 1} do
4: for each pair of attributes (a1, a2) ∈

{(a1, a2)|AEval
a1,m = 1 and AEval

a2,m = 1} do
5: if the pair is viable and non-trivial, i.e., (a1, a2) ∈

A∩ then
6: QU∩A1∩A2 .INSERT((u, a1, a2,m))
7: end if
8: end for
9: for each pair of attributes (a1, a2) ∈

{(a1, a2)|AEval
a1,m = 1 and Aa2,m = 0} do

10: if the pair is viable and non-trivial, i.e., (a1, a2) ∈
A\ then

11: QU∩A1∩¬A2 .INSERT((u, a1, a2,m))
12: end if
13: end for
14: end for

A.3. Model Selection

A.4. Set-Theoretic Generalization

Table 7: Hit Rate(%)↑ for Set-theoretic queries for dataset
ML-20M.

Methods U ∩A U ∩A1 ∩A2 U ∩A1 ∩ ¬A2

h@10 h@20 h@50 h@10 h@20 h@50 h@10 h@20 h@50

MF-FILTER 4.6 8.1 16.1 0.4 1.0 2.9 3.7 6.6 13.7
MF-PRODUCT 4.1 7.5 15.6 3.3 6.6 16.4 2.7 5.1 11.4
MF-GEOMETRIC 0.1 0.3 0.6 0.0 0.0 0.0 0.3 0.6 1.4

NEUMF-FILTER 4.6 8.2 16.1 1.1 5.6 6.4 4.9 7.3 13.9
NEUMF-PRODUCT 4.6 8.2 16.1 4.1 8.5 22.1 4.3 6.9 12.0

BOX-FILTER 4.6 8.1 16.1 11.0 21.8 42.3 4.6 7.7 16.3
BOX-PRODUCT 4.5 8.2 16.1 11.1 21.8 42.5 4.3 7.1 15.1
BOX-GEOMETRIC 4.5 8.1 16.2 11.0 21.8 42.4 6.4 12.8 25.9

A.5. Spectrum of Weak Generalization

Table 8: The spectrum of generalization for SIMPLE
PERSONALIZED QUERY U ∩A. W: WEAKEST

GENERALIZATION, W-U: WEAK
GENERALIZATION-USER, W-A: WEAK

GENERALIZATION-ATTRIBUTE, S: SET THEORETIC
GENERALIZATION

Methods Hit Rate @10 Hit Rate @ 20 Hit Rate @ 50
W | W-U | W-A | S W | W-U | W-A | S W | W-U | W-A | S

MF-FILTER 24.7 | 6.7 | 13.0 | 5.0 36.3 | 13.3 | 20.7 | 10.2 54.2 | 30.1 | 33.3 | 22.3
MF-PRODUCT 23.3 | 5.7 | 13.1 | 4.3 35.0 | 10.8 | 21.4 | 8.5 54.7 | 24.2 | 38.8 | 20.4
MF-GEOMETRIC 4.9 | 0.9 | 1.8 | 0.4 7.9 | 1.7 | 3.3 | 0.9 15.1 | 4.5 | 7.4 | 3.0
BOX-FILTER 24.1 | 13.0 | 16.4 | 11.7 34.5 | 22.3 | 24.6 | 19.1 50.5 | 40.5 | 37.6 | 32.3
BOX-PRODUCT 25.2 | 13.6 | 13.9 | 10.0 35.2 | 21.5 | 21.9 | 16.7 52.2 | 38.4 | 38.3 | 31.5
BOX-GEOMETRIC 25.4 | 14.7 | 14.8 | 11.0 35.6 | 23.3 | 23.5 | 18.3 52.2 | 40.8 | 40.5 | 34.1

13

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Figure 3: Parallel Co-ordinate plot for different hyperparameters vs model performance. Lighter the color, better the
model’s performance.

Table 9: The spectrum of generalization for COMPLEX
PERSONALIZED QUERY U ∩A1 ∩ ¬A2. W: WEAKEST

GENERALIZATION, W-U: WEAK
GENERALIZATION-USER, W-A: WEAK

GENERALIZATION-ATTRIBUTE, S: SET THEORETIC
GENERALIZATION

Methods Hit Rate @10 Hit Rate @ 20 Hit Rate @ 50
W | W-U | W-A | S W | W-U | W-A | S W | W-U | W-A | S

MF-FILTER 25.5 | 13.0 | 12.4 | 4.7 34.9 | 14.1 | 19.5 | 9.8 54.7 | 29.5 | 37.1 | 22.5
MF-PRODUCT 23.5 | 7.0 | 10.4 | 3.4 34.9 | 12.8 | 18.0 | 7.3 54.5 | 27.5 | 35.0 | 19.3
MF-GEOMETRIC 5.2 | 2.0 | 1.7 | 0.5 8.8 | 3.5 | 1.9 | 1.0 17.4 | 8.8 | 6.5 | 2.7
BOX-FILTER 24.1 | 15.3 | 15.0 | 11.4 35.5| 22.7 | 21.1 | 19.5 54.1 | 39.2 | 37.3 | 34.0
BOX-PRODUCT 21.1 | 13.7 | 12.0 | 8.9 30.5 | 21.7 | 19.3 | 15.2 47.4 | 38.0 | 35.0 | 29.4
BOX-GEOMETRIC 21.1 | 13.2 | 10.8 | 8.6 30.4 | 20.8 | 17.7 | 15.1 47.3 | 36.6 | 33.2 | 31.0

Table 10: The spectrum of generalization for COMPLEX
PERSONALIZED QUERY U ∩A1 ∩A2. W: WEAKEST

GENERALIZATION, W-U: WEAK
GENERALIZATION-USER, W-A: WEAK

GENERALIZATION-ATTRIBUTE, S: SET THEORETIC
GENERALIZATION

Methods Hit Rate @10 Hit Rate @ 20 Hit Rate @ 50
W | W-U | W-A | S W | W-U | W-A | S W | W-U | W-A | S

MF-FILTER 35.3 | 17.6 | 16.9 | 11.4 45.0 | 27.3 | 23.3 | 17.9 55.2 | 41.9 | 30.5 | 27.5
MF-PRODUCT 34.0 | 11.0 | 11.6 | 5.1 47.3 | 19.6 | 20.1 | 10.6 67.4 | 38.5 | 39.3 | 26.1
MF-GEOMETRIC 6.13 | 3.1 | 0.3 | 0.1 9.90 | 5.8 | 0.6 | 0.2 18.5 | 12.9 | 1.8 | 0.8
BOX-FILTER 30.8 | 21.5 | 17.3 | 14.5 41.1 | 31.2 | 23.3 | 20.5 52.7 | 44.5 | 30.3 | 28.5
BOX-PRODUCT 35.4 | 23.8 | 13.4 | 10.6 47.0 | 34.5 | 21.7 | 17.8 64.6 | 52.8 | 39.0 | 34.2
BOX-GEOMETRIC 34.6 | 25.2 | 20.0 | 16.8 45.7 | 35.7 | 30.5 | 26.6 62.6 | 53.3 | 50.1 | 46.1

The BOX-GEOMETRIC achieves the best Generalization
Spectrum Gap for all types of queries.

B. Error Compounding Analysis
We further perform more granular analysis amongst the
BOX based methods with complex query type U ∩A1 ∩A2.

Figure 4: Weak Generalization Illustration

Figure 5: Relationships of correct answers by the three box
models on u ∧ a1 ∧ a2 queries.

As claimed in our initial hypothesis, the FILTER method
suffers from error compounding. If the target movie m is

14

A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

Figure 6: The Geometric method subsumes the benefit of
the product in compounding error.

Figure 7: The effect is less for the non-compounding error.

in the model’s prediction list for A1 but not for A2 or the
other way round, we denote this error as compounding error.
In figure 6, out of the compounding errors, 34% is solved
by the BOX-GEOMETRIC method and 26% by the BOX-
PRODUCT method. However, in figure 7, for the error that
is not due to compounding (where the model gets both A1

and A2 prediction wrong), only 18% are corrected by the
BOX-GEOMETRIC method and a mere 10% of them are cor-
rected by BOX-PRODUCT. Refer to figure 5 6 7 for details.
This demonstrates that the BOX-GEOMETRIC significantly
contributes to the correction of error compounding.

C. Time Efficiency analysis

Table 11: Training time (mm:ss) for a single epoch are
measured for different batch sizes with 5 negative samples
on Movielens-1M dataset. Experiments are conducted on

Nvidia GTX 1080Ti gpus

Batch Size MF NEUMF LIGHTGCN BOX

64 08:37 17:00 70:30 19:32
128 04:32 09:46 38:40 11:40
256 02:29 04:40 20:55 05:28
512 01:18 02:23 10:47 02:54
1024 00:40 01:20 05:24 01:12

In Table 11, we observe that the MF, being the simplest ap-
proach with minimal computational requirements, is consis-
tently the fastest across all batch sizes. At the largest batch
size (1024), it achieves the shortest training time of just
00:40. The BOX-based method exhibits training times com-
parable to NEUMF. However, it is significantly faster than
LIGHTGCN, which relies on graph convolutional compu-
tations. The iterative message-passing operations required
by LIGHTGCN result in considerably higher training times,
particularly at smaller batch sizes (e.g., 70:30 at a batch size
of 64). As the batch size increases, the training time for
BOX embeddings becomes almost as efficient as MF. For in-
stance, at a batch size of 1024, BOX achieves a training time
of 01:12, compared to 00:40 for MF. This demonstrates that
the computational complexity of box embeddings is of the
same order as MF, making it a scalable and efficient choice.

Box embeddings are generally quite fast because the compu-
tation of box intersection volumes can be parallelized over
dimensions. Note that the training times above use Gumble-
Box embeddings, which involve log-sum-exp calculations.
However, this could be improved even further at inference
time by replacing these soft min and max approximations
with hard operators. If such an optimized approach is de-
sired, then training can accommodate this by regularizing
temperature. For deployment in industrial set-up, we could
take additional steps with Box Embeddings as outlined in
(Mei et al., 2022b).

15

