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ABSTRACT

Sequence modeling is a core problem in machine learning, and various neural net-
works have been designed to process different types of sequence data. However,
few attempts have been made to understand the inherent data property of sequence
data, neglecting the critical factor that may significantly affect the performance
of sequence modeling. In this paper, we theoretically and empirically analyze a
generic property of sequence data, i.e., continuity, and connect this property with
the performance of deep models. First, we empirically observe that different kinds
of models for sequence modeling prefer data with different continuity. Then, we
theoretically analyze the continuity preference of different models in both time
and frequency domains. To further utilize continuity to improve sequence mod-
eling, we propose a simple yet effective Lipschitz Regularizer, that can flexibly
adjust data continuity according to model preferences, and bring very little ex-
tra computational cost. Extensive experiments on various tasks demonstrate that
altering data continuity via Lipschitz Regularizer can largely improve the perfor-
mance of many deep models for sequence modeling.1

1 INTRODUCTION

Sequence modeling is a central problem in many machine learning tasks, ranging from natural lan-
guage processing (Kenton & Toutanova, 2019) to time-series forecasting (Li et al., 2019). Although
simple deep models, like MLPs, can be used for this problem, various model architectures have been
specially designed to process different types of real-world sequence data, achieving vastly superior
performance to simple models. For instance, the vanilla Transformer shows great power in natural
language processing (Wolf et al., 2020), and its variant Informer (Zhou et al., 2021) is more efficient
in time-series forecasting tasks. And a recent work Structured State Space sequence model (S4) (Gu
et al., 2021) reaches SoTA in handling data with long-range dependencies. However, few attempts
have been made to understand the inherent property of sequence data in various tasks, neglecting
the critical factor which could largely influence the performance of different types of deep models.
Such investigations can help us to understand the question that what kind of deep model is suitable
for specific tasks, and is essential for improving deep sequence modeling.

In this paper, we study a generic property of sequence data, i.e., continuity, and investigate how
this property connects with the performance of different deep models. Naturally, all sequence data
can be treated as discrete samples from an underlying continuous function with time as the hidden
axis. Based on this view, we apply continuity to describe the smoothness of the underlying function,
and further quantify it with Lipschitz continuity. Then, it can be noticed that different data types
have different continuity. For instance, time-series or audio data are more continuous than language
sequences, since they are sampled from physical continuous signals evolved through time.

Furthermore, we empirically observe that different deep models prefer data with different continu-
ity. We design a sequence-to-sequence task to show this phenomenon. Specifically, we generate
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Figure 1: A Sequence-to-sequence task to show that different deep models prefer data with differ-
ent continuity. The first row shows input and output sequences. We generate input sequences with
different continuities (left column: high continuity; right column: low continuity) and learn a map-
ping function using different models (second row: S4; third row: Transformer). We can see that
S4 prefers more continuous sequences, while Transformer prefers more discrete sequences. And
adjusting continuity according to the preferences of models with Lipschitz Regularizer can largely
improve their performances. More details of this experiment are in Appendix A.

two kinds of input sequences with different continuity, and map them to output sequences using
exponential moving average. Then, we use two different deep models to learn this mapping. Each
model has an identical 1D convolution embedding layer, and a separate sequence processing mod-
ule. One uses the S4 model (Gu et al., 2021) and the other uses vanilla Transformer (Vaswani et al.,
2017) (with the same number of layers and hidden dimensions). The results of this experiment are
shown in Figure 1. It can be observed that the S4 model achieves significantly better performance
with more continuous inputs, and the Transformer performs better with more discrete inputs. Note
that, essentially, they are learning the same mapping only with different data continuity. This clearly
shows different models prefer different data continuity.

Inspired by the above observation, we hypothesize that it is possible to enhance model performance
by changing the data continuity according to their preferences. To make the proposed method simple
and applicable for different deep models, we derive a surrogate that can be directly optimized for the
Lipschitz continuity, and use it as a regularizer in the loss function. We call the proposed surrogate
Lipschitz Regularizer, which depicts the data continuity and can also be used to adjust it.

Then, we investigate the data continuity property for different models and how to use Lipschitz Reg-
ularizer to change data continuity according to the model preference. We provide in-depth analyses
in both time and frequency domains. On the one hand, Lipschitz continuity describes the continuity
of sequences over time, which is a feature in the time domain. Here, we investigate two models.
One is a continuous-time model S4, and the other model Informer is based on self-attention. As
for S4, since the fitting error of the S4 model is bounded by the Lipschitz constant, S4 prefers
smoother input sequences with smaller Lipschitz constant. Hence, we make the inputs of S4 lay-
ers more continuous by adding the Lipschitz Regularizer to the loss function. Experiment results
on the Long Range Arena benchmark demonstrate that Lipschitz Regularizer can largely improve
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the performance of the S4 model, especially for tasks with discrete inputs. Conversely, Informer is
built upon self-attention, which is designed to process some tokenized discrete data, e.g., text, so In-
former prefers less continuous sequences. Therefore, we decrease the continuity of input sequences
by subtracting the Lipschitz Regularizer from the loss function. Prediction performance and empiri-
cal analyses on many time-series tasks well prove the superiority of the Lipschitz Regularizer. Also,
we observe the same results on the task mentioned above as shown in Figure 1.

On the other hand, for the frequency domain, we find that Lipschitz Regularizer represents the
expectation of the frequency of data’s underlying function. Here, we take the ReLU network as
the studied case, and theoretically justify that Lipschitz Regularizer is related to the spectral bias -
a phenomenon that neural networks tend to prioritize learning the low-frequency modes. We then
propose to use Lipschitz Regularizer by subtracting it from the loss function to mitigate the spectral
bias. In this way, neural networks are forced to learn high-frequency parts, and convergence can be
accelerated since information in different frequency bands can be learned simultaneously.

In summary, Lipschitz Regularizer can be used to flexibly adjust data continuity for a wide range of
deep models which have a preference for data continuity. It improves various models with very little
extra computational cost, shedding a light on inherent data property analyses for sequence modeling.

2 RELATED WORK

Deep Neural Networks for Sequence Modeling Sequence modeling plays a critical role in many
machine learning problems. Many general architectures, including MLPs (Rahaman et al., 2019),
RNNs (Mikolov et al., 2010), and CNNs (Bai et al., 2018), can all be used for sequence model-
ing. And recently, two types of models show great power in addressing challenges for sequence
modeling, such as handling complex interactions and long-range dependencies. The first type is
self-attention-based models. For instance, the vanilla Transformer (Vaswani et al., 2017), Informer
(Zhou et al., 2021), and Performer (Choromanski et al., 2020) all show great performance on natu-
ral language processing, time-series forecasting, and speech processing, respectively. Another type
is continuous-time models, which are built upon the view that inputs are sampled from continuous
functions. They include but not limited to Neural ODE (Chen et al., 2018), Lipschitz RNN (Erichson
et al., 2020), State-space model (Gu et al., 2021). In this paper, we do not aim at proposing novel
models like previous works, but we focus on understanding intrinsic preference for input sequences.
We show these two types of models both have a preference for the data continuity property, and we
utilize it to promote their performance.

Lipschitz Continuity of Neural Networks The Lipschitz continuity is a general property for
any function, and is widely used for analyzing different kinds of neural networks, including MLPs
(Zhang et al., 2021; Gouk et al., 2021), CNNs (Zou et al., 2019), self-attention-based networks
(Dasoulas et al., 2021), graph neural networks (Gama et al., 2020) and GANs (Gulrajani et al.,
2017). It becomes an essential property of neural networks, and can be used in various ways, such as
improving adversarial robustness (Meunier et al., 2022) and proving generalization bounds (Sokolić
et al., 2017). In this paper, we focus on the Lipschitz continuity of the underlying function of
sequence data, and use it as a data property, but not a property of models.

3 LIPSCHITZ CONTINUITY OF SEQUENCE DATA

In this section, we first show the measure for continuity of sequence data, and how it can be used
as a regularizer. We give a definition for Lipschitz Regularizer here, and leave detailed analyzes
and usages of it in specific models in the rest of the sections. Then, we provide views for Lipschitz
Regularizer in both time and frequency domains.

To define the measure for the continuity of sequence data, we view inputs as signals, and data points
in the sequence are discrete samples of an underlying continuous function with certain time steps.
Next, we calculate the Lipschitz constant of the underlying function, which is widely used as the
measure for continuity. Specifically, suppose the sequence is x0, x1, . . . , xn, and the underlying
function is defined as f(t0) = x0, f(t1) = x1, . . . , f(tn) = xn, where t0, t1, . . . , tn are time steps.
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Then, if we let t0 = 0, t1 = 1, . . . , tn = n, the Lipschitz constant Lf of function f is

Lf = max
ti,tj∈{0,1,...,n}

|f(ti)− f(tj)|
|ti − tj |

= max
i,j∈{0,1,...,n}

|xi − xj |
|i− j|

. (1)

By Mean Value Theorem, for i, j ∈ {0, 1, . . . , n} and j − i > 1, we could always find an interval
[k, k + 1] of time step 1 such that i ≤ k ≤ j − 1, |xi−xj |

|i−j| ≤ |xk+1 − xk|. Therefore, we have

Lf = max
i,j∈{0,1,...,n}

|xi − xj |
|i− j|

= max
k∈{0,1,...,n−1}

|xk+1 − xk|. (2)

However, since we would like to adjust this continuity according to the preferences of different
models, this measure should be easy to be optimized, but it is hard to pass gradients due to the max
operator. To help with the optimization process, we design a surrogate by taking the average over all
terms and changing the norm to ℓ2. Moreover, since we simply use this surrogate as a regularizer in
the loss function to flexibly adjust the continuity for various models, we name this term as Lipschitz
Regularizer, and its formal definition is given as follows.

Definition 3.1. (Lipschitz Regularizer) Suppose the sequence is x0, x1, . . . , xn. We define the Lip-
schitz Regularizer in the following equation:

LLip =
1

n

n−1∑
i=0

(xi+1 − xi)
2 (3)

3.1 VIEW LIPSCHITZ REGULARIZER IN TIME AND FREQUENCY DOMAINS

We then provide two views for Lipschitz Regularizer. On the one hand, Lipschitz Regularizer is a
feature for sequence data in the time domain, representing the continuity of sequences over time.
Thus, it can be used to alter the continuity of input sequences to specific models. As shown in Figure
1, different deep models have different preferences for data continuity. We can use the Lipschitz
Regularizer to manually make the sequences more or less continuous, and therefore improve the
performance of the model. An example of increasing the continuity to improve the performance of
a continuous-time model is described in §4.1. A converse example of decreasing the continuity to
improve the performance of an attention-based model is described in §4.2.

On the other hand, from the frequency perspective, Lipschitz Regularizer directly relates to the
frequency of the function, and can be used to alter modes with different frequencies. Specifically,

n−1∑
i=0

(xi+1 − xi)
2 ≈

∫
R

(
df(t)

dt

)2

dt =

∫
R
(2πiξ)

2
f̂2(ξ)(−dξ) = 4π2CEp(ξ)[ξ

2] (4)

where ξ is the frequency of the Fourier transform of f . p(ξ) = f̂2(ξ)/C is the normalized squared
Fourier transform of f , where f̂(ξ) :=

∫
f(x)e−i2πξxdx. Details of the derivation are presented

in Appendix G.1. Essentially, the Lipschitz Regularizer of sequence data represents the exception
of the frequency of the data’s underlying function. Besides, previous literature shows that neural
networks tend to prioritize the learning of low-frequency parts of the target function (Rahaman
et al., 2019). We find that Lipschitz Regularizer can be utilized to mitigate this phenomenon by
emphasizing high-frequency parts, which allows the network to fit all spectra simultaneously and
results in a faster convergence rate. The details of this discussion are in §5.1.

4 TIME DOMAIN

In this section, we view Lipschitz Regularizer in the time domain, and show how it can be used to
make the sequence more discrete or continuous over time, catering to the preference of different
models. Generally, to change the continuity of the input sequence to different models with the
Lipschitz Regularizer, we apply it on the output of the embedding layer before the sequence is sent
to different models. We describe the details of two different models in the following sections.
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Table 1: Accuracy of the S4 model and its variant with our proposed Lipschitz Regularizer (S4 +
Emb + Lip) in LRA. S4 + Emb is set to ablate the effect of the extra embedding layer.

ListOps Text Retrieval Image Image-c Path Path-c PathX PathX-c

S4 59.53 86.51 91.07 88.54 84.27 94.02 89.11 96.03 92.41
S4 + Emb 58.94 87.12 90.28 87.25 85.13 92.37 90.32 93.87 92.81
S4 + Emb + Lip 61.37 89.74 93.83 89.19 88.43 93.52 91.39 95.72 94.36

4.1 STATE SPACE MODEL

The State Space Model is a classic model in control engineering. Gu et al. (2021) extended it to
the deep sequence model, and proposed the S4 model. S4 is a continuous-time sequence model.
It advances SoTA on long-range sequence modeling tasks by a large margin. An S4 layer can be
denoted as follows:

ẋ = Ax+Bu

y = Cx+Du,
(5)

where u is the input function, x is the hidden state , y is the output. A, B, C, D are trainable
matrices.

The critical and essential design in the S4 layer is the transition matrix A, which is initialized with the
HiPPO matrix. The HiPPO matrix makes the S4 layer optimally remember the history of the input’s
underlying function, so the S4 model can substantially outperform previous methods on long-range
sequence modeling tasks. Particularly, the HiPPO matrix is designed to find the best polynomial
approximation of the input’s underlying function given a measure that defines the optimal history,
and a memory budget which is the hidden dimension in the model. Each measure corresponds to an
optimal HiPPO matrix.

Theoretical Analyses To connect the continuity property with the S4 model, we provide the fol-
lowing intuition here while a formal proposition along with its proof in Appendix G.2. Generally, the
error rate of HiPPO-LegS projection decreases when the sequence is more continuous/smooth (Gu
et al., 2021). Here, LegS denotes the scaled Legendre measure, which assigns uniform weights to
all history. This is also true for S4 layers, since the HiPPO matrix is the most critical design in the
S4 layer. However, in many tasks, such as natural language processing, the input sequence are not
particularly smooth. This will deteriorate the performance of the S4 model.

Lipschitz Regularizer can be used to solve the above problem, because it can adjust the continuity
of sequences. Specifically, since we cannot directly manipulate the underlying function of the input
sequence, we add a 1D convolutional layer that does not change the sequence length as an embedding
layer before the S4 layer, and then apply Lipschitz Regularizer to the output of the embedding layer
as follows:

L(y, ŷ, l̂) = LS4(y, ŷ) + λLLip(l̂), (6)

where y is the ground-truth, and ŷ is the output of the S4 model. l̂ is the output of the embedding
layer, and LS4 is the original loss of the S4 model. λ is a hyperparameter to control the magnitude
of the Lipschitz Regularizer. By using Equation (6) as the loss function, the input of the S4 layers
becomes more continuous, so the error of the HiPPO-LegS projection and S4 layer can be reduced,
leading to better model performance.

Experiments To demonstrate the effectiveness of the Lipschitz Regularizer, we use a modified
version of the Long Range Arena (LRA) (Tay et al., 2020) benchmark with harder tasks. The
descriptions of the original LRA are in Appendix . In addition to the original LRA, we create 3
harder tasks with more discrete sequences. Particularly, we notice that among these 6 tasks, 3 of
them use pixels as inputs (i.e., Image and Pathfinder), which could be more continuous than texts
in the other 3 tasks. So we design Image-c, Path-c, and PathX-c, in which the contrast of images is
increased, and the increasing degree is randomly sampled from 50% to 100% for each image.

We test three methods on the modified LRA. The first one is the original S4 model (denoted as
S4). The second one is the S4 model with a 1D convolutional layer as the embedding layer, and
Lipschitz Regularizer is applied to the outputs of the embedding layer (denoted as S4 + Emb +
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Lip). Furthermore, we also design the third model to ablate the effect of the extra embedding layer.
Here, we use the S4 model with the same embedding layer as the previous method, and Lipschitz
Regularizer is not applied (denoted as S4 + Emb). Hyperparameter λ is chosen from {1, 2, 3, 4, 5}
when the model performs best on the validation set.

Results are listed in Table 1, and we have the following observations. (1) It is obvious that our
method (i.e., S4 + Emb + Lip) significantly outperforms other methods in almost all tasks, especially
in tasks with discrete inputs, such as Text and Retrieval. Improved performance in Image-c, Path-
c, and PathX-c shows that Lipschitz Regularizer can mitigate the influence of increased contrasts.
These results well demonstrate the effectiveness of the Lipschitz Regularizer, indicating that it can
make input sequences of the S4 layer more continuous, and better cater to the preference of the
S4 model. (2) Comparing the results of S4 on Image/Path(X) and Image-c/Path(X)-c, it can be
observed that the performance of the S4 model degenerates with the increasing contrasts of images.
The cause is the deceased continuity against the preference of the S4 model, verifying that the S4
model indeed prefers continuous inputs. (3) Only adding the extra embedding layer (S4 + Emb)
makes the accuracy decrease in 4 out of 7 tasks, indicating that improvements come from the effect
of the Lipschitz Regularizer, but not the extra layer. Besides, this extra embedding layer is also
the main reason causing the performance drop in Path and PathX dataset. In Appendix B.2, the
visualization for the output vector of the embedding layer shows that this embedding layer may
overly and incorrectly blur or even erase some informative shapes in the original picture, causing
some necessary information lost, and the model confused.

4.2 TRANSFORMER-BASED MODELS

In this section, we show that Lipschitz Regularizer can improve the performance of Transformer-
based models when inputs are continuous. In particular, we choose time-series forecasting tasks
whose inputs are highly continuous, and we use three Transformer-based models, i.e. vanilla Trans-
former (Vaswani et al., 2017), Informer (Zhou et al., 2021) and Autoformer (Wu et al., 2021) to
evaluate the effectiveness of Lipschitz Regularizer. Although these models already have a good per-
formance on time-series forecasting tasks, due to the preference of Transformer-based models for
discrete sequences (shown in Figure 1) and highly continuous inputs, we can still apply Lipschitz
Regularizer to further improve the model by decreasing the continuity of input sequences. Specifi-
cally, since all three models have an embedding layer, we directly apply Lipschitz Regularizer to the
output of the embedding layer as follows:

L(y, ŷ, l̂) = LTransformer(y, ŷ)− λLLip(l̂), (7)

where y is the ground-truth, and ŷ is the output of the respective model. l̂ is the output of the
embedding layer, and LTransformer is the original loss of the Transformer-based model. λ controls
the magnitude of the Lipschitz Regularizer. Note that different from the usage in the S4 model, here
we subtract Lipschitz Regularizer to make the input discrete, and cater to the model preference.

Experiments We use 5 datasets in this experiment and their descriptions are in Appendix C.1.
Evaluation metrics are Mean Square Error (MSE) and Mean Absolute Error (MAE). Hyperparameter
λ is chosen from {1, 2, 3, 4, 5, 6, 7, 8} when the model performs best on the validation set.

Results of Transformer, Informer, Autoformer, and these models with Lipschitz Regularizer (de-
noted as Transformer + Lip, Informer + Lip and Autoformer + Lip) are shown in Table 2, and
results of multivariate experiments are in Appendix C.2. We can see that the models with Lips-
chitz Regularizer generally outperform the original models on most of the tasks. This indicates that
Transformer-based models prefer discrete sequences and reducing input continuity with Lipschitz
Regularizer can be helpful for them. We also note that the Lipschitz Regularizer is more effective
on vanilla Transformer than the models with specialized designs for time series forecasting. This in-
dicates the vanilla Transformer is more sensitive to data continuity, and special designs in Informer
and Autoformer may mitigate it.

Besides, to investigate whether Lipschitz Regularizer changes the data continuity, we also show
curves tracking the Lipschitz constant of the output of the embedding layer during training in Fig-
ure 2. Curves show that with the Regularizer, the Lipschitz constant becomes larger than it is in
the original model, and continuously increases during training. Results demonstrate that Lipschitz
Regularizer can indeed change the continuity, and thus improve the model.
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Table 2: Univariate time-series forecasting results of 3 Transformer-based models and training them
with Lipschitz Regularizer (indicated by + Lip). Note in this table, prediction window sizes are
converted to lengths of sequences used in the model.

Methods Transformer Transformer + Lip Informer Informer + Lip Autoformer Autoformer + Lip

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

24 0.07047 0.20586 0.07019 0.20570 0.09842 0.24747 0.08882 0.23674 0.05567 0.18596 0.05504 0.18495
48 0.18902 0.37046 0.16716 0.34974 0.15845 0.31907 0.12615 0.28333 0.07860 0.22324 0.07422 0.21398
168 0.39773 0.55569 0.30811 0.48183 0.18314 0.34619 0.10579 0.25552 0.09232 0.24037 0.08983 0.23544
336 0.41523 0.56902 0.41324 0.56402 0.22164 0.38720 0.11810 0.26959 0.10462 0.25484 0.10461 0.25483
720 0.65586 0.75324 0.62233 0.73160 0.26883 0.43506 0.13131 0.28731 0.12069 0.27791 0.12394 0.27833

E
T

T
h 2

24 0.09449 0.24259 0.07560 0.20989 0.09309 0.24015 0.08626 0.22559 0.11136 0.26315 0.09345 0.25515
48 0.15016 0.30996 0.13229 0.29278 0.15483 0.31445 0.13684 0.28936 0.15137 0.30316 0.14945 0.30129
168 0.25197 0.41087 0.21046 0.37453 0.23193 0.38947 0.30071 0.43671 0.20403 0.35646 0.18370 0.33714
336 0.22258 0.38170 0.20867 0.37298 0.26321 0.41659 0.24875 0.40827 0.22188 0.37417 0.21195 0.36425
720 0.21932 0.38844 0.18445 0.35793 0.27722 0.43063 0.23646 0.39648 0.25612 0.40089 0.25604 0.40085

E
T

T
m

1

24 0.01279 0.08410 0.01210 0.08312 0.03016 0.13717 0.01815 0.09147 0.02317 0.11778 0.02300 0.10107
48 0.08974 0.25869 0.02872 0.12820 0.06944 0.20255 0.05848 0.19686 0.04130 0.15783 0.03931 0.15601
96 0.05341 0.17696 0.05182 0.15017 0.19414 0.37236 0.13336 0.30091 0.05432 0.18033 0.05258 0.17605
288 0.22354 0.40455 0.13780 0.29825 0.40140 0.55355 0.30266 0.46864 0.11893 0.27181 0.07521 0.21728
672 0.40726 0.55824 0.40726 0.55826 0.51164 0.64390 0.27543 0.45377 0.09156 0.23690 0.09280 0.23621

W
ea

th
er

24 0.00223 0.03468 0.00154 0.02497 0.11676 0.25142 0.11256 0.23844 0.00740 0.06422 0.00736 0.06329
48 0.00422 0.04106 0.00292 0.03026 0.17822 0.31846 0.19134 0.32408 0.01002 0.07648 0.00978 0.07727
168 0.00537 0.05975 0.00319 0.04464 0.26585 0.39764 0.25138 0.37400 0.01038 0.07082 0.00528 0.05638
336 0.00524 0.05772 0.00417 0.03673 0.29713 0.41571 0.24748 0.37725 0.00729 0.06492 0.00566 0.05888
720 0.00933 0.07630 0.00272 0.03823 0.35875 0.46647 0.26479 0.39214 0.00960 0.08758 0.00925 0.07136

E
C

L

48 0.26161 0.37762 0.24277 0.36460 0.23894 0.35891 0.17306 0.30488 0.57845 0.55653 0.52893 0.54479
168 0.32283 0.41766 0.29221 0.39677 0.44680 0.50315 0.18765 0.31497 0.52339 0.53251 0.42961 0.48926
336 0.47213 0.50381 0.37916 0.45903 0.48892 0.52840 0.37758 0.43689 0.53511 0.54372 0.51762 0.52391
720 0.48477 0.52413 0.46524 0.51649 0.54026 0.57059 0.44496 0.50387 0.80028 0.66756 0.91144 0.69692
960 0.46930 0.51409 0.43643 0.49698 0.58225 0.60782 0.37740 0.45817 0.76603 0.65389 0.64859 0.62054

Count 2 49 4 46 6 44
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Figure 2: The Lipschitz constant of the output of
the embedding layer during the training process
of Informer + Lip. The experiment is the uni-
variate ETTh2 with the prediction window size
of 24h.
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Figure 3: MSE of Informer + Lip on univariate
EETh2 with different λ. Colors represent differ-
ent window sizes.

We also show an ablation study for the hyperparameter λ in Figure 3. We can observe that (1) MSE
increases when λ < 0, while decreases when λ > 0. Since positive λ reduces the data continuity,
we can conclude that Informer prefers discrete sequences, and Lipschitz Regularizer can reduce the
continuity and cater to the preference; (2) MSEs do not have a large variance for different positive
λ, indicating that the performance improvement is not sensitive to hyperparameter changes.

5 FREQUENCY DOMAIN

In this section, we study how continuity affects the performance of deep models from the frequency
perspective. We take the ReLU network as the study case, and provide theoretical analyses and ex-
periment results to show the effectiveness of applying the Lipschitz Regularizer on ReLU networks.
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5.1 RELU NETWORK

A ReLU network g : Rd → R with L hidden layers of width d1, . . . , dL is defined as:

g(x) =
(
T (L+1) ◦ σ ◦ T (L) ◦ · · · ◦ σ ◦ T (1)

)
(x), (8)

where T (k) : Rdk−1 → Rdk is an affine function (d0 = d, dL+1 = 1) and σ is the ReLU function.

Theoretical Analyses In the previous literature, Rahaman et al. (2019) showed that the low-
frequency part of the sequence data is learned faster by the ReLU network, and such phenomenon is
called the “spectral bias”. We claim that the Lipschitz Regularizer could help mitigate the spectral
bias. Intuitively, when the Lipschitz constant of the ReLU network increases, we expect that the
model can learn more information in high-frequency parts. We provide a formal proposition and its
proof on this intuition in Appendix G.3. This inspires us to balance frequency modes via changing
the Lipschitz continuity of functions. Besides, suppose we use a ReLU network to learn a sequence-
to-sequence mapping, where values of data in the input sequence (length n) increase linearly in the
interval (0, 1) with step size 1

n , and the output is generated by the mapping function h(t). Note
that since values of data in the input sequence increase linearly, the Lipschitz constant of the ReLU
network is the same as the output sequence. Therefore, we design the decayed Lipschitz Regularizer
as follows:

L(y, ŷ) = LMSE(y, ŷ)− λe−ϵtLLip(ŷ), (9)
where y is the ground-truth generated by h(t) and ŷ is the prediction. LMSE is the MSE Loss. λ
and ϵ are hyperparameters that control the magnitude and decay rate of the Lipschitz Regularizer,
respectively.

We further explain the reasons why this regularizer can mitigate spectral bias in two aspects. First,
by Equation (4), the added term could be seen as a direct penalty to the low-frequency part of the
output sequence. Since the value of data in the input sequence increases linearly, this is equivalent
to penalizing the low-frequency part of the ReLU network, and prioritizing the learning of the high-
frequency part.

In another perspective, Rahaman et al. (2019) claimed that the origin of the spectral bias is the
gradually increasing parameter norm, and Lipschitz Regularizer can intentionally relieve it. Specif-
ically, Fourier components of the ReLU network ĝθ(ξ) is bounded by O(Lg), and Lg is bounded by
the parameter norm, which can only increase by a small step during the optimization step. Hence,
gradually increasing parameter norms can hinder the learning of high-frequency parts at the early
optimization stage. Besides, due to the fact that Lipschitz Regularizer can intentionally change Lg ,
subtracting Lipschitz Regularizer as Equation (9) can enlarge the parameter norm, making it possi-
ble for optimizing both high and low-frequency parts. This can be seen as a warm-up process for the
network where the parameter norm increases at the beginning of optimization, and then the conver-
gence can be significantly accelerated, since modes of all frequencies can be learned simultaneously
after the warm-up.

Experiments We choose a mapping task to evaluate the proposed Lipschitz Regularizer. Specif-
ically, we try to learn the mapping function whose input is the sequence with linearly increasing
values, and output is a highly periodic sequence. Given frequencies K = {k1, k2, . . . , kn}, ampli-
tudes A = {a1, a2, . . . , an}, and phases Φ = {ϕ1, ϕ2, . . . , ϕn}, the mapping function is defined as
h(x) =

∑n
i=1 Ai sin(2πkix+ ϕi).

In this experiment, we take n = 10 and frequencies K = {5, 10, . . . , 45, 50}, amplitudes A =
{0.1, 0.2, . . . , 1}. The phases are uniformly sampled from 0 to 2π, i.e., ϕi ∼ U(0, 2π). The input
samples in the sequence are uniformly placed over (0, 1) with the number of samples N = 100, and
the output is generated by h(x).

As for the model, we use a 6-layer deep ReLU network with the hidden dimension set to 256
for all layers. To verify the effectiveness of the proposed Lipschitz Regularizer, we train two
identical networks with the same training procedure. One is trained with the decayed Lips-
chitz Regularizer and the other without it. We set hyperparameter λ ∈ {1, 2, 3, 4, 5} and ϵ ∈
{0.00001, 0.0001, 0.001, 0.01, 0.1} when the model performs best on the validation set.

We show the frequency and MSE of ReLU networks during the training process in Figure 4. From
Figure 4 (a) and (b), we notice that low-frequency parts are learned first in both networks, but
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(a) Frequency of a ReLU network
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(b) Frequency of an identical ReLU
network with Lipschitz Regularizer
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Figure 4: Evolution of the frequency and MSE of ReLU networks during the training process. In
(a) and (b), color indicates the normalized amplitude of the Fourier component at the corresponding
frequency, i.e., |ĝθ(ki)|/Ai. Lipschitz Regularizer enables faster learning of high frequencies and
faster convergence.
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Figure 5: Predictions of ReLU networks (first row: without Lipschitz Regularizer; second row: with
Lipschitz Regularizer) during the training process. With Lipschitz Regularizer, high-frequency parts
can be learned faster.

with the decayed Lipschitz Regularizer, high frequencies can be learned significantly faster. Figure
4 (c) shows that Lipschitz Regularizer can accelerate convergence. We also show predictions of
two models during the training process in Figure 5, which gives a more intuitive result, indicating
that high frequencies can be learned faster when we use decayed Lipschitz Regularizer to warm-
up optimization. All results demonstrate that Lipschitz Regularizer enables almost simultaneous
learning for all frequencies, so spectral bias can be relieved in this way, and the convergence is
accelerated.

6 SUMMARY

We investigate a generic property of sequence data, i.e., continuity, which is closely related to the
performance of different models, and propose Lipschitz Regularizer to flexibly adjust the continuity
for various models. We first empirically observe that the different deep models prefer different
data continuity. Then, from both time and frequency domains, we provide in-depth theoretical
and experimental studies for specific models. For the time domain, we show that the continuous-
time model S4 prefers continuous sequences, while the Transformer-based model Informer prefers
discrete inputs. We use Lipschitz Regularizer to adjust the data continuity for both of them and
largely improve their performance by catering to their preference. For the frequency domain, we
show that Lipschitz Regularizer can help mitigate the spectral bias, and accelerate convergence for
ReLU networks. In general, Lipschitz Regularizer is available for any sequence modeling tasks
and models which have a preference for data continuity, and can accordingly facilitate learning for
various models with very little computational cost.
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A DETAILS OF EXPERIMENT IN THE INTRODUCTION

A.1 UNIVARIATE

We present a sequence-to-sequence task in the Introduction section, and show more details here. In
this experiment, we generate two types of input sequences with different continuity (each has 1000
samples), and map them to output with the exponential moving average h(t):

h(t) =
2

1 + w
xt +

(
1− 2

1 + w

)
h(t− 1)

where x1, x2, . . . , xN is the input sequence, w is the window size (set to 50). We choose the ex-
ponential moving average because it is a sequence-to-sequence mapping that makes use of the con-
textual information. The Lipschitz constant of the input and output sequence is shown in Table 3.
Note that the high Lipschitz constant represents low continuity, while the low Lipschitz constant
represents high continuity. Then, we train the S4 model and the Transformer model with generated
input and output sequences. Each model has a 1D convention embedding layer with kernel size 5,
stride 1, and padding 2. Both Transformer and S4 have 1 separated layer with the hidden dimension
set to 16. We also apply Lipschitz Regularizer to the output of the embedding layer and train models
again. MSE of these 4 models is shown in Table 3. We could observe that S4 performs better with
continuous inputs and the Transformer is better with discrete inputs. Also, Lipschitz Regularizer can
improve the performance of S4 and Transformer by changing the data continuity into their prefers
ones.

A.2 MULTIVARIATE

We repeat the above experiment with multivariate data. Specifically, we also generate high and low
continuity input sequences with dimension 16 (each has 1000 samples). The input sequences are
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Table 3: Results of the experiment in the Introduction.

High Continuity Low Continuity

Lipschitz Constant Input 0.0543 0.2706
Output 0.0107 0.0142

MSE

S4 0.00014 0.00567
S4 + Lip - 0.00045
Transformer 0.00003 0.00222
Transformer + Lip 0.00038 -

mapped to output with exponential moving average. Same models are trained on the generated data.
Results are shown in Table 4. We also randomly sample four dimensions and corresponding curves
are shown in Figure 6, 7, 8, 9. Our findings and conclusions in the univariate experiment also hold
in the multivariate case.

Table 4: Results of the experiment in the Introduction running with multivariate data.

High Continuity Low Continuity

Lipschitz Constant Input 0.0708 0.3592
Output 0.0138 0.0171

Average MSE over all variates

S4 0.00072 0.00963
S4 + Lip - 0.00141
Transformer 0.00014 0.01368
Transformer + Lip 0.00418 -
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Figure 6: Results of the S4 model with high continuity multivariate data for the experiment in the
Introduction.
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Figure 7: Results of the Transformer model with high continuity multivariate data for the experiment
in the Introduction.

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Va
lu

e

0 25 50 75 100 125 150 175 200
Index

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Va
lu

e

0 25 50 75 100 125 150 175 200
Index

Ground Truth
S4
with Lip Regularizer

Figure 8: Results of the S4 model with low continuity multivariate data for the experiment in the
Introduction.
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Figure 9: Results of the Transformer model with low continuity multivariate data for the experiment
in the Introduction.
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B DETAILS OF EXPERIMENT FOR THE S4 MODEL

B.1 DATASET DESCRIPTION

In this experiment, we test the Lipschitz Regularizer on the S4 model. The testing dataset is the
Long Range Arena (LRA) benchmark. Specifically, LRA contains various long sequence modeling
tasks with sequence lengths ranging from 1K to 16K, which is very challenging for deep models.
Tasks in LRA include (1) ListOps, in which the model needs to calculate the answer with a list of
algebraic operations, (2) Text, a binary classification task with byte-level texts from IMDB reviews,
(3) Retrieval, a document retrieval task with byte-level texts and documents from ACL Anthology
Network, (4) Image, an image classification task with the image in CIFAR-10 dataset flattened into
the pixel sequence, (5) Path (referred as Pathfinder in Gu et al. (2021)), in which the model needs
to deduce whether two points in the image are connected by dashed lines, and the image is also
flattened into the pixel sequence, (6) PathX, a harder version of Path, where the dimension of input
images increased from 32× 32 to 128× 128.

B.2 ANALYSIS FOR THE PATHFINDER TASK

We notice that the Lipschitz Regularizer causes deteriorated performance on the Pathfinder dataset,
so here, we provide detailed analyzes to explore the reason. We show a case in the experiment of the
S4 model on the Path dataset in Figure 10. We can see that the performance drop is mainly caused
by the embedding layer. As explained in § 4.1, since we cannot directly manipulate the underlying
function of the input sequence, we add an extra embedding layer before the S4 layer. However,
changes from figure a1 to a2 show that this embedding layer may overly and incorrectly blur or
even erase some informative shapes in the original picture, causing some necessary information
lost, and making the model confused. Although Lipschitz Regularizer can slightly relieve this issue,
the necessary path information is not as obvious as it is in the original image. The performance of
these 3 models (i.e., S4, S4 + Emb, S4 + Emb + Lip) in Table 1 also matches this finding. Moreover,
Figure b1, b2, and b3 show that when the contrast is increased, these shapes are not likely to be
erased since their pixels all have high gray values. Hence, Lipschitz Regularizer can improve model
performance on the Path-c task.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 10: A case in the experiment of the S4 model on the Path dataset. In this task, the model
needs to deduce whether two points in the image are connected by a dashed line. (a1) An image
randomly sampled from the Path dataset. (b1) The image in (a1) with 100% contrast increased.
(a2, b2) Average of the output vector of the embedding layer in a trained S4 + Emb model, with a1
and b1 as the input, respectively. (a3, b3) Average of the output vector of the embedding layer in a
trained S4 + Emb + Lip model, with a1 and b1 as the input, respectively.
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C DETAILS OF EXPERIMENT FOR THE TRANSFORMER-BASED MODEL

C.1 DATASET DESCRIPTION

In this experiment, we show that the Lipschitz Regularizer can improve the performance of
Transformer-based models, including Transformer, Informer, and Autoformer. We use 3 real-
world datasets: ETT (Electricity Transformer Temperature), ECL (Electricity Consuming Load),
and Weather. ETT has 3 separate datasets, i.e., {ETTh1, ETTh2} for 1-hour-level with 2 separated
countries, and ETTm1 for 15-minute-level. And we use multiple prediction window sizes, including
{24h, 48h, 168h, 336h, 720h, 960h} for ETTh, ECL, Weather, and {6h, 12h, 24h, 72h, 168h} for
ETTm.

C.2 RESULTS OF MULTIVARIATE TIME-SERIES FORECASTING

Results of multivariate time-series forecasting of three Transformer-based models are presented in
Table 5. We can see that Lipschitz Regularizer can improve the model performance in most cases,
showing that altering data continuity is also helpful in multivariate time-series forecasting tasks.
Besides, we can also observe that the improvement by Lipschitz Regularizer is slightly less signif-
icant than which in univariate time-series forecasting. The reason may be that we apply the same
regularizer to input sequences of all variates. However, these input sequences may have different
continuities and need regularizers with different weights. Future work might be adding trainable
weights to the regularizer of different input sequences.

Table 5: Multivariate time-series forecasting results of 3 Transformer-based models and training
them with Lipschitz Regularizer (indicated by + Lip). Note in this table, prediction window sizes
are converted to lengths of sequences used in the model.

Methods Transformer Transformer + Lip Informer Informer + Lip Autoformer Autoformer + Lip

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

24 0.59446 0.57293 0.57268 0.56055 0.57727 0.54945 0.53483 0.51756 0.39562 0.43466 0.37109 0.40143
48 0.82961 0.70984 0.71223 0.65060 0.68461 0.62487 0.68292 0.61618 0.41434 0.44104 0.38277 0.41764
168 1.05050 0.83959 1.04581 0.84110 0.93119 0.75159 1.02153 0.79883 0.46037 0.46466 0.46020 0.47120
336 1.40297 0.99042 1.04308 0.80437 1.12811 0.87302 0.99066 0.75376 0.51710 0.49936 0.50278 0.48853
720 1.05294 0.80128 1.04062 0.80127 1.21454 0.89606 1.20265 0.88891 0.47690 0.49172 0.50977 0.50879

E
T

T
h 2

24 0.83025 0.71355 0.31699 0.42514 0.72025 0.66539 0.33658 0.43113 0.26384 0.34252 0.25465 0.33327
48 1.28728 0.92881 0.65413 0.64771 1.45708 1.00062 1.81144 1.08344 0.31247 0.37143 0.31090 0.37014
168 5.66520 1.91462 3.56351 1.45387 3.48945 1.51457 3.05333 1.44302 0.46657 0.46249 0.46982 0.46203
336 5.11314 1.81923 2.95696 1.37183 2.72290 1.33987 2.35546 1.28684 0.47924 0.48042 0.49315 0.48750
720 3.00465 1.44033 2.52934 1.26787 3.46729 1.47321 3.72312 1.66671 0.47352 0.48400 0.46775 0.48066

E
T

T
m

1

24 0.28475 0.35112 0.28900 0.34211 0.32315 0.36881 0.35075 0.39111 0.35616 0.40320 0.35807 0.40252
48 0.45711 0.45664 0.43928 0.44483 0.49426 0.50311 0.44407 0.45275 0.44404 0.44776 0.43239 0.44631
96 0.68831 0.60444 0.53434 0.51490 0.67758 0.61353 0.47372 0.47680 0.55732 0.49872 0.55357 0.49706
288 0.88883 0.71069 0.83600 0.66682 1.05643 0.78565 1.03285 0.80819 0.58302 0.50759 0.56224 0.50469
672 1.17478 0.83787 0.92590 0.73367 1.19203 0.92626 0.90468 0.72072 0.56261 0.50822 0.56208 0.50788

W
ea

th
er

24 0.14897 0.23293 0.21319 0.28302 0.33501 0.38091 0.32660 0.38280 0.15944 0.24224 0.16573 0.24907
48 0.26360 0.33987 0.22625 0.31913 0.39546 0.45890 0.38138 0.43057 0.21638 0.29847 0.21580 0.29788
168 0.49273 0.48432 0.42120 0.41574 0.60843 0.56714 0.60603 0.56406 0.30901 0.37048 0.31191 0.37294
336 0.66636 0.58604 0.60194 0.57205 0.70204 0.61955 0.67344 0.62094 0.35603 0.39652 0.34620 0.38616
720 0.89504 0.69045 0.50826 0.52560 0.83106 0.73079 0.65801 0.60372 0.42178 0.43347 0.42083 0.43125

E
C

L

48 0.24832 0.35046 0.23187 0.33168 0.34399 0.39289 0.25829 0.35700 0.18320 0.29892 0.18281 0.29758
168 0.26446 0.36343 0.23862 0.33770 0.36820 0.42427 0.37272 0.43410 0.22662 0.33740 0.21555 0.32441
336 0.27420 0.37078 0.25691 0.36375 0.38061 0.43101 0.34641 0.42147 0.22740 0.33667 0.23392 0.34069
720 0.28641 0.37610 0.27986 0.36451 0.40616 0.44335 0.35887 0.43815 0.29826 0.38835 0.36776 0.33395
960 0.32819 0.39887 0.30984 0.38930 0.45993 0.54774 0.44522 0.50400 0.27856 0.37727 0.23146 0.31658

Count 4 46 12 38 13 38

C.3 CASES IN TIME-SERIES FORECASTING TASKS

We present some cases to provide some deeper analyses for Lipschitz Regularizer. Here, we plot the
last dimension of forecasting results for a qualitative comparison. In all figures of this section, the
first 96 data points are inputs of the model, and others are forecasting results.

Univariate Forecasting We show three examples of univariate forecasting in Figure 11, 12, 13.
Figure 11 and 12 show how the Lipschitz Regularizer improves the performance of the model, while
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Figure 13 shows a negative case. In Figure 13, the main problem is that the model trained with
Lipschitz Regularizer captures a larger decrease than the original data when the time is in 100-200.
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Figure 11: Univariate forecasting example of Transformer on the Weather dataset with the prediction
window size set to 720. Left figure shows the result of the original Transformer (MSE: 0.00933,
MAE: 0.07630). Right figure shows the result of the Transformer trained with Lipschitz Regularizer
(λ = 1, MSE: 0.00272, MAE: 0.03823).
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Figure 12: Univariate forecasting example of Autoformer on the ETTh2 dataset with the prediction
window size set to 168. Left figure shows the result of the original Autoformer (MSE: 0.20403,
MAE: 0.35646). Right figure shows the result of the Autoformer trained with Lipschitz Regularizer
(λ = 5, MSE: 0.18370, MAE: 0.33714).
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Figure 13: Univariate forecasting example of Autoformer on the ECL dataset with the prediction
window size set to 720. Left figure shows the result of the original Autoformer (MSE: 0.80028,
MAE: 0.66756). Right figure shows the result of the Autoformer trained with Lipschitz Regularizer
(λ = 5, MSE: 0.91144, MAE: 0.69692).

Multivariate Forecasting We show four examples of multivariate forecasting in Figure 14, 15,
16, 17. Figure 14 and 16 show the cases where the Lipschitz Regularizer improves the performance
of the model, while Figure 15 and 17 show two negative cases. For Figure 15, the sudden change in
the input is abnormal, which influences the model with Lipschitz Regularizer more than the original
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model. As for Figure 17, both models did not capture the pattern in the input data. This figure
shows that Lipschitz Regularizer makes the output slightly more continuous, therefore causing the
increased error.
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Figure 14: Multivariate forecasting example of Transformer on the ETTm1 dataset with the predic-
tion window size set to 672. Left figure shows the result of the original Transformer (MSE: 1.17478,
MAE: 0.83787). Right figure shows the result of the Transformer trained with Lipschitz Regularizer
(λ = 1, MSE: 0.92590, MAE: 0.73367).
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Figure 15: Multivariate forecasting example of Transformer on the Weather dataset with the predic-
tion window size set to 24. Left figure shows the result of the original Transformer (MSE: 0.14897,
MAE: 0.23293). Right figure shows the result of the Transformer trained with Lipschitz Regularizer
(λ = 1, MSE: 0.21319, MAE: 0.28302).
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Figure 16: Multivariate forecasting example of Autoformer on the ECL dataset with the prediction
window size set to 720. Left figure shows the result of the original Autoformer (MSE: 0.28641,
MAE: 0.37610). Right figure shows the result of the Autoformer trained with Lipschitz Regularizer
(λ = 1, MSE: 0.25691, MAE: 0.36375).
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Figure 17: Multivariate forecasting example of Autoformer on the ETTh1 dataset with the prediction
window size set to 720. Left figure shows the result of the original Autoformer (MSE: 0.47690,
MAE: 0.49172). Right figure shows the result of the Autoformer trained with Lipschitz Regularizer
(λ = 1, MSE: 0.50977, MAE: 0.50879).

D FINE-TUNE SWIN TRANSFORMER WITH LIPSCHITZ REGULARIZER

In this section, we investigate whether the proposed Lipschitz Regularizer can be used to improve
large pre-trained models by fine-tuning its embedding layer on down-stream tasks. Here, we use
a regular setting that the model is pre-trained on a large image dataset, and then fine-tuned it on
the down-stream image classification task. Moreover, considering that Transformer-based models
have shown great power in computer vision domains (Dosovitskiy et al., 2020; Liu et al., 2021),
and these models process images by splitting them into patches and feeding the model a sequence
of patch embeddings, we choose a typical model, i.e., Swin Transformer (Liu et al., 2021), for
experiments in this section.

Generally, because input tokens of the Transformer are local image patches, they tend to be con-
tinuous, which might not match the preference of the Transformer model. Therefore, we apply the
Lipschitz Regularizer to make them more discrete. Specifically, we use the Lipschitz Regularizer
for outputs of the embedding layer, and change the loss as follows:

L(y, ŷ, l̂) = LSwin(y, ŷ)− λLLip(l̂), (10)

where y is the ground-truth, and ŷ is the output of the Swin Transformer. l̂ is the output of the
embedding layer, and LSwin is the original loss of the Swin Transformer. λ controls the magnitude
of the Lipschitz Regularizer.

We use the pre-trained Swin Transformer on ImageNet2, and fine-tune it on the image classification
task with the Beans dataset (Lab, 2020), containing bean leaf images of diseased and healthy leaves.
We only fine-tune the embedding layer and the last linear layer, and freeze other parts of the model.

Table 6: Results of fine-tuning Swin Transformer with Lipschitz Regularizer on an image classifi-
cation task. Test accuracy with different λ is reported.

λ 5 1 0 -1 -5

Test Accuracy 0.9398 0.9549 0.9248 0.9098 0.8947

We show the validation accuracy during training in Figure 18 and list the testing accuracy in Table 6.
By setting λ to zero, we obtain the result of the baseline. We can see that the model performance can
be improved by the Lipschitz Regularizer, showing great potential for changing data continuity in the
fine-tuning setting and vision tasks. Besides, results also show that setting λ to positive values (i.e.,
5 and 1) benefits model performance, while setting it to negative values (i.e., -5 and -1) degenerates
the performance. This verifies our intuition that the Transformer-based model prefers more discrete
inputs.

2The pre-trained model is acquired at https://huggingface.co/microsoft/swin-base-patch4-window7-224
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Figure 18: Validation accuracy of fine-tuning Swin Transformer in each epoch with different values
of λ.

E APPLY LIPSCHITZ REGULARIZER TO THE SPEECH CLASSIFICATION TASK

In this section, we show the effectiveness of the Lipschitz Regularizer on the speech classification
task by applying it to a Transformer-based model. As we discussed in § 1, the Transformer-based
model prefers discrete inputs. However, voice signals are highly continuous since they are sampled
from a continuous physical process with a high sample rate. This inspires us to use the Lipschitz
Regularizer to make it more discrete and therefore more preferable for Transformer-based models.

Specifically, following the settings in Gu et al. (2021), we investigate the Performer model (Choro-
manski et al., 2020) on the Speech Commands (SC) dataset (Warden, 2018). We test the Performer
model on two versions of SC. One is MFCC, where the sequence is pre-processed into standard
MFCC features (length 161). Another is Raw, which contains unprocessed signals (length 16000).
The Lipschitz Regularizer is applied after the embedding layer, and changes the loss as follows:

L(y, ŷ, l̂) = LPer(y, ŷ)− λLLip(l̂), (11)

where y is the ground-truth, and ŷ is the output of the Performer model. l̂ is the output of the
embedding layer, and LPer is the original loss of the Performer model. λ controls the magnitude of
the Lipschitz Regularizer.

Table 7: Results of the Performer model and Lipschitz Regularizer on the Speech Commands
dataset. Test accuracy for MFCC and Raw speech data is reported.

λ 0 1 3

MFCC 80.63 81.13 83.21
Raw 30.89 35.72 33.86

Results are shown in Table 7. The column with λ = 0 represents the baseline. The performance of
the Performer model is increased by the Lipschitz Regularizer, which further verifies our claim that
Transformer-based models prefer discrete inputs.

F NEURAL ODE WITH LIPSCHITZ REGULARIZER

In this section, we apply the Lipschitz Regularizer to the Neural ODE model (Chen et al., 2018) to
see the effect of the regularizer on the model. Similar to the state-space model, Neural ODE is also
a continuous-time model, which treats the input as samples from a continuous function. We expect
that the Neural ODE will perform better when the input is more continuous.

We adopt the experiment of fitting time series using the latent ODE in its original paper (Chen et al.,
2018). Essentially, the neural network is a generative latent function time-series model, predicting
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the solution to an ODE, and the input data of this experiment is sampled from a randomly generated
ODE with the same generation process as Chen et al. (2018). The network is a variational autoen-
coder, which consists of an RNN encoder and a Neural ODE decoder. To alter the continuity of the
input to the Neural ODE, we directly apply Lipschitz Regularizer to the output of the RNN encoder
as follows:

L(y, ŷ, l̂) = LODE(y, ŷ)− λLLip(l̂), (12)

where y is the ground-truth, and ŷ is the output of the model. l̂ is the output of the RNN encoder, and
LODE is the original loss of the Neural ODE. λ controls the magnitude of the Lipschitz Regularizer.

The MSE during training is shown in Figure 19. We can observe that Neural ODE performs better
when data is more continuous. Predictions of 9 independent runs are presented in Figure 20. We can
see that the model has better fitting results when we use Lipschitz Regularizer to make inputs more
continuous.
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Figure 19: The MSE of the Neural ODE model with Lipschitz Regularizer during training.

G MATHEMATICAL DERIVATIONS

G.1 DERIVATION OF EQUATION (4)

n−1∑
i=0

(xi+1 − xi)
2 =

n−1∑
i=0

(
f(ti+1)− f(ti)

ti+1 − ti

)2

≈
∫
R

(
df(t)

dt

)2

dt

=

∫
R
(2πiξ)

2
f̂2(ξ)(−dξ)

= 4π2

∫
R
ξ2f̂2(ξ)dξ

= 4π2C

∫
R
ξ2

f̂2(ξ)

C
dξ

= 4π2CEp(ξ)[ξ
2]

(13)

G.2 CONTINUITY AND THE S4 MODEL

Proposition G.1. Suppose f1, f2 : R+ → R are two differentiable functions of input sequences,
and their Lipschitz constant are Lf1 and Lf2 . The HiPPO matrix with scaled Legendre measure
(LegS) is denoted as HiPPO-LegS. Let the error of the HiPPO-LegS projection of f1, f2 at time t be
δ1(t), δ2(t), respectively. Let δ̂1(t) = tLf1 , δ̂2(t) = tLf2 . For any time t, suppose Lf1 ≤ Lf2 , we
have δ1(t) = O(δ̂1(t)), δ2(t) = O(δ̂2(t)), and δ̂1(t) ≤ δ̂2(t).
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Proof. By Gu et al. (2020, Proposition 6), the LegS measure, which uniformly weighs all his-
tory, has the following property. Suppose the HiPPO-LegS projection for the target function f(t)

at time t is p(t) = projt(f), then the error δf (t) =
∥∥f≤t − p(t)

∥∥ = O(tLf/
√
N), where Lf

is the Lipschitz constant of f(t), and the maximum polynomial degree is N − 1. So, we have
δ1(t) = O(δ̂1(t)), δ2(t) = O(δ̂2(t)), and δ̂1(t) ≤ δ̂2(t). Therefore, the error rate of HiPPO-
LegS projection decreases with the Lipschitz constant, so with smaller Lipschitz constant, we expect
smaller projection error.

G.3 CONTINUITY AND THE RELU NETWORK

Proposition G.2. Suppose there are two ReLU networks gθ1 , gθ2 with identical architecture, and the
Lipschitz constant of them are L1, L2, respectively. Let h1(ξ) = L1/∥ξ∥n+1, h2(ξ) = L2/∥ξ∥n+1,
where ξ is the frequency, and ĝθ(ξ) is the Fourier component of gθ. Suppose L1 ≤ L2, we have
ĝθ1(ξ) = O(h1(ξ)), ĝθ2(ξ) = O(h2(ξ)), and h1(ξ) ≤ h2(ξ).

Proof. By Rahaman et al. (2019, Theorem 1), for a ReLU network gθ with parameter θ, its Fourier
component is,

ĝθ(ξ) =

d∑
n=0

Gn(θ, ξ)

∥ξ∥n+1
(14)

where the numerator Gn(θ, ·) : Rd → C is bounded by O(Lg). So, we have ĝθ1(ξ) =
O(h1(ξ)), ĝθ2(ξ) = O(h2(ξ)), and h1(ξ) ≤ h2(ξ). Therefore, with smaller Lipschitz constant,
we expect smaller ĝθ(ξ).
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(a) Apply Lipschitz Regularizer with λ = 1.
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(b) The original Neural ODE model (λ = 0).
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(c) Apply Lipschitz Regularizer with λ = −1.
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Figure 20: Results of generative latent function with Neural ODE and Lipschitz Regularizer. Points
are input sequences, and the color of points indicates their time. The blue line is the ground truth
and the orange line is the prediction. The gap between points and the orange line indicates training
loss, and the gap between the orange line and the blue line indicates the test loss.
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