
Detecting Generated Images by Fitting Natural Image
Distributions

Yonggang Zhang1 Jun Nie2,3 Xinmei Tian3 Mingming Gong4,6 Kun Zhang5,6 Bo Han2†
1The Hong Kong University of Science and Technology

2TMLR Group, Hong Kong Baptist University 3University of Science and Technology of China
4The University of Melbourne, Australia 5 Carnegie Mellon University

6 Mohamed bin Zayed University of Artificial Intelligence

Abstract

The increasing realism of generated images has raised significant concerns about
their potential misuse, necessitating robust detection methods. Current approaches
mainly rely on training binary classifiers, which depend heavily on the quantity
and quality of available generated images. In this work, we propose a novel
framework that exploits geometric differences between the data manifolds of natural
and generated images. To exploit this difference, we employ a pair of functions
engineered to yield consistent outputs for natural images but divergent outputs
for generated ones, leveraging the property that their gradients reside in mutually
orthogonal subspaces. This design enables a simple yet effective detection method:
an image is identified as generated if a transformation along its data manifold
induces a significant change in the loss value of a self-supervised model pre-trained
on natural images. Further more, to address diminishing manifold disparities in
advanced generative models, we leverage normalizing flows to amplify detectable
differences by extruding generated images away from the natural image manifold.
Extensive experiments demonstrate the efficacy of this method. Code is available
at https://github.com/tmlr-group/ConV.

1 INTRODUCTION

Recent advances in generative models have revolutionized image generation, making it possible to
create highly realistic images (Rombach et al., 2022; Dhariwal and Nichol, 2021; Karras et al., 2019).
While these generative models offer impressive capabilities, they also introduce significant risks,
including the proliferation of deepfakes and other manipulated content. The realism achieved by
these technologies raises urgent concerns about their potential misuse in sensitive areas like politics
and economics. Moreover, if we simply use generated images as part of the training data, the trained
model may largely degrade its quality (Shumailov et al., 2024), so it is essential to distinguish between
natural images and generated ones. To deal with these potentially dire risks, various generated image
detection methods have been developed. In this regard, a common approach is to consider generated
image detection as a binary classification task. To train a binary classifier for detecting generated
images, current methods typically require to collect numerous natural and generated images to
construct a training dataset (Chai et al., 2020; Wang et al., 2020).

Although current methods have achieved exciting success, they often struggle to generalize well
to images generated by unknown generative models. To promote the generalization ability on
images generated by unknown generative models, one possible approach is to construct a more
extensive training dataset by collecting more natural and generated images for training the binary
classifier (Jeong et al., 2022; Tan et al., 2024). Besides collecting data, advanced methods propose to
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Figure 1: Comparison of (a): the existing framework, and (b): our proposed ConV. The binary
classifier in (a) is trained using natural images xM and generated images xg, thereby, its efficacy
relies on both the natural and generated data distributions. In contrast, the two functions in (b) are
trained on natural data distribution, leading to the advantage of ConV: identifying generated images
by fitting the distribution of natural images rather than that of generated images.

Figure 2: Generated images deviate from natural images’ manifold, but the deviation decreases as
generative model evolves. Red dots denote the feature representations of natural images, while purple
dots represent those of generated images.

introduce pre-trained models as priors to promote the generalization ability. Some works, inspired by
the recent success of large models, propose to detect generated images by leveraging features extracted
by these large models (Ojha et al., 2023; Liu et al., 2024b), such as CLIP (Radford et al., 2021).
Meanwhile, some works propose to leverage the reconstruction capabilities of pre-trained diffusion
models (Wang et al., 2023; Ricker et al., 2024). Although these methods have achieved outstanding
results, they require a lot of natural and generated images to train a binary classifier, making the
current methods computationally intensive. Moreover, sustaining robust detection performance
necessitates the continual collection of images generated by the latest generative models, which can
be costly or even infeasible due to the inaccessibility of potential models, e.g., Sora OpenAI (2024).

Hence, the major challenge for the existing methods is ensuring that the binary classifier generalizes
effectively across diverse unknown generative models. This stems from the fact that these binary
classifiers are trained over natural and generated images to distinguish between these two types
of images. Thus, the performance of these binary classifiers relies on the diversity of generated
data. Unfortunately, it is challenging to determine whether a binary classifier trained over images
generated by some diffusion models can generalize to those generated by other models. Their defects
of heavy dependence on generated image distribution underscore the necessity of exploring a novel
framework for generated image detection, where the detector’s performance relies on the natural data
distribution rather than the generated image distribution. However, this remains challenging, because
the literature has yet to determine whether models training merely on natural images can be leveraged
to distinguish between natural and generated images effectively, and if yes, how and why?

To address the challenge, we propose a novel framework for detecting generated images called
consistency verification (ConV). Using t-SNE, we visualize the low-dimensional manifold structure
of feature representations extracted by DINOv2, which is trained solely on natural images. The
embeddings of generated images exhibit distinct patterns compared to those of natural images, as
illustrated in Figure 2, supporting the manifold disparities leveraged by our detection framework. To
exploit this difference for detecting AI-generated images, as shown in Figure 1, we introduce two
functions, aiming to detect generated images by ensuring that the outputs of these functions remain
consistent for natural images but exhibit significant inconsistency for generated images. To this
end, we establish a principle (see Eq. 6) to design these functions based on our theoretical analysis:
outputs of these two functions are the same on the natural distribution while their gradients need
to lie within two mutually orthogonal subspaces. This enables a training-free detection approach
(see Eq. 12): if an image transformed along its data manifold induces a substantial change in the
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loss value of a self-supervised model pre-trained over natural images, it is identified as generated.
The advantage of ConV over existing methods is its reliance on fitting the natural data distribution
rather than the distribution of generated images. However, as the generative model continues to
develop, the deviation between the generated image and the natural image manifold will become
smaller, as shown in Figure 2. To address this challenge, we propose actively projecting generated
images onto the natural image manifold. The inherent diversity of natural images complicates explicit
modeling of this manifold. To overcome this, we employ normalizing flow (Dinh et al., 2017; Kingma
and Dhariwal, 2018) to transform the natural image manifold into a Gaussian distribution, enabling
precise extrusion of generated images from the natural manifold. This approach significantly enhances
detection performance. Comprehensive experiments across various benchmarks for generated image
detection demonstrate the effectiveness of the proposed ConV (see Tables 1-7). To further verify
the effectiveness of the proposed ConV, we collect images generated by Sora OpenAI (2024) and
OpenSora Zheng et al. (2024) and compare ConV with baselines. The experiments demonstrate the
efficacy and robustness of ConV against variations in generative models (see Table 2).

We summarize our main contributions as follows:

• We highlight the generalization issue of existing works: it is challenging to determine
whether a detector trained over images generated by some diffusion models can generalize to
those generated by other models. This motivates a promising direction to explore detectors
whose detection ability relies solely on fitting the natural data distribution.

• We propose a novel framework for detecting generated images called consistency verification
(ConV). This framework exploits the observed deviation of generated images from natural
manifold and detect images by verifying consistency of two functions. The design of these
functions is guided by our orthogonality principle. Namely, gradients of these functions
need to lie within two mutually orthogonal subspaces (Eq 6). This enables a training-free
approach to detecting generated images by leveraging the consistency of a pre-trained
self-supervised model on images before and after perturbations along the data manifold.

• To further facilitate the deviation of the generated image, we explicitly extrude generated
images out of natural manifold with the aid of normalized flow, enhancing the effectiveness
of ConV. Extensive experiments conducted on various standard benchmarks and datasets
collected from Sora demonstrate the effectiveness and robustness of the proposed method.

2 Consistency Verification
2.1 Motivation

Figure 3: Illustration of projecting
a generated image xg onto the data
manifold M.

Humans can distinguish generated images from natural images
through some types of indescribable differences in patterns.
Intuitively, humans know that if a natural image captures the
same content as a given generated image, the natural image will
be different. In contrast, if we degrade natural images along
its data manifold, e.g., tiny affine transformation, the degraded
natural images are still discriminated as natural images.

To formally characterize this discrepancy, we present the fol-
lowing notations. Let x ∈ X ⊂ Rd denote the image, where
d denotes the dimension of images. To distinguish, we use xn

and xg to denote the natural and generated image. In particular,
for a given generated image xg, even if it captures similar content to a natural image xn, humans
know they are distinguishable in certain ways. This can be formulated by projecting the generated
image xg onto the point xM(xg) on the data manifold M, i.e.,

xM(xg) = arg min
x′∈M

d(x′,xg), xM(xg) ∈ M, xg /∈ M, (1)

where xM(xg) is the point closest to xg on the data manifold of natural images M and d is a metric.
Namely, images on the data manifold M are considered natural, whereas those deviating from M
are regarded as generated.

In this context, the data manifold perspective provides an intuitive framework for understanding
the difference. In particular, transforming natural image xM along the local tangent space T (xM),
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leading to the fact that the degraded images are still on the data manifold. In contrast, even the
discrepancy d(xM(xg),xg) is minimal, xg is considered as generated, because xg departs from the
manifold. Intuitively, even a slight discrepancy between xM(xg) and xg allows us to identify the
difference between a generated image and the corresponding natural image on the data manifold.
Thus, we consider the discrepancy between a generated image and its closest natural image on the
data manifold to represent the direction of the fastest departure from the manifold. This means that

v⊤(xM(xg)− xg) = 0, v ∈ T (xM(xg)). (2)

This discrepancy inspires us to introduce two functions to detect generated images, where these two
functions are related to the tangent space and the space orthogonal to the tangent space, respectively.

2.2 Objective

Aligning with the motivation, we introduce a two-function framework for generated image detection.
In particular, we propose a consistency verification framework where the two introduced functions
are devised to be consistent over natural images and inconsistent over generated images. Namely, this
framework detects generated images by verifying the consistency of the two functions. Specifically,
let f1(·) : Rd → R and f2(·) : Rd → R be the two functions. Then, the inconsistency |f1(·)− f2(·)|
between these two functions can be employed to detect generated images. Namely, generated images
can be detected by I(|f1(·)− f2(·)| > α) with the threshold α.

For images on the manifold, we make these two functions consistent by setting

δ(xM) = |f1(xM)− f2(xM)| = 0, (3)

where we denote xM(xg) as xM for simplicity. Then, the objective is to devise the two functions to
ensure that the inconsistency over generated images is larger than that over the natural images, i.e.,
δ(xg) ≥ δ(xM). In this regard, we show that (with more details in the appendix)

δ(xg) ≥ | |∇f1(xM)⊤(xg − xM)| − |∇f2(xM)⊤(xg − xM)| | ≥ 0 = δ(xM), (4)

where equality holds if, and only if, the absolute values of the two quantities are identical. According
to Eq. 4, enlarging the difference between these two terms, i.e., |∇f1(xM)⊤(xg − xM)| and
|∇f2(xM)⊤(xg − xM)| will make the natural and generated images separable. Thus, the objective
of consistency verification is to maximize one term and minimize the other term while keeping the
output values of these two functions the same. This can be formalized by

min
f1,f2∈F

|∇f1(xM)⊤(xg − xM)| − |∇f2(xM)⊤(xg − xM)|, s.t. f1(xM) = f2(xM), (5)

where F denotes a hypothesis space.

However, learning these two functions using Eq. 5 still relies on the generated data, i.e., xg. To
decouple function optimization from the generated data distribution, we leverage orthogonality priors
from the motivation 2.1 to provide design principles for these functions. According to the above
discussion, one straightforward approach to realizing f1 and f2 is to devise these functions such that
their gradients for the input lie in two orthogonal subspaces, i.e., the tangent space and the space
orthogonal to the tangent space. This orthogonality principle can be formalized as,

∇f1(xM) ∈ O(xM), ∇f2(xM) ∈ T (xM), f1(xM) = f2(xM) (6)

where O(xM) denotes the subspace orthogonal to the tangent space T (xM). Then, we have

δ(xg) ≥ ||∇f1(xM)⊤p| − |∇f2(xM)⊤p|| = |∇f1(xM)⊤p| > 0 = δ(xM), (7)

where p = xg − xM denotes the difference between a generated image and its corresponding point
on the data manifold, the equation holds due to the conclusion in Eq. 2, and the inequality holds
because the probability that two vectors in the same space are orthogonal is zero. Consequently,
the orthogonality principle ensures that these two functions are consistent on natural images, i.e.,
f1(xM) = f2(xM), while inconsistent on generated images, i.e., |δ(xg)| > |δ(xM)| = 0.

2.3 Realization

In this work, we propose a training-free approach to construct these two functions. The reason is
twofold: i) our framework allows the training-free construction of these functions, and ii) we aim to
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validate the effectiveness of the orthogonality principle without incurring significant energy costs, as
fitting the distribution of natural data requires a lot of data and computing power for training.

Well-trained models are typically insensitive to the transformation along the data manifold Simard
et al. (1991); Bengio et al. (2013); Rifai et al. (2011). This can be formalized as,

(v − xM)⊤
∂ℓ(xM)

∂xM
≈ 0, v ∈ T (xM), (8)

where v stands for the point sampled from the tangent space T (xM) and ℓ(·) is the loss function of
a model. This implies that ∂ℓ(xM)

∂xM
is orthogonal to the tangent space T (xM), which is consistent

with the direction p = xg − xM, as shown in Eq 2. Hence, we propose to realize f1(·) using a
well-trained neural network. This means that both ∂ℓ(xM)

∂xM
and p lies in the subspace orthogonal to

tangent space T (xM). This is consistent with the principle, i.e., ∇f1(xM) ∈ O(x). We have

|∇f1(xM)⊤p| = |∂ℓ(xM)

∂xM

⊤
p| =

∥∥∥∥∂ℓ(xM)

∂xM

∥∥∥∥ ∥p∥ | cos(∂ℓ(xM)

∂xM
,p)| > 0, (9)

where p = xg − xM is the difference between natural and generated images, and the last inequality
holds because the probability that two vectors in the same space are orthogonal is zero. We propose
to realize f1(·) using models trained with self-supervised learning, which would avoid reliance on
labels used in classification tasks. This is because obtaining the loss value of a classification model
requires labels that could be hard to obtain in many practical scenarios.

For the second term, we will realize it using the orthogonality such that ∇f2(xM) ∈ T (xM) or
|∇f2(xM)⊤p| = 0. We achieve this by introducing the local tangent space into ∇f2(x). To this end,
we propose to realize f2 using a composite function: f2 := f1 ◦ h. This leads to the fact that

∇f2(xM) = Jh(xM)
∂f1(h(xM))

∂h(xM)
, (10)

where Jh(xM) is the Jacobian matrix of h(xM). If h(·) models the transformation along local data
manifold, Jh(xM) models the tangent space at point xM. Then, we have

∇f2(xM)⊤p =
∂f1(h(xM))

∂h(xM)

⊤
J⊤
h(xM)p = 0, (11)

where J⊤
h(x) denotes the tangent space orthogonal to the vector p = xg − xM, see Eq. 2.

For the last term in the orthogonality principle, we should ensure that f1(xM) = f2(xM) :=
f1(h(xM)). There are numerous approaches to realize h(·). In this regard, we propose to leverage
data transformation functions used in the training phase to realize h(·), because self-supervised
models are trained to be insensitive to these transformations along local data manifold under various
self-supervised learning scenarios (Yu et al., 2023; Jaderberg et al., 2015). Thus, for a given input
image x, we can determine whether it is generated by calculating the consistency δ(x),

δ(x) = |f1(x)− f1(h(x))|
{
= 0, x ∈ M,

> 0, x /∈ M.
(12)

Technically, our training-free realization is equal to verifying the robustness of a pre-trained self-
supervised model f1(·) against the data transformations h(·). Here, f1(·) merely fits the natural data
distribution, avoiding the reliance on the distribution of generated images.

2.4 Overview

An overview of the proposed consistency verification is presented in Figure 4. As shown in the figure,
our method is training-free and seamlessly deployed in practical scenarios. Specifically, we merely
download a neural network pre-trained with a self-supervised learning task over a large-scale dataset.
Subsequently, we obtain the loss values of both the original and transformed images. Ultimately,
images are identified as generated if the difference between loss values exceeds a predetermined
threshold. We can apply multiple random transformations and compute corresponding loss function
values if computational resources allow. Intuitively, this would result in more accurate detection
performance, which is fortunately consistent with our experiments, see Figure 5.
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Negative samples are widely used in self-supervised learning, which could increase the computational
cost of generated image detection. Inspired by a recent work Oquab et al. (2024), we calculate the
similarity of representation r = ϕ(x), where ϕ(·) is the feature extractor of a self-supervised model.
The feasibility results from the objective function used in self-supervised learning,

logP (x) = log
e(r

⊤rh/τ)∑
z−

e(r⊤r−/τ) + e(r⊤rh/τ)
= log

1∑
z−

e(r⊤r−/τ)−(r⊤rh/τ) + 1
, (13)

where rh is the representation of h(x) and r− denotes the representation of negative samples. Thus,
we can employ the similarity between representations, i.e., r⊤rh, as a surrogate of loss value. This
avoids the use of negative samples. Note that applying a softmax function to the representation r
leads to the objective function used in previous works Caron et al. (2021); Oquab et al. (2024). In
this context, the high similarity between the representation of images and transformed images means
the consistency between functions, i.e., detected as natural images.

2.5 Flow-Based Manifold Extrusion

Figure 4: Framework of consistency verification.

Although generated images, such as those gener-
ated by GANs or diffusion models, deviate from
the manifold of natural images, this deviation is
often subtle, making differentiation challenging.
To address this, we aim to actively extrude gen-
erated images from the natural image manifold
through targeted training, thereby amplifying
their separation. However, the challenge comes
from the diversity of natural images, which leads
to their extremely complex manifolds. This com-
plexity prevents direct modeling of natural man-
ifold. To address this challenge, we propose F-ConV to leverage normalizing flows (Dinh et al.,
2017) to reshape the natural manifold into a Gaussian distribution, facilitating robust differentiation.

The goal of the normalizing flows is to learn an invertible mapping f , which transforms a complex
distribution PX(v) into a simple one PZ(z): z = f(v) and v is the image feature extracted by
the fundamental model: v = f(x) The distribution PZ(z) is commonly chosen to be a standard
Gaussian. Therefore, the objective function for normalizing flow is: Formally, let f : Rd → Rd

be the invertible transformation, mapping an input feature v to a latent variable z = f(v), where
z ∼ N (0, I). According to the change of variable formula, the log-likelihood of v is:

log p(v) = log pz(f(v)) + log

∣∣∣∣det(∂f(v)

∂v

)∣∣∣∣ , (14)

where
∣∣∣det(∂f(v)

∂v

)∣∣∣ is the determinant of the Jacobian matrix of f at v.In order to enforce the
deviation of the generated image, we introduce the following loss function:

L = −Ev∼Dn
log p(v) + Ev∼Dg

log p(v)︸ ︷︷ ︸
Shaping Loss

−Ev∼Dn
cos(f(v); f(T (v)) + Ev∼Dg

cos(f(v); f(T (v))︸ ︷︷ ︸
Consistency Loss

,

(15)

where Dn and Dg denote the distributions of natural and generated images, respectively. T (v) is the
feature of transformed image: T (v) = f(h(x)). Intuitively, shaping loss pushes the generated images
away from natural images’ manifold, while the consistency loss amplifies consistency disparity
between natural images and generated images. Upon completion of training, we make a judgment of
an image by assessing the feature consistency between the original image and its transformed image,
as well as its likelihood under the normalizing flow model.
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Table 1: Detection performance (%) on ImageNet. Bold numbers are superior results. We compare
training methods and training-free methods separately.

ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average
Methods

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Training-based Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
Ojha 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84
DRCT 90.26 90.07 85.74 83.85 90.24 89.88 88.27 89.06 95.87 94.99 86.89 86.12 89.11 88.39 92.38 92.41 94.44 94.47 90.36 89.92
FatFormer 91.77 90.36 83.58 83.17 92.58 92.06 86.93 85.14 98.76 98.47 97.65 98.02 97.64 97.57 96.55 95.96 97.65 97.27 93.68 93.11
F-ConV 92.74 91.65 88.51 87.67 88.87 88.47 85.94 84.88 98.94 98.98 98.14 98.72 98.52 98.38 96.79 96.33 95.52 95.38 93.77 93.38

Training-free Methods
AEROBLADA 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
ConV 88.89 86.60 82.46 79.83 78.94 75.88 75.25 70.11 92.83 92.05 91.89 90.93 92.15 91.82 93.02 91.26 88.79 87.88 87.13 85.15

Table 2: Detection performance (%) on Sora.
Methods

CNNspot Ojha NPR DRCT DIRE FatFormer F-ConV AEROBLADA ConVModels
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Sora 52.85 53.29 77.06 80.69 51.92 50.25 82.53 82.28 52.83 52.16 89.95 87.64 91.74 89.95 57.13 58.00 87.74 88.85
Open Sora 50.14 51.38 67.05 68.67 50.25 51.84 81.79 80.11 53.66 52.98 88.76 87.99 90.16 87.38 55.79 62.37 82.84 85.24
Average 51.50 52.84 72.06 74.68 51.09 51.05 82.16 81.20 53.25 52.57 89.36 87.82 90.95 88.67 56.46 60.19 85.29 87.05

3 Experiments

3.1 Experiment setup

Datasets. Following previous work (Chen et al., 2024), we evaluate ConV on several benchmarks:
ImageNet (Deng et al., 2009), LSUN-BEDROOM (Yu et al., 2015), GenImage (Zhu et al., 2023b)
and DRCT2M (Chen et al., 2024). Detailed dataset description can be found in the Appendix G.

Besides these image dataset, current advancements in generative technology have significantly
enhanced the realism of synthetic videos (Khachatryan et al., 2023; Blattmann et al., 2023), thereby
raising substantial concerns regarding trust in digital media. Moreover, the inaccessibility of their
parameters and even their architectures underscores the necessity of verifying the generalization
capability of newly proposed detection methods over these generative models. To verify whether
the proposed ConV generalizes to these challenging scenarios, we download videos generated by
these models and detect images sampled from these videos. Since we currently cannot access the
generative model used in Sora (OpenAI, 2024), we gathered several videos and extracted 1, 000
frames. Additionally, we generate 100 videos through the open-source OpenSora project (Zheng
et al., 2024), extracting 5, 000 frames. With these images used as generated images and Laion serving
as natural images, we further evaluate ConV’s performance and compare it with baselines.

Figure 5: ConV with multiple forward passes.

Baselines and evaluation metrics. We use
training-free and training-based methods as base-
lines. For training-free methods, we take AEROB-
LADE (Ricker et al., 2024) as our baseline. For
training-based methods, we take DIRE (Wang et al.,
2023), CNNspot (Wang et al., 2020), Ojha (Ojha
et al., 2023), DRCT (Chen et al., 2024), Fat-
Former (Liu et al., 2024a) and NPR (Tan et al., 2024)
as baselines. For some baselines, we get the results
reported in their papers, including Frank (Frank et al.,
2020), Durall (Durall et al., 2020), Patchfor (Chai et al., 2020), F3Net (Qian et al., 2020), SelfB-
land (Shiohara and Yamasaki, 2022), GANDetection (Mandelli et al., 2022), LGrad (Tan et al., 2023),
DeiT-S (Touvron et al., 2021), Swin-T (Liu et al., 2021), Spec (Zhang et al., 2019), GenDet (Zhu
et al., 2023a) and GramNet (Liu et al., 2020). And following previous works (Ojha et al., 2023; Tan
et al., 2024), we mainly use the following metrics: (1) the average precision (AP); (2) the area under
the receiver operating characteristic curve (AUROC) and (3) the classification accuracy (ACC).

Implementation details. In our experiments, we use the DINOv2 to instantiate f1(·) and common
transformation (details are in Appendix E) to realize h(·). There are four pre-trained DINOv2
models, i.e., ViT-S/14, ViT-B/14, ViT-L/14, and ViT-g/14, achieving exciting AUROC performance
on ImageNet benchmark: 62.84, 78.58, 87.13, and 85.97, respectively.

To balance detection performance and efficiency, we use DINOv2 ViT-L/14 in the following ex-
periments. Meanwhile, We leverage data augmentations used in the training phase to realize the
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Figure 7: Cosine similarity between features of x and h(x), where generated images are generated
by a) BigGAN, b) ADM, and c) DDPM.

function h(·) in f2 = f1 ◦ h, including geometric augmentation, color jitter, and Gaussian blur.
Since data augmentation is randomized, to enhance performance, we apply the function n times
to a single test image. As illustrated in Figure 5, increasing n correlates with improved detection
performance. However, to maintain detection efficiency, we set n = 20 in our experiments. In
practical applications, if multiple machines are available, we can leverage parallel processing to
implement multiple transformations in a single forward pass to achieve better detection performance.
In our experiments, we report the average results under five different random seeds. For F-ConV, we
train a RealNVP (Dinh et al., 2017) on the top of DINOv2 ViT-L/14, which consists of 2 coupling
blocks with fully connected networks as internal functions. The model is trained using AdamW with
a learning rate of 1e-5. More detailed implementation information is provided in Appendix F.

3.2 Main Result
Comparison on public benchmarks. We conduct comparative experiments across a comprehensive
suite of standard benchmarks. As shown in Tables 1, 7, 9 and 8, without training, ConV achieves
comparable performance to training methods. And ConV performs better than some of advanced
training methods in out-of-distribution generative models. When further extruding the generated
image out of natural images’ manifold through training, F-ConV achieves the best performance,
illustrating the effectiveness of the generalization ability of the proposed method.

Comparison on Sora. We further evaluate ConV’s performance on videos generated by unknown
models. As shown in Table 2, ConV demonstrates the best performance on images generated by
these unknown generative models, previous methods. These results highlight the effectiveness and
robustness of the proposed ConV.

Figure 6: t-SNE visualization of fea-
tures extracted by DINOv2. Natural
image features (· and · ) remain nearly
unchanged after transformations, caus-
ing overlap, while generated image
features (· and · ) show notable shifts.

Illustration of the effectiveness. We visualize the features
of natural image xn and generated image xg as well as the
features of their augmented versions, i.e., h(xr) and h(xg).
We extract features of xn, xg, h(xn) and h(xg) using DI-
NOv2 and use t-SNE to visualize these features. To avoid
the effect of class, all images are sampled from the same
class for visualization. As shown in Figure 6, the conclu-
sions are mainly twofold. First, the features of natural (xn)
and augmented (h(xn)) images can be distinguished from
those of generated images and their augmented versions,
showing DINOv2’s ability to differentiate between natural
and generated images. This provides a promising direction
to leverage DINOv2 for generated image detection. Second,
the separation between a generated image and its augmented version in the representation space
is more pronounced than that of natural images. The feature of h(xn) is similar to that of xn, i.e.,
features of h(xn) substantially overlap with those of the natural image xn. In contrast, the features of
h(xg) generally fail to fully encompass those of the generated images xg . Aligning with this, ConV
effectively distinguishes natural and generated images by calculating feature similarity between the
original and augmented images. This is consistent with the conclusion from Figure 7 showing the
similarity between features of x and h(x).

3.3 Discussion

When deploying a detector to identify generated images, it is crucial to consider practical environments
or even a threat model. Specifically, images are often perturbed in practical scenarios, affecting
detection performance. For instance, JPEG compression is a common mechanism due to the spread
of images on the Internet. Moreover, AI-generated images may undergo post-processing to evade
detection mechanisms. If a detection method is sensitive to some perturbations, the vulnerability
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(a) (b) (c)
Figure 8: Detection performance under various perturbations: a) JPEG compression, b) Gaussian
blur, and c) Gaussian noise.

would limit the applications in many practical scenarios. Thus, robustness to various perturbations is
an essential metric in generated image detection. To verify the robustness of the proposed ConV, we
process both natural and generated images by introducing some degradation mechanisms. Unless
otherwise stated, experiments are conducted on the ImageNet dataset.

Following previous works (Ricker et al., 2024), we evaluate the robustness of ConV in three per-
turbations, including JPEG compression (with quality q), Gaussian blur, and Gaussian noise (both
with standard deviation σ). As shown in Figure 8, ConV achieves the best performance. We find
that training-free methods usually show better robustness than training-based methods. Specifically,
although NPR achieves promising results on clean images, its performance degrades drastically under
perturbations. This may stem from its reliance on the relationship between pixels. Namely, various
small perturbations can change its features, causing its performance to degrade drastically. In contrast,
ConV leverages the generalization ability of the pre-trained self-supervised model and is robust under
various perturbations, making it suitable for a wider range of applications. Besides, we verify the
efficacy of the proposed method using more pre-trained models with results in Appendix N. The
results demonstrate that our method can be applied for various pre-trained models.

4 Related Works

Generated images detection. With the rapid advancements in generative models (Brock et al.,
2019), the generation of highly realistic images has become increasingly feasible, thereby creating
an urgent demand for effective algorithms to detect such generated images. Previous work (Frank
et al., 2020) has usually focused on training a specialized binary classification neural network to
distinguish between natural and generated images. CNNspot (Wang et al., 2020) finds that with
specific data augmentation, a standard image classifier trained on ProGAN is able to generalize
to other architectures. However, Ojha (Ojha et al., 2023) shows that the generalizability does not
extend to unseen families of generative models. To this end, they propose to train classifiers in
CLIP’s representation space to obtain stronger generalisability. DIRE (Wang et al., 2023) uses the
reconstruction error of an image on a diffusion model to train the classifier. However, training-based
approaches often suffer from generalizability issues and high computational costs. To address these
limitations, several training-free methods have recently been proposed. AEROBLADE (Tan et al.,
2024) performs the detection by calculating the reconstruction error with the autoencoder used in
latent diffusion models (Rombach et al., 2022). However, understanding the underlying mechanisms
that enable these approaches to perform well on images generated by unknown generative models
remains challenging. On the contrary, our method explicitly maps how the generated images are
detected. Thus, exhibiting good generalization performance on images generated by unknown models
is in line with expectations. Fortunately, our experiments on images generated by Sora and OpenSora
provide effective support, see Table 2.

Manifold learning. Manifold learning Cayton et al. (2008) assumes that real-world data presented
in high dimensional spaces are expected to concentrate in the vicinity of a manifold M of much
lower dimensionality, embedded in high dimensional space. Namely, the probability mass tends to
concentrate in regions with significantly lower dimensionality than the original space in which the
data resides Bengio et al. (2013). In this context, tangent directions/spaces of the manifold. The
tangent space of the manifold changes as the point-of-interest moves on the manifold, as shown
in Figure 3. The local tangent space at a point on the manifold can be considered as capturing
locally valid transformations, i.e., transformed points are still on the data manifold. Intuitively, a
well-trained model is invariant to transformations along the tangent space Simard et al. (1991), which
is mathematically equal to the orthogonality between vectors from the tangent space and the gradient
of the model’s loss with respect to the input, i.e., Eq. 8.
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5 Conclusion
In this work, we propose ConV, a novel framework for detecting generated images. Unlike existing
methods that rely heavily on substantial datasets of natural and generated images, Conv relies
solely on the natural image distribution. This is achieved by designing two functions whose outputs
exhibit consistency for natural images but significant inconsistency for generated images. Extensive
experiments on diverse benchmarks and images generated by a currently inaccessible model, i.e.,
Sora, have demonstrated ConV’s superior performance.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] ,
Justification: The main claims made in the abstract and introduction accurately reflects the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] ,
Justification: Limitations are discussed in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides a full set of assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The data and code will be released once prepared.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides details of implementation in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average results under five different random seeds and report the
variance in Figure 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper has discussed societal impacts in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package and dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We communicate the details of the code as part of our submission via structured
templates.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Social impacts

The proposed AI-generated image detection framework substantially mitigates societal risks stemming
from the misuse of generative models. By advancing the capability to detect synthetic media, such as
deepfakes, this work strengthens efforts to combat disinformation and enhances trust in digital media
across critical domains, including journalism and legal evidence.

B Limitation

Limitation. 1) Although the proposed orthogonal principle provides an approach for designing
various types of functions and its validity is widely supported by extensive empirical studies, we have
not provided formal proof of the convergence of the generalization risk within the context of generated
image detection. Thus, our future work will focus on establishing the theoretical foundations of the
generalization of our approach. 2) Although we consider a threat model to verify the robustness
of detectors, we have not provided an aggressive scenario where generative models are trained to
minimize the inconsistency between f1 and f2 = f1 ◦ h. Thus, we will investigate the potential of
integrating effective, robust, and efficient detection methods into the training process of generative
models to make the generated images more realistic. 3) Despite numerous empirical studies validating
the effectiveness of the proposed ConV, the impact of scaling up the self-supervised model on the
performance of detecting generated images remains to be explored since collecting a larger dataset
and training an expanded self-supervised model are beyond the scope of this study. Moreover, future
work is needed to explore how the performance of ConV will be affected if self-supervised models are
trained on generated images. Finally, given the ongoing evolution of generative models, integrating
advanced Domain Adaptation techniques (Yang et al., 2023) with ConV appears promising.

C Derivation for Inconsistency

Here, we give the detailed derivation of Eq. 4. We expand these two functions at x := xM(xg) for a
given generated image xg ,

f1(xg) = f1(x) +∇f1(x)
⊤(xg − x), f2(xg) = f2(x) +∇f2(x)

⊤(xg − x), (16)

where we neglect the higher-order approximation error.

The inconsistency between generated images can be formalized by,

δ(xg) = |f1(x)−f2(x)+(∇f1(x)−∇f2(x))
⊤(xg−x)| = |(∇f1(x)−∇f2(x))

⊤(xg−x)|, (17)

where the equation holds because of δ(x) = f1(x)− f2(x) = 0. Then, we have

δ(xg) = |(∇f1(x)−∇f2(x))
⊤(xg − x)| ≥ ||∇f1(x)

⊤(xg − x)| − |∇f2(x)
⊤(xg − x)||. (18)

D SOFTWARE AND HARDWARE

We use python 3.8.16 and Pytorch 1.12.1, and seveal NVIDIA GeForce RTX-3090 GPU and NVIDIA
GeForce RTX-4090 GPU.

E Details of transformations

We follow the data augmentation strategy used when training DINOv2 with a combination of
HorizontalFlip, ColorJitter, and GaussianBlur. For ColorJitter, brightness, contrast, saturation,
and hue are randomly adjusted with a factor in the ranges of [0.88,1.12],[0.88,1.12],[0.94,1.06],
and[0.97,1.03], respectively. For GaussianBlur, the kernel size is set to 9×9, and the variance is
randomly selected in [0.7,1].

F Implementation Details

To maintain detection efficiency, we set n = 20 in our experiments. For F-ConV, we train a
RealNVP (Dinh et al., 2017) on the top of DINOv2 ViT-L/14, which consists of 2 coupling blocks
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Table 3: AI-generated image detection performance on ImageNet.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Random rotation (-90-90 degrees) 74.43 75.23 67.44 66.45 65.60 65.12 65.47 65.71 75.20 76.89 71.72 74.41 74.66 77.13 76.36 77.62 71.21 72.95 71.34 72.39
Random rotation (-45-45 degrees) 79.91 79.12 71.61 68.80 69.65 66.87 70.03 68.12 82.11 81.95 79.21 79.65 83.09 83.58 82.79 82.03 77.91 77.54 77.37 76.41

with fully connected networks as internal functions. The model is optimized using the AdamW
optimizer with a learning rate of 1 × 10−5, β1 = 0.9, β2 = 0.99, and a weight decay of 0.01.
Following CNNspot (Wang et al., 2020), data augmentation techniques, including JPEG compression
and Gaussian blur, are applied to enhance model robustness. For the ImageNet and LSUN-Bedroom
benchmarks, the ProGAN dataset is used as the training set. For the GenImage benchmark, the
SDv1.4 dataset is employed as trainind set and the SDv2 dataset serves as the training set for the
DRCT-2M benchmark. During testing, to ensure unbiased classification accuracy and mitigate biases
from manually selected thresholds, we follow (Ojha et al., 2023) by automatically determining the
optimal threshold. This threshold is selected to maximize the separation between natural and synthetic
images based on their classification scores. An alternative approach involves optimizing the threshold
on a small validation set. This method’s performance is sensitive to the validation set’s characteristics,
such as its size and distributional representativeness. However, in real-world applications, the methods
for determining thresholds may vary. For instance, to prioritize the detection of generated images,
administrators may set a higher threshold, classifying only samples with similarity scores approaching
1 as natural images. This is consistent with the motivation of leveraging AUROC and AP as the main
metric for evaluation.

G Details of Datasets

IMAGENET. The natural images and generated images can be obtained at https://github.com/
layer6ai-labs/dgm-eval. The images are provided by (Stein et al., 2023). The resolution of
natural images and generated images are 256× 256. The generated images include: ADM, ADMG,
BigGAN, DiT-XL-2, GigaGAN, LDM, StyleGAN-XL, RQ-Transformer, Mask-GIT

LSUN-BEDROOM. The natural images and generated images can be obtained at https://github.
com/layer6ai-labs/dgm-eval. The images are provided by (Stein et al., 2023). The resolution
of natural images and generated images are 256× 256. We crop the image randomly to 224× 224
resolution. The generated images include: ADM, DDPM, iDDPM, StyleGAN, Diffusion-Projected
GAN, Projected GAN, Unleashing Transformers.

GenImage. The natural images and generated images can be obtained at https://github.com/
GenImage-Dataset/GenImage. The images are provided by (Zhu et al., 2023b). The natural
images come from ImageNet, and different images have different resolutions. The generative model
includes Midjourney, SD V1.4, SD V1.5, ADM, GLIDE, Wukong, VQDM, and BigGAN.

DRCT-2M. The natural images of DRCT-2M come from CoCo and can be obtained from https:
//cocodataset.org/#download. AI-generated images of DRCT-2M can be obtained from https:
//modelscope.cn/datasets/BokingChen/DRCT-2M/files, which are provided by (Chen et al.,
2024). The generative model includes LDM, SDv1.4, SDv1.5, SDv2, SDXL, SDXL-Refiner, SD-
Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-Ctrl, SDv1-DR,
SDv2-DR, SDXL-DR.

H Results of using other data transformations.

Table 4: Ablation studies on F-ConV.
Method AUROC AP
F-ConV 93.77 93.38

w/o Shaping Loss 89.17 87.89
w/o Consistency Loss 92.54 91.66

In our experiments, we leverage data augmenta-
tions used in the training phase, including geo-
metric augmentations, color jitter, and Gaussian
blur. We further conduct comparison experi-
ments using data augmentations which is not
used during training, such as random rotation.
The experiments are conducted on the ImageNet
benchmark. As shown Table 3, using data transformations not seen during training does not result in
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Table 6: AI-generated image detection performance on ImageNet.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Training-based Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
Ojha 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84

Training-free Methods
AEROBLADA 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
ConV-DINOv2 88.89 86.60 82.46 79.83 78.94 75.88 75.25 70.11 92.83 92.05 91.89 90.93 92.15 91.82 93.02 91.26 88.79 87.88 87.13 85.15
ConV-CLIP-unimodal 76.64 76.52 69.36 68.86 70.29 69.73 70.03 69.73 76.59 79.27 72.97 73.05 70.82 70.35 77.27 77.49 72.95 73.20 72.99 72.98
ConV-CLIP-multimodal 80.76 79.77 72.31 71.21 72.03 71.22 72.73 72.12 80.73 76.60 79.59 77.47 77.46 75.17 80.83 78.86 74.34 70.45 76.75 74.76

good detection performance. Since the rotations were not used for data augmentation during training,
using them to perform ConV during testing could not achieve good detection performance.

I Ablation studies on the transformation functions

As shown in Table 5, we conduct additional ablation studies evaluating the effectiveness of various
transformation functions. The results indicate that the three transformations examined exhibit
comparable performance.

J Ablation studies on F-ConV

Table 5: The effect of transformation functions.
Model AUROC AP

ConV 87.13 85.15
w/o HorizontalFlip 86.55 84.19

w/o ColorJitter 85.97 83.74
w/o GaussianBlur 85.49 82.83

As shown in Table 4, we perform ablation exper-
iments on the two loss functions used in F-ConV.
The results validate the effectiveness of our ap-
proach.

K Analysis of Failure Cases

As shown in Figure 9, we demonstrate some
failure cases of ConV. We compute the original
features and transformed features on highly real-
istic generated images. It can be observed that the features of these highly realistic generated images
also remain virtually unchanged, leading the model to incorrectly classify them as natural images.

L Results on CLIP

Figure 9: ConV fails on highly
realistic generated images.

In our paper, we use DINOv2 for all of our experiments. We
further use CLIP for comparison experiments. We note that the au-
thors only used randomly crop as data augmentation when training
CLIP. Therefore, when implementing ConV with CLIP, we also
only use random crop. As shown in Table 6, using CLIP to im-
plement ConV does not achieve good performance. We speculate
that this difference comes from the training methodology.CLIP
learns features using image captions as supervision, which may
make the features more focused on semantic information, whereas
DINOv2 learns features only from images, which makes it more
focused on the images themselves, and thus better able to capture the subtle differences between the
natural image and the generated image. In addition to this, the fact that CLIP only uses random crop
as data augmentation may also contribute to the poor performance of ConV.

The results show that our method performs relatively worse when using CLIP. To overcome this
limitation, we revisit our methodology, i.e., verifying the consistency between outputs of two
functions.

As shown in Eq. (13), we derive the cosine similarity metric between image features from a self-
supervised learning objective function. However, CLIP employs a different objective function, namely,
calculating the similarity between text and image features. Thus, the proposed cosine similarity
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between image features may not be a good realization of these two functions’ output, limiting the
generalization capability for generated image detection. We conjecture the difference between the
projection of the visual features of the original image and the visual features of the transformed
image on their corresponding text features would be a good metric. The reason is as follows: The
function to calculate the similarity between text and image features can be regarded as a function.
Thus, we should calculate the difference in inter-modality similarity rather than the similarity between
original and transformed images. To verify the point, we conduct experiments using the corrected
realization of f1 and f2, i.e., a corrected metric to verify the consistency. The results below show that
the modified approach outperforms the original metric.

These results show that using the modified metric for detection greatly improves the performance of
CLIP-based methods model, achieving performance comparable with Dinov2-based methods. Hence,
we believe our work provides a novel approach to calculating the difference between two functions
without focusing on the differences in similarities between two image features.

M Results on GenImage, DRCT-2M and LSUN-BEDROOM

As shown in Table 7, Table 9 and Table 8, our method achieves good performance on GenImage,
DRCT-2M and LSUN-BEDROOM, confirming the robustness of the proposed method.

Table 7: AI-generated image detection performance (ACC, %) on GenImage.
Models

Methods Midjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM BigGAN Average

Training Methods
ResNet-50 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1
DeiT-S 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6
Swin-T 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8
CNNspot 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2
Spec 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8
F3Net 50.1 99.9 99.9 49.9 50.00 99.9 49.9 49.9 68.7
GramNet 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9
DIRE 60.2 99.9 99.8 50.9 55.0 99.2 50.1 50.2 70.7
Ojha 73.2 84.2 84.0 55.2 76.9 75.6 56.9 80.3 73.3
NPR 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6
FatFormer 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 88.9
GenDet 89.6 96.1 96.1 58.0 78.4 92.8 66.5 75.0 81.6
DRCT 91.5 95.0 94.4 79.4 89.1 94.6 90.0 81.6 89.4
F-Conv 89.3 98.8 98.5 74.9 89.3 95.6 86.7 87.6 90.1

Training-free Methods
AEROBLADE 80.3 87.5 86.8 67.2 81.5 83.7 51.1 52.5 73.83
ConV 85.13 76.74 74.53 73.80 72.97 80.00 87.57 89.94 80.08

Table 8: Detection performance (%) on LSUN-Bedroom.
Models

ADM DDPM iDDPM Diffusion GAN Projected GAN StyleGAN Unleashing Transformer Average
Methods

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

CNNspot 64.83 64.24 79.04 80.58 76.95 76.28 88.45 87.19 90.80 89.94 95.17 94.94 93.42 93.11 84.09 83.75
Ojha 71.26 70.95 79.26 78.27 74.80 73.46 84.56 82.91 82.00 78.42 81.22 78.08 83.58 83.48 79.53 77.94
DIRE 57.19 56.85 61.91 61.35 59.82 58.29 53.18 53.48 55.35 54.93 57.66 56.90 67.92 68.33 59.00 58.59
NPR 75.43 72.60 91.42 90.89 89.49 88.25 76.17 74.19 75.07 74.59 68.82 63.53 84.39 83.67 80.11 78.25
F-ConV 76.59 74.40 93.53 92.16 88.90 86.85 98.10 98.03 97.93 97.81 91.63 90.16 97.31 96.91 92.00 90.91
AEROBLADA 57.05 58.37 61.57 61.49 59.82 61.06 47.12 48.25 45.98 46.15 45.63 47.06 59.71 57.34 53.85 54.25
ConV 73.71 71.52 87.74 86.59 82.96 81.79 93.79 93.87 94.73 94.74 84.10 82.35 93.75 93.51 87.25 86.34

Table 9: AI-generated image detection performance (ACC, %) on DRCT-2M.

Method SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants Avg.

LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL-
Refiner

SD-
Turbo

SDXL-
Turbo

LCM-
SDv1.5

LCM-
SDXL

SDv1-
Ctrl

SDv2-
Ctrl

SDXL-
Ctrl

SDv1-
DR

SDv2-
DR

SDXL-
DR

CNNSpot 99.87 99.91 99.90 97.63 66.25 86.55 86.15 72.42 98.26 61.72 97.96 85.89 82.94 60.93 51.41 50.28 81.12
F3Net 99.85 99.78 99.79 88.60 55.85 87.37 63.29 63.66 97.39 54.98 97.98 72.39 81.99 65.42 50.39 50.27 71.13
CLIP/RN50 99.00 99.99 99.96 94.61 62.08 91.43 84.40 64.40 98.97 57.43 99.74 80.69 82.03 65.83 50.67 50.47 80.05
GramNet 99.40 99.01 98.84 95.30 62.63 80.68 71.19 69.32 93.05 57.02 89.97 75.55 82.68 51.23 50.01 50.08 76.62
De-fake 92.1 95.53 99.51 89.65 64.02 69.24 92.00 93.93 99.13 70.89 58.98 62.34 66.66 50.12 50.16 50.00 75.52
Conv-B 99.97 100.0 99.97 95.84 64.44 82.00 60.75 99.27 99.27 62.33 99.80 83.40 73.28 61.65 51.79 50.41 79.11
Ojha 98.30 96.22 96.33 93.83 91.01 93.91 86.38 85.92 90.44 89.99 90.41 81.06 89.06 51.96 51.03 50.46 83.46
DIRE 54.62 75.89 76.04 99.87 59.90 93.08 97.55 87.29 72.53 67.85 99.69 64.40 64.40 49.96 52.48 49.92 72.55
DRCT 94.45 94.35 94.24 95.05 96.41 95.38 94.81 94.48 91.66 95.54 93.86 93.50 93.54 84.34 83.20 67.61 91.35
FatFormer 96.52 95.31 93.27 91.99 92.87 91.78 88.15 87.48 92.82 91.76 90.28 86.99 88.19 65.92 60.15 55.13 85.53
ConV 88.12 74.75 73.17 79.13 82.10 89.53 78.25 77.92 77.15 86.37 77.67 77.85 86.73 62.79 60.18 57.83 76.84
F-ConV 99.07 98.38 98.84 99.05 98.75 99.50 98.29 97.66 98.58 98.99 98.56 98.01 97.95 69.74 65.87 64.88 92.63
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Table 10: generated image detection performance with different pre-trained models.

Models
MoCo SwAV DINO CLIP DINOv2Methods

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

ConV 68.43 67.65 74.71 73.48 71.91 69.46 72.99 72.98 87.13 85.15

N Result on more pre-trained models

Besides CLIP, we conduct experiments using the MoCo (He et al., 2020), SwAV (Caron et al., 2020),
and DINO (Caron et al., 2021). The results are reported in Table 10. These results show that our
method can be applied to various backbones.

Table 11: Experimental results on Flux.

Method AUROC AP

ConV 87.38 89.19
F-ConV 90.18 90.65

O Experimental results on Flux

To further assess the generalization capabilities of ConV, we evaluate its performance against the
advanced FLUX.1 [dev] generative model (Batifol et al., 2025), which was not encountered during
training. For this analysis, a new benchmark dataset is constructed, comprising 6,000 images
generated by FLUX.1 [dev] and an equal number of natural images sampled from ImageNet. As
presented in Table 11, ConV demonstrates robust performance on this unseen model, underscoring
the strong cross-model generalizability of our approach.

P Comparison with Linear Classifiers

To further demonstrate the effectiveness of our approach, we additionally train a binary classifier on
the DINOv2 embeddings using the same training set. As shown in Table 12, the performance of the
directly trained binary classifier falls short of that achieved by F-ConV, highlighting the advantage of
our manifold-based approach.

Table 12: Comparison with Linear Classifiers.

Method AUROC AP

ConV 87.38 89.19
F-ConV 90.18 90.65

Linear classification 87.83 86.49
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