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1 INTRODUCTION

Drug–drug interactions (DDIs) represent a critical issue in clinical pharmacology, as adverse inter-
actions can lead to significant patient harm and reduced therapeutic efficacy (Zhao et al., 2023).
Numerous computational models have been developed to predict DDIs, leveraging diverse features
from chemical structures to biological networks (Dai et al., 2020; Yang et al., 2022). However, a
pervasive challenge in this domain is the severe class imbalance among interaction types. Common
interaction types, such as synergistic effects or well-characterized adverse reactions, dominate the
datasets, while rare interaction types remain under-represented (Ezzat et al., 2016). This imbalance
hinders the model’s ability to learn nuanced patterns associated with infrequent interactions. As a
consequence, predictive performance on rare, yet clinically significant, interaction types suffers. The
disparity in data distribution thus poses an urgent need for innovative solutions in DDI prediction.

In light of the class imbalance, existing state-of-the-art methods are often trained in a binary setting
(Dai et al., 2020; Wasi et al., 2024; Ngo et al., 2022), treating the DDI prediction task as a sim-
ple presence-or-absence problem. This binary framing tends to disregard the inherent heterogeneity
among different interaction types. Consequently, the models become biased towards common in-
teraction types and fail to adequately capture the underlying characteristics of rare classes. The
motivation for this work stems from the recognition that a one-size-fits-all approach is insufficient
for capturing the diversity of DDIs. Addressing the imbalance is crucial for improving the reliability
and clinical utility of these predictions (Dai et al., 2020). By acknowledging and explicitly targeting
the disparity in interaction frequencies, we aim to bridge the gap between theoretical performance
and real-world application with GFlowNets (Nica et al., 2022; Roy et al., 2023).

To mitigate the challenges posed by class imbalance, we propose an innovative framework that inte-
grates a Generative Flow Network (GFlowNet) (Bengio et al., 2023; Jain et al., 2023) module with a
Variational Graph Autoencoder (VGAE) (Ngo et al., 2022; Wasi et al., 2024; ?). Our approach first
computes a reward for each interaction type that is inversely proportional to its frequency, thereby
guiding the sampling process towards under-represented classes. The GFlowNet module sequen-
tially generates synthetic DDI samples by first selecting an interaction type based on this reward
and then sampling a drug pair conditioned on that type. These synthetic samples are then used to
augment the original training data, effectively balancing the class distribution. Experimental results
indicate that this method enhances the model’s ability to predict both common and rare interaction
types with improved robustness. The proposed framework not only addresses a critical limitation
in current DDI prediction models but also holds promise for broader applications in imbalanced
classification problems across biomedical domains.

2 MODEL ARCHITECTURE

In this work, we address the class imbalance in DDI prediction by integrating a GFlowNet module
into a VGAE framework, following Ngo et al. (2022). In brief, the VAE learns latent drug embed-
dings for downstream interaction prediction, while the GFlowNet module generates synthetic DDI
samples for rare interaction types by sampling with probabilities proportional to a reward function.

Variational Autoencoder for DDI Prediction. Let the training set be Dtrain = {(di, dj , t) |
di, dj ∈ D, t ∈ T }, where D is the set of drugs and T the set of interaction types. Each drug d ∈ D
is encoded into an embedding ed ∈ RD via an encoder qϕ(z | d), and a decoder pθ(di, dj | t, zi, zj)
reconstructs the interaction conditioned on the latent codes. The VGAE is trained by minimizing
the objective,

LVAE(θ, ϕ) = −Eqϕ(z|di,dj ,t) [log pθ(di, dj | t, zi, zj)] + KL (qϕ(z | di, dj , t) ∥ p(z)) , (1)
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Table 1: Experimental Findings
Setup AUROC Accuracy AUPRC F1 Score SE JSV Coverage

Without GFN 0.99081 0.96859 0.98861 0.98982 1.23 0.35 0.2441
With GFN 0.99071 0.96792 0.98922 0.99914 1.69 0.12 0.7709

where p(z) is the prior distribution over the latent space.

GFlowNet Module for Synthetic Sample Generation. To improve prediction on under-
represented interaction types, we augment the training data with synthetic samples generated via
GFlowNet. This module is responsible for sequentially constructing a DDI sample in two steps: (i)
sampling an interaction type and (ii) sampling a pair of drugs conditioned on the selected type.

For each interaction type t ∈ T , let nt =
∑

(di,dj ,t′)∈Dtrain
I{t′ = t} denote its frequency in the

training set. We then define a reward r(t) = 1
nt+ϵ , ϵ > 0, and normalize these rewards to obtain

a probability distribution p(t) = r(t)∑
t′∈T r(t′) . A type is sampled by drawing, t ∼ p(t). Given the

sampled type t, a candidate set C ⊂ D × D is constructed. For each candidate pair (di, dj) ∈ C, a

score is computed as s(t)ij = σ
(
fθ(ei, ej ; t)

)
, where σ(·) is the sigmoid function and fθ(·) represents

the decoder network’s output conditioned on t. The candidate pair with the highest score is selected:
(d⋆i , d

⋆
j ) = argmax(di,dj)∈C s

(t)
ij . The synthetic sample is then given by x̃ = (d⋆i , d

⋆
j , t).

Training with Augmented Data. A set Dsynth of N synthetic samples is generated using the pro-
cedure described above. The augmented training set is defined as Daug = Dtrain ∪ Dsynth. The VAE
is retrained on Daug by minimizing the loss in Eq. equation 1.

3 EXPERIMENTS, RESULTS AND DISCUSSION

In this preliminary work, we use the DrugBank dataset (Wishart et al., 2018), which includes 1,703
drugs and 191,870 drug pairs spanning 86 DDI types, along with structural and chemical informa-
tion. The dataset was split into three subsets: 115,185 drug pairs for training, 38,348 for validation,
and 38,337 for testing. We implemented VGAE for DDI prediction as per Ngo et al. (2022), given
its generative nature. The results in Table 1 show the impact of adding the GFlowNet module to
the VGAE framework for DDI prediction. AUROC, Accuracy, AUPRC, and F1 scores were all
above 0.99, with minor differences in classification metrics, suggesting GFlowNet had little im-
pact on performance. However, diversity and coverage metrics showed substantial improvements,
demonstrating GFlowNet’s effectiveness in addressing class imbalance.

Shannon Entropy (SE) (Fang & Tsao, 2008) increased from 1.23 to 1.69, indicating better balance
in interaction types. Jensen–Shannon Divergence (JSD) (Menéndez et al., 1997) decreased from
0.35 to 0.12, reflecting closer alignment with the true interaction distribution. Coverage improved
from 0.2441 to 0.7709, indicating better learning of rare interaction types, which enhances real-
world applicability. While standard classification metrics showed minimal changes, the diversity
metrics reveal significant improvements. This suggests that generative methods in DDI prediction
can address class imbalance, especially for rare interactions, which are crucial for clinical settings.

4 CONCLUSION

This work introduces a novel approach to tackling class imbalance in drug–drug interaction predic-
tion by integrating a GFlowNet-based generative sampling strategy into a VGAE framework. While
traditional classification metrics remain largely unchanged, diversity-aware evaluations show sig-
nificant improvements, highlighting GFlowNet’s ability to discover under-represented interaction
types, crucial for patient safety in clinical applications. Future work will focus on extending the
framework to larger, more diverse datasets and optimizing sampling strategies to improve rare class
representation.
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MEANINGFULNESS STATEMENT

In computational biology, models must reflect the complexity of biological interactions and perform
equitably across common and rare phenomena. Our work addresses class imbalance in drug–drug
interaction (DDI) prediction by integrating a GFlowNet-based generative sampling strategy into a
VGAE framework. This improves the model’s ability to identify rare, clinically significant interac-
tions, enhancing both predictive accuracy and fairness. By boosting diversity in generated samples,
our approach contributes to more reliable, interpretable, and clinically actionable AI models, em-
phasizing the importance of addressing class imbalance for better healthcare outcomes.
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The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2025 Tiny Papers.
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