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Abstract

Training Reinforcement Learning (RL) controllers in simulation offers cost-
efficiency and safety advantages. However, the resultant policies often suffer
significant performance degradation during real-world deployment due to the re-
ality gap. Previous works like System Identification (Sys-Id) have attempted to
bridge this discrepancy by improving simulator fidelity, but encounter challenges
including the collapse of high-dimensional parameter identification, low identifica-
tion accuracy, and unstable convergence dynamics. To address these challenges,
we propose a novel Sys-Id framework that combines Diffusion Evolution with
Adversarial Learning (DEAL) to iteratively infer physical parameters with limited
real-world data, which makes the state transitions between simulation and reality as
similar as possible. Specifically, our method iteratively refines physical parameters
through a dual mechanism: a discriminator network evaluates the similarity of
state transitions between parameterized simulations and target environment as
fitness guidance, while diffusion evolution adaptively modulates noise prediction
and denoising processes to optimize parameter distributions. We validate DEAL
in both simulated and real-world environments. Compared to baseline methods,
DEAL demonstrates state-of-the-art stability and identification accuracy in high-
dimensional parameter identification tasks, and significantly enhances sim-to-real
transfer performance while requiring minimal real-world data.

1 Introduction

In recent years, Reinforcement Learning (RL) controllers have achieved significant success in robotic
control through iterative trial-and-error learning [1H5]. This enables robust control of complex
robots even in unstructured environments. However, such learning processes demand extensive data
collection, and conducting training directly in the real world poses challenges related to efficiency and
safety. Simulation-based training offers a practical alternative by enabling large-scale data generation
in parallelized and risk-free environments [6]. Despite this, policies trained in simulation often
experience substantial performance degradation when deployed on real-world systems due to the
sim-to-real gap.

To mitigate the performance degradation caused by the sim-to-real gap, previous research has explored
various sim-to-real transfer techniques [7]. Among these, Domain Randomization (DR) is one of the
most widely used approaches [8-12]. It improves policy robustness by randomizing environmental
and robotic physical parameters within predefined ranges during training and injecting noise into
observations and actions. This paradigm aims to expose agents to sufficiently diverse simulated
scenarios, thereby enhancing robustness and facilitating zero-shot transfer to reality. However, DR
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often relies heavily on expert knowledge to define suitable randomization ranges, tends to produce
overly conservative behaviors [13]], and may lead to unstable or prolonged training. Recent advances
in simulator fidelity optimization [[14-22] have introduced few-shot approaches that leverage limited
real-world data to learn target environment parameter distributions, thereby narrowing the reality
gap and aligning simulator physical dynamics with the reality. Nevertheless, these approaches still
encounter challenges including high-dimensional system identification collapse, low identification
accuracy, inherent instability during the alignment process.

To address these challenges, we introduce a novel Sys-Id framework for sim-to-real transfer, which
innovatively combines Diffusion Evolution with Adversarial Learning (DEAL) to narrow the reality
gap. As diffusion models have demonstrated exceptional capabilities in image and video synthesis [23-
277|], existing works primarily utilize them as high-dimensional data generators. In DEAL, Diffusion
Evolution (DE) [28] is employed both as a high-dimensional optimizer for parameter search and as a
powerful generator within a Generative Adversarial Network (GAN) [29]]. This dual role enables the
generation of physical parameters that bring simulated state transitions closer to those observed in
the real world. Meanwhile, a discriminator network evaluates each evolving simulator by scoring
its fitness based on the similarity between simulated state transitions and real-world demonstrations,
thereby guiding the evolution of parameter distributions. DEAL builds upon this adversarial learning
framework but avoids the need for costly real-world data to train a noise prediction module, as
required in traditional diffusion models. Instead, it estimates optimal parameters by weighting the
entire parameter population according to their fitness scores, predicts noise based on the current
parameters and the estimated optimum, and approaches the target parameters through an iterative
denoising process. To further improve performance, DEAL introduces automatic noise adaptation to
balance exploration and exploitation and applies parameter normalization to reduce crossover errors
caused by parameter scale imbalances. These enhancements enable DEAL to achieve stable and
accurate high-dimensional parameter identification, significantly improving sim-to-real transfer with
minimal real-world data and reduced computational cost.

In the experiments, we evaluate DEAL on five sim-to-sim tasks (AllegroHand, Humanoid, Go2,
Cartpole, Ant) and two sim-to-real tasks (Cartpole, Go2). First, we evaluate DEAL’s parameter
identification capabilities, particularly in high-dimensional settings. Using a policy trained with
Uniform Domain Randomization (UDR), we collect demonstrations in target environment and
conduct parameter searches with DEAL to redefine the simulator. The policy is then retrained in the
enhanced simulator and its transfer performance is tested in the target domain. We further assess
DEAL’s adaptability by expanding the search scale and analyzing its dependence on target-domain
demonstrations. Finally, we complete the challenging sim-to-real transfer task. Experimental results
show that DEAL achieves state-of-the-art stability and identification accuracy in high-dimensional
parameter identification tasks, effectively bridging the sim-to-real gap with limited real-world data.
In particular, the contributions of this work are threefold:

1. We introduce a novel methods, DEAL, which innovatively combines Diffusion Evolution
with Adversarial Learning to narrow the reality gap.

2. We develop a automatic noise adaptation mechanism to balance exploration and exploitation,
and propose a parameter normalization framework to counteract search errors caused by
parameter scale imbalances.

3. We demonstrate the effectiveness of DEAL in both sim-to-sim and sim-to-real tasks, showing
superior performance compared to existing baselines.

2 Related Work

Transferring simulation-trained policies to the reality in a stable and cost-effective manner has long
been a goal for sim-to-real research. Previous work has approached sim-to-real transfer from both
policy adaptation and system identification perspectives.

Policy adaptation optimization focuses on training policies that are robust to dynamics discrepancies
without relying on real-world fine-tuning. Domain randomization (DR) is a foundational technique
that injects randomness into simulation parameters to encourage generalization [8H10} [13]]. However,
DR often requires manual tuning of randomization ranges, leading to suboptimal performance or
excessive training cost. Recent advancements mitigate these limitations by integrating curriculum
learning [30] or GAN-guided subspace prioritization [31], Dropo further improves upon DR by



leveraging off-policy data or human demonstrations to learn a more effective randomization distri-
bution [[11]. Other methods introduce latent adaptation modules [32, 133]] and employ Concurrent
Policy Optimization [34]] to estimate environment variables in real time, but these approaches struggle
with high-dimensional or partially observable dynamics. Domain adaptation techniques, such as
image-to-image translation [35]], grounded action transformation (GAT) [36H38]] and ASAP [39],
aim to align simulation-reality action spaces or visual inputs. However, they typically require costly
real-world data and often lack generalizability across tasks.

System identification optimization calibrates simulation parameters to match real-world dynamics
using limited real-world trajectories. Inspired by classical Sys-ID frameworks [40-42], recent work
has focused on identifying simulation parameters that better align with real-world dynamics. Bayesian
approaches like BayesSim [21] and its extensions [22} 43] formalize system identification as an
inference problem, iteratively estimating posterior distributions over simulation parameters. However,
these methods suffer from high computational costs and poor scalability in high-dimensional parame-
ter spaces. Some data-efficient approaches adopt alternative strategies, ASID [19] designs exploration
policies to collect informative real-world trajectories, while TuneNet [15] employs supervised learn-
ing to map simulation trajectories to parameter gradients, bypassing iterative optimization. RL-based
methods reframe the parameter search problem as a policy learning task, where trajectories serve as
states and parameters as actions [17,!44], these methods struggle with sparse rewards in complex tasks.
For dynamics alignment, adversarial training frameworks like SimGAN [18] and EASI [14] utilize a
discriminator to distinguish simulated and real-world state transitions. EASI optimizes by selecting
fixed elite parameters through manual sorting in evolutionary search, ignoring the information of
the entire population. This reduces parameter population diversity and leads to a tendency to get
trapped in local optima, which limits both the amount and accuracy of the searched parameters and
often produces multiple sub-optimal solutions in system identification. In contrast, DEAL employs
soft probabilistic weighting over the entire parameter population, preserving diversity and improving
convergence stability. Its iterative denoising process continuously refines parameters without relying
on a noise prediction module, enabling stable and precise high-dimensional parameter search with
minimal real-world demonstrations and lower computation cost, while effectively enhancing transfer
capabilities in complex robotic tasks.

3 Approach

In this section, we first provide a brief background to DE and GAN, then describe in detail how DEAL
integrates DE with GAN, and demonstrate how it narrow the reality gap by aligning simulator’s
physcial parameters using limited real-world data.

3.1 Background

Diffusion Evolution Diffusion models [24} 25] operate in two phases: diffusion and denoising. In
the diffusion phase, Gaussian noise is progressively added to the original data, while a noise prediction
module ¢y is trained to predict the added noise. The denoising phase iteratively estimates the original
data and performs directed denoising to recover it. Diffusion Evolution [28] (DE) reinterprets this
framework through evolutionary principles: denoising mimics evolution, diffusion emulate reversed
evolution and add random perturbations act as mutations. This algorithm uses the iterative denoising
process from diffusion models to refine solutions in a parameter space, instead of recovering a data
distribution, it shifts an initial random population toward an optimized solution distribution. Similar
to the relationship between energy and probability in statistical physics, evolutionary tasks can be
connected to generative tasks by mapping fitness to probability density, diffusion models are directly
predicting the original data xy from noisy versions of xg at each time step, DE can estimate the
optimal point by weighting the current population individuals = based on the corresponding fitness
probabilities:
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where x; is the corrupted data at timestep ¢ ~ [0, T, diffusion schedule a; governs the noise , =
is a sample from the current data distribution X, the probability mapping function g(-), typically
implemented as Softmax, transforms fitness evaluated by f(-) into probabilities, and the Gaussian
distribution indicates the conditional probability of the current data point given any sample point as



the optimum, the weighted results of these are normalized by Z. Given the design of the diffusion
process, i.e., Tz = Joyxg + /1 — aqe€, the noise € can be estimated without the need for noise

prediction module €y by:
Tt — /O ﬂ?‘o(ﬂjt, @, t)
RV4 1-— ¢ '
Under DDIM [25] framework, this step-by-step denoising process can be described as:

Tp—1 =1%o+ /1 — 1 — 0fé+ 0w, 3)

where w is the random perturbations controlled by the noise schedule o; in denoising phase. More
proofs about DE can be found in the Appendix
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Generative Adversarial Network The Generative Adversarial Network (GAN) [29] framework
employs two neural networks — a generator GG and a discriminator D — that engage in an adversarial
training process to synthesize data matching the statistical properties of the training distribution.
These networks optimize through a minimax game defined by:

mén mgXV(D, G) = Eszda,m(x)UOQD(x)] + EZNPZ(Z) [log(l - D(G(Z)))]a “4)

where p, (z) denotes the noise prior distribution, and x represents samples from the real data distribu-
tion pgqtq- Through iterative updates, G learns to generate synthetic data indistinguishable from real
samples under D’s evaluation, thus achieving distributional alignment. For our specialized objective,
we use WGAN [435] in this work, the discriminator optimization objective is formulated as:

max Es.a,5)~ar [D(s,a,8")] — Eg a5)as[D(s,a,8")], 5)

where d° and d” denote trajectories from the simulator and reality respectively, this objective
incentivizes D to discriminate between simulator and reality state-action transitions dynamics. The
discriminator used in DEAL adopts a fully connected MLP with input (s, a, s"), two hidden layers
of 256 units with ReLLU activation, and a scalar output. To further stabilize the training process, we
use Weight Clipping [45] to located the weights of discriminator in a compact interval to satisfy the
Lipschitz continuity condition, ensuring the effective computation of the Wasserstein distance.

3.2 DEAL

The schematic overview of the DEAL architecture is shown in Fig. [T} and the pseudo-code is shown
in Algorithm [I] Through adversarial co-optimization, this framework progressively minimizes
the distribution discrepancies until convergence, achieving a calibrated simulator that becomes
indistinguishable from the reality to the discriminator.

Diffusion Evolution Adversarial Learning In this work, by modeling the processes in reality
and simulation as MDPs, the system identification objective is to narrow the gap between the state
transitions of the target (reality) and source (simulator) domains. Due to different physical dynamic
parameters, there’s a reducible reality gap between the target domain state transition distribution
P,(6'79¢t) and the source domain one P (6), 6 denotes the physical parameters of the robot or
the external environment, as detailed in Appendix [A.7] Our method aims to search a parameter
distribution § which is modeled as a Gaussian distribution to minimize this gap. Specifically, the goal
of DEAL is to minimize the discrepancy between state transition distributions from different domains
as follows:

. ©)

The similarity of state transitions between parameterized simulations and reality can be measured by
a fitness function f(-), which is replaced by a discriminator network in this work. The discriminator
evaluates how similar the state transitions in the trajectories are to those in the target domain and
gives a corresponding score based on the level of similarity. With DE serves as the generator and
combined with Equation (3)), the overall search objective can be described as:

: target
min [P (6747), Ps(6)
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where d° (6, 7o) represents the trajectory collected by 7 in the simulator parameterized by 6. In this
adversarial process, DE acts as the generator to generate and optimize the 6, making the simulation
trajectory increasingly similar to the real world trajectory d” (6*%79¢*, 7ry) from the discriminator’s
perspective, while the discriminator aims to distinguish between them as much as possible.

In this frame, firstly, we randomly sample physical parameters 6 from the initial search range U to
initialize each simulator, then use the policy 7 trained via UDR to collect trajectories that reflect the
current environment’s dynamics. After sampling state-action transition (s, a,s’) sequence b7 and
b° from the target and source domain trajectories respectively, then fed them to the discriminator to
evaluate each parameterized simulator’s fitness, which represent the similarity of state transitions
between the evolving simulator and target environment, it is used to update discriminator according to
Equation (5) and guide DE for parameter updates. During the parameter update phase, by mapping the
fitness through Softmax to obtain a probability distribution, DE can estimates the optimal parameters
bo by weighting the current population individuals based on the corresponding fitness probabilities
and predicts noise ¢ used for directed evolution. Finally, according to Equation (3)), the next generation
of parameters can be generated by:
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Figure 1: Schematic overview of DEAL. The framework iteratively optimizes parameters through
a dual mechanism: a discriminator evaluates the similarity of state transitions sampled in source
domain trajectories 7g and target domain trajectories 7 as fitness, while DE estimates the optimal
parameter 6 based on the fitness probabilities, adaptively updates noise predictions ¢ and performs
denoising to optimize parameter distributions until convergence.
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Automatic Noise Adaptaion and Parameter Normalization To encourage DEAL to search for the
optimum, we use Equation (9) to finetune the noise impact factor § base on fitness, then we let 6, =
0oy to adaptively adjust the noise schedule o, which can influence the current random perturbation
w in search process. Specifically, this method adjusts the level of w to balance exploration and
exploitation, when the parameter population has low fitness, it increases w to encourage exploration
and generate more mutations in search of better optima. Conversely, when fitness is high, indicating
the population is in a good evolutionary state, it reduces w to focus on exploitation of the current
optimal region.

6 =X-exp (—E(sa,8)~ds(sas) | D(s a,8")]) and 64 = doy, )

where dS represents trajectories collected in source domain and \ is the influence coefficient, D is
the discriminator quantifies the fitness of each evolving simulator. Combined with Equation (8], the



Algorithm 1: DEAL

Input: Population size [N, Parameter dimension K, Search steps 7', Sample batch size M,
UDR policy 7, Search range U, Target domain demonstration D, Source domain
demonstration Dg, Diffusion schedule «;, Noise schedule o, Noise factor ¢,
Random perturbations w, Probability mapping function g(-).

Output: Optimal parameter distribution §*= §°

1 Initialize parameters: 07 = [01 01 ... 0% « U
2 forte [T, T —1,..,1] do
Vj € [1, N]: Store Rollout(mg, Sim(ﬁ;t))) in Dg
for update and clip network weights step = 0,1,2,--- ,n do
b7 = (si,a;,8)) | « Sample(Dr), bS = (si,a;,8,) 1, + Sample(Ds)

Update D accordi_ng to Equation (5] using b7 and b° -
end
Evaluate fitness and Map to Probability:
vj € [1’ N] f’Lt?’l@SS = Erj~Rollout(7r0,Sim(0;t)))

10 Calculate noise factor § and Adjust noise schedule o; according to Equation @])
1 forenvj=1,2,--- ,Ndo

LI B U I

[D(s,a,s)], p; < g(fitness)
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17 end

generation equation can be rewritten as:
01 = /az_100 +1/1 — a1 —&fé—l—&tw. (10)

This mechanism balances exploration and exploitation for DEAL, encouraging thorough parameter
space search while converging toward high-fidelity simulations.

Previous learning based Sys-Id methods [14, (16} 18, 22] have crossover errors due to the parameter
scale imbalances. For instance, when searching for motor ’s stiffness and damping, their values can
differ by tens to hundreds of times, such parameters have unbalanced values and the optimization step
lengths don’t match may lead to crossover errors during system identification. In this work, we nor-
malize the parameters within their initial search range U/, this approach allows for a percentage based
adjustment of parameters, effectively reducing search errors caused by parameter scale mismatches.

4 Experiments

In this section, we compare DEAL with several baselines across multiple tasks to demonstrate its
effectiveness. The key aspects are as follows:

1. We search for parameters in multiple tasks, including high-dimensional scenarios, then
compare the search errors of DEAL and other baselines.

2. After enhancing the simulator across various tasks, we evaluate the transfer performance of
the retrained policies using DEAL and other baselines.

3. We search for parameters with larger search scales to examine the search adaptability and
assess the demonstration requirements of DEAL and other baselines.

4. Finally, we complete the challenging sim-to-real transfer and demonstrate the performance
improvements brought by DEAL.



Figure 2: Experiment tasks in simulation (1~5): AllegroHand, Humanoid, Go2, Cartpole and Ant.
Experiment tasks in reality (6~7): Cartpole, Go2. Presented in order from left to right.

Task Setup We test DEAL in 5 sim-to-sim tasks (AllegroHand, Humanoid, Go2, Cartpole, Ant)
and 2 sim-to-real task (Cartpole, Go2), all environments are shown in th Fig. |Z[ (1)AllegroHand
environment is a AllegroHand robot designed to interact with a cube, it features 16 DoF distributed
across the hand and fingers. The task is to use the hand to manipulate an object to align its orientation
with the target orientation. (2) Humanoid environment contain a humanoid robot has 21 DoF, with 3
for the abdomen, 6 each for the right and left legs, and 3 each for the right and left arms. Its tasks
include walking stably and performing various movements to achieve specific speeds/directions. (3)
Go2 environment is a 12-DoF Unitree GO2 quadruped, with each leg having 3-DoF. The task is to
follow randomly chosen x, y, yaw target velocities and climb platforms. (4) Cartpole environment
includes an inverse pendulum connected to a 1-DoF cart. The task is to keep the pendulum on the
cart balanced for as long as possible. (5) Ant environment is an 8-DOF quadrupedal robot consisting
of four legs attached to a common base. The task is controlling the ant run as fast as possible.

Experiment Detail Our experiments employed Isaac Gym [46] as the simulator. In Isaac Gym, we
can parallelly collect trajectories in hundreds of environments with different parameters which means
we could evaluate hundreds of parameters parallelly. During parameter search, we instantiat 200
parallel environments to assess reality-to-simulation alignment across varying physical parameters.
For Cartpole, Ant, Humanoid and AllegroHand, we implement Soft Actor-Critic (SAC) to train
a neural network as RL controller. For Go2, we adopt RMA [33] to develop controllers tracking
velocity commands and climbing platforms, and train canter controllers using Ess-InfoGAIL
for bio-inspired running and command following. In our experiment, running on a PC equipped
with Intel i5-14600KF and RTX 4060 Ti, DEAL can complete the entire search process within a few
minutes, the search computation cost can be found in the Appendix[A.2] Additionally, we provide the
simulation data budgets for each task, the detailed numbers are shown in Appendix [A3]

Baselines We design various baselines to demonstrate the efficiency of our method. (1) EASI [14]:
A learning-based Sys-Id method combines CMA-ES [49] and GAN [29]]. (2) Bayes Optimization
(BO): Modification of Bayesian Sys-Id approach—BayRn in search tasks with its return eval-
uated by a discriminator. (3) DEAL\FN: DEAL without using Automatic Noise Adaptation base
on fitness (4) DEAL\PN: DEAL without using Parameter Normalization (5) Uniform Domain
Randomization(UDR): Uniformly sampling parameters from I/ at the beginning of each training it-
eration. (6) Oracle: Direct training in the target environment in sim-to-sim experiments, representing
the ideal upper bound for sim-to-sim transfer tasks.

4.1 Parameter Search Capability

In this experiment, we selected five tasks and conducted a thorough parameter search for each. The
parameter list is detailed in the Appendix [A.7]and mainly covers friction coefficients, restitution
coefficients, masses of rigid bodies and motor properties such as stiffness, damping and friction.
When the parameters of target domain are unknown, we typically train a policy across a wide range
of simulation parameters in hope that the policy can thus handle possible real-world variations in
dynamics or observations. In this experiment, the UDR policy g of Ant and Go2 was trained within
the range of [1/3x60;,3x0;], the remain tasks were trained within the range of [1/5x6,,5x6,], where
0; denoting the parameters of the target domain. The initial search range U for parameters of each task
is the same as its training range, we performed 50 steps of parameter search for each task with limited
‘real-world’ demonstration collected by my. To avoid randomness, we presented the experimental
outcomes using the average values from multiple random seeds. The evaluation metric is the average
percentage error of the searched parameters relative to the true parameters, defined as follows:
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Figure 3: Average search errors for each method, consisting of the error percentage of all parameters.

As shown in Fig. 3] when comparing the final search results of the three methods with the target
parameter errors, it is evident that DEAL exhibits significantly higher search accuracy than other
baselines across all environments, especially in high-dimensional environments. The baselines
often suffer from high-dimensional parameter identification collapse and fail to converge to precise
solutions. Despite using less computation cost and the same demonstration in this experiment,
DEAL achieve optimal performance which demonstrates its powerful search capability and stable
performance.

4.2 Sim-to-Sim Transfer

In this experiment, we utilize the simulator updated from the previous experiment for new policy
training, then transfer these newly trained policies to target environment to compare the performance
with UDR and Oracle. Notably, the target environment in this experiment is the simulator set with
the true target parameter. This is done to compare the performance improvements brought by various
enhanced simulators to the policy. As shown in Fig. ] left, the simulator improved by DEAL delivers
the greatest performance boost to newly trained policies for all tasks, it is close to or only slightly
inferior to the performance of Oracle whose policy is trained directly in the target domain. Moreover,
in high dimensional tasks like Humanoid and AllegroHand, due to the high-dimensional parameter
identification collapse of the baselines, the simulator undergoes negative optimization, the policies
trained in such simulator perform worse than those trained by UDR and may even cause training to
crash, fail to converge, and lead to abnormal behavior. For Go2 task, after training an initial policy
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Figure 4: Left: The average return in the target environment for the policies trained at each stage
with DEAL and other sim-to-real baselines. Right: The speed tracking display of Go2 under training
with DEAL and other sim-to-real baselines. up: speed in the robot’s x-axis direction, down: speed in
the robot’s y-axis direction.

to collect target-domain trajectories, we retrain the policy in the simulator optimized by DEAL and
other baselines. Then, we compare the adaptability of the final policy in target environment, this
experiment examines the speed-tracking capability of policies, whether the controller can control
the Go2 robot to move forward in the specified direction and speed, and to ascend steps. As shown



in Fig. @] right, DEAL achieves the best performance as the robot’s movement accurately tracks
the speed commands in both forward and vertical directions. However, the policies derived from
other baselines fail to sustain tracking of velocity commands when they are progressively increased,
ultimately leading to more severe speed collapse and destabilizing oscillations in robot motion than
UDR. This experiment demonstrates DEAL significantly enhances transfer performance across all
tasks.

4.3 Parameter Search Adaptability and Data Requirements

Table 1: Average search error percentage (x100%) (See Appendix for error bars).
Cartpole Humanoid AllegroHand
Method | €=10| =15 &=20 | =10 | £€=15| £=20| £=10| £ =15 | £ =20
DEAL 0.85 1.74 2.63 0.81 1.65 2.50 0.83 1.69 2.57
DEAL\PN | 1.90 2.85 3.76 2.40 3.53 4.58 2.60 3.80 4.92
DEAL\FN | 1.67 2.96 4.28 1.57 2.79 4.03 1.59 2.80 4.06
EASI 4.03 6.12 8.40 2.94 4.64 6.03 4.25 6.82 9.32
BO 5.20 852 | 11.78 | 4.67 7.29 | 10.06 | 3.75 6.32 9.16

In this experiment, we search for parameters on larger search scales and determine the require-
ments for demonstration of DEAL and other baselines. As shown in Table [T} denoting 6,
as the target parameters, DEAL attain the minimal search errors in the initial search ranges
of [% X 0, & x 0] across all tasks, and maintain estimation accu-

racy even under severely limited parameter distribution priors and Parameter Search Error (¢ = 5)
extreme initial values during large-scale searches. Notably, UDR .. DenL
policies trained with a range of [{5 x 6;, 10 x 6;] have started to fail o t
in the target domain, producing low quality even all failed trajecto- -

ries that cause other search baselines’ errors to surge. Such scenarios

are prevalent in real world deployment as the initial UDR policies
rarely perform well at the outset. This highlights DEAL’s strong
search adaptability and stable performance. Furthermore, due to the % emonstraton Langt :
lack of parallel data collection in reality, the scarcity of data and the
high cost of collection mean few shot methods must minimize data
requirements. Fig.[5|reveals DEAL’s superior data efficiency: While
existing Sys-Id methods suffer significant performance degradation
with sparse trajectory samples, DEAL sustains robust identification
accuracy under data-scarce conditions.

Error Percentage (x100%)

Figure 5: Average search er-
rors of DEAL and other base-
lines when given different
demonstration lengths in Hu-
manoid task.

4.4 Sim-to-Real Transfer

In this experiment, we first deploy the UDR-trained policy to collect real-world trajectories in a few
seconds, then optimize the simulator with DEAL, retrain the policy and redeploy to compare sim-to-
real performance. In the Cartpole task, the controller outputs a target cart position to maintain the pole
in balance. Stability is measured by pole-angle errors and cart-velocity, both of which are reduced
after DEAL optimization as shown in Table[2| demonstrating a improved sim-to-real performance.
In the Go2 environment, the controller out-

puts target position signals for each joint at Table 2: Cartpole sim-to-real performance.

a frequency of 50 Hz. These signals are then

converted into motor torques by the motor’'s ~ Method | Angle Error x10~2 | Cart Vel x10~!
built-in PD controller operating at 1000 Hz UDR 3.655+£1.122 1.480+0.367
and applied to the corresponding joints. In DEAL 1.372+0.382 1.2144+0.118
this section, we train a climbing policy based
on RMA [33]] for the experiment of climbing onto a high platform, and train a canter policy using
Ess-InfoGAIL [48]] for the quadruped robot’s running experiments. Firstly, we conduct repetitive
high-platform climbing experiments to evaluate the policy performance. As shown in Fig.[6] both
UDR and Unitree’s built-in RL policies are unable to reproduce the climbing behavior trained in
simulation, always fail to control Go2 to climb the platform. After optimized by DEAL, the Go2
robot can fluently and successfully complete the task, the probability of success has been significantly




improved. Subsequently, we deploy the canter policy and compare the running performance of the
controllers trained with UDR and DEAL. As shown in Fig.[7] the UDR policy fails to reproduce the
straight-running gait observed in simulation, resulting in significant deviations in both the magnitude
and direction of the velocity. In contrast, the policy retrained with DEAL accurately tracks the velocity
commands and maintains a forward speed close to that achieved in simulation during straight-line
locomotion. These results indicate DEAL indeed narrows the sim-to-real gap and enhances the
performance of the retrained policy in reality.

Figure 6: (A) Deploy with the climbing controller after being optimized with DEAL.(B) Deploy with
the climbing controller trained with UDR. (C) Deploy with Unitree’s built-in RL controller.

( COMMAND = = = = DEAL

Figure 7: (A, C) Deploy with the canter controller after being optimized with DEAL. A: side-view
imaging, C: top-view imaging. (B, D) Deploy with the canter controller trained with UDR. B:
side-view imaging, D: top-view imaging.

5 Limitations

Although DEAL demonstrates remarkable performance in high-dimensional parameter optimiza-
tion tasks under limited demonstration data, its applicability may face challenges in environments
with diverse state transition distributions. This potential limitation arises from the inherent binary
classification nature of the GAN discriminator, which is designed to distinguish between one target
environment transition and one simulator transition at a time. As a result, the discriminator may
struggle to provide multimodal fitness evaluations during optimization, suggesting an area for future
improvement in handling more complex or multimodal environmental dynamics.

6 Conclusion

In this work, we propose DEAL, a novel Sys-1d framework that combines diffusion evolution with
adversarial learning for sim-to-real transfer. DEAL optimizes simulator parameters through a dual
mechanism: a discriminator evaluates the similarity of state transitions between evolving simulators
and reality as fitness guidance, while DE adaptively refines parameter distributions to narrow the
reality gap by using fitness-driven denoising. Extensive experiments in simulation and real-world
demonstrate DEAL’s superior performance in high-dimensional parameter identification and robust
transfer performance across challenging tasks, outperforming baselines with minimal real-world
data and lower computation cost. We believe that DEAL advances sim-to-real transfer and offers a
promising approach for deploying RL controllers in the real world.
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A Appendix

A.1 Proof of Diffusion Evolution

In the diffusion phase, let o denote the original data point and z7 becomes entirely Gaussian noise.
This process can be expressed as:

Ty = v/auwo + V1 — e, (12)

where the total noise € ~ A(0, ) added to the data z( at time step ¢ € [0, 7] is controlled by o,
which decreases ag = 1 to ap = 0. Meanwhile, a noise prediction module €y is trained to minimize
this loss function in diffusion phase:

L =Epypiurn.en0,0) |0 (Varzo + VI — are, t) — ¢ (13)

where pgqtq denotes the distribution of the training data. Under the DDIM framework [235]], the
denoising phase is defined as:

Ty — /1 — aeg(xs, t
Ty = /0q_1 ( L at ozt )> + /1 — 1 — ofeg(x,t) + opw, (14)
\ &t

where o; controls the amount of random perturbations w ~ A(0, I') added during the denoising
phase. Given the diffusion process by Equation (12),  can be expressed by the noise €, and vise

versa:
Ty — 1 — oge T — /X
rg=——"7"——,ande = —————,
T V19— oy

by substituting Equation (I5)) to Equation (T4) to estimate Z and ¢, the denosing phase can be

rewritten as:
Ti—1 = J/_120 + /1 — u_1 — 02é + Tyw. (16)

Since the denoising step in diffusion models requires an estimation of xg, DE derive it from sample x
and the corresponding fitness f(x). The estimation of x can be expressed as a conditional probability
p(zo = x|z:). Using Bayes’ theorem and p(xo = z) = g[f(x)] yields:

p(@i|wo = 2)p(xo = ) _ pl(ai|z)glf ()]

p(xo = x|zs) = e = prp) ) (17)

2
)

15)

Here, p(z¢|xo = x) can be computed easily by N (x; /o, 1 — o) given the design of the diffusion
process. Since deep-learning-based diffusion models are trained using mean squared error loss, the
x( estimated by x; should be the weighted average of the sample x. Hence, the estimation function
of xg becomes:

Po(zr,at)= Y plro=alz)z= Y g[f(z)]

T~ Peval (T) T~ Peval (T)

N (x4 oz, 1 — ay)
p(wt)

z, (18)

where pey, 1s the evaluation sample on which we compute the fitness score, here given by the current
population X; = (x,gl), x,E?), e xEN)) of N individuals. Equation has three weight terms: The
first term g[f ()] assigns larger weights to high fitness samples. For each individual sample z;, the
second Gaussian term N (z; /oy, 1 — o) makes each individual only sensitive to local neighbors
of evaluation samples. The third term p(z;) is a normalization term. Hence, & can be simplified to:

Zo(zy, a,t) = % Z glf ()N (zg; oz, 1 — ay)z, (19)

reXy
where Z is the normalization term:

Z=ple) =) glf @)IN (25 Vauz, 1 — ). (20)

reX,

When substituting Equation (19)) into Equation (15) we can express noise prediction € as:

Tt — /O i‘o(xt7a7t)
\/1 — Qi '

é(xy, a,t) = 21
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After we successfully estimate the optimal point Zy and the noise €, the next generation of parameters
can be generated by using Equation (16).

Previous black-box optimization methods such as evolution strategies (ES) typically model the
parameter distribution as a Gaussian, updating its mean and covariance in each sample iteration.
However, the new samples are randomly drawn from the updated distribution and lack explicit control
over the convergence trajectory, often resulting in slow convergence and low final accuracy. Instead
of blindly perturbing parameters in each iteration, DE performs a re-weighted posterior estimation of
the optimum based on observed samples. This allows the search process to focus more quickly on
regions close to real data distribution.

Specifically, DEAL updates the parameter distribution using the Equation (T0), where the estimated
optimal parameter 6 is given by Equation H which can be rewritten as follows:

Zq

A 1
Oo(0r,0.t) = — > gfOIN (Os: Vi, 1 — o) 0, gla;) = o (22)
0€9 (60=0) P(0:100=0) ’

In Equation (22)), p(6; | 8o = ) acts as a neighborhood weight around parameter 6;. p(6y = )
represents a probability derived by applying a softmax function g(-) to the discriminator’s output,
reflecting the likelihood that a state transition under parameter € resembles one from the real world.
This formulation effectively uses a softmax-style weighting to emphasize hlgh fitness regions, guiding
b0 rapidly toward the true optimal parameters. As a result, the estlmate 0, serves as a proxy for the
gradient direction of the WGAN’s objective function £ in Equation (23)) as follows:

L = E(s,a,s’)wdT(Gt”g‘f",wo) [D(Sa a, S/)] - E(s,a,s’)wds(e,ﬂg) [D(Sv a, S/)] : (23)
> s

The diffusion noise schedule also helps to stablize the convergence by determining the update step
at each iteration. Ast — 0, a; — 1 and o, — 0, reducing the variance of N'(0;; /a;0,1 — )

and encouraging fine-grained, local updates in the later stages. The update 6;_; — éo serves as a
denoising step, similar to the reverse process in diffusion models. With a well-trained discriminator,
this process enables stable convergence toward the true optimum.

Additionally, unlike traditional ES that rely on elitism or truncation, which can lose global infor-
mation and lead to premature convergence to local optima, DEAL utilizes the entire population in
Equation (22). It assigns soft weights based on discriminator-derived fitness to estimate the gradient
direction of the WGAN’s objective function. This leads to more targeted and stable updates, offering
improved convergence stability, efficiency and accuracy over previous methods.

A.2 Computation cost

The computation time cost presented in Table [3]is based on searches conducted over 50 steps on a PC
equipped with an Intel i5-14600KF and an RTX 4060 Ti.

Table 3: Average computation time cost.

Task DEAL EASI BO

Ant 1 min 38 s 1 min43 s 7 min 05 s
Cartpole 1min 15s 1 min 35s 6 min 55 s

Go2 Smin 03 s 5 min 26 s 21 min 17 s

Humanoid 1mind3s 1 min 52 s 42 min 54 s
AllegroHand | 54 min 05s | 54 min 15s | 125 min 04 s

A.3 Data budget

All tasks run 200 parallel environments, but the trajectory lengths differ across tasks. Table [4] below
lists the data budget allocated to DEAL and the baseline methods for each task.
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Table 4: Data Budget (200 parallel environments x trajectory length).

Data budget Ant CartPole | Humanoid Go2
For DEAL and baselines | 200 x 200 | 200 x 200 | 200 x 200 | 200 x 250

AllegroHand
200 x 600

A.4 TImpact of trajectories quality

Current learning-based system identification methods do require the collection of trajectories with
a certain quality in the real world. However, even trajectories from very poor policies still encode
physical dynamics information. When using the same policy to search parameters, the failed behavior
should be reproduced by adjusting those parameters. To address the concern regarding DEAL’s
reliance on trajectory quality, we train the UDR policies for the CartPole and Humanoid in simulation,
and take the policies at various training checkpoints to collect a 200-step trajectory in the target
environment. We then search for parameters within [§ x 67979°% 3 x §7*79¢!] 0 reflect the impact of
the policies performance on the search results. In the Tables[5} 50 denotes the policy after 50 training
iterations, and the policy only starts to converge in the last row.

Table 5: Average search results at each checkpoint.

Iterations(CartPole)  Avg. Search Error (%) Iterations(Humanoid)  Avg. Search Error (%)
50 8.84 £+ 2.96 5e3 13.59 + 5.37
100 7.87 + 2.35 led 14.70 + 4.80
250 7.19 £+ 2.96 2e4 13.08 £ 5.00
1000 7.34 + 2.88 2.5¢4 10.24 +4.13
2500 5.10 £ 2.02 3e4 10.78 4+ 3.40

Contrary to concerns about its reliance on trajectory quality, DEAL demonstrates strong robust-
ness and can still accurately search parameters even when using low-quality trajectories collected
from early-stage policies. As training progresses and trajectory quality improves, DEAL’s search
performance improves accordingly.

A.5 Comparison with model-based methods

To assess the improvement of DEAL in finding the optimal parameters in comparison with a non-
convex optimization problem formulation. We further compare DEAL with several strong model-
based baselines in the case of a simple robotic system with non-linear dynamics, including least-
squares estimation and Extended Kalman Filter(EKF). In this section, we conduct parameter search
experiments on the CartPole task using the same trajectory data for all three methods, the results are
reported in the Table[6]

Table 6: Comparison with model-based methods.

Avg. Search Error (%) | CartPole

DEAL 6.9+1.1
Model-based EKF 37.4+8.8
Least-squares 53.0+19.6

As shown in the table, EKF suffers from significant bias due to linearization errors when estimating
nonlinear parameters. The least-squares estimation exhibits relatively large search errors, and the
results are highly sensitive to random initialization. In contrast, DEAL demonstrates stable and
accurate search performance in such nonlinear systems.

A.6 Broader impacts

In our work, we propose DEAL, a novel framework that leverages diffusion evolution and adversarial
learning to align simulated and real-world dynamics with minimal real-world demonstration. By
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narrowing the reality gap, DEAL can accelerate the deployment of RL controllers in robotics, reducing
the need for costly and time-consuming hardware trials. This has the potential to democratize
advanced robotic applications across industries—manufacturing, logistics, healthcare by lowering
both development time and resource requirements. At the same time, overreliance on simulator-
guided optimization carries the risk that unmodeled real-world complexities—sensor degradation,
unanticipated contacts may still lead to failures during long-term operation. Thus, while DEAL
substantially improves sim-to-real transfer, it should be complemented by continued investment in
robust robot design, sensor redundancy, and online adaptation schemes. Future work should explore
hardware—software co-design to further to address the sim-to-real challenge.

A.7 Physical parameter list

The parameters that are symmetrically distributed on the robot’s limbs should be chosen to be the
same or similar values to ensure successful training, however, during the parameter search process,
they are still treated as independent parameters for searching.

Table 7: Parameter list in the Ant Environment.

Parameter Target Value Unit
Contact Friction 1.5 -
Contact Restitution 0.01 -
Body-Leg Motor Friction 0.2 -
Body-Leg Motor Damping 0.3 N-m-s/rad
Body-Leg Motor Armature 0.1 kg - m?
Foot-Leg Motor Friction 0.1 -
Foot-Leg Motor Damping 0.2 N-m-s/rad
Foot-Leg Motor Armature 0.1 kg - m?
Foot Mass 0.1 kg
Leg Mass 0.2 kg
Body Mass 1.0 kg

Table 8: Parameter list in the Cartpole Environment.

Parameter Target Value Unit
Pole Length 0.3 m
Pole Mass 0.1 kg
Cart Mass 0.3 kg
Pole DOF_Friction 0.1 -
Pole DOF_Damping 0.1 N-m-s/rad
Pole DOF_Amature 0.2 kg - m?
Cart DOF_Friction 0.1 -
Cart PID_P 0.1 N - m/rad
Cart PID D 0.1 N-m-s/rad
Cart EffortLimit 0.2 N
Cart Vel 1.0 m/s

Table 9: Parameter list in the Go2 Environment.

Parameter Target Value Unit
Hip Damping x4 20 N-m-s/rad
Hip Stiffness x4 0.5 N - m/rad
Calf Damping x4 20 N-m-s/rad
Calf Stiffness x4 0.5 N - m/rad
Thigh Damping x 4 20 N-m-s/rad
Thigh Stiffnessx 4 0.5 N - m/rad
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Table 10: Parameter list in the AllegroHand Environment.

Parameter Target Value Unit
Contact Friction x 22 1.0 -
Contact Restitution x 22 0.01 -
Dof Frictionx 16 0.01 -
Dof Damping x 16 0.1 N-m-s/rad
Dof Armature x 16 0.001 kg - m?
Dof Stiffnessx 16 3.0 N - m/rad
Allegro_Mount Mass 0.47 kg
Index_Link_0 Mass 0.012 kg
Index_Link_1 Mass 0.065 kg
Index_Link_2 Mass 0.036 kg
Index_Link_3 Mass 0.031 kg
Middle_Link 0 Mass 0.012 kg
Middle_Link_1 Mass 0.065 kg
Middle_Link 2 Mass 0.036 kg
Middle_Link_3 Mass 0.031 kg
Ring_Link_0 Mass 0.012 kg
Ring_Link_1 Mass 0.065 kg
Ring_Link_2 Mass 0.036 kg
Ring_Link_3 Mass 0.031 kg
Thumb_Link_0 Mass 0.018 kg
Thumb_Link_1 Mass 0.012 kg
Thumb_Link_2 Mass 0.038 kg
Thumb_Link_3 Mass 0.060 kg
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Table 11: Parameter list in the Humanoid Environment.

Parameter Target Value Unit
Contact Friction x4 1.0 -
Contact Restitution x4 0.01 -
Abdomen_Y Friction 0.01 -
Abdomen_Y Damping 5.0 N-m-s/rad
Abdomen_Y Armature 0.02 kg - m?
Abdomen_Y Stiffness 20.0 N - m/rad
Abdomen_Z Friction 0.01 -
Abdomen_Z Damping 5.0 N-m-s/rad
Abdomen_Z Armature 0.01 kg - m?
Abdomen_Z Stiffness 20.0 N -m/rad
Abdomen_X Friction 0.01 -
Abdomen_X Damping 5.0 N-m-s/rad
Abdomen_X Armature 0.01 kg - m?
Abdomen_X Stiffness 10.0 N - m/rad
Hip_X Frictionx 2 0.01 -
Hip_X Damping x 2 5.0 N-m-s/rad
Hip_X Armature x 2 0.01 kg - m?
Hip_X Stiffnessx 2 10.0 N - m/rad
Hip_Z Frictionx 2 0.01 -
Hip_Z Damping x 2 5.0 N-m-s/rad
Hip_Z Armature x 2 0.01 kg - m?
Hip_Z Stiffness x 2 10.0 N - m/rad
Hip_Y Frictionx2 0.01 -
Hip_Y Dampingx2 5.0 N-m-s/rad
Hip_Y Armature x 2 0.01 kg - m?
Hip_Y Stiffnessx2 20.0 N - m/rad
Knee Frictionx 2 0.01 -
Knee Damping x 2 0.1 N-m-s/rad
Knee Armature x 2 0.007 kg - m?
Knee Stiffnessx 2 5.0 N -m/rad
Ankle X Frictionx 2 0.01 -
Ankle_X Damping x 2 1.0 N-m-s/rad
Ankle X Armature x 2 0.006 kg - m?
Ankle_X Stiffnessx 2 2.0 N - m/rad
Ankle_Y Frictionx 2 0.01 -
Ankle_Y Damping x 2 1.0 N-m-s/rad
Ankle_Y Armature x 2 0.006 kg - m?
Ankle Y Stiffnessx 2 2.0 N - m/rad
Shoulder1 Frictionx2 0.01 -
Shoulder] Damping x 2 5.0 N-m-s/rad
Shoulder] Armature x 2 0.01 kg - m?
Shoulder1 Stiffnessx2 10.0 N - m/rad
Shoulder2 Frictionx 2 0.01 -
Shoulder2 Damping x 2 5.0 N-m-s/rad
Shoulder2 Armature x 2 0.01 kg - m?
Shoulder2 Stiffnessx2 10.0 N - m/rad
Elbow Frictionx 2 0.01 -
Elbow Damping x 2 1.0 N-m-s/rad
Elbow Armature x 2 0.006 kg - m?
Elbow Stiffnessx2 2.0 N-m/rad
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A.8 Error bars

These error bars are based on calculations from 95% C1.

Table 12: Average search error percentage(x 100%).

Cartpole
Method £=10 &=15 £ =20
DEAL 0.85+£0.06 | 1.74+£0.10 | 2.63+0.13
DEAL\PN | 1.90+0.11 | 2.854+0.15 | 3.764+0.17
DEAL\FN | 1.67£0.10 | 2.96+0.06 | 4.28+0.12
EASI 4.034£0.50 | 6.124+0.35 | 8.40+0.46
BO 5.20+£0.04 | 8.52+0.16 | 11.7840.25

Table 13: Average search error percentage(x 100%).

Humanoid
Method £=10 £=15 £ =20
DEAL 0.81+0.02 | 1.651+0.04 | 2.50+0.05
DEAL\PN | 2.40+0.06 | 3.53+0.07 | 4.58+0.15
DEAL\FN | 1.574+0.02 | 2.794+0.02 | 4.034+0.03
EASI 2.944+0.85 | 4.64+1.50 | 6.0341.82
BO 4.67+0.01 | 7.29+0.01 | 10.064+0.01

Table 14: Average search error percentage(x 100%).

AllegroHand
Method & =10 & =15 & =20
DEAL 0.83+0.02 | 1.69£0.03 | 2.57+0.05
DEAL\PN | 2.60£0.03 | 3.80+0.05 | 4.92+0.05
DEAL\FN | 1.594+0.01 | 2.80+0.17 | 4.06+0.20
EASI 4.25 £0.12 | 6.82+0.20 | 9.32+0.25
BO 3.75 £0.01 | 6.32£0.03 | 9.16£0.06
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions, including
the key method and scope of the research, which are supported by the theoretical and
experimental results presented in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated "Limitations" section in Section [5| where we
discuss the potential weaknesses of our approach.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21



Answer: [Yes]

Justification: We have provided proofs of the relevant theories used in the paper in the main
text and Appendix[A.T]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: The method proposed in this paper is easy to reproduce, and we introduce
detailed information of method implementation and experiment settings in Section 4.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We are in the process of organizing the experiment code and we will provide
open access to well-documented code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant training and test details are described in Section 4 and Ap-
pendix[A.7]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported for key results. All figures and tables include error bars
capturing the variability due to different random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the type of compute resources used, including CPU and
GPU specifications, etc. These details are provided in Section 4 and Appendix [A.2]

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with careful consideration
given to ethical standards throughout the study.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts, both positive and negative, are discussed in the
Appendix [A.6]
Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The method proposed in this paper is mainly applied to robot control tasks and
poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this research are properly credited, and their
licenses and terms of use are respected. This information is provided in the references and
acknowledgment sections.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets, including datasets and code, are thoroughly documented, and this
documentation is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs as a component of the method in this study.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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