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ABSTRACT

Deep networks usually require a massive amount of labeled data for their training.
Yet, such data may include some mistakes in the labels. Interestingly, networks
have been shown to be robust to such errors. This work uses a spectral (Fourier)
analysis of their learned mapping to provide an explanation for their robustness.
In particular, we relate the smoothness regularization that usually exists in conven-
tional training to attenuation of high frequencies, which mainly characterize noise.
By using a connection between the smoothness and the spectral norm of the net-
work weights, we suggest that one may further improve robustness via spectral
normalization. Empirical experiments validate our claims and show the advantage
of this normalization for classification with label noise.

1 INTRODUCTION

Deep neural networks (DNNs) exhibit state-of-the-art results in various machine learning tasks
(Goodfellow et al., 2016). Still, their performance heavily relies on the quality of the training data,
which - in the supervised scenario - is composed of input-output pairs. In many real-world tasks,
the provided outputs, which are commonly referred to as labels, are prone to manual or automatic
annotation errors (Liu et al., 2016; Lee et al., 2018), e.g., due to insufficient expertise or to a context-
based annotation of web images. Consequently, robustness to such mistakes, known as label noise,
is of critical importance for DNNs. Surprisingly, various works have shown that neural networks
exhibit some robustness to this noise (Flatow & Penner, 2017; Krause et al., 2016; Sun et al., 2017;
Rolnick et al., 2017; Wang et al., 2018). They show that the degradation in network performance can
be significantly smaller than the amount of label noise in the training data. While they empirically
demonstrate this robustness, our work focuses on analyzing and thus also improving this robustness.

Encouraged by recent advancements in the functional analysis of neural networks (Savarese et al.,
2019; Williams et al., 2019; Ongie et al., 2020; Giryes, 2020), we analyze the spectral (Fourier)
coefficients of neural networks. This point of view is used to shed light on the relation between the
network smoothness and its ability to fit the training data. This tradeoff is controlled by the amount
of regularization on the norm of the network derivative with respect to the input. By introducing a
bound on this norm, we conclude that the smoothness can increase by imposing constraints on the
weights. Following that, we show that further robustness to label noise is obtained by bounding the
network weights, as this attenuates high frequencies, which we assume to be mainly stemming from
the noise. We validate this assumption in the experiments by using a relationship that we present
between the Jacobian and spectral norm of the network to its frequencies.

The consequence of our analysis is a theoretical justification for the effectiveness of early stopping
and weight decay as a means of DNNs regularization in presence of label noise. Another result of the
theory is a new approach to enhance the robustness to label noise: Spectral normalization (SN) of the
DNN weights (Yoshida & Miyato, 2017; Miyato et al., 2018). We show that this simple operation
implies a decay in the high frequencies of the mapping learned by the neural network. As `2-based
regularization, SN attends the entire input space at once, rather than only sampled points. Moreover,
our analysis suggests that it is likely to lead to better robustness. Also, using SN does not require
an additional train phase, auxiliary information or extra variables and tuning, which are common in
label noise resistance methods. With only a minor computational cost, the trained DNN gains an
improved immunity to label noise. To support our theory, we show in various experiments on both
synthetic label noise (CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and MNIST (Lecun et al.,
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1998)) and real label noise (Clothing1M (Xiao et al., 2015)) that adding SN to other regularization
techniques consistently improves the network performance in the presence of label noise.

Contribution. The contribution of this work can be summarized by the following three main steps
that we perform in it, where to the best of our knowledge each of them is novel by itself:

• Showing that regularizing the network Jacobian either directly or through spectral normal-
ization reduces the high frequency in the learned network mapping.

• Demonstrating empirically that having label noise in the training data: (i) adds high fre-
quencies to the learned mapping in the one-dimensional case, where we can practically
draw the spectrum of the network; and (ii) increases the Jacobian of the network and its
spectral norm in the high-dimensional setting. Both of these steps support our assumption
that label noise adds high frequencies to the learned mapping. We borrow this intuition
from signal processing, where (random) noise usually lies in all the spectrum compared to
the signal that mainly resides in the low frequencies.

• Exhibiting that using spectral normalization increases the network robustness to noise. We
show that the same holds for Jacobian regularization but more minorly as it does not regu-
larize all the spectrum as spectral normalization does.

2 RELATED WORK

Neural networks resistance to label noise. The natural robustness of neural networks to label noise
was empirically investigated in several cases (Rolnick et al., 2017; Krause et al., 2016; Sun et al.,
2017; Wang et al., 2018). Flatow & Penner (2017) showed that while the noise rate increases by tens
of percent, test accuracy drops by only a few percent. Nevertheless, the effective dimension of the
learned data representation was shown to be different for clean and noisy labels (Ma et al., 2018),
suggesting it is possible to further increase the robustness.

Various strategies were proposed to improve the intrinsic resistance of DNNs to label noise. They
may be categorized into three groups: (1) probabilistic noise modeling, (2) training data enhance-
ment, and (3) adapted optimization, which may include the objective function, regularization and
training procedure. The most common practice for the first is estimating a transition matrix from cor-
rect labels to corrupted ones, which is incorporated in the optimization process. Patrini et al. (2017)
based its matrix estimation on the softmax output of a network trained on a noisy dataset. Alterna-
tively, Goldberger & Ben-Reuven (2017); Jindal et al. (2016) suggested an end-to-end framework
in which the noise distribution is learned simultaneously with the network parameters. Other works
leveraged an additional clean data (Xiao et al., 2015; Vahdat, 2107) or manually defined constraints
(Han et al., 2018a) to further improve the estimation quality. The second strategy aims at reducing
the noise effect by “improving” the provided training dataset, either by rejecting (not using) part of
the samples (Shen & Sanghavi, 2019; Han et al., 2018b; Malach & Shalev-Shwartz, 2017), assign-
ing an appropriate weight per sample (Ren et al., 2018; Thulasidasan et al., 2019; Jiang et al., 2018;
Liu & Tao, 2015; Guo et al., 2018; Yao et al., 2018) or “correcting” the labels (Reed et al., 2014;
Li et al., 2017; Tanaka et al., 2018). The third approach includes the generalized cross-entropy loss
(Zhang & Sabuncu, 2018; Amid et al., 2019a;b), symmetric cross-entropy loss (Wang et al., 2019),
information-theoretic loss function (Xu et al., 2019a), minimum entropy (Reed et al., 2014), mixup
(Zhang et al., 2018), and early stopping (Li et al., 2020). The method suggested in this work (SN)
falls under this category.

Functional analysis of neural networks. Recently, it was empirically shown that neural networks
tend to learn the low frequencies in the data first (Xu et al., 2019b; Tancik et al., 2020). In Rahaman
et al. (2019) this behavior was explained by analyzing the Fourier transform of ReLU networks.
Another explanation based on approximating the trained network using a linear system was given
by Ronen et al. (2019); Basri et al. (2020) . Heckel & Soltanolkotabi (2020) studied the removal of
high frequencies by shallow convolutional models that can be used for denoising, e.g., deep image
prior (Ulyanov et al., 2017). The behavior of the networks was tied to the convolutional structure.
In this work, we propose an alternative explanation for the tendency of networks to prefer learning
low frequencies by using the smoothness property of neural networks with bounded weights.

The function space generated by networks with bounded weights was analyzed in various works.
Savarese et al. (2019) showed that univariate shallow networks with infinite width and bounded
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weights represent functions with a bounded total variation of their first derivative. This implied that
the learned mapping smoothly interpolates (at least first-order spline) the training points. Ongie et al.
(2020) extended this result to the case of shallow networks with multidimensional input. Williams
et al. (2019) proved that based on the parameterization of the (univariate) network, one may get
a guarantee for second-order spline interpolation of the training data. Giryes (2020) developed
generalization bounds for finite networks assuming that the training data was generated by a band-
limited mapping. Note that all these works assume that the network overfitted the training data.

We extend these works to the case where no perfect overfitting of the training data is achieved.
We show that bounding the weights of the network yields a tradeoff in the loss between fitting the
training data and having a smooth mapping. Assuming that mappings of true data are indeed smooth,
our theory suggests that the smoothness regularization imposed by bounding the weights provides a
“denoising” effect, which helps networks to be resistant to label noise.

Spectral normalization. Yoshida & Miyato (2017) suggested regularizing the spectral norm of
neural network weights. Miyato et al. (2018) imposed SN, which directly constrains the spectral
norm of each layer and sets it to 1, to stabilize the training of generative adversarial networks.
SN was also applied as a means to improve robustness to adversarial attacks (Farnia et al., 2019).
Neyshabur et al. (2018); Bartlett et al. (2017) analyzed network generalization capabilities using the
weights spectral norm. Our work ties it to label noise robustness both in theory and practice.

3 THEORETICAL ANALYSIS

We use the Fourier series with uniform sampling, i.e.,

In our analysis we follow the notation given in Appendix A. For simplicity of discussion, we focus on
the case of a multivariate neural network φ with a single output neuron, L layers, weights {Wl}Ll=1

and biases {bl}Ll=1. We consider a bounded input domain [0, 2π]m, which is a realistic assumption in
real data, where the input range is usually limited (e.g., in images the range is [0, 1] or [0, 255]). The
network is trained with the pairs {(xn, f(xn))}xn∈S , where S is the training set and f : [0, 2π]m →
R is the labels generating function. We assume a uniform sampling scheme of the input domain,
i.e., xn =

[
2πn1

N , . . . , 2πnmN
]
, where ni ∈ {0, . . . , N − 1} and n ∈ {0, . . . , N − 1}m (in this case

the size of the training set is |S| = Nm). Given a vector of indices such as n, we abuse notation and
use it to index vectors and matrices. This can be simply done by converting the tensor indices in n
to vector indices as done when column-stacking a tensor.

The uniform sampling assumption is used in the proofs of Propositions 1, 3, and 5. It is possible
to extend the analysis also to a random sampling scheme, which is usually the case in real data. We
comment in each proof on the steps required for this extension. Yet, we defer such a generalization
of our study to a future work. Our analysis in the sequel is done in the spectral (Fourier) domain. A
short reminder on Fourier properties appears in Appendix C.

We assume φ and f are appropriate functions and denote by {dk}k∈Zm and {ck}k∈Zm their Fourier
coefficients, respectively. We use them to analyze the network mapping when optimized with various
regularization techniques. We assume that the network attains the global optimum of the optimiza-
tion in our analysis below (except in our comment on early stopping). This assumption has been
shown to be valid in neural network optimization under some assumptions (e.g., Du et al. (2019)).

We start with the case of regularizing the network derivative (equivalent to regularizing the Jacobian
spectral norm in the multidimensional case), and then relate it to penalizing the Frobenius norm
(which is referred to as `2 regularization) and the spectral norm of the network weights. Finally, we
suggest using SN and show that it improves robustness to label noise. All proofs are in Appendix D.

3.1 REGULARIZATION AND ITS EFFECT ON THE NEURAL NETWORK SPECTRUM

Assume we are minimizing the `2 distance between the outputs of the network and the input labels:

min
φ

1

|S|
∑
xn∈S

(φ(xn)− f(xn))2. (1)

Clearly, without any constraints on the network and with a sufficient number of parameters in the
network, we may bring the empirical error to zero and even overfit the training data. Yet, let us
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further assume that the mapping we are learning is smooth, i.e., its first derivative is bounded. As
we shall see hereafter, neural networks with bounded weights obey this assumption. To this end, we
add a regularization on the first derivative of the learned network, i.e., our objective becomes

min
φ

1

|S|
∑
xn∈S

(φ(xn)− f(xn))2 +
λ

(2π)m

∫
x∈[0,2π]m

(
dφ(x)

dx

)2

dx. (2)

Moving to the Fourier domain provides insights about the network bias towards low frequencies.

Proposition 1 Let φ(x) =
∑
k∈Zm dke

jkT x be the Fourier series of the trained neural network with
uniformly sampled training data. Then, the global optimum of equation 2 obeys

dk = O

(
1

λ ‖k‖22

)
, k ∈ Zm. (3)

Clearly for k = 0, the bound is infinity as the DC component does not alter smoothness. An exact
expression for dk is provided in Appendix E when the training set size satisfies N → ∞. This
proposition may explain the bias of networks with bounded derivative towards low frequencies: the
stronger the regularization, the stronger is the decay of the spectral coefficients. As a larger penalty
is imposed on the higher frequencies, it is expected that during the training process the network will
first learn the lower frequencies. This may explain the usage of early stopping for label noise and
stands in line with the observations in Rahaman et al. (2019); Xu et al. (2019b); Tancik et al. (2020).

While the regularization term in equation 2 applies to the entire input domain, it is clearly impossible
to apply such a regularization in practice, as it needs to be evaluated on all possible inputs. The trivial
alternative is to apply Jacobian regularization to the training data points (Sokolić et al., 2017; Varga
et al., 2017; Jakubovitz & Giryes, 2018; Hoffman et al., 2019). Yet, this translates to only local
regularization, which is less effective in practice even when applied randomly, e.g., with mixup (see
Appendix B). Instead, we suggest to upper bound the derivative of the network by its weights:

Proposition 2 [based on Lemma 1 in Sokolić et al. (2017)] Let φ(x) be a L-layers feed-forward
network with a multidimensional input x ∈ X , Jacobian matrix dφ(x)

dx , non-expansive activation
functions, and weights and biases {Wl}Ll=1 and {bl}Ll=1. Then, we have∥∥∥∥dφ(x)dx

∥∥∥∥2
2

≤
L∏
l=1

‖Wl‖22 ≤
L∏
l=1

‖Wl‖2F , x ∈ X . (4)

Note that the assumption on non-expansive activation functions holds for the currently used acti-
vation functions (e.g., ReLU, sigmoid and tanh). The above proposition provides an upper bound
for the regularization term in equation 2, which may suggest to replace the regularization on the
network derivative with a regularization on the network weights, which is feasible during training.
From equation 4, this can be done through a penalty on the weights’ spectral or Frobenius norm.

Notice that using the arithmetic-geometric mean inequality, we may upper bound equation 4 further
by
∑L
l=1 ‖Wl‖2F , which is the standard `2 regularization (equivalent to weight decay (WD) in the

case that standard SGD optimization is performed (Loshchilov & Hutter, 2019)). Thus, we conclude
that training a network with WD is expected to regularize the network derivatives and thus lead to a
similar effect to the one described in Proposition 1, i.e., fast decay of the high frequency components.

3.2 NETWORK ROBUSTNESS TO LABEL NOISE

We turn to relate our intermediate conclusions to the label noise setting. Consider the case where a
noise e is added to the training set, s.t we have {(xn, f(xn) + e(xn))}n∈S . Now, let us assume a
rapid decay of the Fourier coefficients of f , i.e., the function that generates the realizable training
set as described above, and that e contains high frequencies compared to the mapping f . Fig. 1
supports this assumption by exhibiting that the smoothness of the network mapping (represented by
the Jacobian Frobenius norm of the network) degrades as the noise rate in the training data increases.
For this representative example, we train our baseline network on CIFAR-10 training data (the same
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holds also for other datasets) with two types of corrupted labels (see Section 4 for details). The
training process lasts until convergence, where the network overfits the noisy data, in the sense that
the noisy train accuracy is 100% (early stopping is not applied). Fig 1 depicts the Jacobian measure
for two types of label noise with various noise rates. Indeed, as the noise level increases, the Jacobian
measure increases, indicating that the represented function contains higher frequencies.
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(b) Flip Noise

Figure 1: Squared Frobenius norm of the network Jacobian matrix, averaged over CIFAR-10 training
data, for various noise rates, when the network is fitted to the noisy data.

Since f resides mainly in the low frequencies and e tends to have a lot of high frequencies, from
Propositions 1 and 2, we expect that a network trained with WD will learn mainly the low fre-
quencies, i.e., the “clean” data components. This translates to the conclusion that WD introduces a
certain level of robustness to label noise. In addition, we conclude that a network trained with WD
first learns the low frequencies. Combining this with the assumption that noise mainly resides in
high frequencies, we can understand the reason behind the efficiency of early stopping in dealing
with noisy labels (when a regularization on the weights is applied). Since the higher frequencies are
penalized more, they are likely to be learned later. Thus, early stopping prevents the learning of the
high frequencies, and by that filters most of the noise. To summarize, the use of WD along with
early stopping included in conventional training, introduces some robustness to label noise.

Fig 2 demonstrates this behavior when learning a one-dimensional mapping f , which is composed of
a random combination of 6 sine and cosine functions (with a DC component). The data is generated
by uniformly sampling 100 points in the range [−1, 1] and then adding random noise to 10% of
the samples (randomly selected). We train a fully connected (FC) network with two hidden layers
of size 1000 and ReLU, using SGD with momentum, WD, and early stopping. By comparing the
Fourier coefficients of the clean (blue) and noisy (*) data, it can be clearly seen that the former
resides in the low frequencies, while the high frequencies are mainly occupied by the noise. Notice
how the network (red) learns the low frequencies and “ignores” the high frequencies, which aligns
with our analysis.

3.3 NETWORK ROBUSTNESS TO LABEL NOISE BY WEIGHTS SPECTRAL NORMALIZATION

Till now we used the unconstrained form of optimization. This led us to insights on how regularizing
the weights of the network may improve its robustness to label noise. Now, we turn to analyze the
constrained case:

min
φ

1

|S|
∑
xn∈S

(φ(xn)− f(xn))2 s.t.
1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dφ(x)dx

∥∥∥∥2
2

dx ≤ α, (5)

where α is a regularization parameter. This allows us to attain direct bounds on the spectral attenua-
tion stemming from bounding the network weights. The next proposition provides the equivalent of
Proposition 1 for the constrained case discussed here under an asymptotic regime.

Proposition 3 Let φ(x) =
∑
k∈Zm dke

jkT x and f(x) =
∑
k∈Zm cke

jkT x be the Fourier series of
the trained neural network and the target mapping function, respectively. If the training set size
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Figure 2: A network φ ↔ dk is fitted to training data generated from f ↔ ck with label noise
e ↔ rk added to 10% of the labels. The original mapping (blue), the network output (red) and the
noisy training samples (*) are presented in the input domain (left) and Fourier domain (right). The
network “ignores” the high frequencies stemming from the noise.

satisfies N →∞, then the global optimum of equation 5 is equivalent to the one of

min
{dk}k∈Zm

∑
k∈Zm

|dk − ck|2 s.t.
∑
k∈Zm

‖k‖22 |dk|
2 ≤ α, (6)

and the optimal solution reads as

dk =

{
ck if

∑
k∈Zm ‖k‖

2
2 |ck|2 < α

ck
1+λα‖k‖22

otherwise , (7)

where λα is the solution to the equation
∑
k∈Zm ‖k‖

2
2

|ck|2

(1+λα‖k‖22)2
= α.

This proposition shows that also in the constrained case, if the constraint is non-trivial (i.e., does
not affect the solution), then higher frequencies are more penalized. To draw a relationship between
constraining the network weights and attenuating the high frequencies, we consider the following
optimization problem that constraints the spectral norm of the network weights:

min
φ

1

|S|
∑
xn∈S

(φ(xn)− f(xn))2 s.t.
L∏
l=1

‖Wl‖22 ≤ α. (8)

Notice that from Proposition 2, we have that the feasible set in equation 8 is included in the one of

equation 5, i.e., if
∏
l ‖Wl‖22 ≤ α then also 1

(2π)m

∫
x∈[0,2π]m

∥∥∥dφ(x)dx

∥∥∥2
2
dx ≤ α holds. Therefore, it

is expected that applying a constraint on the network weight matrices norms will attenuate the high
frequencies in the learned mapping. Clearly, we could have used also the Frobenius norm according
to Proposition 2 as a bound. Yet, since it is a weaker upper bound (as shown in Proposition 2), we
expect that using it as a proxy will lead to inferior results compared to the case of using the spectral
norm. As shown in Section 4, this is indeed the case when training neural networks with label noise.
Applying the constraint in equation 8 directly is computationally hard. Thus, instead of bounding the
product of the layers weights norms we suggest bounding each norm separately: ‖Wl‖2 ≤ αl, l =
1, . . . , L. Notice that if the constraints are not trivial, they become ‖Wl‖2 = αl, l = 1, . . . , L. For
the case αl = 1, l = 1, . . . , L, this regularization is known as SN (Miyato et al., 2018). Combining
it with an arbitrary loss function ` we have

min
φ

1

|S|
∑
xn∈S

` (φ(xn), f(xn)) s.t. ‖Wl‖2 = 1, l = 1, . . . , L. (9)

The next proposition shows that SN encourages a decay of the learned map spectral coefficients.
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Proposition 4 Let φ(x) =
∑
k∈Zm dke

jkT x be the Fourier series of the trained neural network.
Then, the global optimum of equation 9 obeys

|dk| ≤
1

‖k‖2
, k ∈ Zm. (10)

This proposition shows that SN encourages learning a mapping with decaying spectral coefficients.
Thus, it is expected to improve network robustness to label noise. It is possible to extend this result
to normalization to a constant other than 1. In this case, we get the same bound as before but with
α =

∏L
l=1 αl in the nominator of the right-hand-size of equation 10.

To appreciate why using the spectral norm can be a good approximation to a regularization on
the Jacobian of the network in all locations consider the following simple case of two layer linear
network φ(x) =W2(W1x+ b1). In this case, the norm of the Jacobian of the network is ‖W2W1‖2,
which is the spectral norm of W2W1. In our case, we regularize each of them independently using
the bound ‖W2W1‖2 ≤ ‖W2‖2 ‖W1‖2, which is tight since we get equality in it when the right
singular vectors of W1 are equal to the left singular vectors of W2.

While the decay rate in Proposition 4 is weaker than the one in Proposition 3, the actual decay rates
might be stronger. Moreover, the guarantee in Proposition 4 is independent of the training size and
the loss function used, i.e., it applies also to minimization with the categorical cross-entropy loss
in the case of classification. Note also that for the proposition we do not need the assumption of
uniform sampling assumption. As we show next, this regularization indeed improves the label noise
robustness in real data classification.

4 EXPERIMENTS

In this section, our theoretical findings are validated in the framework of image classification with
label noise. We empirically examine the application of SN in synthesized noisy datasets, with a
variety of noise patterns and rates, as well as in a real-world noisy dataset. Our experiments demon-
strate that indeed, using SN improves performance over conventional training, independently of
both architecture and dataset. Moreover, SN improvement is evident even when combined with
other methods. Experiments technical details are provided in Appendix F.

We added synthetic label noise of two popular statistical models (uniform and flip noise; see Patrini
et al. (2017)) in various rates to CIFAR-10, CIFAR-100, and MNIST. All convolutional network
(Springenberg et al., 2014) and LeNet-5 (LeCun et al., 1998) were utilized to classify the CIFAR
datasets and MNIST, respectively. For the baseline networks, we used cross-entropy loss with `2
regularization, and applied early stopping (according to the validation set accuracy). All details
regarding the datasets, artificial noise, networks, training procedures and hyperparameters are spec-
ified in Appendix G. We present here results for CIFAR-10; The results for CIFAR-100 and MNIST
are reported in Appendix H. In addition, comparison with Jacobian regularization is presented in
Appendix B, and confirms that SN is better.

4.1 BOUNDING THE NETWORK WEIGHTS INCREASES ITS SMOOTHNESS

Before showing the effect of weight regularization on accuracy, we first validate a core claim in our
analysis: regularizing the network weights either by `2 or by SN improves its smoothness. To do so,
we calculate the averaged squared Frobenius norm of the network Jacobian over the test data, which
is a measure of the network smoothness. We check several configurations: without regularization
(except early stopping), with the baseline `2, 100 times increased `2 (strong `2), and `2 with SN.
Table 1 displays the Jacobian measure for CIFAR-10 in all noise rate-regularization combinations
for uniform and flip noises. It can be seen that as the level of `2 regularization rises, the DNN is
smoother, while the `2 with SN configuration provides the smoothest result. As we show next, this
is done without compromising the classification accuracy, but vice-versa.

4.2 CLASSIFICATION WITH SPECTRAL NORMALIZATION

We turn to demonstrate the contribution of adding SN in various classification tasks with label
noise. Tables 2 and 3 present the test accuracy for CIFAR-10 dataset, corrupted by uniform and flip
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Table 1: Bounding the network weights increases its smoothness. Squared Frobenius norm of the
network Jacobian matrix, averaged over CIFAR-10 test data, for various noise rates and regulariza-
tion methods.

Uniform Noise Flip Noise

Regularization
Noise Rate 0 0.1 0.3 0.5 0.7 0.1 0.2 0.3 0.4 0.5

No 4736 2411 1055 329 100 3125 2789 2608 2484 2426
`2 4500 2312 942 357 90 3094 2654 2620 2362 3181
Strong `2 1785 1060 378 442 23 1537 1400 1258 1128 1199
`2 + SN 465 434 362 233 79 377 343 324 349 358

noise, respectively. The regularizations used are as in Table 1. We also present SN alone for the
uniform case. Note that it improves over the baseline and also `2 but it can be seen that in all noise
levels, `2 regularization combined with SN gains the highest test accuracy. Therefore, we use them
together. Note that both of them bound the network derivatives and thus regularize its smoothness
according to our analysis in Section 3. Secondly, our expectation that higher smoothness of the
network increases the resistance to label noise is correct for all subjected cases except for strong `2.
Compared to baseline `2, strong `2 squeezes the Jacobian, but degrades the test accuracy. This may
happen as a high `2 coefficient overshadows the cross-entropy loss weight. In contrast, SN imposes
smoothness without affecting the learning process.

Table 2: CIFAR-10 test accuracy when trained with different rates of uniform noise and different
regularization methods.

Regularization
Noise Rate 0 0.1 0.3 0.5 0.7

No 89.61±0.11 86.87±0.21 82.95±0.36 78.53±0.39 69.80±0.20
`2 90.03±0.19 87.42±0.10 83.57±0.52 79.28±0.37 69.88±0.81
Strong `2 80.63±0.45 76.84±0.80 64.75±1.23 71.34±0.31 45.10±3.28
SN 90.60±0.07 89.18±0.13 84.93±0.16 79.88±0.26 69.55±0.38
`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45

Table 3: CIFAR-10 test accuracy when trained with different rates of flip noise and different regu-
larization methods.

Regularization
Noise Rate 0.1 0.2 0.3 0.4 0.5

No 87.63±0.30 85.93±0.24 83.39±0.30 80.76±0.43 72.45±0.72
`2 88.41±0.40 87.55±0.23 85.81±0.52 82.47±0.38 73.19±0.98
Strong `2 78.43±0.23 76.64±0.47 72.53±0.50 68.59±0.54 61.29±0.42
`2 + SN 89.69±0.19 88.22±0.41 86.03±0.40 82.97±0.49 73.24±0.20

To show that the accuracy improvement is indeed stemming from SN, we present the spectral norms
of the layers of the baseline network in Table 4. The first thing that the table shows is that indeed
the spectral norm of the network layers increase as the noise rate becomes larger. This justifies
the assumption we make in Section 3 indicating that the noise adds high frequency components in
the network mapping and makes it less smooth. Notice that SN reduces the spectral norms of the
network (as they are greater than 1 in the baseline) and thus improve performance. All this stand in
line with our claims above that relate smoothness to robustness.

4.3 SN COMBINED WITH OTHER REGULARIZATION METHODS

To emphasize the fact that SN can be combined with other label noise resistance methods (in ad-
dition to early stopping) and still gain a performance improvement, we also report its performance
when used along with mixup and minimum entropy regularization (Grandvalet & Bengio, 2005;
2006; Lee, 2013). Mixup is a simple and data-agnostic data augmentation routine, which extends
the training distribution via convex combinations of training examples pairs. Mixup encourages
the model to behave linearly in-between training examples, and by that implicitly controls model
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Table 4: Spectral norms of the baseline network layers.

Noise rate
Layer 1 2 3 4 5 6 7 8 9

0 3.60 5.01 4.33 5.94 5.89 5.93 4.99 5.89 2.04
0.1 3.46 4.96 4.35 5.87 5.94 5.65 5.00 6.91 1.99
0.3 3.46 4.96 4.35 5.87 5.94 5.65 5.00 6.91 1.99
0.5 4.24 8.68 7.37 9.90 11.11 11.47 11.04 13.96 2.48
0.7 4.09 8.17 7.03 8.36 8.35 7.87 9.00 9.25 2.47

complexity. Furthermore, it was empirically found that mixup reduces the memorization of cor-
rupted labels. Table 5 reports test accuracy of CIFAR-10 with different rates of uniform noise, when
regularized by SN, mixup, and their combination. Mixup improves the baseline accuracy, and the
addition of SN increases it even more. Results for SN combined with minimum entropy regulariza-
tion are reported in Appendix I. The behaviour of SN improvement is observed also there.

Table 5: SN combined with mixup. CIFAR-10 test accuracy when trained with different rates of
uniform noise, using SN and mixup.

Regularization
Noise Rate 0 0.1 0.3 0.5 0.7

`2 90.03±0.19 87.42±0.10 83.57±0.52 79.28±0.37 69.88±0.81
`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45
`2 + Mixup 90.35±0.17 88.03±0.18 84.63±0.28 79.41±0.40 71.14±0.43
`2 + Mixup + SN 91.47±0.10 89.94±0.15 86.04±0.09 80.29±0.23 71.43±0.35

4.4 REAL NOISE

Clothing1M dataset contains 1M images of clothing obtained from online shopping websites. The
images are classified to one of 14 classes by using their surrounding texts, and therefore the labels
contain many errors. A small portion of the noisy labels was manually refined and split into training,
validation and test sets of sizes 50K, 14K and 10K, respectively. As commonly done for this dataset,
e.g., by Patrini et al. (2017); Wang et al. (2019); Xu et al. (2019a), we also used a bottleneck ResNet-
50 (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009). For preprocessing, we used a
resize to 256× 256, middle crop to 224× 224 and mean-subtraction as in Tanaka et al. (2018). As
opposed to most works, no data augmentation was performed, and our fine-tuning did not utilize the
additionally provided clean training set. We used SGD with momentum 0.9, a batch size of 32, and
an `2 regularization coefficient of 10−3, for two epochs, with learning rates 8 · 10−4 and 8 · 10−5.
As Table 6 shows, adding SN improves test accuracy, when applied both with and without mixup.

Table 6: Clothing1M test accuracy

`2 `2 + SN `2 + mixup `2 + mixup + SN
69.12 70.01 70.3 70.59

5 CONCLUSION

In this paper, the natural robustness of DNNs to label noise is investigated from a new point of view.
A spectral-domain analysis is used to provide theoretical tradeoffs between the data fitting and the
interpolation smoothness. We show that this trade-off can be controlled by the level of the network
weights regularization. We use these findings to get new insights with respect to networks robustness
to label noise. By leveraging the observation that label noise imposes high frequencies in the training
data, it is concluded that bounding the network weights increases its robustness. Consequently, we
justify the commonly used `2 and early stopping regularizations in the presence of label noise.
Furthermore, we suggest using SN, which constitutes a tighter bound on the network derivatives
(compared to `2) and attends the entire input space at once. In addition, since the suggested method

9
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has distinct and complementary properties for the subjected problem, it can be integrated into other
strategies, to further improve the resistance to label noise. Numerical results confirm the validity of
our theoretical findings and proposed strategy on both synthetic and real-world datasets.
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A NOTATION

We use the following notation: scalars, column vectors, matrices and sets are denoted by italic
letters (x), boldface lower-case letters (x), boldface upper-case letters (X), and calligraphic upper-
case letters (X ), respectively. The ith element of a vector x is denoted by xi, and the element of the
ith row and jth column of X is denoted by Xij . ‖x‖2, ‖X‖2, and ‖X‖F denote the Euclidean norm
of x, the spectral norm of X, and the Frobenious norm of X, respectively. The all-zeros vector, the
all-ones vector, and the identity matrix are denoted by 0, 1, and I, respectively, with size clear from
context. The transpose operation is denoted by the superscript T .

Vector indexing. Given a vector of indices n = [n1, . . . , nm], we abuse notation and use it to
index vectors and matrices. This is done by simply converting (uniquely) the tensor indices in n to
be vector indices as if the tensor was represented in a column-stack. Thus, we can simply index a
vector x using xn. For a matrix Pli (with l, i ∈ Zm) denotes indexing the entries of the matrix P
after transforming the coordinate in l, i to their corresponding “column-stack” coordinates.

B CLASSIFICATION WITH JACOBIAN REGULARIZATION

During the work process, the direct regularization of the network derivatives was empirically ex-
amined, in addition to the indirect regularization through the network weights. Here we present the
effect of the Jacobian regularization (Sokolić et al., 2017; Varga et al., 2017; Jakubovitz & Giryes,
2018; Hoffman et al., 2019) on smoothness and accuracy, compared with SN. Table 7 reports the
averaged squared Frobenius norm of the network Jacobian matrix, over CIFAR-10 test data, for
various rates of uniform and flip noises in the train data. Almost in all cases, the addition of SN
to the baseline network is more effective than the addition of Jacobian regularization for smoothing
out the network. It is interesting to note that for extremely high rates of uniform noise, Jacobian
regularization is more effective. Tables 8 and 9 present CIFAR-10 test accuracy for uniform and flip
noises, respectively. With correspondence to the smoothness results, SN increases accuracy more
than Jacobian in all cases, except for the extremely high noise rates. This correspondence between
the smoothness and the achieved accuracy coincides with our expectation that higher smoothness of
the network increases the resistance to label noise. Note that we also applied Jacobian regularization
along with mixup (see Table 8). This flavor of Jacobian regularization is broader than the vanilla
form, as it attends many input-domain points, rather than only the given training points. While this
improves accuracy in most cases compared with vanilla Jacobian, SN performance is still superior.
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Table 7: Jacobian regularization - network smoothness. Squared Frobenius norm of the network
Jacobian matrix, averaged over CIFAR-10 test data for various noise rates, and when trained with
SN or Jacobian regularization.

Uniform Noise Flip Noise

Regularization
Noise Rate 0 0.1 0.3 0.5 0.7 0.1 0.2 0.3 0.4 0.5

`2 + SN 465 434 362 233 79 377 343 324 349 358
`2 + Jacob 2390 686 392 90 19 2145 1962 1904 705 547

Table 8: Jacobian regularization - network accuracy. CIFAR-10 test accuracy when trained with
different rates of uniform noise and with SN or Jacobian regularization.

Regularization
Noise Rate 0 0.1 0.3 0.5 0.7

`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45
`2 + Jacob 89.87±0.59 87.66±0.30 84.10±0.47 79.73±0.46 72.22±0.30
`2 + Jacob + mixup 90.57±0.19 87.96±0.24 84.89±0.31 79.72±0.34 71.26±0.55

Table 9: Jacobian regularization - network accuracy. CIFAR-10 test accuracy when trained with
different rates of flip noise and with SN or Jacobian regularization.

Regularization
Noise Rate 0.1 0.2 0.3 0.4 0.5

`2 + SN 89.69±0.19 88.22±0.41 86.03±0.40 82.97±0.49 73.24±0.20
`2 + Jacob 88.41±0.16 87.50±0.16 85.69±0.25 82.43±0.36 75.39±1.02

To summarize, even though Jacobian regularization applies directly to the network derivatives, it is
not always the best option, and regularization through the weights can be better. This conforms with
our claim that Jacobian regularization is limited by the fact that it attends only to sampled points.
Thus, we choose to focus our effort on the weight-based regularizations and leave the Jacobian reg-
ularization for future work. This may include understanding the relations between the regularization
methods, and leveraging it to compose an optimal combination of them.

C SPECTRAL ANALYSIS REMINDER

As a reminder, we present here the relevant basics of spectral analysis. A function g : [0, 2π]m → C
is considered appropriate if the following holds (Oppenheim et al., 1997):

1. g satisfies Dirichlet condition.

2. g is squared integrable.

3. The Jacobian g′ exists and has a finite number of discontinuities.

4. In the one dimensional case g(0) = g(2π), g′(0) = g′(2π). In the multidimensional case,
the same holds when adding π to any of the coordinates.

Such an appropriate function satisfies the following properties:

• Fourier series:

g(x) =
∑
k∈Zm

αke
jkT x, αk =

1

(2π)m

∫
x∈[0,2π]m

g(x)e−jk
T xdx, k ∈ Zm (11)

• Derivative property:

dg(x)

dxi
=
∑
k∈Zm

jkiαke
jkT x (12)
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• Parseval’s theorem: ∑
k∈Zm

‖αk‖22 =
1

(2π)m

∫
x∈[0,2π]m

|g(x)|2dx (13)

• Norm of Jacobian property (combination of the derivative property and Parseval’s theorem)

1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dg(x)dx

∥∥∥∥2
2

dx =
∑
k∈Zm

‖k‖22 ‖αk‖
2
2 (14)

D PROPOSITIONS PROOFS

D.1 PROOF OF PROPOSITION 1

Proof. We use the Fourier series with uniform sampling, i.e., xn =
[
2πn1

N , . . . , 2πnmN
]
, where

ni ∈ {0, . . . , N − 1} and n ∈ {0, . . . , N − 1}m. Therefore, we have that

1

Nm

∑
n∈{0,...,N−1}m

(φ(xn)− f(xn))2 (15)

=
1

Nm

∑
n∈{0,...,N−1}m

( ∑
k∈Zm

(dk − ck)ejk
T xn

)∗( ∑
q∈Zm

(dq − cq)ejq
T xn

)

=
∑
k∈Zm

∑
q∈Zm

(dk − ck)∗ (dq − cq) ·
1

Nm

∑
n∈{0,...,N−1}m

ej
2π
N (q−k)Tn

=
∑
k∈Zm

∑
l∈Zm

(dk − ck)∗ (dk+lN − ck+lN ) .

The last equality is due to the fact that 1
Nm

∑
n∈{0,...,N−1}m e

j 2π
N (q−k)Tn is 1 if q = k+lN, l ∈ Zm.

Otherwise, it becomes a geometric series sum with a common ratio of ej(q−k)
2π
N , which equals 0.

This can be also seen by noticing that the sum is basically an inner product between the column-
stacked columns of a multidimensional DFT. Using Parseval’s theorem and the derivative property
of the Fourier coefficients for the regularization term, we can rewrite equation 2 as:

min
{dk}k∈Zm

∑
k∈Zm

∑
l∈Zm

(dk − ck)∗ (dk+lN − ck+lN ) + λ
∑
k∈Zm

‖k‖22 |dk|
2
. (16)

Taking the derivative w.r.t dk and equating to zero, we have∑
l∈Zm

(dk+lN − ck+lN ) + λ ‖k‖22 dk = 0, k ∈ Zm. (17)

Rearranging yields

λ ‖k‖22 dk +
∑
l∈Zm

dk+lN =
∑
l∈Zm

ck+lN , k ∈ Zm. (18)

equation 18 represents an infinite system of equations for all the spectral coefficients {dk}k∈Zm .
Note that each Fourier coefficient dk depends on the coefficients of φ and f , whose index distance
from k is a multiple of N (in m possible dimensions). Accordingly, we can partition the indices
vectors to Nm sets, such that each set is represented by a vector n ∈ {0, . . . , N − 1}m such that all
of its vectors result with the reminder n when dividing their elements by N . The indexes in each set
are uniformly spaced and have a gap of N from each other in each dimension. Following that, we
can split equation 18 to Nm systems, each corresponding to one of the Nm index sets. Then, for a
given set, denote

• c ,
∑
l∈Zm ck+lN ∈ Cm is the sum of f coefficients with indexes belonging to the set

• u is an infinite sequence (represented as an ”infinite vector”) of the coefficients of φ with
indexes belonging to the set, i.e., ul = dk+lN , l ∈ Zm
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• 1 is an “infinite vector” with all ones, i.e, 1l = 1, l ∈ Zm. Note that we could just have
used l ∈ Z since it is all ones in all indices.
• 11T is the infinite ones matrix
• Q is an infinite diagonal matrix, such that Qll = ‖k + lN‖22 , l ∈ Zm

With these notations, we can rewrite equation 18 as:(
λQ+ 11T

)
u = c1. (19)

Note that Q is invertible and 11T is of rank one. Thus, using the Sherman–Morrison matrix identity
we have:

u = c
(
λQ+ 11T

)−1
1 =

c

λ

(
Q−1 +P

)
1, (20)

where

Pli =
1

λ+
∑
t∈Zm

1
‖k+tN‖22

1

‖k + lN‖22

1

‖k + iN‖22
, l, i ∈ Zm. (21)

Now, for a single unknown in u:

ul = dk+lN =
c

λ

1

‖k + lN‖22

(
1 +

∑
t∈Z

1
‖k+tN‖22

λ+
∑
t∈Z

1
‖k+tN‖22

)

≤ 2c

λ

1

‖k + lN‖22
= O

(
1

λ ‖k + lN‖22

)
, l ∈ Zm. (22)

This is correct for any k, l ∈ Z. Replacing k + lN by k ∈ Zm, we have

dk = O

(
1

λ ‖k‖22

)
. (23)

An extension of this proof to random sampling can be done by using non-orthogonal subsampled
Fourier frames (see Giryes (2020)). �

D.2 PROOF OF PROPOSITION 2

Proof. Assume φ is represented by

φ(x) = φL(φL−1(· · ·φ2(φ1(x;θ1);θ2) · · · ;θL−1);θL), (24)

where φl(·;θl) is the l-th layer with parameters θl, l = 1, . . . , L. The output of the l-th layer is
denoted by zl ∈ RDl , i.e. zl , φl(zl−1;θl), l = 1, . . . , L, and z0 , x. Applying the chain rule to
compute the network Jacobian matrix yields

dφ(x)

dx
=

L∏
l=1

dzl
dzl−1

. (25)

By using the matrix norm submultiplicativity property, we get∥∥∥∥dφ(x)dx

∥∥∥∥2
2

=

∥∥∥∥∥
L∏
l=1

dzl
dzl−1

∥∥∥∥∥
2

2

≤
L∏
l=1

∥∥∥∥ dzl
dzl−1

∥∥∥∥2
2

. (26)

Now we will bound the layer Jacobian matrix spectral norm
∥∥∥ dzl
dzl−1

∥∥∥
2
, for various layer types and

show that it can be expressed only by the weights’ norm:

• FC layer: an FC layer is described by

zl = φl(zl−1;θl) = σl(Wlzl−1 + bl), (27)
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where σl is the layer activation function. Hence, its Jacobian matrix is given by

dzl
dzl−1

= diag
(
σ
′

l(Wlzl−1 + bl)
)
Wl. (28)

Using the matrix norm submultiplicativity property we get∥∥∥∥ dzl
dzl−1

∥∥∥∥
2

=
∥∥∥diag (σ′l(Wlzl−1 + bl)

)
Wl

∥∥∥
2

≤
∥∥∥diag (σ′l(Wlzl−1 + bl)

)∥∥∥
2
‖Wl‖2 . (29)

Since the network activation functions are non-expensive, the diagonal matrix entries are
not greater then 1. Hence, its spectral norm is at most 1, and we get∥∥∥∥ dzl

dzl−1

∥∥∥∥
2

≤ ‖Wl‖2 . (30)

Note that the commonly used activation functions such as ReLU, sigmoid and hyperbolic
tangent, satisfy the non-expensive condition. Note that this proof is also relevant for a
linear layer (corresponds to an identity activation, which is also non-expensive) and for
convolutional layer (which can be expressed also as matrix multiplication).

• Softmax layer: The softmax function operation on t ∈ RD is defined by

σ(t) = softmax(t) =
et

1T et
, (31)

where the exponential is applied element-wise. Hence, its Jacobian matrix is given by

dσ(t)

dt
= diag(σ(t))− σT (t)σ(t). (32)

Using the Gershgorin circle theorem, we can bound its spectral norm by∥∥∥∥dσ(t)dt

∥∥∥∥
2

≤ max
0≤i≤D−1

σi(t)− σ2
i (t) + σi(t)

D−1∑
j=0

j 6=i

σj(t)

≤ max
0≤i≤D−1

2σi(t)− σ2
i (t), (33)

where the last inequality is due to the fact that
∑D−1
j=0 σj(t) = 1. The above upper bound

is the maximal value of a concave parabola p(u) = −u2 + 2u in the interval (0, 1), which
equals 1. Hence the Jacobian matrix of a softmax layer satisfies∥∥∥∥dσ(t)dt

∥∥∥∥
2

≤ 1. (34)

• Pooling layer: A pooling layer can be written as

zl = φl(zl−1;θl) = Pl(zl−1)zl−1, (35)

where P(·) is not subject to learning. When the pooling layer operates on non-overlapping
patches, the matrix representing it has orthogonal rows. In that case, the singular values are
equal to the squared norm of the rows. In each row of max-pooling matrix, one entry takes
the value of 1, and the rest entries equal 0. In an average pooling matrix rows, patch size
entries take the value of 1

patch size , and the rest entries equal 0. Thus, in both cases, the
largest singular value is smaller or equal 1, and we get∥∥∥∥ dzl

dzl−1

∥∥∥∥
2

= ‖Pl(zl−1)‖2 ≤ 1. (36)

17



Under review as a conference paper at ICLR 2021

To summarize, we showed that a layer with parameters involved (linear and non-linear FC and
convolutional layers) obeys the bound ∥∥∥∥ dzl

dzl−1

∥∥∥∥
2

≤ ‖Wl‖2 , (37)

and a layer with no parameters involved (softmax and pooling) obeys∥∥∥∥ dzl
dzl−1

∥∥∥∥
2

≤ 1. (38)

Combining these bounds with equation 26 and with the known relation between spectral and Frobe-
nius matrix norms, we get the desired result of equation 4

�

D.3 PROOF OF PROPOSITION 3

Proof. We get equation 6 using the same consideration as in the derivation of equation 40. Solving
equation 6 using Karush-Kuhn-Tucker multipliers and the fact that solutions in constrained opti-
mization tend to be on the boundary points (unless the direct solution to the `2 distance already lies
within the feasible set), leads us to equation 7. �

D.4 PROOF OF PROPOSITION 4

Proof. Using the derivative property and Parseval’s theorem, followed by Proposition 2 and the fact
that αl = 1, l = 1, . . . , L, we have∑

k∈Zm
‖k‖22 |dk|

2 =
1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dφ(x)dx

∥∥∥∥2
2

dx ≤
L∏
l=1

‖Wl‖22 = 1. (39)

By observing that ‖k‖2 |dk|2 ≤
∑
k∈Zm ‖k‖

2
2 |dk|2 and plugging it on the left-hand-side of equa-

tion 39, we get that ‖k‖2 |dk|2 ≤ 1. Dividing by ‖k‖2 leads to equation 10. �

E ASYMPTOTIC EXTENSION OF PROPOSITION 1

Proposition 5 Let φ(x) =
∑
k∈Zm dke

jkT x and f(x) =
∑
k∈Zm cke

jkT x be the Fourier series of
the trained neural network and the target mapping function, respectively. If the training set size
satisfies N →∞, then the global optimum of equation 2 is equivalent to the one of

min
{dk}k∈Zm

∑
k∈Zm

|dk − ck|2 + λ
∑
k∈Zm

‖k‖22 |dk|
2
, (40)

and the optimal solution reads as

dk =
ck

1 + λ ‖k‖22
, k ∈ Zm. (41)

Proof. With a uniform sampling in the interval [0, 2π], when N →∞, we have

1

N

N∑
n=1

(φ(xn)− f(xn))2 −−−−→
N→∞

1

(2π)m

∫
x∈[0,2π]m

(φ(x)− f(x))2dx =
∑
k∈Zm

|dk − ck|2, (42)

where the last equality stems from Parseval’s theorem for φ − f . By using the derivative property
and applying Pareseval’s theorem, we have

1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dφ(x)dx

∥∥∥∥2
2

dx =
∑
k∈Z
‖k‖22 |dk|

2
. (43)

Then, equation 41 follows simply by minimizing equation 40. We can extend the proof for random
sampling of the input domain by replacing the Riemann integral by a Lebesgue integral related to
the sampling distribution. �
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F EXPERIMENTS TECHNICAL DETAILS

All experiments were averaged over 5 trials, implemented using Tensorflow 1.15 and performed on
Nvidia GeForce GTX Titan X GPU. Input pixels of the synthetic datasets were scaled to range [0, 1].
For Clothing1M dataset, per-pixel mean subtraction was performed.

SN. We adapt the implementation proposed in Yoshida & Miyato (2017) and Miyato et al. (2018).

Jacobian. Instead of calculating the squared Frobenius norm of the network logits Jacobian matrix,
we use an approximation of it, as proposed by Varga et al. (2017); Hoffman et al. (2019).
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G SYNTHETIC NOISE EXPERIMENTS DETAILS

G.1 DATASETS, NETWORKS AND TRAINING

G.1.1 CIFAR-10, CIFAR-100

Datasets. CIFAR-10 and CIFAR-100 datasets consist of 32x32 color images, uniformly distributed
to 10 and 100 classes, respectively. The data is divided into a training set with 50,000 examples and a
test set with 10,000 examples. We retained 10% from each training set for validation, and corrupted
the remaining training examples, according to the uniform and flip schemes proposed in Patrini et al.
(2017). The flip noise for CIFAR-10 is described by: truck→ automobile, bird→ airplane, deer→
horse, cat↔ dog. In CIFAR-100 the 100 classes are grouped into 20 super-classes of size 5, e.g.,
flowers contains orchids, poppies, roses, sunflowers, and tulips. Within each super-class, the noise
flips each class into the next, circularly.

Network. For both CIFAR-10 and CIFAR-100 we used the all convolutional network (Springenberg
et al., 2014), but replaced each stride 2 in the convolutional layers with max pooling with stride 2.
The network consists of 9 convolutional layers: 3 of size 3x3x96, 5 of size 3x3x192 and last one of
size 1x1x10, followed by global averaging and a softmax output. Max pooling is used after layers 3
and 6, and each convolution layer is followed by BN (Ioffe & Szegedy, 2015) and ReLU activation.
For the baseline of the network, we used cross-entropy loss with `2 regularization, and applied early
stopping (according to the validation set accuracy).

Training. The training on CIFAR datasets was performed using ADAM optimizer (Kingma & Ba,
2014) with default parameters, an initial learning rate of 0.001, a learning rate decay by a factor of
10 every 10 epochs, and a batch size of 32.

G.1.2 MNIST

Dataset. MNIST is a dataset of handwritten digits, represented by 28x28 grayscale images, which
are split to a training set of size 60,000, and a test set of size 10,000. We retained 10% from the
training set for validation, and corrupted the remaining training examples, according to the flip
scheme. In order to further imitate realistic scenario, we used a bidirectional flip of similar classes:
1↔ 7, 2↔ 3, 4↔ 9, 5↔ 6.

Network. We used LeNet-5 (LeCun et al., 1998), where each layer (except the last layer) is batch
normalized before the ReLU activation. The network consists of 2 convolutional layers of sizes
5x5x6 and 5x5x16, each followed by max pooling with stride 2; flattering layer, which vectorizes
each 3-D tensor into a vector; 3 FC layers of sizes 120, 84 and 10, and a softmax output. For
the baseline of the network, we used cross-entropy loss with `2 regularization, and applied early
stopping (according to the validation set accuracy).

Training. The training was performed using SGD optimizer with momentum 0.9, an initial learning
rate of 0.01, a learning rate decay by a factor of 10 every 15 epochs, and a batch size of 32.

G.2 OPTIMAL HYPERPARAMETERS

The hyperparameters were tuned through the validation set. We started with searching the optimal `2
coefficient for the baseline network of each experiment, and fixed it. The search space was {10−6, 5·
10−6, 10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3}. Then, we looked for the best Jacobian regularization
configuration. First, we figured that it is better to add it after 10 epochs, rather than from the
beginning. This observation stands in line with the approach of Jakubovitz et al. (2019). Then, for
each experiment, we searched the optimal coefficient out of {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3},
and fixed it. In the same manner, we set the entropy coefficient to be one of {0.5, 1, 1.5, 2} and
the mixup α to be in [0.2, 0.8]. Number of epochs ranged from 20 to 50, depending on the dataset
and the noise rate. Optimal hyperparameters of all experiments are specified in Table 10, Table 11,
Table 12, Table 13, and Table 14 for CIFAR-10 uniform noise, CIFAR-10 flip noise, CIFAR-100
uniform noise, CIFAR-100 flip noise, and MNIST flip noise, respectively.
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Table 10: Optimal hyperparameters for CIFAR-10 with various uniform noise rates.

Regularization
Noise Rate 0 0.1 0.3 0.5 0.7

`2 10−4 10−4 10−4 10−5 10−5

Jacob 10−5 10−4 10−4 5 · 10−4 10−3

Entropy 1 2 2 1 0.5
Entropy + SN 0.5 0.5 1 1 0.5
Mixup 0.2 0.3 0.5 0.4 0.4
Epochs 20 20 20 20 30

Table 11: Optimal hyperparameters for CIFAR-10 with various flip noise rates.

Regularization
Noise Rate 0.1 0.2 0.3 0.4 0.5

`2 10−4 10−4 10−4 10−4 10−4

Jacob 10−5 10−5 10−5 10−4 10−4

Epochs 20 20 20 20 20

Table 12: Optimal hyperparameters for CIFAR-100 with various uniform noise rates.

Regularization
Noise Rate 0 0.1 0.3 0.5

`2 10−4 10−4 10−4 5 · 10−5
Epochs 50 50 50 50

Table 13: Optimal hyperparameters for CIFAR-100 with various flip noise rates.

Regularization
Noise Rate 0.1 0.3 0.5

`2 10−4 10−4 10−4

Epochs 35 35 35

Table 14: Optimal hyperparameters for MNIST with various flip noise rates.

Regularization
Noise Rate 0 0.1 0.2 0.3 0.4 0.5

`2 10−4 10−4 10−4 10−4 10−4 10−3

Epochs 30 30 30 30 30 30

H EXTENDED EXPERIMENTS

H.1 CIFAR-100

Here, we illustrate the SN effect in a more challenging task, in which there are fewer images per
class. Tables 15 and 16 shows the test accuracy of the CIFAR-100 dataset when corrupted by uniform
noise and flip noise, respectively. In all cases, the addition of SN increases accuracy.
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Table 15: CIFAR-100 test accuracy for different rates of uniform noise, when trained with and
without SN.

Regularization
Noise Rate 0 0.1 0.3 0.5

`2 67.96±0.28 65.15±0.35 59.33±0.26 51.53±0.30
`2 + SN 68.75±0.32 66.59±0.23 61.23±0.15 52.56±0.69

Table 16: CIFAR-100 test accuracy for different rates of flip noise, when trained with and without
SN.

Regularization
Noise Rate 0 0.1 0.3 0.5

`2 67.96±0.28 65.75±0.33 60.48±0.10 32.77±0.36
`2 + SN 68.75±0.32 67.03±0.31 63.50±0.43 33.13±0.62

H.2 MNIST

Here, we demonstrate the SN power in another network architecture, which has FC layers. The
MNIST dataset is considered relatively simple. Indeed, the baseline network, and even unregularized
network, show very good results for uniform noise. Flip noise introduces a small performance
degradation, which, as can be seen in Table 17, is mitigated when the network weights are spectrally
normalized.

Table 17: MNIST test accuracy for different rates of flip noise, when trained with and without SN.

Regularization
Noise Rate 0 0.1 0.2 0.3 0.4 0.5

`2 99.21±0.09 98.87±0.02 98.49±0.13 97.86±0.12 91.64±1.02 65.70±1.76
`2 + SN 99.32±0.08 99.00±0.04 98.79±0.07 98.23±0.10 95.66±1.09 66.03±1.81

I SN COMBINED WITH MINIMUM ENTROPY REGULARIZATION

Minimum entropy regularization incorporates the entropy of the network output probabilities into
the loss function, and encourages the model to have high confidence in its prediction. Table 18
shows test accuracy of CIFAR-10 with different rates of uniform noise, when regularized by SN,
minimum entropy, and their combination. Indeed, entropy regularization improves the accuracy,
and the addition of SN increases it even more.

Table 18: SN combined with minimum entropy. CIFAR-10 test accuracy when trained with different
rates of uniform noise, using SN and entropy regularization.

Regularization
Noise Rate 0 0.1 0.3 0.5 0.7

`2 90.03±0.19 87.42±0.10 83.57±0.52 79.28±0.37 69.88±0.81
`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45
`2 + Entropy 90.07±0.16 88.33±0.18 85.45±0.19 81.27±0.56 70.97±0.50
`2 + Entropy + SN 90.77±0.23 89.38±0.14 86.82±0.34 83.24±0.12 72.64±0.17
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