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Abstract

Cross-modal embeddings form the foundation
for multi-modal models. However, visualiza-
tion methods for interpreting cross-modal em-
beddings have been primarily confined to tradi-
tional dimensionality reduction (DR) techniques
like PCA and t-SNE. These DR methods primar-
ily focus on feature distributions within a sin-
gle modality, whilst failing to incorporate met-
rics (e.g., CLIPScore) across multiple modalities.
This paper introduces AKRMap, a new DR tech-
nique designed to visualize cross-modal embed-
dings metric with enhanced accuracy by learn-
ing kernel regression of the metric landscape in
the projection space. Specifically, AKRMap con-
structs a supervised projection network guided
by a post-projection kernel regression loss, and
employs adaptive generalized kernels that can be
jointly optimized with the projection. This ap-
proach enables AKRMap to efficiently generate
visualizations that capture complex metric dis-
tributions, while also supporting interactive fea-
tures such as zoom and overlay for deeper ex-
ploration. Quantitative experiments demonstrate
that AKRMap outperforms existing DR methods
in generating more accurate and trustworthy vi-
sualizations. We further showcase the effective-
ness of AKRMap in visualizing and comparing
cross-modal embeddings for text-to-image mod-
els. Code and demo are available at https:
//github.com/yilinye/AKRMap.
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1. Introduction
Cross-modal embeddings play a fundamental role for multi-
modal models, functioning as cross-modal encoders (Rom-
bach et al., 2022), objective functions (Ramesh et al., 2022),
or evaluation metrics (Hessel et al., 2021; Wu et al., 2023a)
for tasks like text-to-image (T2I) generation (Peebles & Xie,
2023; Hu et al., 2025). To assess the alignment of multi-
modal models, various evaluation metrics based on these
embeddings have been introduced, such as CLIPScore (Hes-
sel et al., 2021) and Human Preference Score (HPS) (Wu
et al., 2023a;b; Zhang et al., 2024). Despite their utility,
embedding-based evaluations are often difficult to interpret,
as the metrics are typically reported as aggregated values,
without providing insights into instance-level performance.
This deficiency undermines the trustworthiness and trans-
parency of the evaluation.

To address this limitation, dimensionality reduction (DR)
visualization serves as a crucial tool, offering a way to reveal
the landscape of cross-modal metrics and enabling a more
comprehensive understanding of model performance. Re-
cent studies (Liang et al., 2022; Wang et al., 2023b;c) have
explored the use of DR methods for cross-modal embed-
dings. These efforts often leverage established techniques
such as PCA (Li et al., 2018), UMAP (McInnes et al., 2018)
and t-SNE (Van der Maaten & Hinton, 2008), as well as
autoencoder-based approaches (Le et al., 2018; Elhamod
& Karpatne, 2024). However, existing DR methods are
primarily designed to depict feature distributions within
a single modality. When applied to cross-modal metrics,
these methods often produce dense neighborhoods where
points with significantly different metric values are posi-
tioned close, leading to overlap and local occlusion (Figure
1(b)). Moreover, multi-modal models are typically eval-
uated on large-scale datasets containing millions of data
points. This creates a need for rendering contour maps that
can reveal continuous metric distributions. However, lo-
cal neighboring points with a mix of high and low metric
values may be misrepresented, as the contour map depicts
only a single aggregated value, causing inaccurate contour
mapping as illustrated in Figure 1(c).

To construct trustworthy visualizations for cross-modal em-
beddings, a key consideration is to enhance the accuracy
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(a) t-SNE projection (b) local occlusion (c) inaccurate contour map

Figure 1. CLIPScore distribution on the COCO dataset by t-SNE
(a). The visualization shows dense neighboring points with signifi-
cantly different metric values, causing overlapping and occlusion
(b) and highly inaccurate contour mapping (c).

of metric contour mapping in the projected 2D space. As
contour estimation typically relies on radial basis function
(RBF) kernel (e.g., Gaussian kernel), we seek to enhance the
kernel-based mapping by coordinating it with the DR pro-
cess. Drawing inspiration from supervised t-SNE (Hajderanj
et al., 2019), we introduce Adaptive Kernel Regression Map
(AKRMap), a supervised DR method that leverages adaptive
kernel regression to effectively visualize the distribution of
cross-modal embedding metrics. Specifically, AKRMap first
constructs a supervised DR network explicitly guided by
post-projection kernel regression loss with neighborhood
constraint (Sect. 4.1.1). Next, to account for the gap be-
tween high-dimensional and low dimensional kernels, we
improve the flexibility of the post-projection kernel through
adaptive generalized kernel jointly learned with the projec-
tion (Sect. 4.1.2). This approach enables the generation
of scatterplots for discrete data points and contour maps
for continuous metric landscapes, while also supporting
advanced features such as overlay views and zooming for in-
teractive interpretation (Sect. 4.2). Both the DR method and
the visualization tool have been implemented as a Python
package and made publicly available.

We conduct quantitative experiments to evaluate AKRMap
against traditional and autoencoder-based DR visualizations
(Sect. 5.1). The results highlight the superior performance
of AKRMap in accurately mapping cross-modal metrics for
both in-sample and out-of-sample data points. We further
demonstrate the practical applications of AKRMap across
three distinct scenarios (Sect. 5.2): 1) visual exploration of
human preference dataset (HPD) (Wu et al., 2023a), 2) vi-
sual comparison of diffusion-based and auto-regressive T2I
models, and 3) visual examination of the global impact for
fine-tuning. These applications illustrate that AKRMap ef-
fectively enables human-in-the-loop interpretation of model
performance on large-scale datasets. Our method can also
be potentially generalized to other modalities such as text-to-
video task, with additional quantitative experiments shown
in Appendix F.

In summary, our contributions are as follows:

• We propose a novel DR method for cross-modal met-
ric visualization, which jointly learns the projection
and metric contour mapping through kernel regression
supervised DR with adaptive generalized kernel.

• We develop a tool for trustworthy visualization of cross-
modal metrics, incorporating visualization features
such as a scatterplot view and a contour map, along
with interactive features like zooming and overlaying.

• We conduct quantitative experiments to demonstrate
the superior performance of AKRMap in generating
more accurate visualizations of cross-modal metric,
and highlight its applications across three scenarios to
enhance the trustworthiness of T2I model evaluation.

2. Related Work
2.1. Cross-Modal Embedding-based Evaluation

Cross-modal embeddings like CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) form the foundation of multi-
modal learning. Specifically, many evaluation methods for
multi-modal models, such as T2I models, rely on these em-
beddings. Conventional metrics like Inception Score (Sali-
mans et al., 2016) and Fréchet Inception Distance (Heusel
et al., 2017) compute the average distance or distributional
difference between generated and reference images in the
embedding space, yet they are insufficient to measure cross-
modal alignment and instance-level performance. With the
advancement of multi-modal AI, cross-modal embedding
metrics like CLIPScore (Hessel et al., 2021) have emerged
to measure the alignment between prompts and generated
images. While being effective in capturing the alignment,
CLIPScore fails to model human preferences. To address
this limitation, recent studies have proposed training spe-
cialized human preference models such as HPS (Wu et al.,
2023a;b; Zhang et al., 2024), PickScore (Kirstain et al.,
2023), and ImageReward (Xu et al., 2024), to better align
with human judgments. For example, ImageReward (Xu
et al., 2024) introduces a systematic pipeline for expert anno-
tations to train preference models, while PickScore (Kirstain
et al., 2023) leverages crowd-sourced human comparisons.

However, these metrics generally provide only an average
score, offering a broad overview of a model’s performance
across the entire embedding space. This highlights the need
for neural embedding visualizations that can expose the de-
tailed distribution of metric values within the cross-modal
embeddings, facilitating instance-level inspection and sup-
porting human-in-the-loop evaluation.

2.2. Visualization for Neural Embeddings

Visualization is an important tool to support data analysis
in conjunction with AI (Wang et al., 2023a; Ye et al., 2024).
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Figure 2. AKRMap is a neural network based DR method designed to learn adaptive kernel regression for visualizing cross-modal
embeddings. The network integrates two key components to jointly learn data point projection and cross-modal metric estimation: 1)
Kernel regression supervision, and 2) Adaptive generalized kernel. The resulting visualizations, including scatterplots and contour maps,
provide a clearer and more accurate representation of the cross-modal metric distribution.

Particularly, it has proven to be effective for enhancing the
understanding of various types of neural embeddings, in-
cluding word embeddings (Mikolov et al., 2013; Chiang
et al., 2020), vision-language embeddings (Liang et al.,
2022; Wang et al., 2023b; Ye et al., 2025), and parame-
ter spaces within loss landscape (Li et al., 2018; Elhamod
& Karpatne, 2024). Commonly, dimensionality reduction
(DR) techniques are employed for visualization. These in-
clude linear DR methods such as PCA (Abdi & Williams,
2010), as well as nonlinear DR methods like t-SNE (Van der
Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018).
Parametric versions of traditional DR methods, which pro-
vide explicit mapping for projections, can be achieved by
training neural networks, such as parametric t-SNE (Gis-
brecht et al., 2015; Damrich et al., 2023), parametric
UMAP (Sainburg et al., 2021) and other parametric meth-
ods for tasks like interactive clustering (Xia et al., 2023) or
streaming data (Xia et al., 2024). Similarly, autoencoder-
based DR methods (Le et al., 2018; Elhamod & Karpatne,
2024) have also been developed, incorporating an additional
objective of reconstructing high-dimensional embeddings
from their projections. Recently, there has been a growing
interest in utilizing DR techniques to visualize cross-modal
embeddings. For instance, UMAP has been employed to
explore and visualize the modality gap between text and
image embeddings (Liang et al., 2022; Wang et al., 2023b).
To address this modality gap and enhance the cross-modal
alignment in visualization space, some studies have intro-
duced fusion-based DR methods (Ye et al., 2025), enabling
the visualization of image embeddings in relation to text
embedding anchor points.

However, previous efforts treat multi-modal embeddings
separately, failing to effectively depict the landscape of
cross-modal metrics (e.g., CLIPScore and HPS). In addi-
tion, existing metric-aware DR techniques focus on a lim-
ited range of particular metrics like distance (Sainburg et al.,
2021) and density (Narayan et al., 2021), without a gen-
eralizable mechanism to preserve other different metrics.
To address this limitation, we propose a kernel regression-

based supervised projection method combined with an adap-
tive generalized kernel. Different from traditional kernel
DR methods like kernel PCA (Schölkopf et al., 1997) that
mainly use kernel to transform the high-dimensional fea-
tures, we develop an adaptive kernel in the projection space
to guide the DR. Notably, to construct the kernel guidance,
we propose a novel cross-validation supervision technique
that bridges between traditionally nonparametric kernel re-
gression and parametric DR. This design allows the propa-
gation of contour estimation errors back into the projection
process. In this way, our method can dynamically adjust
both the DR mapping and the kernel shape, enabling it to
accurately fit the complex landscape of cross-modal metrics.

3. Problem Definition
Taking text-to-image generation models as an example, we
formally define embedding-based metric for multi-modal
models: A pretrained neural network e(·) encodes the
prompt t and the generated image v into a high-dimensional
embedding representations e(t, v), which are subsequently
used to predict a metric score s = f(e). Here, f(·) repre-
sents the final operation applied to the embeddings, such as
cosine distance in HPS (Wu et al., 2023a).

The problem of generating trustworthy visualizations for
cross-modal embeddings can be defined as follows: given
a dataset of prompt-image pairs D = {(ti, vi)}Ni=1 and its
embedding representations e(D) = {e(ti, vi)}Ni=1, we first
seek to learn a manifold M (Goldberg et al., 2008) where
e(D) resides in the high-dimensional embedding space Rd.
This manifold can be "spread out" (reparametrized) in the
visualization space R2 to show the distribution of metric
score across the dataset, where the process can be modeled
as a projection mapping P (·) s.t. P (e(D)) ∈ R2. This pro-
cess aims to learn an explicit mapping function that projects
high-dimensional embeddings to points in 2D space while
accurately preserving the underlying metric distribution.

Next, to visualize a continuous distribution from the dis-
crete projected sample points in P (e(D)), a contour map
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in the 2D space needs to be estimated. Here, we adopt the
approach used by contouring algorithms in various Python
libraries, such as Plotly, by dividing the projected 2D space
into a grid and calculating the metric distribution values at
each grid point. Specifically, suppose the projected coor-
dinates lie within a normalized 2D space of [0, 1] × [0, 1].
For each grid xg = ( i

Nw
, j
Nh

), we compute a value ŝ(xg)
based on the local metric distribution, which is then col-
ored using a continuous colormap. Nw and Nh denote the
number of grids along the x-axis and y-axis, respectively.
In this manner, we can generate a contour map depicting
continuous landscape of the metric distribution from the
discrete projected sample points.

4. AKRMap
We propose Adaptive Kernel Regression Map (AKRMap),
with the workflow illustrated in Figure 2. The input is a
set of cross-modal embeddings with each high-dimensional
vector representing a data point in the embedding space.
First, to synchronize the contour mapping with the projec-
tion for accurate metric landscape estimation, we propose
a cross-modal metric-supervised projection method com-
prising two key components: 1) Kernel Regression Supervi-
sion, which guides the projection to achieve more precise
metric mapping (Sect. 4.1.1), and 2) an Adaptive Gener-
alized Kernel, which accounts for the gap between high-
dimensional and low-dimensional kernels and allows for
more flexible contour mapping to capture complex metric
landscapes (Sect. 4.1.2). Then, we design an interactive vi-
sualization tool to facilitate multi-scale exploration of metric
distribution and individual data points (Sect. 4.2).

4.1. Adaptive Kernel Regression

4.1.1. KERNEL REGRESSION SUPERVISED PROJECTION

According to the problem definition, to achieve an accurate
cross-modal metric visualization, cross-modal metric super-
vision is necessary. To address the challenge of constructing
appropriate supervision for continuous cross-modal met-
ric, we develop a kernel regression supervised projection
method. Specifically, we propose learning a projection net-
work P : Rn → R2 with a Nadaraya-Watson kernel regres-
sion (Ali et al., 2023) in the projected space:

ŝ(x) =

∑N
k=1 K(x− P (e(tk, vk))) · sk∑N

k=1 K(x− P (e(tk, vk)))
, (1)

where P (e(tk, vk))) is the projected sample point of metric
embeddings and sk is the corresponding ground-truth metric
value in the training set. K(·) is an RBF kernel in R2.

Subsequently, to construct a supervised learning objective
for the projection, inspired by the cross-validation method
for kernel learning (Silverman, 2018), we randomly split

the dataset D into training set Dtr and validation set Dvl

of ratio 9 : 1 in each epoch. Then, in equation (1), we esti-
mate the metric distribution only with points in training set
((tk, vk) ∈ Dtr). Next, we seek to minimize the weighted
mean square error loss:

MSEp =
1

|Dp|
∑

xi∈Dp

(ŝ(xi)− si)
2, p ∈ {vl, tr}, (2)

MSEr = w1MSEvl + w2MSEtr, (3)

where the overall regression loss MSEr is a weighted sum
of the loss on validation set (MSEvl) and that on training
set (MSEtr). We seek to balance these loss terms to ensure
mapping accuracy at both in-sample and out-of-sample posi-
tions on the contour, and the weights w1 = 1 and w2 = 0.3
are set empirically. The construction of this weighted train-
val loss may differ from common practice but is motivated
by our deeper thinking on the problem of connecting pro-
jection with kernel regression, which is further explained
as follows. Unlike neural network methods, kernel regres-
sion is nonparametric, where the parameter like bandwidth
is traditionally either precomputed or optimized via cross-
validation. Thus, we are facing an interesting problem of
how to bridge between parametric projection and nonpara-
metric kernel regression, motivating us to leave a validation
set to learn kernel parameters jointly with the neural net-
work. The validation loss improves the generalization of
kernel regression for unseen positions. However, relying
solely on the validation loss will decrease the local detail
of the map. In fact, as shown by additional experiments in
Figure 14 in Appendix E, this train-val scheme proves to be
essential to ensure robust mapping.

Neighborhood Preservation Constraint. To encourage
the projection to maintain some neighborhood information
of the high-dimensional embeddings, we combine our re-
gression loss with a constraint term from traditional di-
mensionality reduction. Specifically, we incorporate the
KL-divergence loss from t-SNE:

KL =

n∑
i

n∑
j,j ̸=i

pij ln
pij
qij

, (4)

where pij and qij are the neighborhood distribution prob-
abilities in high-dimensional and low-dimensional space
respectively, as detailed in (Van der Maaten & Hinton,
2008). Specifically, we adopt a perplexity-free implemen-
tation (De Bodt et al., 2018; Crecchi et al., 2020) of the
KL loss for our parametric projection network. Overall, the
objective function of our method is:

L = λMSEr +KL, (5)

where λ = 0.125 is empirically set to balance the loss.
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4.1.2. ADAPTIVE GENERALIZED KERNEL

In this section we illustrate the design of kernel K(·) in the
regression supervision in equation (1). The key challenge
is that we need to consider the discrepancy between high-
dimensional and low-dimensional kernels. First, to avoid un-
stable optimization caused by exponentials and make the re-
gression more compatible with our low-dimensional t-SNE
neighborhood constraint, we adopt a t-distribution-like ker-
nel instead of a Gaussian kernel. However, for complex met-
ric distribution landscapes, especially those in embedding-
based generative model evaluation, a standard kernel may
lack enough flexibility. Particularly, it is difficult to deter-
mine a proper decay rate of the kernel value in relation to the
distance. To address the problem, we take inspiration from
the observation in a previous study (Narayan et al., 2021)
of an approximate power law relationship between the local
radius of the low-dimensional space (re) and that of orig-
inal high-dimensional space ro: re (xi) ≈ α

[
ro
(
xh
i

)]β
.

We hypothesize that this transformation can also improve
the adaptability of low-dimensional kernel. Therefore, we
propose using an adaptive generalized t-distribution kernel:

K(x, α, β) =
(
1 + α ∥x∥2β

)−1

, (6)

where α and β are learnable parameters that are jointly
optimized with the projection. In this way, our method can
dynamically change the shape of the kernel to accurately
fit the cross-modal metric landscape and reduce the risk of
overfitting or underfitting due to suboptimal decay rate.

4.2. Cross-modal Metric Visualization

On the basis of AKRMap, we further develop an interac-
tive visualization tool that provides two distinct views for
exploring cross-modal embedding metrics:

• Scatterplot view. The scatterplot view displays all in-
dividual data points within the embedding space, with
each point color-coded according to the cross-modal
embedding metric. This view allows for direct inter-
action with the data points. Unlike scatterplots gener-
ated by baseline DR methods, which often suffer from
significant occlusion that obscures the true metric dis-
tribution, AKRMap effectively reveals extreme values
with greater clarity, as demonstrated in Figure 3.

• Contour map. For large datasets like HPD and COCO,
scatterplot can become overcrowded with cluttered
points. To address this limitation, we introduce a con-
tour map that effectively represents cross-modal metric
distribution in a continuous manner, by dividing the
2D space into grids and computing grid values based
on the local metric distribution. This representation
makes regions with extreme values more prominent
and reveals distribution patterns with greater clarity.

(a) t-SNE (p=100) (c) AKRMap(b) Pt-SNE

Figure 3. Comparison of scatterplots generated by t-SNE and
AKRMap for the HPSv2 metric. Despite the visual clutter in-
troduced by the large-scale dataset, AKRMap provides a clearer
and more accurate representation of the HPSv2 metric distribution.

(a) Overview

(b) Zoom

(c) Instance

Prompt:
Portrait of Saul Goodman 
dressed as a kitten.

HPS: 21.20

Figure 4. Contour map combined with zoom and overlay with
point sampling for multiscale exploration of the HPD dataset.

The visualization tool includes various interactive features
designed to facilitate in-depth exploration, including:

• Zoom. AKRMap enables efficient multiscale zooming
by dynamically computing the contour map using vary-
ing grid resolutions, as illustrated in Figure 4. Specif-
ically, it adjusts the level of detail by increasing the
grid resolution proportionally to the zoom level, re-
vealing finer details in the map as users zoom in. This
capability is unique to AKRMap and not achievable
with traditional DR methods, which lack the ability to
preserve and display local details.

• Overlay. The scatterplot view and contour map allow
data points to be overlaid onto the contour map, en-
abling users to simultaneously observe the overall dis-
tribution while interacting with individual data points,
as shown in Figure 4. To mitigate occlusion, we have
implemented sampling techniques, such as random
sampling and Poisson disk sampling.

The visualization tool has been built into an easy-to-use
python package with minimal dependencies, requiring only
PyTorch and Plotly, which can be seamlessly integrated into
interactive computational notebooks.

5. Experiment
5.1. Quantitative Experiments

Baseline methods. We compare AKRMap against three
commonly used DR methods: PCA, t-SNE and UMAP, as
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Table 1. Quantitative comparison of cross-modal embedding metric visualizations for test (out-of-sample) points on the HPD dataset. Our
AKRMap outperforms baseline methods and ablations, achieving the best performance across all four cross-modal embedding metrics.

Method CLIPScore HPSv2 PickScore Aesthetic Score
mae mape rmse mae mape rmse mae mape rmse mae mape rmse

PCA 4.0042 16.5506 5.1142 1.4444 5.7870 1.8749 1.1497 5.9206 1.4686 0.5322 11.5645 0.6756
t-SNE 4.0241 16.6643 5.1523 1.4361 5.7568 1.8629 1.1579 5.9429 1.4640 0.4725 10.3128 0.6018
UMAP 4.0819 16.9066 5.2179 1.4432 5.7817 1.8725 1.2214 6.2721 1.5536 0.4463 9.6323 0.5721
SAE 4.1843 16.9386 5.2844 1.4483 5.8117 1.8696 1.2357 6.3952 1.5650 0.5809 12.7041 0.7251

Neuro-Visualizer 12.4201 43.8219 13.7318 1.6871 6.4526 2.0649 1.9655 9.5295 2.3427 0.4900 10.6306 0.6252

AKRMap (w/o KR) 4.0164 16.4830 5.1274 1.3978 5.6039 1.8102 1.1284 5.8004 1.4353 0.4752 10.3943 0.6003
AKRMap (w/o GK) 2.2812 9.1189 2.9458 1.1430 4.5498 1.4695 0.9064 4.6194 1.1686 0.4555 9.9267 0.5718

AKRMap 1.8707 7.3649 2.4253 0.8108 3.1935 1.1200 0.7712 3.9225 1.0225 0.4305 9.3340 0.5488

well as two encoder-based approaches: SAE (Le et al., 2018)
and Neuro-Visualizer (Elhamod & Karpatne, 2024). For the
encoder-based methods, the decoder is used to estimate grid
colors, while the other baseline methods rely on the com-
mon Gaussian RBF kernel to estimate the 2D distribution
map. Additional details about RBF parameter selection are
provided in Appendix C. We use distance threshold to cut
off empty areas for traditional DR techniques but keep the
full landscape of autoencoder methods because far away
positions in traditional DR results are ambiguous and can
hardly be mapped back to original high-dimensional space
without an inverse decoder. On the other hand, as autoen-
coder can easily lead to value explosion, we set an upper
bound for the map to align with the maximum metric value
in the dataset.

Ablation Study. We evaluate AKRMap under two alter-
native settings: 1) training the projection network using
only the neighborhood constraint, without the supervision
provided by Kernel Regression (AKRMap w/o KR), and
2) removing the adaptive Generalized Kernel component
(AKRMap w/o GR).

Dataset. To evaluate performance on the cross-modal em-
bedding metric, we select the widely used large-scale T2I
dataset, the Human Preference Dataset (HPD) (Wu et al.,
2023a). The HPD dataset contains over 430,000 unique
images generated by various T2I models, along with their
corresponding prompts, in the official training set, and 3,700
images in the test set.

Cross-modal Embedding Metrics. We compare AKRMap
against baseline methods for visualizing several commonly
used cross-modal embedding metrics in T2I generation, in-
cluding CLIPScore (Hessel et al., 2021), HPSv2 (Wu et al.,
2023a), PickScore (Kirstain et al., 2023), and a unimodal
embedding metric commonly used in this cross-modal sce-
nario, the Aesthetic Score (Schuhmann et al., 2022).

Performance Evaluation. We evaluate the accuracy and
trustworthiness of the visualization methods using map-
ping errors, including mae, rmse, and mape. Specifically,
we calculate these errors on the test set of HPD for out-
of-sample points that were not used during training. We

also report the errors for in-sample points (maein, mapein,
rmsein) from the HPD training set in Appendix B. This
dual evaluation is important because a good visualization
method must accurately represent the training data distribu-
tion while avoiding misleading maps caused by overfitting
and ensuring reliable accuracy for test points.

Training implementations. The architecture of our pro-
jection network is a 4-layer MLP, with shape (d, d) in the
first three layers and (d, 2) in the last layer, where d is the
dimensions of the input embeddings. Batch normalization
and ReLU activation are applied to each layer. Our projec-
tion model is trained on one Nvidia L4 GPU with batch
size of 1000 and 20 epochs. We use Adam optimizer with a
learning rate of 0.002. For the t-SNE and PCA implementa-
tions, we use the python sklearn package, where the t-SNE
method adopts the Barnes-Hut t-SNE (Van Der Maaten,
2014). For the UMAP implementation, we adopt the python
umap-learn package. The Neuro-Visualizer implementation
is based on the open-sourced code of the original paper (El-
hamod & Karpatne, 2024), while the SAE is based on a
github reimplementation1.

The experiment results are presented in Table 1.

Comparison with baselines. Our method AKRMap consis-
tently outperforms baseline methods in mapping accuracy
across all the embedding metrics. Notably, AKRMap effec-
tively reduces mapping errors for both training (in-sample)
points (see Appendix B) and test (out-of-sample) points,
demonstrating its ability to produce more trustworthy map-
pings. For instance, when applied to the HPSv2 metric,
AKRMap reduces the MAE by nearly 50% for in-sample
points and approximately 43% for out-of-sample points com-
pared to the best-performing baseline, t-SNE. In addition,
while autoencoder methods are effective for loss landscape,
it has shown weakness in cross-modal metric mapping with
relatively higher error and unstable performance. These find-
ings highlight AKRMap’s superior reliability and robustness
across diverse embedding scenarios.

Ablation results. The ablation results highlight the impor-

1https://github.com/mortezamg63/Supervised-autoencoder
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tance of the two key components of our method: kernel
regression supervision (KR) and the adaptive generalized
kernel (GK), both of which are critical for enhancing map-
ping accuracy. Among these, kernel regression supervi-
sion proves to be the most impactful, as the results for the
AKRMap w/o KR setting are nearly indistinguishable from
those of the baseline methods in Table 1. This outcome is ex-
pected, as removing kernel regression supervision leaves the
projection network relying solely on the neighborhood con-
straint, making it functionally similar to the t-SNE method.
In addition, the adaptive generalized kernel demonstrates its
value by further reducing errors across various metrics, un-
derscoring its effectiveness in capturing and fitting complex
metric landscapes. These findings validate the necessity of
both components in achieving superior performance.

5.2. Applications

5.2.1. VISUALIZING LARGE T2I DATASET

AKRMap can provide an accurate overview of large T2I
dataset by effectively capturing the cross-modal metric dis-
tribution. Figure 5 shows the contour maps of ClipScore,
HPSv2, PickScore, and Aesthetic Score distributions in the
HPD dataset, generated by our AKRMap and four baseline
methods: PCA, UMAP, t-SNE, and Neuro-Visualizer.

In alignment with the results from the quantitative experi-
ments, our method demonstrates superior performance by
accurately depicting score distributions with rich local de-
tails. In contrast, the baselines suffer from various limi-
tations, such as over-smoothing due to averaging effects,
which obscure local structures. For example, PCA intro-
duces pronounced block effects with sharp edges at region
boundaries, significantly disrupting the overall smoothness
of the visualizations. Similarly, UMAP and t-SNE often
struggle with low-value regions being either overshadowed
by high values or averaged out, making it challenging to
identify clusters with suboptimal performance. Surprisingly,
Neuro-Visualizer performs the worst among the baselines
for visualizing cross-modal embedding metrics. Except
the Aesthetic Score, its results are highly unstable, with
excessively large estimations in out-of-sample areas, and
the contour maps are riddled with jagged terrains, exhibit-
ing poor smoothness. This highlights the increased chal-
lenge of cross-modal embeddings compared to unimodal
embeddings. It also further underscores the strength of our
AKRMap in producing more accurate and visually coherent
representations. Overall, our AKRMap achieves a superior
balance between local accuracy and smoothness. Further-
more, the mapping performance of traditional methods can
deteriorate significantly if a smaller bandwidth is manually
set, as demonstrated by additional results in Appendix C.

5.2.2. COMPARING DIFFUSION-BASED MODEL AND
AUTO-REGRESSIVE MODEL

We conduct a visual comparison of two representative
T2I models from different architectural families: Stable
Diffusion-v2.1 (Rombach et al., 2022) (SD-2.1), a diffusion-
based model, and Infinity-2B (Han et al., 2024), an auto-
regressive model. Using approximately 590,000 image cap-
tions from the MS-COCO (Lin et al., 2014) training dataset
as prompts, we generate corresponding images using both
models. To illustrate their performance differences, we vi-
sualize the HPSv2 score differences between Infinity and
SD-2.1 (calculated as Infinity’s score minus SD-2.1’s score),
as shown in Figure 6. Here, red regions highlight areas
where Infinity outperforms SD-2.1 significantly, while blue
regions indicate smaller differences.

The visualization reveals interesting patterns, particularly
in Region A, where a significant performance gap exists
between the two models. A deeper analysis reveals that this
region is primarily associated with prompts related to sports
players and athletes. By examining instance-level gener-
ated images with overlay feature, we find that SD-2.1 often
struggles to generate human figures or produces black-and-
white photographs, whereas Infinity consistently generates
high-quality, colored images of athletes; see the right side of
Figure 6. This indicates that Infinity demonstrates stronger
capabilities in generating human figures, especially in sports-
related contexts. Overall, AKRMap effectively highlights
performance distribution patterns across large-scale datasets,
facilitating a detailed comparative analysis of the strengths
and limitations of different models.

5.2.3. VISUALIZING FINE-TUNED MODEL

We showcase AKRMap’s ability to analyze the impact of
model fine-tuning by comparing the SD model (Rombach
et al., 2022) with Dreamlike Photoreal 2.0 (DP-2.0) (dream-
like.art, 2024), a fine-tuned variant of SD-1.5 optimized
for photorealistic image generation. Our evaluation utilizes
two distinct datasets: the MS-COCO (Lin et al., 2014) val-
idation set, from which we extract 25,000 image captions
as prompts, and the PartiPrompts (Yu et al., 2022) dataset,
which contains 1,600 diverse prompts. Consistent with the
previous analysis, we visualize the HPSv2 score differences
between DP-2.0 and SD-1.5 to illustrate their comparative
performance, with the results presented in Figure 7.

Overall, the effects of fine-tuning are more pronounced on
the PartiPrompts benchmark, as evidenced by a larger pres-
ence of red regions in the right visualization. This is likely
because MS-COCO dataset contains common captions on
the web that are similar to the pretraining data of SD model,
while PartiPrompts contains manually created sophisticated
prompts that are challenging in different aspects. Moreover,
the visualizations highlight several regions of interest (A,
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Figure 5. Qualitative comparison of contour map visualizations of ClipScore, HPSv2, PickScore, and Aesthetic Score distributions in the
HPD dataset generated by our AKRMap and four baselines: PCA, UMAP, t-SNE, and Neuro-Visualizer.
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Figure 6. AKRMap can be used to compare generative perfor-
mance of auto-regressive model and diffusion model.

B, and C) where DP-2.0 demonstrates significant improve-
ments in photorealism and overall image quality. In Region
A, further analysis of individual instances reveals that DP-
2.0 achieves enhanced realism in both static and dynamic
objects (such as oranges and flying birds) and shows notable
improvements in scenes, such as beach waves and sand
textures. Region B primarily includes various stylistic rendi-
tions of raccoon images, where DP-2.0 not only accurately

captures the intended styles but also excels in rendering
intricate details, such as patterns on ties and textiles. Region
C encompasses a variety of automotive scenes, where both
the environmental contexts and the vehicles themselves ex-
hibit greater realism and richer detail compared to SD-1.5.
Importantly, our visualization demonstrates that DP-2.0 con-
sistently outperforms SD-1.5 across the entire distribution
space. This indicates that the fine-tuning process success-
fully enhanced the model’s photorealism while maintaining
its general capabilities across other domains.

6. Discussion
Limitations. As AKRMap prioritizes metric mapping, the
neighborhood preservation performance may not be com-
parable to traditional DR methods. Nevertheless, due to
the incorporation of neighborhood constraint, AKRMap is
able to maintain a desirable level of neighborhood preserva-
tion, with detailed comparison results shown in Appendix A.
Furthermore, for more complex embedding metrics used
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Figure 7. AKRMap can be used to show the global impact of fine-tuning by comparison to base model.

in other tasks, such as those computed over sequences of
embeddings (e.g., CodeBertScore (Zhou et al., 2023)), it
remains uncertain how AKRMap can effectively determine a
single vector representation for each instance prior to projec-
tion. This presents a potential area for further investigation.

Future Work. A recent study introduces Multi-dimensional
Human Preference (MPS) (Zhang et al., 2024), which eval-
uates embedding scores across four dimensions: Overall,
Aesthetics, Alignment, and Detail. Leveraging AKRMap to
visualize multi-dimensional comparisons of different T2I
models would be an interesting avenue for future explo-
ration. AKRMap offers the potential to enhance existing
cross-modal metric models through interactive human feed-
back. For example, we aim to fine-tune models to address
domain-specific needs, such as evaluating and filtering game
assets generated by T2I models.

Moreover, our method provides a versatile framework that
can be adapted to other value landscape mapping challenges
for high-dimensional data. For instance, AKRMap could be
employed to visualize the distribution of predicted values in
classical multivariate regression tasks. Beyond evaluation,
AKRMap could also play a role in supporting trustworthy
filtering of pretraining data by visualizing filtering scores
across large-scale datasets. One pertinent example involves
the use of Aesthetic Scores to filter the massive LAION-
5b dataset (Schuhmann et al., 2022). We plan to scale
our approach to datasets containing billions of data points,
thereby increasing transparency in pretraining data selection
and promoting better understanding of these processes.

7. Conclusion
In this paper, we introduce AKRMap, a dimensionality re-
duction method to visualize cross-modal embedding metrics
through kernel regression supervised projection with adap-
tive generalized kernel. Based on AKRMap, we develop
a visualization tool to support metric-aware visualization
of cross-modal embeddings for the evaluation of text-to-
image generative models. Quantitative experiments and
three application scenarios show that AKRMap can facil-

itate trustworthy visualization of cross-modal metric for
transparent evaluation.
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Appendix

A. Performance in Traditional Neighborhood Preservation Objective
Traditional dimensionality reduction methods often seek to preserve the neighborhood in high-dimensional space in the
visualization scatterplot. Since the target of our method is not to optimize the neighborhood preservation, we do not expect
our method to be better than traditional dimensionality reduction method in this regard. In Table 2, we provide statistics of
traditional neighborhood trustworthiness metric (Kaski et al., 2003) to show that our method does not significantly harm
the neighborhood property. Furthermore, we note that in our application where we focus on continuous metric, cluster
separation is not a meaningful target since we are not looking at discrete categories as in classification tasks. As shown
in Figure 8, for the HPSv2 metric on HPD dataset, even in scatterplot view AKRMap can reveal the distribution of metric
significantly better than other traditional DR methods. Here we also note that we deliberately select larger perplexity for the
t-SNE method because of the large scale of the HPD dataset, and we show in Figure 9 that smaller perplexity will lead to
worse results.

Table 2. Neighborhood Trustworthiness metrics for visualization of HPSv2 embeddings on HPD.
n=20 n=30 n=40 n=50

PCA 0.7243 0.7246 0.7245 0.7242
t-SNE 0.8945 0.8786 0.8667 0.8575
UMAP 0.8604 0.8467 0.8380 0.8309

AKRMap 0.8284 0.8287 0.8283 0.8277

(c) PCA(b) UMAP (n_neighbors=100)(a) t-SNE (perplexity=100) (d) AKRMap

Figure 8. Comparison of scatterplots produced by different DR methods for HPSv2.

Perplexity =5 Perplexity =10 Perplexity =30

Figure 9. Results of smaller perplexity for t-SNE on HPSv2.

B. Mapping Accuracy Evaluation for in-sample Points
In this section, we record the quantitative results for in-sample mapping accuracy of different methods, as shown in Table 3.
The results combined with Table 1 indicate that AKRMap outperforms other methods consistently for both in-sample and
out-of-sample positions.
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Table 3. Quantitative comparison of mapping accuracy at in-sample points of HPD dataset.

Method CLIPScore HPSv2 PickScore Aesthetic Score
mae mape rmse mae mape rmse mae mape rmse mae mape rmse

PCA 4.0494 22.8348 5.3954 1.3744 5.3870 1.7690 1.1341 5.7472 1.4437 0.5209 10.6224 0.6749
t-SNE 4.0573 22.8162 5.3798 1.3567 5.3259 1.7606 1.1200 5.6774 1.4340 0.5192 10.5890 0.6728
UMAP 4.0906 22.8612 5.4106 1.4755 5.7803 1.9073 1.1804 5.9824 1.5145 0.5241 10.6851 0.6782
SAE 4.2591 23.2463 5.5196 1.5323 5.9966 1.9738 1.2731 6.4886 1.6270 0.5207 10.6322 0.6746

Neuro-Visualizer 10.4468 39.8135 12.1020 1.8716 7.0312 2.2237 2.0031 9.6188 2.3844 0.3102 6.1445 0.4009

AKRMap (w/o KR) 4.0506 22.6324 5.3415 1.3696 5.3706 1.7761 1.1237 5.6914 1.4343 0.3619 7.2980 0.4654
AKRMap (w/o GK) 1.6359 8.3539 2.1271 1.0479 4.0655 1.3358 0.9062 4.5448 1.1537 0.3390 6.7634 0.4320

AKRMap 1.1652 5.4238 1.5029 0.6834 2.6159 0.8980 0.6815 3.4181 0.8862 0.3142 6.1747 0.4018

C. RBF Kernel Settings for Traditional DR Methods
Here we provide details and more experiment results concerning RBF kernel settings for traditional projection method.
We show in Table 4 and Table 5 that traditional methods cannot achieve satisfactory performance regardless of the kernel
parameter settings. Specifically, we test different commonly used bandwidth selection methods:

• Plug-in method (Silverman) (Silverman, 2018). This is the default method we used in the paper due to its efficiency.
For d-dimensional data, the Silverman’s rule is given by:

h =

(
4

(d+ 2)n

) 1
d+4

σ̂, (7)

where σ̂ is the estimated standard deviation.

• Adaptive local bandwidth (ALB) (Cheng & Mueller, 2015). This method computes bandwidth for each point by
adapting a pre-computed bandwidth based on local estimated density f (xi).

hi = λi × h, λi = (G/f(xi))
2, G =

(
n∏

i=1

f (xi)

)1/n

. (8)

• Cross-validation (LOOCV) (Węglarczyk, 2018). The cross-validation is performed in a Leave-one-out manner:

CV (h) = n−1
n∑

j=1

[yj − ŝj (xj)]
2
w (xj) , (9)

where ŝj (xj) is the leave-one-out estimator for yj that is computed on all data points except xj , and w(xj) is a
nonnegative weight function (all set to one by default). Then h is selected to minimize this validation error.

Table 4. Quantitative comparison of out-of-sample mapping accuracy of different bandwidth selection methods for traditional DR.

Method CLIPScore HPSv2 PickScore
mae mape rmse mae mape rmse mae mape rmse

PCA+Silverman 4.0042 16.5506 5.1142 1.4444 5.7870 1.8749 1.1497 5.9209 1.4686
PCA+ALB 4.0163 16.5445 5.1148 1.4390 5.7662 1.8651 1.1469 5.9140 1.4658

PCA+LOOCV 4.0000 16.5140 5.1034 1.4347 5.7492 1.8598 1.1415 5.8769 1.4557
t-SNE+Silverman 4.0241 16.6643 5.1523 1.4361 5.7568 1.8629 1.1579 5.9429 1.4640

t-SNE+ALB 4.0215 16.6381 5.1497 1.5147 6.1203 1.9546 1.1463 5.8838 1.4524
t-SNE+LOOCV 4.0205 16.6276 5.1366 1.5250 6.1516 1.9573 1.1520 5.9210 1.4639

UMAP+Silverman 4.0819 16.9066 5.2179 1.4432 5.7817 1.8725 1.2214 6.2721 1.5536
UMAP+ALB 4.0142 16.7284 5.1332 1.4171 5.6262 1.8285 1.2019 6.1807 1.5276

UMAP+LOOCV 4.0417 16.7337 5.1617 1.4830 5.9180 1.9233 1.2715 6.5419 1.6274

In addition, we also show that it is not possible to achieve accurate mapping by manually setting smaller bandwidth than
the automatically selected one. In fact, this will evidently cause severe overfitting issue and result in fragmented blocks in
the map, as shown in Figure 10 of t-SNE method. This also causes the quantitative accuracy of the mapping to drop. For
example, for the case in Figure 10, the error has increased as shown in Table 6.
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Table 5. Quantitative comparison of in-sample mapping accuracy of different bandwidth selection methods for traditional DR.

Method CLIPScore HPSv2 PickScore
mae mape rmse mae mape rmse mae mape rmse

PCA+Silverman 4.0494 22.8348 5.3954 1.3744 5.3870 1.7690 1.1341 5.7472 1.4437
PCA+ALB 4.0415 22.8072 5.3806 1.3702 5.3707 1.7621 1.1284 5.7254 1.4394

PCA+LOOCV 4.0505 22.9057 5.3927 1.3747 5.3874 1.7674 1.1351 5.7502 1.4447
t-SNE+Silverman 4.0573 22.8162 5.3798 1.3567 5.3259 1.7606 1.1200 5.6774 1.4340

t-SNE+ALB 4.0476 22.7261 5.2578 1.3549 5.3168 1.7564 1.1164 5.6626 1.4292
t-SNE+LOOCV 4.0447 22.6818 5.3511 1.3545 5.3158 1.7569 1.1131 5.6390 1.4270

UMAP+Silverman 4.0906 22.8612 5.4106 1.4755 5.7803 1.9073 1.1804 5.9824 1.5145
UMAP+ALB 4.0675 22.9090 5.3831 1.4621 5.7202 1.8871 1.1729 5.9458 1.5051

UMAP+LOOCV 4.0684 22.7450 5.3680 1.4699 5.7576 1.9013 1.1730 5.9430 1.5083

(a) auto-selected bandwidth (b) manually set 0.1x bandwidth 

Figure 10. Attempts to manually selecting smaller bandwidth for traditional methods may lead to worse mapping performance with
severe overfitting, as exemplified by the t-SNE visualization of HPSv2 score distribution.

D. Zoom in by Different Grid Numbers
This section shows the zoom-in effect of AKRMap when increasing the grid number. As shown in Figure 11, AKRMap can
accurately estimate the local distribution of cross-modal metric and adds detail on demand. Specifically, with a small grid
number of 30 by 30, AKRMap can already achieve the level of detail close to most baseline methods with grid number of
500 by 500. When increasing the grid number, we can see in Figure 11 that our method can accurately show the detail
contour of metric distribution.

E. Hyperparameter
In this section we discuss some hyperparameter trade-off in our method with additional experimental results. First, we show
the trade-off effect by different λ value to weight the regression loss and KL loss, with test (out-of-sample) quantitative
results shown in Table 7, and visualization effects shown in Figure 12. Next, we show the scatterplot view of our ablation
studies in Figure 13 to demonstrate the effect of our proposed component in large-scale DR point plot. Finally, in Figure 14,
we illustrate some qualitative and quantitative effect of setting the train-val weights w1 or w2 to be zero to demonstrate the
necessity of the train-val balance scheme in our kernel regression guidance loss.

Table 6. Impact of manually setting smaller bandwidth for Figure 10.
maein mapein rmsein maeout mapeout rmseout

auto-selected bandwidth 1.3567 5.3259 1.7606 1.4361 5.7568 1.8629
0.1x bandwidth 1.5403 6.0284 2.0470 1.7050 6.7994 2.1951
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grid=30 grid=500grid=50
Figure 11. Zoom-in effect by different grid numbers in our method.

Table 7. Experimental results on trade-off effect by λ settings.

Method CLIPScore HPSv2 PickScore Aesthetic Score
mae rmse trust mae rmse trust mae rmse trust mae rmse trust

λ = 0.05 2.0752 2.6639 0.7849 1.3613 1.7624 0.8635 1.1048 1.4027 0.8457 0.4625 0.5869 0.8731
λ = 0.125 1.8707 2.4253 0.7672 0.8108 1.1200 0.8284 0.7712 1.0225 0.8143 0.4305 0.5488 0.8704
λ = 0.25 3.4395 4.4237 0.6865 0.5621 0.8048 0.8111 0.5511 0.7413 0.7990 0.4039 0.5149 0.8626
λ = 0.5 3.4811 4.4620 0.7083 0.4453 0.6554 0.7847 0.4597 0.6346 0.7791 0.3875 0.4925 0.8545

F. Test on Other Modality Embeddings
We further perform quantitative experiments on CLIP text-video embeddings on MSR-VTT dataset (Xu et al., 2016) which
consists of 200,000 text-video pairs (Table 10), as well as text-audio embeddings and image-audio embeddings on Flickr 8k
Audio Caption Corpus dataset (Harwath & Glass, 2015) consisting of 40,000 pairs (Table 9 and Table 8). Overall, the results
indicate that our method can improve upon traditional DR in test set mapping accuracy.

Table 8. ImageBind image-audio embeddings mapping accuracy on Flickr 8k Audio Caption Corpus.
PCA t-SNE UMAP AKRMap

mae 4.1239 3.9576 3.8811 1.9425
mape 19.1321 18.3808 18.1024 8.9521
rmse 5.1737 5.0254 4.8633 2.6425

G. Weight Balancing Mechanism
We also test automatic weight balancing method, using a sigmoid function to adjust the weight of KL loss.

w(x, µ) = σ(k(x− µ)) =
1

1 + e−k(x−µ)
, (10)

where µ is a threshold of acceptable KL loss which we set to 2 by default and k is a parameter to control the decay rate
which we default to 1. Then the total loss becomes:

L1 = λMSEr + w(KL,µ) ·KL, (11)

where λ is fixed to the default value 0.125.

Alternatively, for users who care more about the neighborhood preservation, we can use this method to weight the MSE
term with a user-specified threshold µ1:

L2 = w(MSEr, µ1) · λMSEr + ·KL. (12)

The experimental results for different µ and µ1 settings are presented in Table 11.
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Figure 12. AKRMap mapping results for different λ settings.

Table 9. ImageBind text-audio embeddings mapping accuracy on Flickr 8k Audio Caption Corpus.
PCA t-SNE UMAP AKRMap

mae 3.7194 3.5992 3.6801 1.8629
mape 21.1113 20.3858 20.8498 10.1821
rmse 4.7175 4.5607 4.6541 2.4841

H. Interactive Features Evaluation
We conduct a user study among 12 users on our interactive features including zoom and overlay. They complete a 7
Likert-scale survey after using our interactive visualization of HPSv2 score on HPD dataset. As shown in Figure 15, users
generally appreciate our interactive features in several usability aspects including effectiveness, ease of use, interpretability,
and future use.

I. Convergence Properties of the Adaptive Generalized Kernel Regression
In this appendix, we summarize the theoretical conditions and practical considerations related to the convergence of our
adaptive generalized kernel regression method, which extends the classical Nadaraya-Watson kernel regression framework.

To guarantee convergence in terms of mean squared error (MSE), the following conditions are essential:

• 1) Integrability of the generalized kernel on R2: The kernel is defined as:

K(x) = (1 + α|x|2β)−1. (13)

For K(x) to be integrable and finite over R2, parameters must satisfy α > 0 and β > 1, ensuring sufficient decay of
the kernel function at infinity.

• 2) Growth behavior of the parameter α with sample size N : The parameter α must effectively increase as the
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Figure 13. Scatterplots of ablation.

Table 10. CLIP text-video embeddings mapping accuracy on MSR-VTT datasets.
PCA t-SNE UMAP AKRMap

mae 1.4908 1.4201 1.4562 0.6763
mape 8.3080 7.9589 8.1636 3.4832
rmse 2.1231 2.0216 2.0723 0.9578

sample size N grows, analogous to the classical kernel bandwidth h decreasing with larger N . This condition is critical
for establishing consistency and uniform convergence of the estimator.

• 3) Smoothness of the regression target function s(x): The target function s(x) should satisfy smoothness assumptions
such as Lipschitz continuity. This is a standard requirement in kernel regression theory to control the bias term and
facilitate uniform convergence as bandwidth parameters are tuned.

In our training procedure, we enforce the non-negativity of parameters α and β through reparameterization (by squaring
them) and include them within a set of learnable parameters updated via backpropagation. Intuitively, this process pushes
the network to automatically identify suitable decay rates for the kernel in each epoch or mini-batch, adapting progressively
to match the magnitude scale of the Nadaraya-Watson kernel. Empirical experiments demonstrate that the learned parameter
values (α, β) converge successfully. For example, the values for HPSv2 are (68.57, 1.61), for PickScore are (59.13, 1.35),
for CLIPScore are (104.70, 3.18), and for Aesthetic Score are (74.95, 1.11). These results indicate that our data-driven
approach effectively satisfies conditions (1) and (2) mentioned above.

In practical multimodal scenarios, although the target function might not strictly satisfy Lipschitz continuity, numerical
experiments indicate that kernel regression methods remain robust as long as the target distribution does not exhibit extreme
irregularities, such as highly discontinuous or severely jagged patterns. In other words, even piecewise smooth or locally
continuous target functions can yield stable and accurate kernel regression estimates in practice. Specifically, in our scenario
involving high-dimensional to low-dimensional mappings, there exists an continuous relationship between evaluation metrics
and the projected cross-modal embeddings. For example, CLIPScore, which is computed using cosine similarity between
image and text embeddings, is an obvious continuous function between the original high-dimensional embeddings and the
metric. Furthermore, our parametric projection network is an explicit continuous and differentiable function. The Implicit
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(a) AKRMap (b) W1=0 (c) W2=0

out: mae=1.41, mape=5.64, rmse=1.82 
in: mae=1.32, mape=5.19, rmse=1.72 

out: mae=1.01, mape=4.01, rmse=1.37 
in: mae=0.89, mape=3.42, rmse=1.15 

out: mae=0.81, mape=3.19, rmse=1.12 
in: mae=0.68, mape=2.62, rmse=0.90 

out: mae=1.12, mape=5.77, rmse=1.43 
in: mae=1.09, mape=5.52, rmse=1.39

out: mae=0.77, mape=3.92, rmse=1.02 
in: mae=0.68, mape=3.42, rmse=0.89

out: mae=0.79, mape=4.02, rmse=1.04 
in: mae=0.73, mape=3.66, rmse=0.94
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Figure 14. Comparison with setting w1 = 0 and w2 = 0 in our MSE loss on HPSv2.

Table 11. Weight balancing results of L1 and L2 on HPSv2.
mae mape rmse trust

w/o weight balance 0.8108 3.1935 1.1200 0.8284
µ = 2 0.5118 2.0318 0.7464 0.8053
µ = 1.8 0.4963 1.9632 0.7051 0.7979
µ = 1.6 0.5336 2.1115 0.7772 0.8059
µ1 = 1 1.0427 4.1393 1.3787 0.8399
µ1 = 0.8 0.9610 3.8069 1.2686 0.8316
µ1 = 0.6 1.0118 1.9999 1.3478 0.8426
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Figure 15. User study results on interactive features.

Function Theorem can then ensure the continuity of the metric w.r.t the projected 2D embeddings. Thus, our practical setup
implicitly fulfills the smoothness assumption (condition 3) required for convergence.

Furthermore, the mapping function s(x) is continuously updated during dimensionality reduction (projection). Our
adaptively updated generalized kernel not only naturally accommodates complex distributions encountered in practice but
also ensures consistency in metric spaces through supervised kernel regression. Regarding projection stability, our kernel
regression loss can be regarded as a regularization term that enforces the global structure of the projection, as it explicitly
pushes the projected sample points to regress a global metric distribution.
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