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Abstract
Diffusion models (DMs) are a class of generative
models that allow sampling from a distribution
learned over a training set. When applied to solv-
ing inverse problems, the reverse sampling steps
are modified to approximately sample from a
measurement-conditioned distribution. However,
these modifications may be unsuitable for certain
settings (e.g., presence of measurement noise) and
non-linear tasks, as they often struggle to correct
errors from earlier steps and generally require
a large number of optimization and/or sampling
steps. To address these challenges, we state three
conditions for achieving measurement-consistent
diffusion trajectories. Building on these condi-
tions, we propose a new optimization-based sam-
pling method that not only enforces standard data
manifold measurement consistency and forward
diffusion consistency, as seen in previous stud-
ies, but also incorporates our proposed step-wise
and network-regularized backward diffusion con-
sistency that maintains a diffusion trajectory by
optimizing over the input of the pre-trained model
at every sampling step. By enforcing these con-
ditions (implicitly or explicitly), our sampler re-
quires significantly fewer reverse steps. There-
fore, we refer to our method as Step-wise Triple-
Consistent Sampling (SITCOM). Compared to
SOTA baselines, our experiments across several
linear and non-linear tasks (with natural and med-
ical images) demonstrate that SITCOM achieves
competitive or superior results in terms of stan-
dard similarity metrics and run-time.
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1. Introduction
Inverse problems (IPs) arise in a wide range of science
and engineering applications, including computer vision
(Li et al., 2024), signal processing (Byrne, 2003), medical
imaging (Alkhouri et al., 2024b), remote sensing (Levis
et al., 2022), and geophysics (BniLam & Al-Khoury, 2020).
In these applications, the primary goal is to recover an un-
known image or signal x ∈ Rn from its measurements or
a degraded image y ∈ Rm, which are often corrupted by
noise. Mathematically, the unknown signal and the mea-
surements are related as

y = A(x) + n ,

where A(·) : Rn → Rm (with m ≤ n) represents the linear
or non-linear forward operator that models the measurement
process, and n ∈ Rm denotes the noise in the measurement
domain, e.g., assumed sampled from a Gaussian distribution
N (0, σ2

yI), where σy > 0 denotes the noise level. Exactly
solving these inverse problems is challenging due to their ill-
posedness in many settings, requiring advanced techniques
to achieve accurate solutions.

Deep learning techniques have recently been utilized to form
priors to aid in solving these problems (Ravishankar et al.,
2019; Lempitsky et al., 2018). One framework that has
shown significant potential is the use of generative models,
particularly diffusion models (DMs) (Ho et al., 2020). Given
a training dataset, DMs are trained to learn the underlying
distribution p(x).

During inference, DMs enable sampling from this learned
distribution through an iterative procedure (Song et al.,
2021b). When employed to solving inverse problems, DM-
based IP solvers often modify the reverse sampling steps to
allow sampling from the measurements-conditioned distri-
bution p(x|y) (Chung et al., 2023b; 2022; Cardoso et al.,
2024). These modifications typically rely on approxima-
tions that may not be suitable for all tasks and settings, and
in addition to generally requiring many sampling iterations,
often suffer from errors accumulated during early diffusion
sampling steps (Zhang et al., 2025).

In most DM-based IP solvers, these approximations are
designed to enforce standard measurement consistency on
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the estimated image (or posterior mean) at every reverse
sampling iteration, as in (Chung et al., 2023b), and may
also include resampling using the forward diffusion process
(which we refer to as forward diffusion consistency), such
as in (Lugmayr et al., 2022; Song et al., 2023a).

A key bottleneck in DMs is their computational cost, as they
are slower than other generative models due to the large
number of sampling steps. Although various methods have
been proposed to reduce sampling frequency (e.g., (Song
et al., 2023c)), these improvements have yet to be fully
realized for DMs applied to IPs. Most existing methods
still require dense sampling, which continues to pose speed
challenges. Based on the aforementioned discussion, in this
paper, we make the following contributions.

• Formulating three conditions for DM-based IP solvers:
By identifying key issues in accelerating DMs for IPs,
we present a systematic formulation of three conditions
where the goal is to (i) improve the accuracy of each
intermediate reconstruction and (ii) maintain a diffusion
trajectory.

• Introducing the step-wise Backward consistency:
Based on the pre-trained network regularization, we pro-
pose the step-wise backward diffusion consistency by
leveraging the implicit bias of the pre-trained network at
each iteration.

• Presenting a new optimization-based sampler: We
present an optimization-based sampler that allows for
arbitrary sampling step sizes. We refer to our method as
Step-wise Triple-Consistent Sampling (SITCOM). The
formulation, initialization, and regularization of the opti-
mization problem along with the preceding steps ensure
that all consistencies/conditions are enforced with mini-
mal deviation at every sampling iteration.

• Extensive Evaluation: We evaluate SITCOM on one
medical image reconstruction task (MRI) and 8 image
restoration tasks (5 linear and 3 non-linear). Compared
to leading baselines, our approach consistently achieves
either state-of-the-art or highly competitive quantitative
results, while also reducing the number of sampling steps
and, consequently, the computational time.

2. Background
In this section, we discuss preliminaries on Diffusion Mod-
els (DMs) and their usage in solving IPs.

Pre-trained DMs generate images by applying a pre-defined
iterative denoising process (Ho et al., 2020). In the Variance-
Preserving Stochastic Differentiable Equations (SDEs) set-
ting (Song et al., 2021b;a), DMs are formulated using the

forward process and the reverse process

dxt = −
βt
2
xtdt+

√
βtdw , (1a)

dxt = −βt
[1
2
xt +∇xt

log pt(xt)
]
dt+

√
βtdw̄ , (1b)

where β : {0, . . . , T} → (0, 1) is a pre-defined function that
controls the amount of additive perturbations at time t, w
(resp. w̄) is the forward (resp. reverse) Weiner process (An-
derson, 1982), pt(xt) is the distribution of xt at time t, and
∇xt

log pt(xt) is the score function that is replaced by a neu-
ral network (typically a time-encoded U-Net (Ronneberger
et al., 2015)) s : Rn×{0, . . . , T} → Rn, parameterized by
θ. In practice, given the score function sθ, the SDEs can be
discretized as in (2) where ηt,ηt−1 ∼ N (0, I).

xt =
√

1− βtxt−1 +
√
βtηt−1 , (2a)

xt−1 =
1√

1− βt

[
xt + βtsθ(xt, t)

]
+
√
βtηt . (2b)

When employed to solve inverse problems, the score func-
tion in (1) is replaced by a conditional score function which,
by Bayes’ rule, is

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt) .

Solving the SDEs in (1) with the conditional score is re-
ferred to as posterior sampling (Chung et al., 2023b). As
there doesn’t exist a closed-form expression for the term
∇xt

log pt(y|xt) (which is referred to as the measurements
matching term in (Daras et al., 2024)), previous works have
explored different approaches, which we will briefly discuss
below. We refer the reader to the recent survey in (Daras
et al., 2024) for an overview on DM-based methods for
solving IPs.

A well-known method is Diffusion Posterior Sampling
(DPS) (Chung et al., 2023b), which uses the approxima-
tion p(y|xt) ≈ p(y|x̂0) where x̂0(xt) (or simply x̂0) is the
estimated image at time t as a function of the pre-trained
model and xt (Tweedie’s formula (Vincent, 2011)), given as

x̂0(xt) =
1√
ᾱt

[
xt −

√
1− ᾱtϵθ(xt, t)

]
(3)

=: f(xt; t, ϵθ) ,

where

ϵθ(xt, t) = −
√
1− ᾱtsθ(xt, t) ,

output the noise in xt (Luo, 2022), and ᾱt =
∏t
j=1 αj

with αt = 1 − βt. We call the function f , defined in (3),
as “Tweedie-network denoiser” (also termed as ‘posterior
mean predictor’ in (Chen et al., 2024)).

Tweedie’s formula, like in our method, is also adopted in
other DM-based IP solvers such as (Rout et al., 2023; Chung
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et al., 2023c; Wang et al., 2022). The drawback of most of
these methods is that they typically require a large number
of sampling steps.

The work in ReSample (Song et al., 2023a), solves an op-
timization problem on the estimated posterior mean in the
latent space to enforce a step-wise measurement consistency,
requiring many sampling and optimization steps.

The work in (Mardani et al., 2024) introduced RED-Diff, a
variational Bayesian method that fits a Gaussian distribution
to the posterior distribution of the clean image conditional
on the measurements. RED-Diff solves also an optimization
problem using stochastic gradient descent (SGD) to mini-
mize a data-fitting term while maximizing the likelihood of
the reconstructed image under the denoising diffusion prior
(as a regularizer). However, the SGD process requires mul-
tiple iterations, each involving evaluations of the pre-trained
DM on a different noisy image at some randomly selected
time. While RED-diff reduces the run-time, their qualitative
results are not highly competitive on some tasks in addition
to requiring an external pre-trained denoiser.

Recently, Decoupling Consistency with Diffusion Purifica-
tion (DCDP) (Li et al., 2024) proposed separating diffusion
sampling steps from measurement consistency by using
DMs as diffusion purifiers (Nie et al., 2022; Alkhouri et al.,
2024b), with the goal of reducing the run-time. However, for
every task, DCDP requires tuning the number of forward dif-
fusion steps for purification for each sampling step. Shortly
after, Decoupled Annealing Posterior Sampling (DAPS)
(Zhang et al., 2025) introduced another decoupled approach,
incorporating gradient descent noise annealing via Langevin
dynamics. DAPS, similar to DPS, also requires a large num-
ber of sampling and optimization steps.

3. Step-wise Triple-Consistent Sampling
3.1. Motivation: Addressing the Challenges in Applying

DMs to IPs

Most inverse problems are ill-conditioned and undersam-
pled. DMs, when trained on a dataset that closely resembles
the target image, can provide critical information to allevi-
ate ill-conditioning and improve recovery. Despite various
previous efforts, a key challenge remains: How to efficiently
integrate DMs into the framework of inverse problems? We
will now elaborate on this challenge in detail.

The standard reverse sampling procedure in DMs con-
sists of applying the backward discrete steps in (2) for
t ∈ {T, T −1, . . . , 1}, forming the standard diffusion trajec-
tory for which x0 is the generated image1. To incorporate

1Diffusion trajectory refers to the path that leads to an in-
distribution image, where the distribution is the one learned by the
DM from the training set.

the measurements y into these steps, a common approach
adopted in previous works that demonstrate superior perfor-
mance (e.g., (Song et al., 2023a; Zhang et al., 2025; Li et al.,
2024)) is to encode x̂0, computed via (3), in the following
optimization problem:

x̂′
0(xt) = argmin

x
∥A(x)− y∥22 + λ∥x− x̂0(xt)∥22 , (4)

where λ ∈ R+ is a regularization parameter. The x̂′
0(xt)

obtained from (4) is close to x̂0(xt) while also remaining
consistent with the measurements. When using x̂′

0(xt) to
sample xt−1, the second formula in (2) can be rewritten as
in (5), where the derivation is provided in Appendix A.

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

x̂0(xt) (5)

+
√
βtηt .

By substituting x̂0(xt) in the second term of (5) with the
measurement-consistent x̂′

0(xt), the modified sampling for-
mula becomes:

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

x̂′
0(xt) (6)

+
√
βtηt .

While this approach effectively ensures data consistency
at each step, it inevitably causes x̂′

0 to deviate from the
diffusion trajectory, leading to two major issues:

(I1): The image x̂0(xt), initially constructed through
Tweedie’s formula, usually appears quite natural (e.g.,
columns 3 to 5 of Figure 1); however, the modified version,
x̂′
0(xt), is likely to exhibit severe artifacts (e.g., columns 6

to 8 of Figure 1).

(I2): Since the DM network, ϵθ, is trained via minimizing
the objective function (denoising score matching (Vincent,
2011))

Ex0∼p(x0),ϵ∼N (0,I)

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2
2
,

on a finite dataset, it performs best on noisy images ly-
ing in the high-density regions of the training distribu-
tion N (xt;

√
ᾱtx0, (1 − ᾱt)I) . We define an algorithm

as forward-consistent if it likely applies ϵθ only to in-
distribution inputs (i.e., those from the same distribution
used for training). For example, if the forward diffusion
used to train ϵθ adds Gaussian noise, the in-distribution in-
put to ϵθ should ideally be sampled from a Gaussian with
specific parameters. If Poisson noise is used in the forward
process, inputs drawn from suitable Poisson distributions
are more likely to fall within the well-trained region of the
network. In summary, forward consistency requires that
inputs to ϵθ during sampling align with the forward process.
While the xt−1 generated from (5) is forward-consistent by
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design, the one generated from the modified formula (6)
is not. Therefore, in the latter case, the DM network, ϵθ,
may be applied to many out-of-distribution inputs, leading
to degraded performance.

We pause to verify our claimed Issue (I1) through a box-
inpainting experiment. Columns 6 to 8 of Figure 1 show
x̂′
0(xt) at various t′. The results clearly demonstrate suc-

cessful enforcement of data consistency, as the region out-
side the box aligns with the original image. However, this
enforcement compromises the natural appearance of the
image, introducing significant artifacts in the reconstructed
area inside the box. Details about the setting of the results
in Figure 1 are given in Appendix C.1.2.

Issue (I2) was previously observed in (Lugmayr et al., 2022),
which proposed a remedy known as ‘resampling’. In this
approach, the sampling formula in (6) is replaced by

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ηt . (7)

Provided x̂0 is close to the ground truth x0, xt−1 generated
this way will stay in-distribution with high probability. For
a more detailed explanation of the rationale behind this
remedy, we refer the reader to (Lugmayr et al., 2022). This
method has since been adopted by subsequent works, such
as (Song et al., 2023a; Zhang et al., 2025), and we will also
employ it to address (I2).

3.2. Network-Regularized Backward Diffusion
Consistency

Previous studies, such as (Song et al., 2023a; Zhang et al.,
2025), mitigate issue (I1) by using a large number of sam-
pling steps, which inevitably increases the computational
burden. In contrast, this paper proposes employing a net-
work regularization to resolve issue (I1). This approach not
only accelerates convergence but also enhances reconstruc-
tion quality. Let’s first clarify the underlying intuition.

It is widely observed that the U-Net architecture or trained
transformers exhibit an effective image bias (Ulyanov et al.,
2018; Liang et al., 2025; Hatamizadeh et al., 2025). From
columns 3 to 5 of Figure 1, we observe that without enforc-
ing data consistency, the reconstructed x̂0, derived directly
from Tweedie-network denoiser f(xt; t, ϵθ) for each time t,
exhibits natural textures. This indicates that the reconstruc-
tion using the combination of Tweedie’s formula and the
DM network has a natural regularizing effect on the image.

By definition, the output of f(xt; t, ϵθ) in (3) represents
the denoised version of xt at time t using the Tweedie’s
formula and the DM denoiser ϵθ. Due to the implicit bias
of ϵθ, this denoised image tends to align with the clean
image manifold, even if xt does not correspond to a training
image, as shown in columns 3 to 5 of Figure 1. We refer to
this regularization effect of f(xt; t, ϵθ), which arises from

network bias, as “network regularization”.

By employing network regularization, we can address (I1)
by ensuring that the data-consistent x̂′

0 is also network-
consistent. We refer the latter condition as Backward Con-
sistency and define it formally as follows.

Definition 3.1 (Backward Consistency). We say a recon-
struction x̂′

0 is backward-consistent with posterior mean
predictor f( · ; t, ϵθ) at time t if it can be expressed as
x̂′
0 = f(vt; t, ϵθ) with some vt. In other words, backward

consistency requires x̂′
0 to be an output of f at time t.

The subset of images that are in the range of function f (i.e.,
backward-consistent) is denoted by Ct and is defined as

Ct := {f(vt; t, ϵθ) : vt ∈ Rn} . (8)

Enforcing x̂′
0 to be both measurement- and backward-

consistent involves solving the following optimization prob-
lem:

x̂′
0, v̂t := argmin

v′
t,x

′
0

{
∥A

(
x′
0

)
− y∥22 (9)

subject to x′
0 = f(v′

t; t, ϵθ)
}
.

However, (9) may violate forward consistency, as v̂t could
possibly be far from xt. Therefore, we propose adding a
regularization term, for which (9) becomes

x̂′
0, v̂t := argmin

v′
t,x

′
0

{
∥A

(
x′
0

)
− y∥22 + λ∥xt − v′

t∥22 (10)

subject to x′
0 = f(v′

t; t, ϵθ)
}
.

During the reverse sampling process, at each time t, with the
given xt, we seek a v′

t in the nearby region (i.e., ∥xt−v′
t∥22

is small), such that v′
t can be denoised by f to produce

a clean image x′
0 (i.e., x′

0 = f(v′
t; t, ϵθ)), which is also

consistent with the measurements y (i.e., ∥A
(
x′
0

)
− y∥22

is small). We need to identify such a v′
t because xt itself

cannot be directly denoised by f to yield an image consistent
with the measurements. By substituting the constraint into
the objective function, the optimization problem in (10) is
reduced to

v̂t := argmin
v′
t

{
∥A

(
f(v′

t; t, ϵθ)
)
− y∥22 + (11)

λ∥xt − v′
t∥22

}
,

with x̂′
0 = f(v̂t; t, ϵθ). The benefit of the considered back-

ward consistency constraint is shown in columns 9 to 11 of
Figure 1. After obtaining x̂′

0, the resampling formula in (7)
is used to obtain xt−1.

3.2.1. RELATION TO GENERATIVE PRIORS

The use of network regularization to define step-wise back-
ward consistency is inspired by the Compressed Sensing
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Measurement Consistency by 
Equation (4)

Tweedie’s Formula without 
Measurement Consistency

Measurement & Backward 
Consistency by Equation (12)

Ground 
Truth

Masked 
Image

𝑡′ = 600𝑡′ = 400𝑡′ = 200 𝑡′ = 600𝑡′ = 400𝑡′ = 200 𝑡′ = 600𝑡′ = 400𝑡′ = 200

Figure 1: Effects of enforcing backward-consistency in box-inpainting: Results of using Tweedie’s formula without measurement
consistency (columns 3 to 5), enforcing measurement-consistency via (4) (columns 6 to 8), and enforcing both measurement-consistency
and backward-consistency via (11) (columns 9 to 11) at different time steps t′. Experimental details are given in Appendix C.1.2.

with generative models (CSGM) (Bora et al., 2017). In
CSGM, given a pre-trained generative model gϕ with ϕ as
its weights, it can regularize the reconstruction of inverse
problems by solving the following optimization problem:

ẑ = argmin
z
∥Agϕ(z)− y∥22 , (12)

and x = gϕ(ẑ) is the reconstructed image. Here, z is the
input of the pre-trained network and the optimization vari-
able. In this setup, the reconstruction x is constrained to be
the output of the network gϕ. Similarly, in Definition 3.1, x̂′

0

is required to be the output of the posterior mean estimator
f , which is defined by the network ϵθ.

3.3. Triple Consistency Conditions

We now summarize the three key conditions that apply at
each sampling step.

C1 Measurement Consistency: The reconstruction x̂′
0

is consistent with the measurements. This means that
A(x̂′

0) ≈ y.

C2 Backward Consistency: The reconstruction x̂′
0 is a

denoised image produced by the Tweedie-network denoiser
f . More generally, we define the backward consistency to
include any form of DM network regularization (e.g., using
the DM probability-flow (PF) ODE (Karras et al., 2022) as
in Appendix F) applied to x̂′

0.

C3 Forward Consistency: The pre-trained DM network ϵθ
is provided with in-distribution inputs with high probability.
To ensure this, we apply the resampling formula in (7) and
enforce that v̂t remains close to xt.

We note that the three considered consistencies are step-
wise, meaning they are enforced at every sampling step.
This approach contrasts with enforcing these consistencies
solely on the final reconstruction at t = 0, which represents
a significantly weaker requirement.

C1-C3 aim to ensure that all intermediate reconstructions
x̂′
0(·) = f( · ; t, ϵθ) (with t > 0) are as accurate as possible,

allowing us to effectively reduce the number of sampling
steps. Previous works, such as (Song et al., 2023a; Zhang
et al., 2025), enforce measurement consistency by applying
A(x̂0) = y exactly, whereas DPS (Chung et al., 2023b)
does not ensure forward and a step-wise backward consis-

tencies along the diffusion trajectory.

3.4. The Proposed Sampler

Given xt, ϵθ, and towards satisfying the above conditions,
our method, at sampling time t, consists of the following
three steps:

v̂t := argmin
v′
t

∥A
(

1√
ᾱt

[
v′
t −
√
1− ᾱt ϵθ(v′

t, t)
] )
− y∥22

+ λ∥xt − v′
t∥22 (S1)

x̂′
0 = f(v̂t; t, ϵθ) ≡ 1√

ᾱt

[
v̂t −

√
1− ᾱt ϵθ(v̂t, t)

]
(S2)

xt−1 =
√
ᾱt−1x̂

′
0 +
√
1− ᾱt−1ηt . (S3)

In (S1), the argument of the forward operator is
f(v′

t; t, ϵθ) =
1√
ᾱt

[
v′
t −
√
1− ᾱt ϵθ(v′

t, t)
]

which is dif-
ferent from (S2).

The minimization in the first step optimizes over the input v′
t

of the pre-trained diffusion model at time t, where the first
term of the objective enforces measurement consistency for
the posterior mean estimated image, satisfying condition C1.
The second term serves as a regularization term, implicitly
enforcing closeness between v̂t and xt (i.e., condition C3),
with λ > 0 acting as the regularization parameter.

The argument of the forward operator in (S1) and the second
step in (S2) enforce that v̂t and x̂′

0, respectively, maintain
the diffusion trajectory through obeying Tweedie’s formula,
thereby satisfying the backward consistency condition, C2.

After obtaining the measurement-consistent estimate, x̂′
0,

as given in (S2), it must be mapped back to time t − 1
to generate xt−1. This is achieved through the forward
diffusion step in (S3) as outlined in the forward consistency
condition, C3. A diagram of the SITCOM procedure is
provided in Figure 2 (left).

Remark 1. Obtaining the estimated image at time 0 given
some xt using the standard DM PF-ODE (Karras et al.,
2022) is more accurate compared to the one-step Tweedie’s
formula. However, since PF-ODE is an iterative procedure,
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Algorithm 1 Step-wise Triple-Consistent Sampling (SITCOM).
Input: Measurements y, forward operator A(·), pre-trained DM ϵθ(· , ·), number of diffusion steps N , DM noise schedule ᾱi for
i ∈ {1, . . . , N}, number of gradient updates K, stopping criterion δ, learning rate γ, and regularization parameter λ.
Output: Restored image x̂.
Initialization: xN ∼ N (0, I), ∆t = ⌊ T

N
⌋

1: For each i ∈ {N,N − 1, . . . , 1}. (Reducing diffusion sampling steps)

2: Initialize v
(0)
i ← xi. (Initialization to ensure Closeness: C3 )

3: For each k ∈ {1, . . . ,K}. (Gradient used in Adam to achieve measurement & backward consistency: C1, C2)

4: v
(k)
i = v

(k−1)
i − γ∇vi

[∥∥A( 1√
ᾱi

[
vi −

√
1− ᾱi ϵθ(vi, i∆t)

])
− y

∥∥2

2
+ λ∥xi − vi∥22

]∣∣∣
vi=v

(k−1)
i

.

5: If
∥∥A( 1√

ᾱi

[
v
(k)
i −

√
1− ᾱi ϵθ(v

(k)
i , i∆t)

])
− y

∥∥2

2
< δ2 . (Stopping criterion)

6: Break the For loop in step 3. (Preventing noise overfitting)

7: Assign v̂i ← v
(k)
i . (Backward diffusion consistency of v̂i: C2)

8: Obtain x̂′
0 = f(v̂i; t, θ) =

1√
ᾱi

[
v̂i −

√
1− ᾱi ϵθ(v̂i, i∆t)

]
. (Backward consistency of x̂′

0: C2)

9: Obtain xi−1 =
√
ᾱi−1x̂

′
0 +
√
1− ᾱi−1ηi, ηi ∼ N (0, I) . (Forward diffusion consistency: C3)

10: Restored image: x̂ = x0.

it requires more computational time. In SITCOM, PF-ODE
could replace Tweedie’s formula in (S2). In the main body
of the paper, we chose not to use it, as this would increase
the run time, and our empirical results are already highly
competitive using Tweedie’s formula. To show this trade
off, we refer the reader to the study in Appendix F.

A conceptual illustration of SITCOM is shown in Figure 2
(right). The DM generative manifold,Mt, is defined as the
set of all xt sampled from

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) ,

and x0 ∼ p0(x). This set coincides with the entire space
Rn equipped with the probability measure induced by the
distribution of xt, which we denote as Pt. In Figure 2
(right), the variation of color around each Mt indicates
the concentration of the measure Pt, with darker colors
representing higher concentration.

SITCOM’s Step (1) and Step (2) enforce measurement
consistency and backward consistency, thus map xt to
x̂′
0 = f(v̂t; t, ϵθ) which lies within the intersection of (i)

measurement-consistent set {x̂′
0 : A(x̂′

0) ≈ y} (the shaded
black line) and (ii) the backward-consistent set Ct (the yel-
low ellipsoid). Subsequently, xt−1 is generated by inserting
x̂′
0 into the resampling formula, which enforces the forward

consistency.

Handling Measurement Noise: To avoid the case where
the first term of the objective in (S1) reaches small values
yielding noise overfitting (i.e., when additive Gaussian mea-
surement noise is considered, σy > 0), we propose refrain-
ing from enforcing strict measurement fitting A(x) = y.

Instead, we use the stopping criterion∥∥A( 1√
ᾱt

[
v′
t −
√
1− ᾱt ϵθ(v′

t, t)
])
− y

∥∥2
2
< δ2 ,

where δ ∈ R+ is a hyper-parameter that indicates tolerance
for noise and helps prevent overfitting. This is equivalent to
enforcing an ℓ2 constraint. In our experiments, similar to
DAPS (Zhang et al., 2025) and PGDM (Song et al., 2023b),
we use δ slightly larger than the actual level of noise in the
measurements, i.e., δ > σy

√
m.

Remark 2. Setting the stopping criterion based on the noise
level in the measurements may not be practical, as noise
estimators may be inaccurate. However, in Appendix J.2.1,
we empirically show that SITCOM is not sensitive to the
choice of this threshold by demonstrating that even when
the stopping criterion is set higher or lower than the actual
measurement noise level, the performance remains largely
unaffected.

3.5. SITCOM with Arbitrary Stepsizes

Here, we explain how to apply SITCOM with a large step-
size and present the final algorithm. The DM is trained with
T diffusion steps. Given that our method is designed to sat-
isfy the three consistencies, SITCOM requires N ≪ T sam-
pling iterations, using a step size of ∆t := ⌊ TN ⌋. Thus, we
introduce the index i instead of t with a relation ti = i∆t.

The procedure of SITCOM is outlined in Algorithm 1. As
inputs, SITCOM takes y, A(·), ϵθ, the number of sampling
steps N , ᾱi for all i ∈ {1, . . . , N}, the number of optimiza-
tion steps K per sampling step, stopping criteria δ, and the
learning rate γ.

Starting with initializing v
(0)
i as xi (satisfying condition

C3), lines 3 through 6 correspond to the gradient updates
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Figure 2: Illustrative diagram of the proposed procedure in SITCOM (left). Conceptual illustration of SITCOM, whereMt is the DM
generative manifold at time t and Ct is the subset of images that are backward-consistent (right).

for solving the optimization problem in the first step of SIT-
COM, i.e., (S1)2. In lines 5 and 6, the stopping criterion is
applied to prevent strict data fidelity (avoiding noise overfit-
ting). Following the gradient updates in the inner loop, v̂i is
obtained in line 7, which is then used in line 8 to obtain x̂′

0

as specified in (S2), satisfying condition C2. Note that line
8 requires no additional computation, as the x̂′

0 calculated
here was already obtained while checking the stopping con-
dition in line 6. After obtaining the double-consistent x̂′

0,
the resampling is applied to map the image back to time t−1
while ensuring xt−1 to be in-distribution, as indicated in
line 9 of the algorithm. In the next iteration, the requirement
that v̂t−1 is close to xt−1 ensures that the input v̂t−1 to the
DM network, ϵθ, is also in-distribution, thus satisfying the
forward-consistency (condition C3).

The computational requirements of SITCOM are determined
by (i) the number of sampling steps N and (ii) the number
of gradient steps K required for each sampling iteration.
Given the proposed stopping criterion, this results in at most
NK Number of Function Evaluations (NFEs) of the pre-
trained model (forward pass),NK backward passes through
the pre-trained model, and NK applications each for the
forward operator and its adjoint to solve the optimization
problem in (S1). With early stopping, the computational
cost is lower. For example, for a linear operator A with
dimensions m× n, the cost of applying it (or its adjoint) to
a vector is O(mn). For a network with width M and depth
L, the cost for making a forward pass is O(LM2).

The gradients are computed w.r.t. the input of the DM

2Although lines 3 to 6 of Algorithm 1 describe using fixed-step-
size gradient descent for (S1), we note that, in our experiments,
we use the ADAM optimizer (Kingma & Ba, 2015).

network, requiring an additional backward pass. This back-
ward pass has the same computational cost as the forward
pass. Consequently, this procedure is significantly more
efficient than network training, where the network weights
are updated instead of the input.

In Appendix D, we offer high-level insights to enhance the
understanding of SITCOM, particularly about where its ac-
celeration comes from. In essence, we interpret SITCOM
with K inner iterations as an accelerated variant of DPS,
under certain approximations, via ADAM or other precon-
ditioned GD (Proposition D.1).

3.6. Relation to Existing Studies

Both SITCOM and the works in DAPS (Zhang et al., 2025),
DCDP (Li et al., 2024), and ReSample (Song et al., 2023a)
are optimization-based methods that modify (or decouple)
the sampling steps to enforce measurement consistency.
DAPS and ReSample involve mapping back to time t − 1
(as in step 3 of SITCOM) and DCDP uses this step prior to
purification. However, there is a major difference between
them: The optimization variable in these works is the es-
timated image at time t (the output of the DM network),
whereas in SITCOM, it is the noisy image at time t (the
input of the network). This means that these studies enforce
C1 and C3 (only DAPS and ReSample), but not C2.

Previous works, RED-diff (Mardani et al., 2024) and DM-
Plug (Wang et al., 2024), also utilize the implicit bias of
the pre-trained network. However, they adopt the full diffu-
sion process as a regularizer, applied only once. In contrast,
SITCOM uses the neural network as the regularizer at each
iteration and focuses specifically on reducing the number
of sampling steps for a given level of accuracy.
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Task Method FFHQ ImageNet
PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓)

SR

DPS 24.44±0.56 0.801±0.032 0.26±0.022 75.60±15.20 23.86±0.34 0.76±0.041 0.357±0.069 142.80±21.20

DAPS 29.24±0.42 0.851±0.024 0.135±0.039 74.40±13.20 25.67±0.73 0.802±0.045 0.256±0.067 129.60±17.00

DDNM 28.02±0.78 0.842±0.034 0.197±0.034 64.20±25.20 23.96±0.89 0.767±0.045 0.475±0.044 76.20±23.00

DMPlug 30.18±0.67 0.862±0.056 0.149±0.045 68.2±21.12 – – – –
RED-diff – – – – 24.89±0.55 0.789±0.056 0.324±0.042 18.02±4.00

PGDM – – – – 25.22±0.89 0.798±0.037 0.289±0.04 26.2±7.20

DCDP 27.88±1.34 0.825±0.07 0.211±0.05 19.10±4.40 24.12±1.24 0.772±0.032 0.351±0.045 55.00±11.22

SITCOM (ours) 30.68±1.02 0.867±0.045 0.142±0.056 27.00±4.80 26.35±1.21 0.812±0.021 0.232±0.038 67.20±11.20

BIP

DPS 23.20±0.89 0.754±0.023 0.196±0.033 94.20±23.00 19.78±0.78 0.691±0.052 0.312±0.025 136.80±22.20

DAPS 24.17±1.02 0.787±0.032 0.135±0.032 81.00±17.00 21.43±0.40 0.736±0.020 0.218±0.021 116.40±35.20

DDNM 24.37±0.45 0.792±0.024 0.232±0.026 61.20±5.92 21.64±0.66 0.732±0.028 0.319±0.015 87.00±16.20

DCDP 23.66±1.67 0.762±0.07 0.144±0.05 16.60±7.20 20.45±1.22 0.712±0.07 0.298±0.04 51.62±15.00

SITCOM (ours) 24.68±0.78 0.801±0.042 0.121±0.08 21.00±6.00 21.88±0.92 0.742±0.032 0.214±0.021 67.20±12.00

RIP

DPS 28.39±0.82 0.844±0.042 0.194±0.021 91.20±18.00 24.26±0.42 0.772±0.02 0.326±0.034 136.20±15.00

DAPS 31.02±0.45 0.902±0.015 0.098±0.017 93.60±24.00 28.44±0.45 0.872±0.024 0.135±0.052 128.40±27.00

DDNM 29.93±0.67 0.889±0.032 0.122±0.056 87.00±14.70 29.22±0.55 0.912±0.034 0.191±0.048 92.40±18.20

DMPlug 31.01±0.46 0.899±0.076 0.099±0.037 72.02±15.23 – – – –
DCDP 28.59±0.95 0.852±0.06 0.202±0.04 20.14±8.00 26.22±1.13 0.791±0.06 0.289±0.03 49.50±10.40

SITCOM (ours) 32.05±1.02 0.909±0.09 0.095±0.025 27.00±12.00 29.60±0.78 0.915±0.028 0.127±0.039 68.40±22.00

GDB

DPS 25.52±0.78 0.826±0.052 0.211±0.017 90.00±14.45 21.86±0.45 0.772±0.08 0.362±0.034 153.00±27.00

DAPS 29.22±0.50 0.884±0.056 0.164±0.032 84.00±31.20 26.12±0.78 0.832±0.092 0.245±0.022 133.80±31.20

DDNM 28.22±0.52 0.867±0.056 0.216±0.042 93.60±17.00 28.06±0.52 0.879±0.072 0.278±0.089 105.00±21.80

DCDP 26.67±0.78 0.835±0.08 0.196±0.04 21.07±8.80 23.24±1.18 0.781±0.06 0.343±0.04 48.25±15.80

DMPlug 29.79±1.02 0.883±0.045 0.157±0.052 65.44±22.12 – – – –
SITCOM (ours) 30.25±0.89 0.892±0.032 0.135±0.078 27.60±8.40 27.40±0.45 0.854±0.045 0.236±0.039 66.00±18.20

MDB

DPS 23.40±1.42 0.737±0.024 0.270±0.025 144.00±23.00 21.86±2.05 0.724±0.022 0.357±0.032 153.60±24.20

RED-diff – – – – 27.35±0.89 0.842±0.062 0.231±0.045 19.02±8.24

PGDM – – – – 27.48±0.78 0.848±0.056 0.225±0.052 24.1±7.45

DAPS 29.66±0.50 0.872±0.027 0.157±0.012 91.60±7.20 27.86±1.20 0.862±0.032 0.196±0.021 118.00±27.00

SITCOM (ours) 30.34±0.67 0.902±0.037 0.148±0.041 30.00±7.10 28.65±0.34 0.876±0.021 0.189±0.036 88.80±21.00

PR

DPS 17.34±2.67 0.67±0.045 0.41±0.08 90.00±20.40 16.82±1.22 0.64±0.08 0.447±0.032 130.20±14.40

DAPS 30.97±3.12 0.908±0.041 0.112±0.084 80.40±26.80 25.76±2.33 0.797±0.045 0.255±0.095 134.40±15.00

DCDP 28.52±2.50 0.892±0.19 0.167±0.92 108.00±27.00 24.25±2.25 0.778±0.14 0.287±0.089 102.40±31.20

SITCOM (ours) 30.67±3.10 0.915±0.064 0.122±0.102 28.50±5.40 25.45±2.78 0.808±0.065 0.246±0.088 84.00±24.00

NDB

DPS 23.42±2.15 0.757±0.042 0.279±0.067 93.00±26.40 22.57±0.67 0.778±0.067 0.310±0.102 141.00±27.00

DAPS 28.23±1.55 0.833±0.052 0.155±0.041 85.20±24.60 27.65±1.2 0.822±0.056 0.169±0.044 128.40±25.20

DCDP 28.78±1.44 0.827±0.08 0.162±0.04 92.00±27.00 26.56±1.09 0.803±0.06 0.182±0.05 89.00±21.60

DMPlug 30.31±1.24 0.901±0.051 0.142±0.062 182.4±32.00 – – – –
RED-diff – – – – 29.51±0.76 0.828±0.08 0.211±0.05 31.15±12.40

SITCOM (ours) 30.12±0.68 0.903±0.042 0.145±0.037 33.45±9.40 28.78±0.79 0.832±0.056 0.16±0.048 75.00±27.00

HDR

DPS 22.88±1.25 0.722±0.056 0.264±0.089 87.00±20.40 19.33±1.45 0.688±0.067 0.503±0.132 145.20±27.60

RED-diff – – – – 23.45±0.54 0.746±0.052 0.257±0.045 24.4±5.00

DAPS 27.12±0.89 0.825±0.056 0.166±0.078 75.00±21.00 26.30±1.02 0.792±0.046 0.177±0.089 130.80±33.00

SITCOM (ours) 27.98±1.06 0.832±0.052 0.158±0.032 31.20±8.20 26.97±0.87 0.821±0.045 0.167±0.052 92.40±21.00

Table 1: Average PSNR, SSIM, LPIPS, with σy = 0.05. The best (resp. second-best) results are bolded (resp. underlined). Values after
± represent the standard deviation. Dashes indicate cases where a method did not consider a dataset.

4. Experimental Results
4.1. Settings

Our setup for the image restoration problems and noise lev-
els largely follows DPS (Chung et al., 2023b). For linear
IPs, we evaluate super resolution (SR), Gaussian deblurring
(GDB), motion deblurring (MDB), box inpainting (BIP),
and random inpainting (RIP). For non-linear IPs, we eval-
uate phase retrieval (PR), non-uniform deblurring (NDB),
and high dynamic range (HDR). For phase retrieval, the run-
time is reported for the best result out of four independent
runs (applied to SITCOM and baselines), consistent with
(Chung et al., 2023b; Zhang et al., 2025). See Appendix G
for a discussion on phase retrieval, and how SITCOM-ODE

(Appendix F) is empirically more stable than SITCOM and
all other baselines on PR. For baselines, we use DPS (Chung
et al., 2023b), DDNM (Wang et al., 2022), RED-diff (Mar-
dani et al., 2024), PGDM (Song et al., 2023b), DCDP (Li
et al., 2024), DMPlug (Wang et al., 2024), and DAPS (Zhang
et al., 2025). For latent space DMs, in Appendix E, we in-
troduce Latent-SITCOM and compare the performance to
ReSample (Song et al., 2023a) and Latent-DAPS (Zhang
et al., 2025). We use 100 test images from the validation
set of FFHQ (Karras et al., 2019) and 100 test images from
the validation set of ImageNet (Deng et al., 2009) for which
the FFHQ-trained and ImageNet-trained DMs are given
in (Chung et al., 2023b) and (Dhariwal & Nichol, 2021),
respectively, following the previous convention.
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For evaluation metrics, we use PSNR, SSIM (Wang et al.,
2004), and LPIPS (Zhang et al., 2018). All experiments
were conducted using a single RTX5000 GPU machine. In
Appendix C, we show the impact of each individual con-
sistency on the performance of SITCOM. Ablation studies
are given in Appendix J. For SITCOM, Table 17 in Ap-
pendix K.1 lists all the hyper-parameters used for every task.
Our code is available online.3

4.2. Main Results

In Table 1, we present quantitative results and run-time
(seconds). Columns 3 to 6 (resp. 7 to 10) correspond to the
FFHQ (resp. ImageNet) dataset. The table covers 8 tasks, 3
restoration quality metrics, and 2 datasets, totaling 51 results.
Among these, SITCOM reports the best performance in 42
out of 51 cases. In the remaining 8, SITCOM achieved the
second-best performance.

Generally, SITCOM demonstrates strong reconstruction ca-
pabilities across most tasks. SITCOM reports a PSNR im-
provement of over 1 dB when compared to the second best
for the tasks of RIP with FFHQ (with nearly 1/3 of the run-
time of DAPS), and in the task of NDB with ImageNet (with
nearly one minute less run-time than DAPS and excluding
RED-diff).

There are tasks where in terms of PSNR, we present a slight
improvement (less than 1 dB) when compared to the sec-
ond best scheme. However, we achieve a great speed-up.
Examples include (i) SR where SITCOM requires nearly
half of the run-time when compared to DMPlug for FFHQ
and PGDM for ImageNet, and (ii) HDR where, when com-
pared to DAPS, SITCOM requires less than half the time
for FFHQ, and approximately 40 seconds less time for Ima-
geNet. This observation is noted in nearly all other tasks.

There are 9 cases where we report the second best results.
In these cases, we slightly under-perform in one or two of
the three restoration quality metrics (i.e., PNSR, SSIM, and
LPIPS). An example of this case is GDB on ImageNet where
we report the best LPIPS but the second best PSNR (under-
performing by 0.66 dB) and SSIM (under-performing by
0.025).

For PR, DAPS’s PSNR is higher than SITCOM’s by a small
margin. However, in Appendix F, we show that SITCOM
with ODE solver achieves better PSNRs than DAPS for the
task of PR at a cost of increased run time (see Table 6).

In terms of run-time, SITCOM outperforms DPS, DAPS,
DDNM, and DMPlug in almost all cases, as shown in Ta-
ble 1. However, DCDP, REDdiff, and PGDM often ex-
hibit faster run times compared to SITCOM. This discrep-
ancy arises because SITCOM’s default hyperparameter set-

3
https://github.com/sjames40/SITCOM

tings prioritize achieving the highest possible PSNR, which
comes at the cost of increased computational time. For in-
stance, SITCOM demonstrates significant improvements of
over 3dB in SR, RIP, and GDB for FFHQ, as well as in RIP,
GDB, and HDR for ImageNet, when compared to DCDP,
REDdiff, and PGDM. To ensure a fairer comparison, we
provide additional results in Appendix I.2, where all meth-
ods are constrained to achieve the same PSNR. Under these
conditions, SITCOM once again proves to be faster than
DCDP, REDdiff, and PGDM.

SITCOM-MRI results are given in Appendix H, and visual
examples are provided in Appendix L.

5. Conclusion
We introduced step-wise backward consistency with net-
work regularization and formulated three conditions to
achieve measurement- and diffusion-consistent trajectories
for solving inverse imaging problems using pre-trained dif-
fusion models. These conditions formed the base of our
optimization-based sampling method, optimizing the dif-
fusion model input at every sampling step for improved
efficiency and measurement consistency. Experiments
across eight image restoration tasks and one medical imag-
ing reconstruction task show that our sampler consistently
matches or outperforms state-of-the-art baselines, under
different measurement noise levels.

Impact Statement
The Step-wise Triple-Consistent Sampling (SITCOM)
method improves diffusion models for inverse problems
by introducing three consistency conditions. SITCOM ac-
celerates sampling by reducing reverse steps while ensuring
measurement, forward, and network-regularized backward
diffusion consistency. This enables efficient, robust im-
age restoration, particularly in noisy settings, and advances
optimization-based approaches in generative modeling.
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Appendix

In the Appendix, we start by showing the equivalence between the second formula in (2) and (5) (Appendix A). Then, we
discuss the known limitations and future extensions of SITCOM (Appendix B). Subsequently, we present experiments to
highlight the impact of the proposed backward consistency and other consistencies in SITCOM (Appendix C). Appendix D
provides further insights to aid in understanding SITCOM. In Appendix E and Appendix F, we present the latent and ODE
versions of SITCOM, respectively. This is followed by a discussion on phase retrieval (Appendix G). Appendix H shows
the results of applying SITCOM on multicoil Magnetic Resonance Imaging (MRI). In Appendix I, we provide further
comparison results, and in Appendix J, we perform ablation studies to examine the effects of the stopping criterion and
other components/hyper-parameters in SITCOM. Appendix K covers the implementation details of tasks, baselines, and
SITCOM’s hyper-parameters. followed by visual examples of restored/reconstructed images (Appendix L).

A. Derivation of Equation (5)

From (Luo, 2022), we have

sθ(xt, t) = −
1√

1− ᾱt
ϵθ(xt, t) . (13)

Rearranging the Tweedie’s formula in (3) to solve for ϵθ(xt, t) yields

ϵθ(xt, t) =
xt −

√
ᾱtx̂0(xt)√

1− ᾱt
. (14)

Now, we substitute into the recursive equation for xt−1:

xt−1 =
1√

1− βt
[xt + βtsθ(xt, t)] +

√
βtηt

=
1√

1− βt

[
xt + βt

(
− 1√

1− ᾱt
ϵθ(xt, t)

)]
+

√
βtηt

=
1√

1− βt

[
xt −

βt√
1− ᾱt

ϵθ(xt, t)

]
+

√
βtηt

=
1√

1− βt

[
xt −

βt√
1− ᾱt

(
xt −

√
ᾱtx̂0(xt)√

1− ᾱt

)]
+
√
βtηt

=
1√

1− βt

[
xt −

βt
1− ᾱt

(
xt −

√
ᾱtx̂0(xt)

)]
+
√
βtηt

=
1√

1− βt

[(
1− βt

1− ᾱt

)
xt +

√
ᾱtβt

1− ᾱt
x̂0(xt)

]
+

√
βtηt

=
(1− ᾱt − βt)√
1− βt (1− ᾱt)

xt +

√
ᾱtβt√

1− βt (1− ᾱt)
x̂0(xt) +

√
βtηt

=
(αt − ᾱt)√
αt (1− ᾱt)

xt +

√
ᾱtβt√

αt (1− ᾱt)
x̂0(xt) +

√
βtηt

=

(√
αt −

√
αtᾱt−1

)
1− ᾱt

xt +

√
ᾱt−1βt
1− ᾱt

x̂0(xt) +
√
βtηt

=

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

x̂0(xt) +
√
βtηt ,

which is equivalent to the second formula in (2).
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B. Limitations & Future Work
The stated conditions and proposed sampler are limited to the non-blind setting, as SITCOM assumes full access to the
forward model, unlike works such as (Chung et al., 2023a), which perform both image restoration and forward model
estimation. Additionally, SITCOM uses 2D diffusion models for 2D image reconstruction/restoration only. Extending
SITCOM to the 3D setting may require specialized regularization and modifications.

For future work, we aim to address the above two settings (3D reconstruction and/or blind settings) and explore its
applicability in medical 3D image reconstruction.

C. Impact of Each Individual Consistency on SITCOM’s Performance
Here, we show the effect of removing each of the individual consistencies to demonstrate their necessity.

C.1. Impact of the Backward Consistency

In SITCOM, a key contribution is the imposition of step-wise backward consistency, which allows us to fully exploit the
implicit regularization provided by the network. Removing stepwise backward consistency is equivalent to removing the
network regularization constraint x̂0 = f(vt; θ, t) from SITCOM. More specifically, in our algorithm, the optimization
variable becomes the output of the pre-trained network for which, given some xt, the steps at sampling time t are:

x̂′
0 = argminx′

∥∥A(x′)− y
∥∥2
2
, (15a)

xt−1 =
√
ᾱt−1x̂

′
0 +

√
1− ᾱt−1ηt, ηt ∼ N (0, I) , (15b)

where the initialization of x′ in (15a) is set to f(xt; t, ϵθ). We call the resulting algorithm as “SITCOM without backward
consistency”. In (15a), we already obtain an estimated image. Therefore, there is no need for a second step. Furthermore, as
the pre-trained model here is only used for initializing the optimization in (15a), SITCOM without backward consistency
does not require to back-propagate through the pre-trained DM network which will subsequently result in reduced run-times.
However, the steps in (15) require more sampling iterations to converge to decent PSNRs. This statement will be supported
in the next subsubsections.

We remark that this reduced algorithm is essentially equivalent to the Resample Algorithm (Song et al., 2023a) in the
pixel space. In other words, Resample in the pixel space resembles SITCOM without backward consistency.

In this subsection, we will show the impact of the step-wise DM network regularization of the backward consistency by
examining the results of (i) all sampling steps, and (ii) intermediate steps.

C.1.1. FULL SAMPLING STEPS STUDY

Here, we run SITCOM vs. SITCOM without backward consistency (i.e., Algorithm 1 vs. the steps in (15)) for the task
of super resolution. We report the average PSNR and run-time (seconds) of 20 FFHQ test images with K = 1000 and
N ∈ {20, 100}. We select a large K to allow the optimizer to converge. Results are given in Table 2. As observed, SITCOM
without backward consistency indeed requires less run-time but the PSNRs are significantly lower than SITCOM (more than
5 dB for both cases) even if run until convergence (i.e., with very large K).

Method N = 20 N = 100
PSNR Run-time PSNR Run-time

SITCOM 31.34 608.2 31.39 2418.2
SITCOM without Backward Consistency 25.97 372.4 26.1 1405.7

Table 2: Impact of the backward consistency in SITCOM: Average PSNR and run-time results (in seconds) of 20 FFHQ test images at
using different values of N with K = 1000, reported by running Algorithm 1 with the optimization in (S1) (first row) vs. the optimization
in (15a) (second row).

C.1.2. INTERMEDIATE SAMPLING STEPS VISUALIZATIONS

First, for the box-painting task, we compare SITCOM with optimizing over the output of the DM network (i.e., the steps
in (15)) at time steps t′ ∈ {200, 400, 600}. More specifically, for each case (selection of t′), we start from t = T and
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GT

𝑡′ = 800

Optimizing over the output of the DM network at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Optimizing over the input of the DM network (ours) at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Degraded Image

Task: Gaussian Deblurring

𝑡′ = 600𝑡′ = 400𝑡′ = 200

GT Degraded Image

𝑡′ = 800𝑡′ = 600𝑡′ = 400𝑡′ = 200

Task: Box Inpainting

Optimizing over the output of the DM network at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Optimizing over the input of the DM network (ours) at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Figure 3: Results of applying optimization-based measurement consistency, for which the optimization variable is the DM output (resp.
input), are shown in the first (resp. second) row for each task: Box Inpainting (top) and Gaussian Deblurring (bottom).

run SITCOM with a step size of ⌊ TN ⌋. At t = t′, given xt′ , we perform two separate optimizations with intializing the
optimization variable as xt′ : one iteratively over the DM network input (i.e., (S1)) and another iteratively over the DM
network output (i.e., (15a)), both running until convergence (i.e., when the loss stops decreasing). Figure 1 shows the results
at different time steps. The consistency between the ground truth and the unmasked regions of the estimated images suggest
the convergence of the measurement consistency. As observed, SITCOM produces significantly less artifacts in the masked
region when compared to optimizing over the output. This is evident both at earlier time steps (t′ = 600) and later steps
(t′ = 400 and t′ = 200).

For the second experiment, the goal is to show that SITCOM requires much smaller number of optimization steps to remove
the noise as compared to SITCOM without backward consistency. The results are given in Figure 3, where we repeat the
above experiment with two tasks: Box-inpainting (top) and Gaussian Deblurring (bottom), this time using a fixed number of
optimization steps for both SITCOM, and SITCOM without backward consistency. Specifically, we run SITCOM from
t = T to t = t′ + 1. Then, we apply K = 20 iterations (the setting in SITCOM) in (S1), and K = 20 for (15a) where
measurement noise is σy = 0.05. As shown, compared to SITCOM without backward consistency, SITCOM significantly
reduces noise across all considered t′, underscoring the effect of the proposed step-wise network regularization for backward
diffusion consistency.

C.2. Impact of the iterative step-wise measurement/data consistency

While all DM-IP methods aim to impose data consistency in the final solution, not all enforce step-wise data consistency.
This step-wise consistency requires that the estimate x̂0 computed using Tweedie’s formula at each intermediate step
remains consistent with the data. In SITCOM, step-wise measurement consistency is enforced by minimizing the data
misfit term ∥A(x̂0(vt)) − y∥22 at each step. However, if the minimizer is not found and only one gradient update of
∥A(x̂0(vt))− y∥22 with respect to vt is performed (as in DPS), step-wise data consistency is no longer enforced, although
global data consistency at t = 0 is still maintained. Therefore, we refer to SITCOM with K = 1 (i.e., performing only one
gradient update of the data misfit) as SITCOM without data consistency and compare it to SITCOM itself. Note that the
former is also equivalent to DPS plus resampling.

More specifically, we compare SITCOM with K = 1 vs. K = 20 (converged) for various sampling steps (N ). The study
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uses 20 FFHQ images with σy = 0.05. Average PSNR and run-time (in seconds) for the tasks SR and NDB are given in
Table 3.

N
Super Resolution Non-linear Deblurring

K = 1 K = 20 K = 1 K = 20
PSNR Run-time PSNR Run-time PSNR Run-time PSNR Run-time

10 11.28 0.99 27.75 19.12 12.12 0.99 26.92 19.02
20 11.41 2.11 30.40 35.20 12.30 2.30 30.27 36.05
30 11.44 3.12 30.88 55.04 12.32 3.40 30.72 57.05

100 17.04 9.14 - - 16.46 9,12 - -
1000 25.44 60.43 - - 24.89 60.45 - -

Table 3: Impact of the step-wise iterative measurement consistency in SITCOM: Average PSNR/run-time results of 20 FFHQ test images
at using different values of N and K to show the impact of using multiple gradient updates in applying the step-wise measurement
consistency in SITCOM.

We observe that K = 20 (i.e., imposing the step-wise data consistency) yields better result than K = 1 (i.e., not imposing
the step-wise data consistency). In addition, for K = 1 (i.e., DPS+resampling), achieving decent results requires N = 1000,
leading to longer run-times.

C.3. Impact of the step-wise forward consistency

This experiment examines the impact of forward consistency imposed through the resampling in step 3 of SITCOM.
Specifically, we compare SITCOM versus SITCOM with replacing the resampling formula with the traditional sampling
formula in (5) at each sampling step.

We use 20 FFHQ test images with σy = 0.05, setting N = K = 20. Table 4 shows average PSNR/runtime (in seconds) for
one linear and one non-linear task. As observed, the use of resampling formula is more effective than the standard sampling,

Method Mapping to t− 1
Super Resolution Non-linear Deblurring

PSNR Run-time PSNR Run-time

SITCOM Equation (S3) 30.40 35.20 30.27 36.05
SITCOM without Forward Consistency (resampling) Equation (6) 20.78 35.12 22.42 36.22

Table 4: Impact of the forward consistency in SITCOM: Average PSNR and run-time (seconds) results of 20 FFHQ test images using
two re-mappings: First is (S3) (first row), and second is (6).

demonstrating the effect of the forward consistency in SITCOM.

D. Further Insights & Relation to Existing Studies
Here, we discuss similarities and differences between DPS and SITCOM which leads to providing further insights into why
our proposed sampler can (i) achieve competitive quantitative results, and (ii) allow for arbitrary sampling iterations.

DPS (Algorithm 2) is known to approximately converge to the posterior distribution p(x|y) at t = 0.
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Algorithm 2: DPS - Gaussian (Chung et al., 2023b)

Require: N , y, {ζi}Ni=1, {σ̃i}Ni=1

1: xN ∼ N (0, I)
2: for i = N − 1 to 0 do
3: ŝ← sθ(xi, i)
4: x̂0 ← 1√

ᾱi
(xi + (1− ᾱi)ŝ)

5: z ∼ N (0, I)

6: x′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃iz

7: xi−1 ← x′
i−1 − ζi∇xi∥y −A(x̂0)∥22

8: end for
9: return x̂

Algorithm 3: DPS with resampling

Require: N , y, {ζi}Ni=1, {σ̃i}Ni=1

1: xN ∼ N (0, I)
2: for i = N − 1 to 0 do
3: ŝ← sθ(xi, i)
4: x̂0 ← 1√

ᾱi
(xi + (1− ᾱi)ŝ)

5: z ∼ N (0, I)
6: vi ← xi − ζi∇xi∥y −A(x̂0)∥22
7: x′

i−1 ←
√
ᾱi−1x̂0(vi) +

√
1− ᾱi−1z

8: end for
9: return x̂

Proposition D.1. SITCOM with K = 1 is DPS with the resampling formula in (7).

Proof. First, we replace the xi in line 6 of DPS (Algorithm 2) with its approximation xi ≈
√
ᾱix̂0 +

√
1− ᾱiz, where

z ∼ N (0, I). Under this substitution, line 6 becomes x′
i−1 =

√
ᾱi−1x̂0+

√
1− ᾱi−1z, which corresponds to the resampling

formula. The resulting algorithm is referred to as DPS with resampling (DPS+resampling).

To better illustrate its connection to SITCOM, we rename the variable x′
i−1 to vi and swap the resampling formula with line

7 of DPS. These changes do not alter the algorithm’s outcome. The resulting is an equivalent form of DPS+resampling and
is presented in Algorithm 3.

We observe that line 6 in the Algorithm 3 corresponds to the gradient descent step for the objective function ∥y−A(x̂0(xi))∥22
with respect to xi, and line 7 is the resampling. Compared to Algorithm 1, we see that DPS+resampling is equivalent to
SITCOM with K = 1.

Remark 3. From Proposition 1, we observe that each iteration of DPS performs a single gradient update on the objective
function ∥y − A(x̂0(xi))∥22. By grouping K consecutive sampling steps together, the process effectively performs K
gradient updates. These updates correspond to very similar objective functions due to the continuity of the diffusion model,
where sθ(x, t) ≈ sθ(x, t

′) for t ≈ t′.

Specifically, within each group of K consecutive sampling steps, the associated time steps are closely spaced, say they are
all within an interval (t1, t2) with t2 − t1 ≪ 1. Due to the continuity of the diffusion model, the sθ(x, t) term in x̂0 can be
approximated by its value at the fixed time t2, i.e., sθ(x, t) ≈ sθ(x, t2) for all t ∈ (t1, t2). With this approximation, the
objective function ∥y −A(x̂0(xi))∥22 depends solely on xi, rather than both xi and t.

This simplification implies that the K gradient updates now act on the same objective function. As a result, optimization
can be accelerated using Adam. The use of Adam is a key reason why SITCOM achieves faster convergence compared to
DPS, as the latter relies solely on gradient descent. Finally, as shown in ReSample (Song et al., 2023a), resampling can
be performed rather sparsely. In SITCOM, resampling is performed only once every K iterations, further enhancing its
efficiency.

It is important to note that this explanation provides a high-level intuition to aid in understanding SITCOM, rather than a
rigorous proof of its performance.

E. Latent SITCOM
In this section, we extend SITCOM to latent diffusion models. Define E : Rn → Rr (parameterized by ϕ) andD : Rr → Rn
(parameterized by ψ) as the pre-trained encoder and decoder, respectively, with r ≪ n. Let ϵ : Rr × {0, . . . , T} → Rr
(parameterized by θ′) be a pre-trained DM in the latent space. We note that E is only needed during training. At inference,
given some zt ∈ Rr, the steps in latent SITCOM are formulated as

ŵt := argmin
w′

t

∥∥∥A(Dψ( 1√
ᾱt

[
w′
t −
√
1− ᾱtϵθ′(w′

t, t)
]))
− y

∥∥∥2
2
+ λ

∥∥∥w′
t − zt

∥∥∥2
2
, (SL1)
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ẑ′0 :=
1√
ᾱt

[
ŵt −

√
1− ᾱtϵθ′(ŵt, t)

]
, (SL2)

zt−1 =
√
ᾱt−1ẑ

′
0 +

√
1− ᾱt−1ζt, ζt ∼ N (0, Ir) . (SL3)

Task Method FFHQ ImageNet
PSNR (↑) LPIPS (↓) run-time (↓) PSNR (↑) LPIPS (↓) run-time (↓)

Super Resolution 4×
Latent-DAPS (Zhang et al., 2025) 27.48 0.192 84.24 25.06 0.343 125.40

ReSample (Song et al., 2023a) 23.33 0.392 194.30 22.19 0.370 265.30
Latent-SITCOM (ours) 27.98 0.142 65.00 26.35 0.232 123.20

Box In-Painting
Latent-DAPS (Zhang et al., 2025) 23.99 0.194 83.00 17.19 0.340 115.20

ReSample (Song et al., 2023a) 20.06 0.184 189.45 18.29 0.262 226.24
Latent-SITCOM (ours) 24.22 0.177 58.20 20.88 0.314 114.00

Random In-Painting Latent-DAPS (Zhang et al., 2025) 30.71 0.146 93.65 27.89 0.202 128
Latent-SITCOM (ours) 31.05 0.135 63.24 28.44 0.197 118.30

Gaussian Deblurring
Latent-DAPS (Zhang et al., 2025) 28.03 0.232 88.420 25.34 0.341 135.24

ReSample (Song et al., 2023a) 26.42 0.255 186.40 25.97 0.254 234.10
Latent-SITCOM (ours) 28.21 0.223 78.30 25.72 0.316 132.24

Motion Deblurring
Latent-DAPS (Zhang et al., 2025) 27.32 0.278 118.2 26.85 0.349 139.2

ReSample (Song et al., 2023a) 27.41 0.198 236.2 26.94 0.227 264.2
Latent-SITCOM (ours) 27.74 0.182 64.25 27.25 0.202 121.4

Phase Retrieval
Latent-DAPS (Zhang et al., 2025) 29.16 0.199 80.92 20.54 0.361 105.65

ReSample (Song et al., 2023a) 21.60 0.406 204.5 19.24 0.403 234.25
Latent-SITCOM (ours) 28.14 0.241 114.52 20.45 0.326 156.2

Non-Uniform Deblurring
Latent-DAPS (Zhang et al., 2025) 28.15 0.211 89.24 25.34 0.314 130.2

ReSample (Song et al., 2023a) 28.24 0.185 172.4 26.20 0.206 215.2
Latent-SITCOM (ours) 28.41 0.171 112.4 26.48 0.201 134.5

High Dynamic Range
Latent-DAPS (Zhang et al., 2025) 26.14 0.221 78.2 23.78 0.261 132.2

ReSample (Song et al., 2023a) 25.55 0.182 178.2 25.11 0.196 215.2
Latent-SITCOM (ours) 25.85 0.174 102.45 25.67 0.182 145.4

Table 5: Average PSNR, LPIPS, and run-time (seconds) results of our method and other latent-space baselines over 100 FFHQ and 100
ImageNet test images. The measurement noise setting is σy = 0.05.

Table 5 presents the results of Latent-SITCOM for the 8 image restoration tasks as compared to ReSample (Song et al.,
2023a) and Latent-DAPS (Zhang et al., 2025). All methods used the pre-trained latent model from ReSample4.

For SITCOM, we used N = 20 and λ = 0 and set K = 30 (resp. K = 50) for linear (resp. non-linear) problems. Default
hyper-parameter settings were used for ReSample and Latent-DAPS for each task as recommended in the authors’ papers
and code base.

As observed, Latent-SITCOM achieves better results than ReSample on all tasks and on both metrics (PSNR and LPIPS).
When compared to Latent-DAPS, SITCOM achieves improved results on all tasks other than phase retrieval where we
under-perform by 1dB on FFHQ and nearly 0.1dB on ImageNet.

In terms of run-time, Latent-SITCOM generally requires less time when compared to ReSample. As compared to Latent-
DAPS, our run-time is generally less. However, there are cases where Latet-DAPS is faster than our method. An example of
this is MDB on FFHQ.

In summary, in this section, we show that SITCOM can be extended to the latent space, and our results are either better or
very competitive when compared to two recent state-of-the-art latent-space baselines.

F. SITCOM with ODEs for Step (2) in (S2)

The Tweedie’s network denoiser f(xt; t, ϵθ) in (S2) can be replaced by other denoisers without affecting the main idea of
imposing the three consistencies in SITCOM. In this section, we conduct a study for which we replace it with an ODE
solver at each sampling step t. Specifically, given v̂t from (S1), we obtain an estimated image x̂′

0 by solving following ODE

4
https://github.com/soominkwon/resample
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with initial values v̂t and t.

dxt
dt

= −σ̇tσt∇xt
log p(xt;σt) . (16)

In (16), ∇xt
log p(xt;σt) ≈ sθ(v̂t, t) where we implement the Euler solver in (Karras et al., 2022) and select σt = t. This

reduces (16) to solving the ODE dxt = −tsθ(v̂t, t)dt using NODE discrete steps.

Task Method FFHQ ImageNet
PSNR (↑) LPIPS (↓) run-time (↓) PSNR (↑) LPIPS (↓) run-time (↓)

Super Resolution 4× SITCOM 30.68 0.142 27.00 26.35 0.232 67.20
SITCOM-ODE 30.86 0.137 76.10 26.51 0.228 132.00

Box In-Painting SITCOM 24.68 0.121 21.00 21.88 0.214 67.20
SITCOM-ODE 24.79 0.118 81.30 22.44 0.208 152.00

Random In-Painting SITCOM 32.05 0.095 27.00 29.60 0.127 68.40
SITCOM-ODE 32.18 0.091 93.50 30.11 0.114 128.30

Gaussian Deblurring SITCOM 30.25 0.135 27.60 27.40 0.236 66.00
SITCOM-ODE 30.42 0.132 85.10 27.87 0.232 134.10

Motion Deblurring SITCOM 30.34 0.148 30.00 28.65 0.189 88.80
SITCOM-ODE 30.54 0.145 112.34 28.81 0.184 139.00

Phase Retrieval SITCOM 30.67 0.122 28.50 25.45 0.246 84.00
SITCOM-ODE 31.10 0.109 80.40 25.96 0.242 138.50

Non-Uniform Deblurring SITCOM 30.12 0.145 33.45 28.78 0.16 75.00
SITCOM-ODE 30.31 0.141 85.25 28.86 0.152 129.20

High Dynamic Range SITCOM 27.98 0.158 31.20 26.97 0.177 92.40
SITCOM-ODE 28.12 0.155 75.20 27.14 0.164 132.00

Table 6: Average PSNR, LPIPS, and run-time results of SITCOM with Tweedie’s formula (i.e., Algorithm 1) vs. SITCOM with the ODE
solver for (16) instead of Tweedie’s in (S2). Results are averaged over 100 FFHQ and 100 ImageNet test images with measurement noise
level of σy = 0.05. For SITCOM ODE, similar to DAPS (Zhang et al., 2025), we use NODE = 5.

Table 6 presents a comparison study between SITCOM with Tweedie’s formula vs. SITCOM with ODE in terms of PSNR,
LPIPS, and run-time.

In general, we observe that the run-time for SITCOM-ODE is significantly longer than the required run-time for SITCOM.
Specifically, the run-time is either doubled (or, in some cases, tripled) for a PSNR gain of less than 1 dB. These results show
the trade-off between PSNR and run-time when ODEs are used in SITCOM, as discussed in Remark 1.

It is important to note that SITCOM-ODE demonstrates greater stability for the task of PR. In particular, we observe fewer
failures when selecting the best result from 4 runs for each image. See the next section for further details.

G. Discussion on Phase Retrieval
As discussed in our experimental results section, for the phase retrieval task, we report the best results from 4 independent
runs, following the convention in (Chung et al., 2023b; Zhang et al., 2025). For the phase retrieval results of Table 1, we use
this approach across all baselines where the run-time is reported for one run.

The forward model for phase retrieval is adopted from DPS where the inverse problem is generally more challenging
compared to other image restoration tasks. This increased difficulty arises from the presence of multiple modes that can
yield the same measurements (Zhang et al., 2025).

In Figure 4, we present two examples. For each ground truth image, we show four results from which the best one was
selected. In the first column, SITCOM avoids significant artifacts, while DAPS and SITCOM-ODE produce one image
rotated by 180 degrees. In the second column, both SITCOM and DAPS exhibit one run with severe artifacts whereas
SITCOM-ODE shows no image with extreme artifacts. The last image from SITCOM does exhibit more artifacts compared
to the second worst-case result from DAPS. Additionally, the DPS results show severe perceptual differences in both cases,
with artifacts being particularly noticeable in the second column.
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Ground Truth Ground Truth

DPS

DAPS

SITCOM (Ours)

SITCOM-ODE (Ours)

Figure 4: Results of Phase Retrieval on two images (top row) from the FFHQ dataset. Rows 2, 3, 4, and 5 correspond to the results of
DPS, DAPS, and SITCOM (ours), and SITCOM-ODE (ours), respectively.

H. SITCOM MRI Setup and Results
In this section, we extend SITCOM to 2D medical image reconstruction. In particular, we consider the linear task of
multi-coil Magnetic Resonance Imaging (MRI) where the forward operator is A = MFS. Here, M denotes the coil-wise
undersampling, F is the coil-by-coil Fourier transform, and S represents the sensitivity encoding with multiple coils, which
are incorporated into the operator A for all scenarios, are obtained using the BART toolbox (Tamir et al., 2016). We consider
two mask patterns and two acceleration factors (Ax).

For baselines, we compare against DM-based solvers (DDS (Chung et al., 2024) and Score-MRI (Chung & Ye, 2022)),
supervised learning solvers (Supervised U-Net (Ronneberger et al., 2015) and E2E Varnet (Sriram et al., 2020)), and dataless
approaches (Self-Guided DIP (Liang et al., 2025), Auto-encoded Sequential DIP (aSeqDIP) (Alkhouri et al., 2024a), and
TV-ADMM (Uecker et al., 2014)). We use the fastMRI dataset (et al, 2019). We note that for training the Supervised
U-Net (Ronneberger et al., 2015) and E2E Varnet (Sriram et al., 2020), we selected 8,000 training images from the 973
available volumes, omitting the first and last five slices from each volume. For testing, we used 50 images taken from the
validation dataset.

SITCOM and the other two DM-based solvers (DDS and Score-MRI) use the pre-trained model in DDS5. We used the
recommended parameters for baselines as given in their respective papers. For SITCOM, we used N = 50, K = 10, and
λ = 0.

PSNR and SSIM results are presented in Table 7, while run-time results are provided in Table 8. As observed, SITCOM
achieves the highest PSNR and SSIM values compared to the considered baselines. In terms of run-time, SITCOM requires
significantly less time compared to DPS and Score-MRI. When compared to DDS (the best DM-based baseline), SITCOM
achieves more than a 1 dB improvement in 3 out of the 4 considered mask patterns/acceleration factors, though it requires
nearly twice the run-time. DDS is faster than SITCOM because, in DDS, back-propagation through the pre-trained network
is not required, as it is in SITCOM. Visualizations are given in Figure 5.

5
https://github.com/HJ-harry/DDS
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Mask Pattern Ax. TV-ADMM Supervised E2E-VarNet Self-G DIP aSeqDIP Score-MRI DPS DDS SITCOM

Uniform 1D
×4 27.41±0.43 31.67±0.89 33.06±0.59 32.59±0.12 32.75±0.452 33.12±1.18 30.56±0.66 34.95±0.74 36.33±0.37

0.667±0.17 0.847±0.05 0.854±0.12 0.851±0.45 0.852±0.08 0.849±0.08 0.841±0.11 0.954±0.10 0.962±0.08

×8 25.12±2.11 29.24±0.37 32.03±0.35 32.19±0.45 32.33±0.31 32.10±2.30 30.33±0.23 31.72±1.88 32.78±0.64

0.535±0.05 0.784±0.05 0.829±0.08 0.827±0.16 0.831±0.14 0.821±0.13 0.812±0.18 0.876±0.06 0.892±0.02

Gaussian 1D
×4 30.55±1.77 32.78±0.66 34.11±0.14 33.98±1.25 34.28±0.95 34.21±1.54 32.37±1.09 35.24±1.01 36.42±0.85

0.785±0.06 0.861±0.12 0.913±0.12 0.904±0.15 0.908±0.14 0.891±0.11 0.832±0.15 0.963±0.15 0.969±0.13

×8 28.08±1.28 31.52±1.09 33.21±0.29 32.81±1.42 32.95±0.88 32.34±0.55 30.52±2.32 33.32±1.66 33.99±1.29

0.747±0.21 0.841±0.12 0.868±0.18 0.873±0.13 0.877±0.17 0.853±0.11 0.833±0.16 0.933±0.07 0.943±0.09

Table 7: Average PSNR and SSIM results for SITCOM and various methods for MRI reconstruction using Uniform 1D and Gaussian 1D
masks with 4x and 8x acceleration factors. The measurement noise level is σy = 0.01. Values past ± represent the standard deviation.
Best results are bolded whereas the second-best results are underlined.

Method Score-MRI DPS DDS SITCOM

Avg. Run-time (seconds) 342.20±41 145.52±27 25.40±6.1 52.30±22

Table 8: Average run-time in seconds for SITCOM and DM-based baselines for the case of Uniform 1D and ×4.

Ground Truth Input Score MRI DDS SITCOM
Uniform 1D 4x

PSNR = ∞ dB PSNR = 20.45 dB PSNR = 32.95 dB PSNR = 34.12 dB PSNR = 34.78 dB

Uniform 1D 8x

PSNR = ∞ dB PSNR = 17.45 dB PSNR = 30.75 dB PSNR = 32.02 dB PSNR = 32.68 dB

Gaussian 1D 4x

PSNR = ∞ dB PSNR = 20.85 dB PSNR = 32.67 dB PSNR = 34.52 dB PSNR = 35.36 dB

Gaussian 1D 8x

PSNR = ∞ dB PSNR = 18.95 dB PSNR = 30.45 dB PSNR = 31.89 dB PSNR = 32.72 dB

Figure 5: Reconstructed images using our proposed approach, SITCOM, and DM-based baselines (DDS and Score-MRI). Each row
corresponds to a different mask pattern and acceleration factor. The ground truth and degraded images are shown in the first and second
columns, respectively, followed by the reconstructed imaged from the baselines. The last column presents our method. PSNR results are
given at the bottom of each reconstructed image. For all tasks, SITCOM reconstructions contain sharper and clearer image features than
other methods.
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I. Additional Comparison Results
I.1. Near Noiseless Setting

In Table 9, we present the average PSNR, SSIM, LPIPS, and run-time (seconds) of DPS, DAPS, DDNM, and SITCOM
using the FFHQ and ImageNet datasets for which the measurement noise level is set to σy = 0.01 (different from Table 1).
The goal of these results is to evaluate our method and baselines under less noisy settings.

Task Method FFHQ ImageNet
PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓)

Super Resolution 4×
DPS 25.20±1.22 0.806±0.044 0.242±0.102 78.60±26.40 24.45±0.89 0.792±0.052 0.331±0.089 139.80±24.00

DAPS 29.60±0.67 0.871±0.034 0.132±0.088 74.40±25.80 25.98±0.74 0.794±0.09 0.234±0.089 106.00±21.20

DDNM 28.82±0.67 0.851±0.043 0.188±0.13 64.20±21.00 24.67±0.78 0.771±0.06 0.432±0.034 82.80±33.00

Ours 30.95±0.89 0.872±0.045 0.137±0.046 30.00±8.40 26.89±0.86 0.802±0.057 0.224±0.056 80.40±17.00

Box In-Painting

DPS 23.56±0.78 0.762±0.034 0.191±0.087 91.20±25.80 20.22±0.67 0.69±0.034 0.297±0.077 93.00±26.40

DAPS 24.41±0.67 0.791±0.034 0.129±0.067 69.80±12.20 21.79±0.34 0.734±0.045 0.214±0.034 96.40±20.40

DDNM 24.67±0.067 0.788±0.024 0.229±0.055 61.20±15.20 21.99±0.54 0.737±0.034 0.315±0.022 85.20±27.00

Ours 24.97±0.55 0.804±0.045 0.118±0.022 22.20±8.40 22.23±0.44 0.745±0.034 0.208±0.023 73.80±26.40

Random In-Painting

DPS 28.77±0.56 0.847±0.034 0.191±0.023 93.00±20.40 24.57±0.45 0.775±0.023 0.318±0.26 127.20±18.00

DAPS 31.56±0.45 0.905±0.013 0.094±0.012 79.20±17.00 28.86±0.67 0.877±0.021 0.131±0.044 120.60±20.40

DDNM 30.56±0.56 0.902±0.013 0.116±0.023 75.00±15.20 30.12±0.45 0.917±0.012 0.124±0.032 113.40±13.80

Ours 33.02±0.44 0.919±0.012 0.0912±0.013 28.20±6.40 30.67±0.45 0.918±0.013 0.118±0.012 84.00±20.40

Gaussian Deblurring

DPS 25.78±0.68 0.831±0.034 0.202±0.014 79.80±26.40 22.45±0.42 0.778±0.067 0.344±0.041 127.20±26.40

DAPS 29.67±0.45 0.889±0.045 0.163±0.033 79.00±22.20 26.34±0.55 0.836±0.034 0.244±0.023 133.20±25.80

DDNM 28.56±0.45 0.872±0.024 0.211±0.034 74.40±20.40 28.44±0.021 0.882±0.021 0.267±0.044 105.60±19.80

Ours 32.12±0.34 0.913±0.024 0.139±0.045 27.00±10.20 28.22±0.45 0.891±0.014 0.216±0.021 80.40±15.00

Motion Deblurring
DPS 23.78±0.78 0.742±0.042 0.265±0.024 99.00±20.40 22.33±0.727 0.726±0.034 0.352±0.00 132.60±24.00

DAPS 30.78±0.56 0.892±0.034 0.146±0.023 66.40±20.40 28.24±0.62 0.867±0.023 0.191±0.017 127.20±26.40

Ours 32.34±0.44 0.908±0.028 0.135±0.028 31.20±10.40 29.12±0.38 0.882±0.025 0.182±0.025 87.00±18.60

Phase Retrieval
DPS 17.56±2.15 0.681±0.056 0.392±0.021 91.20±25.20 16.77±1.78 0.651±0.076 0.442±0.037 130.80±22.80

DAPS 31.45±2.78 0.909±0.035 0.109±0.044 81.00±19.20 26.12±2.12 0.802±0.023 0.247±0.034 139.20±21.00

Ours 31.88±2.89 0.921±0.067 0.102±0.078 32.40±12.40 25.76±1.78 0.813±0.032 0.238±0.067 78.60±17.00

Non-Uniform Deblurring
DPS 23.78±2.23 0.761±0.051 0.269±0.064 93.60±27.00 22.97±1.57 0.781±0.023 0.302±0.089 140.40±26.40

DAPS 28.89±1.67 0.845±0.057 0.150±0.056 84.60±22.20 28.02±1.15 0.831±0.082 0.162±0.034 133.80±33.60

Ours 31.09±0.89 0.911±0.056 0.132±0.45 33.60±8.20 29.56±0.78 0.844±0.045 0.147±0.042 80.40±16.40

High Dynamic Range
DPS 23.33±1.34 0.734±0.049 0.251±0.078 80.40±25.20 19.67±0.056 0.693±0.034 0.498±0.112 140.40±24.60

DAPS 27.58±0.829 0.828±0.00 0.161±0.067 75.60±16.40 26.71±0.088 0.802±0.032 0.172±0.066 127.20±19.20

Ours 28.52±0.89 0.844±0.045 0.148±0.035 30.60±7.20 27.56±0.78 0.825±0.037 0.162±0.046 87.00±14.60

Table 9: Average PSNR, SSIM, LPIPS, and run-time (seconds) of SITCOM and baselines using 100 test images from FFHQ and 100
test images from ImageNet with a measurement noise level of σy = 0.01. The first five tasks are linear, while the last three tasks are
non-linear (underlined). For each task and dataset combination, the best results are in bold, and the second-best results are underlined.
Values after ± represent the standard deviation. All results were obtained using a single RTX5000 GPU machine. For phase retrieval, the
run-time is reported for the best result out of four independent runs. This is applied for SITCOM and baselines.

Overall, we observe similar trends to those discussed in Section 4 for Table 1. On the FFHQ dataset, SITCOM achieves
higher average PSNR values compared to the baselines across all tasks, with improvements exceeding 1 dB in 5 out of 8
tasks. For the ImageNet dataset, we observe more than 1 dB improvement on the non-linear deblurring task, while for the
remaining tasks, the improvement is less than 1 dB, except for Gaussian deblurring (where SITCOM underperforms by 0.22
dB) and phase retrieval (underperforming by 0.36 dB).

In terms of run-time, generally, SITCOM outperforms DDNM, DPS, and DAPS, with all methods evaluated on a single
RTX5000 GPU. For the FFHQ dataset, SITCOM is at least twice as fast when compared to baselines. On ImageNet,
SITCOM consistently requires less run-time compared to DPS and DAPS. When compared to DDNM, SITCOM’s run-time
is similar or slightly lower. For example, on the super-resolution task on ImageNet, both SITCOM and DDNM average
around 81 seconds, but SITCOM achieves over a 2 dB improvement.

I.2. Performance Comparison Under Time Constraints

In this subsection, we compare the performance of SITCOM with baselines where their default settings require less run-time
than SITCOM. Namely, DCDP on linear IPs, RED-diff, and PGDM. In Section 4, we demonstrated that the proposed step-
wise backward consistency significantly reduces the number of sampling steps. However, enforcing backward consistency
also increases the runtime of each iteration, as the gradient computation in SITCOM requires backpropagation through the
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neural network. Here, we assess the combined impact of these two factors—fewer sampling steps and increased runtime
per step—by conducting time-budgeted comparisons with fast baselines. We will compare SITCOM with DCDP, which
currently achieves SOTA runtime performance, as well as with RED-diff and PGDM, which enforce (non-stepwise) network
consistency.

For a fair comparison, we evaluate the runtime of each method in relation to achieving the same PSNR.

Table 10 includes a comparison of SITCOM and DCDP. DCDP has two versions, and we only compare with its version 1 as
it delivers notably better results than version 2. The parameters N and K in SITCOM also appear in DCDP, so we report
results of the two methods for various values of N and K. DCDP has an extra inner for-loop (total of 3 nested-for-loop in
DCDP) which applies diffusion purification. We fixed the time schedule for the diffusion purification to be the default one.
In addition, we set σy = 0 because SITCOM and DCDP handle measurement noise differently.

Method N K PSNR Run-time (seconds)

SITCOM 10 10 31.6 8.72
DCDP (Default) 10 10 29.52 10.50

SITCOM (Default) 20 20 32.28 28.12
DCDP 20 20 31.67 16.24

SITCOM 10 30 31.66 22.11
DCDP 10 30 31.11 12.42

SITCOM 30 10 31.34 22.08
DCDP 30 10 30.81 12.04

SITCOM 50 10 32.32 32.22
DCDP 50 10 31.69 26.20

SITCOM 100 10 32.34 51.23
DCDP 100 10 31.71 42.45

SITCOM 200 10 32.41 124.20
DCDP 200 10 31.76 112.10

SITCOM 500 10 32.46 320.20
DCDP 500 10 31.82 309.10

Table 10: Comparison of SITCOM vs. DCDP using the linear inverse problem, Gaussian Deblurring (we consider linear problems here
since SITCOM already demonstrates a significant advantage in run-time for nonlinear settings, as evidenced in Table 1 of the main text).
Results are reported using the FFHQ dataset with σy = 0. Different values of N and K are used to report the average PSNR and run-time
(seconds).

As confirmed by the table, SITCOM is slower than DCDP (which does not enforce the backward consistency) when the
number of iterations is fixed due to the need to back-propagate. However, SITCOM allows a more significant reduction
of N and K while achieving competitive PSNRs, so the total run time of SITCOM is smaller. For instance, the PSNR of
SITCOM with N = 10 matches DCDP with N = 20.

In Table 11 and Table 12, we compare SITCOM with RED-diff and PGDM, respectively. Both of these baselines utilize
ideas related to network regularization. However, they utilize the entire diffusion process (from time T to 0) as a single
regularizer of the reconstructed image, instead of applying the network regularize stepwise. Therefore, they’re not imposing
the step-wise backward consistency.

Method Super Resolution Motion Deblurring High Dynamic Range

RED-diff 24.89/18.02 27.35/19.02 23.45/24.40

SITCOM (Default) 26.35/62.02 28.65/62.04 26.97/62.50
SITCOM (N,K) = (8, 8) 24.99/17.80 27.38/17.92 25.24/20.12

Table 11: Average PSNR/rune-time of SITCOM as compared to RED-diff using two linear tasks and one non-linear task. Here, ImageNet
is used with noise level of σy = 0.05.

As observed in Table 11, for Super Resolution and Motion Deblurring, the default SITCOM (second line) requires more run-
time and achieves better PSNR than RED-diff. However, the third line shows that if we just want to match the performance
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of RED-diff, we can use a smaller N and K for SITCOM that greatly reduces the run-time to below RED-diff.

Method Super Resolution Motion Deblurring

PGDM 25.22/26.20 27.48/24.10

SITCOM (Default) 26.35/62.02 28.65/62.04
SITCOM (N,K) = (10, 10) 25.15/19.72 27.55/19.65

Table 12: Average PSNR/rune-time of SITCOM as compared to PGDM for super resolution and motion deblurring. Here, ImageNet is
used with noise level of σy = 0.05.

As observed in Table 12, given the same PSNR, SITCOM requires less run-time than PGDM. Additionally, the default N
and K allow SITCOM to achieve more than 1dB improvement.

J. Ablation Studies
J.1. Impact of K & N and Convergence Plots

In this subsection, we perform an ablation study on the number of optimization steps, K, and the number of sampling steps,
N . Specifically, for the task of Gaussian Deblurring, we run SITCOM using combinations from N ∈ {4, 8, 12, . . . , 40} and
K ∈ {5, 10, 15, . . . , 40}. The average PSNR results over 20 test images from the FFHQ dataset are presented in Table 13.

We observe that with N = 12 and K = 15, we obtain 28.3dB (with only 18.3 seconds) whereas at N = K = 40, we obtain
29 dB which required nearly 110 seconds. This indicates that there is indeed a trade-off between computational cost and
PSNR values. Furthermore, we observe that 61 entries (out of 80) achieve a PSNR values of more than or equal to 28 dB.
This indicates that SITCOM is not very sensitive to the choice of N and K. We note that we observe similar patterns for all
tasks. See the tables of all the tasks here6.

The selected (N,K) values for our main results are listed in Table 17 of Appendix K.1.

(N,K) K = 5 K = 10 K = 15 K = 20 K = 25 K = 30 K = 35 K = 40

N = 4 19.3, 5.22 23.6, 7.14 25.9, 9.00 26.7, 10.56 27.3, 11.34 27.7, 12.48 27.9, 13.74 28.1, 12.96
N = 8 23.7, 7.32 27.2, 11.04 27.9, 13.98 28.3, 17.16 28.4, 19.80 28.5, 22.98 28.5, 25.32 28.6, 23.76
N = 12 25.2, 9.42 27.9, 14.28 28.3, 18.30 28.5, 22.26 28.6, 26.76 28.7, 30.54 28.8, 35.94 28.7, 34.50
N = 16 26.2, 10.92 28.2, 17.58 28.5, 23.70 28.6, 29.76 28.7, 36.18 28.8, 42.18 28.8, 47.82 28.8, 44.82
N = 20 26.7, 13.02 28.4, 21.12 28.6, 28.86 28.7, 36.54 28.8, 43.98 28.8, 51.12 28.9, 57.96 28.9, 54.72
N = 24 27.1, 14.58 28.4, 24.36 28.7, 33.96 28.7, 43.20 28.9, 52.02 28.8, 60.48 28.9, 98.04 28.8, 65.10
N = 28 27.3, 23.22 28.5, 39.72 28.7, 56.58 28.8, 72.18 28.9, 88.38 28.9, 103.44 29.0, 117.90 28.9, 75.54
N = 32 27.6, 25.62 28.5, 45.00 28.7, 64.14 28.8, 82.86 28.9, 98.34 28.9, 114.84 28.9, 123.96 29.0, 86.64
N = 36 27.8, 24.66 28.7, 44.46 28.8, 61.44 28.9, 74.16 28.9, 84.78 29.0, 89.04 29.0, 99.78 29.0, 96.12
N = 40 27.8, 21.72 28.6, 38.04 28.9, 53.82 28.9, 69.06 29.0, 84.06 29.0, 99.48 29.0, 121.62 29.0, 109.80

Table 13: Performance comparison for different (N,K) using the task of Gaussian Deblurring. Each cell shows values in the format
PSNR, Run-Time (seconds).

Figure 6 shows PSNR curves of SITCOM using different values of N and K for Gaussian Deblurring and High Dynamic
Range. As observed, with NK = 400, (N,K) = (10, 40) yields the best results. Notably, after completing the optimization
steps at each sampling step, we observe a drop in PSNR, attributed to the application of the resampling formula in (S3)
where additive noise is added to the estimated image at each sampling discrete time step.

J.2. Ablation Studies on the Stopping Criterion For Noisy Measurements

In SITCOM, we proposed to use a stopping criterion to prevent the noise overfitting, determined by σy. In this subsection,
we (i) show how sensitive SITCOM’s performance is w.r.t. the choice of δ, and (ii) we visually show the impact of using

6
https://github.com/sjames40/SITCOM/blob/main/Extended_Ablation.md
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(a) Gaussian Deblurring. (b) High Dynamic Range.

Figure 6: SITCOM PSNR curves for Gaussian Deblurring (left) and High Dynamic Range (right) tasks using different values of N and
K (labeled as N ×K in the legends).

the stopping criterion vs. not using it; (iii) We evaluate SITCOM using measurement noise sourced from a non-Gaussian
distribution.

J.2.1. SENSITIVITY TO THE CHOICE OF THE STOPPING CRITERION δ

In SITCOM, we proposed to use a stopping criterion to prevent the noise overfitting, determined by σy. Here, we try to
answer the question: How sensitive is SITCOM’s performance to the choice of the stopping criterion parameter δ? To
answer this question, we run SITCOM using different values of δ and report the average PSNR values and run-time (in
seconds).

We use N = K = 20 and σy = 0.05 and set δ to values above and below σy. Results for Super-Resolution(linear IP) and
Non-uniform deblurring (non-linear IP) are given in Table 14, where we use 20 FFHQ test images with m = 256× 256× 3.
The first row shows the values of a for which δ = a

√
m.

Task 0.01 0.017 0.025 0.04 0.05 0.051 0.055 0.07 0.085 0.1 0.5

SR 27.80/40.20 28.45/38.82 29.02/38.41 30.22/36.26 30.39/28.52 30.40/28.26 30.37/24.10 30.11/23.5 29.87/22.89 28.87/22.12 23.10/15.87
NDB 28.40/40.40 28.87/38.58 29.80/37.32 29.82/35.12 30.12/32.12 30.21/29.46 30.20/27.44 30.01/26.56 29.67/24.52 29.12/22.05 25.79/15.10

Table 14: Performance comparison for Super Resolution (SR) and Non-linear Deblurring (NDB) of different values of a (first row) for
which δ = a

√
m and σy = 0.05. Each cell shows values in the format PSNR/run-time (seconds).

As observed, the PSNR values vary between 29.02 to 30.37 (resp. 29.80 to 30.20) only for BIP (resp. NDB) with stopping
criterion between 0.025 to 0.055 which indicates that even if values lower (or slightly higher) than the measurement noise
level are selected, SITCOM can still perform very well. This means that if we use classical methods (such as (Liu et al.,
2006; Chen et al., 2015)) to approximate/estimate the noise, we can achieve competitive results.

We note that other works, such as DAPS (Zhang et al., 2025) and PGDM (Song et al., 2023b), also use σy but not to estimate
the stopping criteria. In these papers, σy is encoded in the updates of their algorithm (see Eq. (7) in PGDM and Eq. (9) in
DAPS).

J.2.2. IMPACT OF USING THE STOPPING CRITERION VS. NOT USING IT VISUALLY

In this subsection, we demonstrate the impact of applying the stopping criterion in SITCOM when handling measurement
noise. For the tasks of super resolution and motion deblurring, we run SITCOM with and without the stopping criterion
for the case of σy = 0.05. The results are presented in Figure 7. As shown, for both tasks, using the stopping criterion
(i.e., δ > 0) not only improves PSNR values compared to the case of δ = 0, but also visually reduces additive noise in the
restored images. This is because, without the stopping criterion, the measurement consistency enforced by the optimization
in (S1) tends to fit the noise in the measurements.
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GT

Degraded Image

Super Resolution

Degraded Image

PSNR = 27.267

𝛿 = 0

PSNR = 30.62

𝛿 > 0

PSNR = 22.819

𝛿 = 0

PSNR = 31.911

Motion Deblurring
𝛿 > 0

Figure 7: Impact of the stopping criterion in preventing noise overfitting. For the most right column, δ is set as in Table 17.

J.2.3. HANDLING NON-GAUSSIAN MEASUREMENT NOISE

Here, we evaluate SITCOM with additive measurement noise vector sampled from the Poisson distribution. We use
N = K = 20 and λy = 5 (which determines the noise level). We set δ (the stopping criterion) to different values (top row).
Results for Super Resolution (linear IP) and Non-uniform deblurring (non-linear IP) are given in Table 15 where we use 20
FFHQ test images with m = 256× 256× 3. The first row shows the values of a for which δ = a

√
m.

Task 0 0.02 0.035 0.05 0.06 0.061 0.065 0.08 0.1 0.5
SR 24.52/47.30 27.80/40.19 29.19/38.11 30.42/36.23 30.49/28.22 30.43/28.21 30.37/24.16 29.67/24.32 26.77/22.08 25.12/15.88
NDB 25.04/43.42 28.60/40.34 30.17/37.52 30.22/35.44 30.24/32.02 30.23/29.31 30.15/27.51 29.71/24.02 29.03/22.25 26.44/15.15

Table 15: Average PSNR/run-time (seconds) of SITCOM for the tasks of Super-Resolution (SR) and Non-uniform Deblurring (NDB)
across various stopping criterion thresholds (top row is the value of a for which δ = a

√
m)) using additive noise from the Poisson

distribution (code from DPS 7)

As observed, the results of setting δ to values between 0.035
√
m to 0.08

√
m return PSNR values within approximately

1 dB. This indicates that SITCOM can perform reasonably well with different values of the stopping criterion even if its
settings was designed for the additive Gaussian measurement noise.

J.3. Effect of the Regularization Parameter λ

In this subsection, we perform an ablation study to assess the impact of the regularization parameter, λ, in SITCOM. Table 16
shows the results across four tasks using various λ values. Aside from phase retrieval, the effect of λ is minimal. We
hypothesize that initializing the optimization variable in (S1) with xt is sufficient to enforce forward diffusion consistency
in C3. Therefore, we set λ = 1 for phase retrieval and λ = 0 for the other tasks. The impact of λ for all tasks are online8.

Additionally, for all tasks other than phase retrieval, we observed that when λ = 0, the restored images exhibit enhanced
high-frequency details. For visual examples, see the results of λ = 0 versus λ = 1 in Figure 8.

Task λ = 0 λ = 0.05 λ = 0.5 λ = 1 λ = 1.5

Super Resolution 4× 29.952 29.968 29.464 29.550 29.288
Motion Deblurring 31.380 31.393 31.429 31.382 31.150
Random Inpainting 34.559 34.537 34.523 34.500 34.301

Phase Retrieval 31.678 31.892 32.221 32.342 32.124

Table 16: Impact of the regularization parameter λ in terms of PSNR for four tasks.

8
https://anonymous.4open.science/r/SITCOM-7539/Extended_Ablation.md
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Ground Truth Degraded Image 𝜆 = 0 𝜆 = 0.01 𝜆 = 1

PSNR = 28.99 PSNR = 28.97 PSNR = 27.47

Figure 8: Results of running SITCOM using different regularization parameters in (S1) for the task of Motion deblurring.

K. Detailed Implementation of Tasks, Baselines, and Hyper-parameters
Our experimental setup for image restoration problems and noise levels largely follows DPS (Chung et al., 2023b). For
linear IPs, we evaluate five tasks: super resolution, Gaussian deblurring, motion deblurring, box inpainting, and random
inpainting. For Gaussian deblurring and motion deblurring, we use 61×61 kernels with standard deviations of 3 and 0.5,
respectively. In the super-resolution task, a bicubic resizer downscales images by a factor of 4. For box inpainting, a random
128×128 box is applied to mask image pixels, and for random inpainting, the mask is generated with each pixel masked
with a probability of 0.7, as described in (Song et al., 2023a).

For nonlinear IP tasks, we consider three tasks: phase retrieval, high dynamic range (HDR) reconstruction, and nonlinear
(non-uniform) deblurring. In HDR reconstruction, the goal is to restore a higher dynamic range image from a lower dynamic
range image (with a factor of 2). Nonlinear deblurring follows the setup in (Tran et al., 2021).

For MRI, we follow the setup in Decomposed Diffusion Sampling (DDS) (Chung et al., 2024) for which we consider
different mask patterns and acceleration factors (Ax).

Baselines & Datasets: For baselines, we use DPS (Chung et al., 2023b), DDNM (Wang et al., 2022), RED-diff (Mardani
et al., 2024), PGDM (Song et al., 2023b), DCDP (Li et al., 2024), DMPlug (Wang et al., 2024), and DAPS (Zhang et al.,
2025). The selection criteria is based on these baselines’ competitive performance on several linear and non-linear inverse
problems under measurement noise. For MRI, we compare against diffusion-based solvers (DDS (Chung et al., 2024)
and Score-MRI (Chung & Ye, 2022)), supervised learning solvers (Supervised U-Net(Ronneberger et al., 2015) and E2E
Varnet(Sriram et al., 2020)), and dataless approaches (Self-Guided DIP(Liang et al., 2025), Auto-encoded Sequential DIP
(aSeqDIP)(Alkhouri et al., 2024a), and TV-ADMM (Uecker et al., 2014)). We evaluate SITCOM and baselines using 100
test images from the validation set of FFHQ (Karras et al., 2019) and 100 test images from the validation set of ImageNet
(Deng et al., 2009) for which the FFHQ-trained and ImageNet-trained DMs are given in (Chung et al., 2023b) and (Dhariwal
& Nichol, 2021), respectively, following the previous convention.

For baselines, we used the codes provided by the authors of each paper: DPS9, DDNM10, DAPS11, and DCDP12. Default
configurations are used for each task.

K.1. Complete List of hyper-parameters in SITCOM

Table 17 summarizes the hyper-parameters used for each task in our experiments, as determined by the ablation studies in
the previous subsections. Notably, the same set of hyper-parameters is applied to both the FFHQ and ImageNet datasets.

L. Additional Qualitative results
Figure 9 (resp. 10) presents results with SITCOM, DPS, and DAPS using FFHQ (resp. ImageNet). See also Figure 11,
Figure 12, Figure 13, and Figure 14 for more images.

9
https://github.com/DPS2022/diffusion-posterior-sampling

10
https://github.com/wyhuai/DDNM

11
https://github.com/zhangbingliang2019/DAPS

12
https://github.com/Morefre/Decoupled-Data-Consistency-with-Diffusion-Purification-for-Image-Restoration
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Task Sampling Steps N Optimization Steps K Regularization λ Stopping criterion δ for σy ∈ {0.05, 0.01}
Super Resolution 4× 20 20 0 {0.051√mSR ,0.011

√
mSR}

Box In-Painting 20 20 0 {0.051
√
m ,0.011

√
m}

Random In-Painting 20 30 0 {0.051
√
m ,0.011

√
m}

Gaussian Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

Motion Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

Phase Retrieval 20 30 1 {0.051√mPR ,0.011
√
mPR}

Non-Uniform Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

High Dynamic Range 20 40 0 {0.051
√
m ,0.011

√
m}

Table 17: Hyper-parameters of SITCOM for every image restoration tasks considered in this paper. The same set of hyper-parameters is
used for FFHQ and ImageNet. The learning rate in Algorithm 1 is set to γ = 0.01 for all tasks, datasets, and measurement noise levels.
For the stopping criterion column, mSR = 64× 64× 3, m = 256× 256× 3, and mPR = 384× 384× 3.

Super Resolution
Ground Truth Measurements DPS DAPS SITCOM (ours)

PSNR = 24.66
LPIPIS = 0.251

PSNR = 30.22
LPIPIS = 0.172

PSNR = 32.39
LPIPIS = 0.156

Motion Deblurring
Ground Truth Measurements DPS DAPS

PSNR = 22.98
LPIPIS = 0.289

PSNR = 31.46
LPIPIS = 0.131

PSNR = 33.26
LPIPIS = 0.097

Non-linear Deblurring 
Ground Truth Measurements DPS DAPS

PSNR = 23.12
LPIPIS = 0.267

PSNR = 27.65
LPIPIS = 0.167

PSNR = 29.22
LPIPIS = 0.145

Phase Retrieval 
Ground Truth Measurements DPS DAPS

PSNR = 17.88
LPIPIS = 0.401

PSNR = 30.89
LPIPIS = 0.118

PSNR = 32.67
LPIPIS = 0.112

SITCOM (ours)

SITCOM (ours)SITCOM (ours)

Figure 9: Qualitative results on the FFHQ dataset on two linear tasks (top) and two non-linear tasks (bottom) under measurement
noise of σy = 0.05. The PSNR and LPIPS values are given below each restored image. Zoomed-in regions show how SITCOM captures
greater image details when compared to two general (non)linear DM-based methods (DPS (Chung et al., 2023b) and DAPS (Zhang et al.,
2025)).
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Super Resolution
Ground Truth Measurements DPS DAPS SITCOM (ours)

PSNR = 22.10
LPIPIS = 0.256

PSNR = 26.89
LPIPIS = 0.195

PSNR = 28.20
LPIPIS = 0.145

Box Inpainting
Ground Truth Measurements DPS DAPS

PSNR = 20.24
LPIPIS = 0.267

PSNR = 22.78
LPIPIS = 0.211

PSNR = 24.55
LPIPIS = 0.189

Motion Deblurring
Ground Truth Measurements DPS DAPS

PSNR = 22.09
LPIPIS = 0.291

PSNR = 27.99
LPIPIS = 0.184

PSNR = 29.02
LPIPIS = 0.167

Gaussian Deblurring
Ground Truth Measurements DPS DAPS

PSNR = 21.72 
LPIPIS = 0.345

PSNR = 27.34
LPIPIS = 0.245

PSNR = 28.78
LPIPIS = 0.1189

Non-linear Deblurring 
Ground Truth Measurements DPS DAPS

PSNR = 22.56
LPIPIS = 0.312

PSNR = 28.01
LPIPIS = 0.167

PSNR = 29.25
LPIPIS = 0.145

Phase Retrieval 
Ground Truth Measurements DPS DAPS

PSNR = 14.89
LPIPIS = 0.58

PSNR = 30.12
LPIPIS = 0.102

PSNR = 30.34
LPIPIS = 0.089

Random Inpainting 
Ground Truth Measurements DPS DAPS

PSNR = 24.56
LPIPIS = 0.315

PSNR = 29.02
LPIPIS = 0.128

PSNR = 30.15
LPIPIS = 0.102

High Dynamic Range
Ground Truth Measurements DPS DAPS

PSNR = 18.90
LPIPIS = 0.450

PSNR = 26.29
LPIPIS = 0.203

PSNR = 28.02
LPIPIS = 0.156

SITCOM (ours)

SITCOM (ours)SITCOM (ours)

SITCOM (ours) SITCOM (ours)

SITCOM (ours)SITCOM (ours)

Figure 10: Qualitative results on the ImageNet dataset for five linear tasks and three non-linear tasks under measurement noise of
σy = 0.05. The PSNR and LPIPS values are given below each restored image.

Super Resolution

Ground Truth Measurements SITCOM (ours) DAPS DPSGround Truth Measurements SITCOM (ours) DAPS DPS

Figure 11: Super resolution (left) and box inpainting (right) results. First (resp. last) three rows are for the FFHQ (resp. ImageNet)
dataset.
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Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 12: Motion deblurring (left) and Gaussian deblurring (right) results. First (resp. last) three rows are for the FFHQ (resp.
ImageNet) dataset.

Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 13: Random inpainting (left) and non-linear (non-uniform) deblurring (right) results. First (resp. last) three rows are for the
FFHQ (resp. ImageNet) dataset.
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Phase Retrieval

Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 14: Phase retrieval (left) and high dynamic range (right) results. First (resp. last) three rows are for the FFHQ (resp. ImageNet)
dataset.
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