

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MiCLIP: LEARNING TO INTERPRET REPRESENTATION IN VISION MODELS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Vision models have demonstrated remarkable capabilities, yet their decision-
012 making processes remain largely opaque. Mechanistic interpretability (MI) offers
013 a promising avenue to decode these internal workings. However, existing inter-
014 pretation methods suffer from two key limitations. First, they rely on the flawed
015 *activation-magnitude assumption*, assuming that the importance of a neuron is di-
016 rectly reflected by the magnitude of its activation, which ignores more nuanced
017 causal roles. Second, they are predominantly *input-centric*, failing to capture the
018 causal mechanisms that drive a model’s output. These shortcomings lead to inac-
019 curate and unreliable internal representation interpretations, especially in cases of
020 incorrect predictions. We propose MiCLIP (Mechanism-Interpretability via Con-
021 trastive Learning), a novel framework that extends CLIP’s contrastive learning to
022 align internal mechanisms of vision models with general semantic concepts, en-
023 abling interpretable and controllable representations. Our approach circumvents
024 previous limitations by performing multimodal alignment between a model’s in-
025 ternal representations and both its input concepts and output semantics via con-
026 trastive learning. We demonstrate that MiCLIP is a general framework applicable
027 to diverse representation unit types, including individual neurons and sparse au-
028 toencoder (SAE) features. By enabling precise, causal-aware interpretation, Mi-
029 CLIP not only reveals the semantic properties of a model’s internals but also paves
030 the way for effective and targeted manipulation of model behaviors.

1 INTRODUCTION

031 *Mechanistic interpretability* (MI) (Zeiler & Fergus, 2014; Oikarinen & Weng, 2023) on vision mod-
032 els (Dosovitskiy et al., 2021; Rombach et al., 2022) offers a promising avenue for making models
033 more transparent and controllable. MI aims to uncover models’ internal mechanisms, *e.g.*, hidden
034 representations and computational circuits, and relate them to both model behavior and human-
035 understandable concepts. For instance, Wang et al. (2025) shows that tracing the successive trans-
036 formation of inputs into outputs can reveal how object concepts are processed within vision models.
037 Furthermore, once such mechanisms are identified, they can be systematically manipulated to steer
038 models toward desired behaviors (Li et al., 2024; Ferrando et al., 2025; Shi et al., 2025).

039 Researchers have proposed a range of interpretability methodologies to decode the internal repre-
040 sentations of vision models into human-understandable semantics (Olah et al., 2017). Early efforts
041 largely relied on manual annotation and feature visualization (Zeiler & Fergus, 2014; Selvaraju et al.,
042 2017). More recent work instead analyzes units within the hidden representations, such as individual
043 neurons, and associates them with semantic concepts by measuring the co-occurrence between high
044 neuron activations and the presence of corresponding concepts in input images (Bau et al., 2017;
045 Oikarinen & Weng, 2023; Zhang et al., 2024; Bai et al., 2025).

046 Despite these advances, existing approaches face notable limitations. First, most prior work relies on
047 the *activation-magnitude assumption*: for any representation unit, a larger activation value is inter-
048 preted as indicating a stronger presence of the unit’s associated concept in the model’s information-
049 processing pipeline. However, a neuron’s contribution to model behavior is often more complex.
050 An increase in activation value does not necessarily imply the occurrence of the corresponding con-
051 cept during inference. Conversely, even negative activations can positively influence the model’s
052 prediction of certain concepts. Second, existing methods are predominantly *input-centric*, focusing
053

on aligning internal representations with concepts present in the input. This paradigm introduces several issues, as it is not grounded in the causal mechanisms that actually drive model behavior (Gur-Arieh et al., 2025). Such limitations are particularly evident when the model produces incorrect predictions. Similarly, input-centric methods (Bau et al., 2017; Zhang et al., 2024; Bai et al., 2025) fail in cases of incorrect predictions, as they do not capture the intrinsic causal mechanisms underlying the model’s decision-making.

In this paper, we introduce MiCLIP, an MI framework for vision models from a novel functionality perspective on the model’s representation units¹. Rather than relying on the conventional activation-magnitude assumption, MiCLIP represents a target unit, such as an individual neuron or a sparse feature (Huben et al., 2024), as a semantic vector embedded within a human-understandable space, such as the CLIP (Radford et al., 2021) semantic space. By directly measuring the semantic relatedness of internal units to specific concepts, our approach bypasses the limitations of activation-magnitude-based methods.

To achieve this, MiCLIP performs multimodal alignment between hidden representation units and concepts derived from both inputs and outputs of the model. In particular, contrastive learning (Radford et al., 2021) is employed to ground feature functionality with respect to input concepts and output semantics. This dual grounding integrates input- and output-centric perspectives, thereby revealing the causal trajectory of information processing: from input, through internal units, to model outputs as shown in Figure 1. In doing so, MiCLIP not only provides more faithful interpretability of the mechanisms underlying model behavior, but also enables direct model steering by manipulating concept-aligned internal units.

Our work advances MI study in vision models with key contributions listed as follows: (i) To the best of our knowledge, this is the first study on learning semantic representations of the model internal features and aligning them with human-understandable semantic spaces. This multimodal grounding provides a unified and generalizable interpretability framework across diverse vision architectures. (ii) Unlike prior input-centric explanation or attribution methods, MiCLIP incorporates both input- and output-grounded semantics, aligning the entire reasoning trajectory of the model with human concepts. (iii) MiCLIP applies broadly to different forms of internal representation units, including individual neurons and SAE features (Huben et al., 2024; Gao et al., 2025), offering a versatile tool for understanding and steering vision models.

2 BACKGROUND AND RELATED WORK

Existing approaches that aim to associate textual concepts with internal representation units in vision models remain largely input-centric and can be grouped into two main trends.

Activation-based. The first line of work selects inputs that strongly activate a neuron or crops out the highly activating region (Kalibhat et al., 2023) and then interprets the recurring patterns. This can be done by correlating activations with annotated concepts (Bau et al., 2017), or by leveraging pretrained models to automatically generate textual descriptions for the highly activating inputs (Hernandez et al., 2021; Kalibhat et al., 2023; Zhang et al., 2024; Bai et al., 2025). Network Dissection (Bau et al., 2017) quantifies the correlation between hidden units and concepts by computing the intersection-over-union (IoU) between thresholded activation maps and pixel-level annotations in the Broden dataset. Describe-and-Dissect (DnD) (Oikarinen & Weng, 2023) follows the same activation-selection paradigm, identifying top activating images for each neuron and then assigning textual concepts by matching them with vision-language embeddings. Similarly, automated

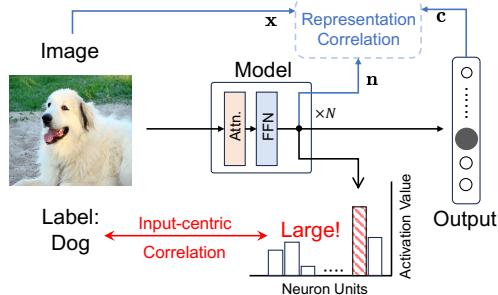


Figure 1: Traditional input-centric methods identify neurons by correlating their activation magnitudes with the given input label (e.g., “Dog”). In contrast, our framework instead establishes correlations in the representation space and takes both the input and the output into consideration.

¹Representation units include neurons (dimension of the representation) and features (direction in the activation space (Huben et al., 2024)) that can be learned by sparse autoencoders (Gao et al., 2025).

108 framework V-Interp (Zhang et al., 2024) relies on highly activating samples as prompts to large multimodal models, which then produce free-form textual explanations of neurons and features. Despite
 109 their advances, these methods all rely on the *activation-magnitude assumption*, presuming that larger
 110 activations correspond to a stronger presence of a concept, which does not necessarily hold and fails
 111 to capture a unit’s causal influence on the model’s output.
 112

113 **Representation-based.** The second trend constructs representations for both model internals and
 114 semantic concepts and aligns them to caption (Oikarinen & Weng, 2023; Balasubramanian et al.,
 115 2024). Balasubramanian et al. (2024) aims at explaining the roles of ViT components (*e.g.* attention
 116 head) by decomposing the contribution vector in the final layer’s activation, then learns a set of
 117 linear maps for each component to align them in CLIP’s embedding space, enabling text description.
 118 However, this method is restricted to ViT submodules and does not generalize to more fine-grained
 119 units such as neurons or features at arbitrary positions in diverse vision models.
 120

121 CLIP-Dissect (Oikarinen & Weng, 2023) prepares a probing dataset \mathcal{D} and a concept set \mathcal{C} . For each
 122 neuron k , it constructs an activation vector $\text{Act}(k, \mathcal{D}) \in \mathbb{R}^{|\mathcal{D}|}$ by recording its responses across all
 123 samples in \mathcal{D} as the neuron representation. For each concept $c \in \mathcal{C}$, it builds a similarity profile
 124 $\text{sim}(c, \mathcal{D})$ using CLIP embeddings of text and images as the concept representation. The most cor-
 125 related concept for neuron k is then identified as Equation 1, where $\mathbf{F}(\cdot)$ is a handcrafted similarity.
 126

$$\arg \max_{c \in \mathcal{C}} \mathbf{F}(\text{Act}(k, \mathcal{D}), \text{sim}(c, \mathcal{D})). \quad (1)$$

127 Despite its strong performance, it relies on heuristically constructed neuron representations, which
 128 are still grounded in the *activation-magnitude assumption*. In contrast, MiCLIP learns representa-
 129 tions for model internals directly through contrastive training, avoiding heuristic designs and en-
 130 abling more principled and flexible representation-concept alignment across diverse vision models.
 131

132 **Limitations of input-centric interpretability.** A majority of existing works on explaining model
 133 internals with concepts remains input-centric: they infer a unit’s meaning from correlations between
 134 its high activations and input-side patterns or captions alone (Bau et al., 2017; Hernandez et al.,
 135 2021; Zhang et al., 2024; Bai et al., 2025; Oikarinen & Weng, 2023). This paradigm implicitly
 136 assumes the *activation-magnitude assumption* yet provides no guarantee that the unit *causally* steers
 137 the model’s predictions in that concept’s direction. Recent work formalizes these concerns from an
 138 output-centric perspective, emphasizing that choosing the right causal mediator is central to faithful
 139 explanations (Mueller et al., 2024), and demonstrates in language models that descriptions grounded
 140 to both input and output yield more behaviorally faithful characterizations than input correlations
 141 alone (Gur-Arieh et al., 2025). Parallel evidence in vision (Gandelsman et al., 2025) proposes a
 142 CLIP-specific, output-centric method that interprets neurons by tracing their second-order effects on
 143 the model’s output embeddings, thereby revealing each unit’s causal semantic influence rather than
 144 just its activation correlations. Inspired by this discussion, MiCLIP serves as a universal framework
 145 that aligns internal representations with human-understandable concepts retrieved from both input
 146 image semantics and the model’s output decision.
 147

3 METHODOLOGY

148 In this section, we introduce our proposed method MiCLIP in detail, including how it adopts the
 149 contrastive learning paradigm to create a learned representation for model internals (Section 3.1),
 150 how it utilizes the representation to connect model internals with human-understandable semantics,
 151 enabling precise and interpretable descriptions of model internals, as well as accurate identification
 152 of concept-relevant components in the model (Section 3.2). In Section 3.3, we will discuss how
 153 MiCLIP supports fine-grained model steering through unit-level interventions based on the identified
 154 representation units. The overall framework is demonstrated in Figure 2.
 155

3.1 MECHANISM-CONCEPT ALIGNMENT VIA CONTRASTIVE LEARNING

156 The CLIP framework (Radford et al., 2021) is pretrained to associate visual and textual modalities
 157 within a unified embedding space. Inspired by this, we extend CLIP’s contrastive formulation
 158 to directly learn mappings from the activation space into CLIP’s embedding space. This learned
 159 alignment avoids heuristic design and enables an interpretation of representation units in terms of
 160 human-understandable concepts, grounded on both inputs and outputs.
 161

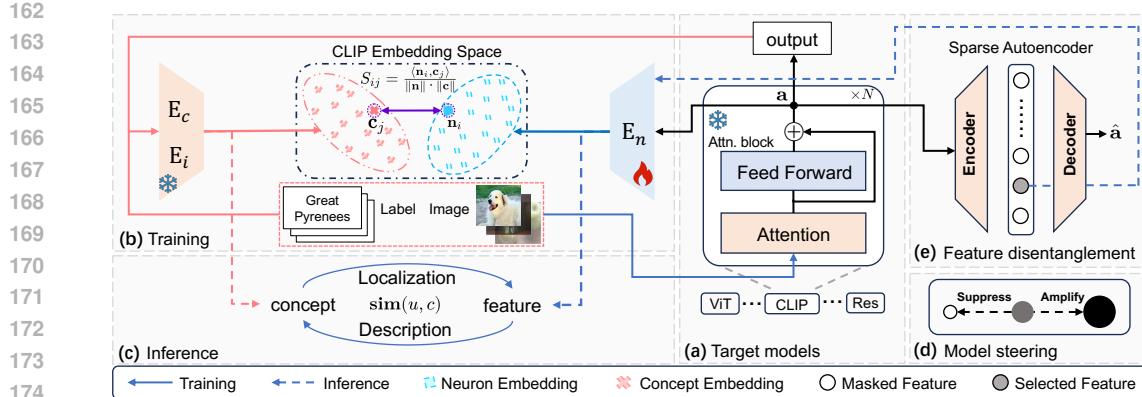


Figure 2: Framework of MiCLIP on (a) the target models (**frozen**): (b) contrastive learning of the shared embedding space (Section 3.1), (c) mechanistic feature localization and description (Section 3.2), (d) model steering (Section 3.3), (e) feature disentanglement with k-SAE (Optional).

Given a labeled image dataset $\mathcal{D} = \{(x_i, c_i)\}_{i=1}^N$ with input images $x_i \in \mathcal{X}$, we forward them through the target vision model to retrieve activations $\mathbf{a}_i \in \mathbb{R}^n$ from the residual stream of the target layer and the corresponding predicted labels $\hat{c}_i \in \mathcal{C}$. This yields two paired sets: activations $\mathcal{A} = \{\mathbf{a}_i\}_{i=1}^N$ and predicted concepts $\{\hat{c}_i\}_{i=1}^N$. Then, the mechanism–concept alignment process within MiCLIP is formulated as a CLIP-based contrastive loss, specifically the symmetric InfoNCE (He et al., 2020) loss, including alignment between neurons (or features) and concepts, as well as between neurons and input images. More details are shown in Appendix B.1.

$$\mathcal{L}_{\text{alignment}} = \underbrace{\mathcal{L}_{\text{CLIP}}^{\text{out}}(E_n(\mathcal{A}; \theta_n), E_c(\{\hat{c}_i\}_{i=1}^N))}_{\text{neuron-concept loss}} + \underbrace{\mathcal{L}_{\text{CLIP}}^{\text{in}}(E_n(\mathcal{A}; \theta_n), E_i(\mathcal{X}))}_{\text{neuron-image loss}} \quad (2)$$

Here, the projection functions are implemented as CLIP-based encoders, which include a trainable neuron encoder $E_n(\cdot; \theta_n)$ parameterized by θ_n and frozen encoders from a previously trained CLIP model: a concept encoder $E_c(\cdot)$ and an image encoder $E_i(\cdot)$. Specifically, E_n maps the original neuron representation $\mathbf{a} \in \mathbb{R}^n$ to a neuron embedding $\mathbf{n} = E_n(\mathbf{a}) \in \mathbb{R}^d$, E_c maps the concept $c \in \mathcal{C}$ to a concept embedding $\mathbf{c} = E_c(c) \in \mathbb{R}^d$, and E_i maps the image $x \in \mathcal{X}$ to an image embedding $\mathbf{x} = E_i(x) \in \mathbb{R}^d$. Here, the neuron encoder $E_n(\cdot; \theta_n)$ connects the internal mechanism of the target model to the comprehensive semantic space of CLIP, which enables mechanistic feature localization and description, as discussed in Section 3.2.

Discussion. Compared to prior works (Kalibhat et al., 2023; Hernandez et al., 2021; Oikarinen & Weng, 2023; Balasubramanian et al., 2024) discussed in Section 2, MiCLIP introduces several key advantages through its contrastive learning paradigm. For instance, CLIP-Dissect constructs neuron–concept alignments heuristically through probing dataset correlations, whereas our approach replaces such heuristics with a learning-based mapping into the semantic space. On the other hand, Balasubramanian et al. (2024) emphasizes module-level decomposition of ViTs rather than fine-grained internal units. By contrast, MiCLIP provides a general, principled, and learning-based alignment framework for diverse internal representations.

3.2 MECHANISM LOCALIZATION AND DESCRIPTION

Once trained, MiCLIP enables both concept-to-mechanism localization and mechanism-to-concept description. This is made possible by encoding both the target model’s representation and concept spaces into a shared embedding space, where symmetric identification becomes feasible. This section describes how operations within MiCLIP’s unified embedding space support these two tasks.

Our core idea is to characterize the relationship between a representation unit of the target model and a human-understandable concept by comparing the relevance score $\text{sim}(\cdot, \cdot)$ between their embeddings in the unified semantic space of MiCLIP. Here, the representation unit can be either neurons or features learned from SAE, making the framework more generalizable.

To obtain the embedding for a representation unit, we adopt the encoder $E_n(\cdot)$ to project the unit into MiCLIP’s embedding space. If the representation unit u is a specific neuron with activation

value $a_i \in \mathbb{R}$, it is directly encoded as $\mathbf{u} = \mathbf{E}_n(a_i \cdot e^{(i)})$ if it represents dimension i . Here, $e^{(i)} \in \mathbb{R}^n$ is the standard basis vector with 1 at position i . If u is an interpretable SAE feature $f_i \in \mathbb{R}^n$ from the encoder dictionary, the embedding is obtained by $\mathbf{u} = \mathbf{E}_n(f_i)$. Meanwhile, the embedding of concept c is $\mathbf{c} = \mathbf{E}_c(c)$. The relevance score $\text{sim}(u, c)$ between a mechanism u and a concept c is then defined as the cosine similarity $\text{sim}(u, c) = \frac{\mathbf{u} \cdot \mathbf{c}}{\|\mathbf{u}\| \cdot \|\mathbf{c}\|}$ of their embeddings \mathbf{u} and \mathbf{c} . More information about SAE is mentioned in Appendix C.1.

With this similarity measure, we can find the most relevant representation units or concepts given their counterparts.

Concept-to-Mechanism Localization. Given a human-interpretable semantic concept $c \in \mathcal{C}$, this task aims to identify the mechanisms from a set of all representation units \mathcal{U} (e.g., all neurons or all interpretable features) that closely align with c . We identify the top τ representation units related to a concept c and record their indices according to their similarity score in the set \mathbf{L}_c :

$$\mathbf{L}_c = \underset{i}{\text{SelectTop-}\tau} (\{\text{sim}(u_i, c)\}_{u_i \in \mathcal{U}}), \quad (3)$$

where $\text{SelectTop-}\tau$ selects the indices of the top τ elements. This process identifies the most influential mechanisms within the model that are responsible for a given concept.

Mechanism-to-Concept Description. Given a specific representation unit u , this task aims to find the concepts from a set \mathcal{C} that best describe the mechanism. We identify the top τ concepts related to a representation unit u and record the concepts according to their relevance score in the set \mathbf{D}_u :

$$\mathbf{D}_u = \underset{j}{\text{SelectTop-}\tau} (\{\text{sim}(u, c_j)\}_{c_j \in \mathcal{C}}). \quad (4)$$

3.3 MODEL CONTROL WITH MECHANISM INTERVENTION

To steer the target model, we intervene on the representation units identified in Section 3.2. For a given concept c , we collect its corresponding units indexed by \mathbf{L}_c (neurons or SAE features), and adjust their activations to suppress or amplify the concept’s influence on the model.

Specifically, we apply an intervention operation to the target units. These modified mechanisms are then decoded into the original neuron space for subsequent operations. For each representation units u ($u = a_i \cdot e^{(i)}$ or $u = f_i$) indexed within \mathbf{L}_c , we can either apply a scalar multiplication or add an additive bias as

$$\tilde{u}_i = \beta u_i \text{ (Scaling)} \quad \text{or} \quad \tilde{u}_i = u_i + \beta \text{ (Adding)}, \quad \forall i \in \mathbf{L}_c, \beta \in \mathbb{R}. \quad (5)$$

By applying a distinct parameter β , we can suppress or amplify the target feature to adjust the model.

In Section 4.2, we present intervention experiments that empirically demonstrate how targeted manipulations enable fine-grained model control, thereby validating the precision of concept-to-mechanism localization in MiCLIP.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Target models for interpretation. We evaluate different methods on (i) image classification models trained on ImageNet-1k dataset (Deng et al., 2009) including, ResNet-50 (He et al., 2016) and ViT-B-16 (Dosovitskiy et al., 2021) (ii) pretrained multimodal models, specifically CLIP/ViT-B-16, for which we use its zero-shot classification ability to test the intervention in Section 4.3.

Baselines. We compare MiCLIP against several baselines that are categorized into neuron-based and feature-based methods. Different baselines are selected for each experiment based on their applicability to the specific setting. We include Network Dissection (Bau et al., 2017), CLIP-Dissect (Oikarinen & Weng, 2023), V-Interp (Zhang et al., 2024) that relies on activation-magnitude assumption to identify concepts. Additionally, we construct a method named Act-Values, which identifies concepts according to the neuron activation values. More details are provided in Appendix D.1. For each of our baselines, we use 100,000 images randomly sampled from the ImageNet-1k training set for computation or training.

270 **Implementation details.** We train MiCLIP on a subset of 100,000 images sampled from the
 271 ImageNet-1k training set. We use the frozen pretrained text encoder E_c and vision encoder E_i in
 272 CLIP/ViT-B-16, and we train a neuron encoder E_n with a linear projection layer to map neuron ac-
 273 tivations to the embedding space. We use k-SAE (Gao et al., 2025) for feature disentangling, which
 274 is trained on the residual stream of a model. We validate our intervention approach on ImageNet-1k
 275 and further evaluate its generalization capabilities on an unseen dataset DTD (Cimpoi et al., 2014),
 276 which is a texture-based image classification dataset consisting of 56 texture categories.
 277

278 4.2 EVALUATION ON MECHANISTIC INTERPRETATION AND LOCALIZATION

280 **Analysis 1: Quantitative Results on Mechanism Description.** We adopt the CLIP-Dissect eval-
 281 uation framework, which benchmarks description accuracy on the final classification layer. In this
 282 setting, each neuron’s *ground-truth* function is simply its corresponding class name (*e.g.*, “sea lion”),
 283 allowing for direct and objective evaluation. This setup enables an objective and scalable evaluation
 284 based on the neuron’s actual function, avoiding the limitations and subjectivity of human assess-
 285 ments based on a few top-activating images.
 286

287 We evaluate performance with three metrics. For the open-vocabulary experiments, we follow CLIP-
 288 Dissect and use the same open-ended concept sets of varying sizes (Common-3k, Common-10k, and
 289 Common-20k), which consist of the 3,000, 10,000, and 20,000 most common English words, respec-
 290 tively. For closed-set concept sets (1,000 ImageNet-1k classes), we additionally report **Accuracy**
 291 (**Acc.**), the percentage of neurons whose top-ranked description exactly matches the *ground-truth*
 292 class. For general tasks, we use **CLIP Score** and **Mpnet Score**, which measure the cosine simi-
 293 larity between the generated description and the *ground-truth* class name using CLIP/ViT-B-16 and
 294 Mpnet-base-v2 encoders, respectively. Finally, to ensure the reliability of our improvements, we
 295 perform a **one-tailed paired t-test** across three random seeds to verify the statistical significance of
 296 our model against the baselines.
 297

298 Table 1: Evaluation on neuron description. We compare with baseline methods on interpreted con-
 299 cepts for the neurons of the last layer in different vision models. \uparrow : higher is better. (* indicates
 300 statistical significance, *e.g.*, p -value < 0.05).

300 Dataset	Method	301 ResNet-50			302 ViT-B/16		
		303 Acc. \uparrow	304 CLIP \uparrow	305 Mpnet \uparrow	306 Acc. \uparrow	307 CLIP \uparrow	308 Mpnet \uparrow
309 Common-3k	CLIP-dissect	-	0.7456	0.4161	-	0.7182	0.2718
	MiCLIP (Ours)	-	0.7624*	0.4334*	-	0.7618*	0.4310*
310 Common-10k	CLIP-dissect	-	0.7656	0.4696	-	0.7342	0.3637
	MiCLIP (Ours)	-	0.7885*	0.5029*	-	0.7786*	0.4748*
311 Common-20k	CLIP-dissect	-	0.7900	0.5257	-	0.7563	0.4376
	MiCLIP (Ours)	-	0.8145*	0.5812*	-	0.8138*	0.5783*
312 ImageNet-1k	Act-Values	0.9940	0.9995	0.9983	0.9940	0.9989	0.9975
	CLIP-dissect	0.9560	0.9902	0.9746	0.9500	0.9881	0.9631
	MiCLIP (Ours)	1.0000*	1.0000*	1.0000*	1.0000*	1.0000*	1.0000*

313 **Finding 1: MiCLIP gives more precise interpretations given specific representation units.** In
 314 Table 1, our MiCLIP can achieve the highest Accuracy, CLIP score and Mpnet Score among base-
 315 lines, illustrating our precise localization of identified features. Furthermore, MiCLIP outperforms
 316 CLIP-Dissect even when evaluated on concept set rather than ImageNet-1k, which MiCLIP is trained
 317 on. This also suggests that MiCLIP generalizes to broader scope of concepts.
 318

319 4.3 INTERVENTION FOR MODEL STEERING

320 **Analysis 2: Verifying Mechanism Localization via Intervention on Discriminative Models.** Ef-
 321 fective mechanistic interpretability should enable meaningful interventions, either enhancing or sup-
 322 pressing the influence of concept-related mechanisms, thereby improving or degrading classification
 323 performance on the target concept. We verify our localization by intervening on the top-5 neurons
 324 or features (*i.e.*, $\tau = 5$ in Equation 3) for each ImageNet-1k concept. We measure the change in
 325 classification accuracy ΔAcc after applying either *enhancement* ($\times 2$ scaling) and *removal* ($\times 0$ scal-

Table 2: Accuracy deviations of enhancement and removal interventions on neurons and features. Best performing methods are highlighted in **bold**. Values that contradict the expected outcome (*e.g.*, enhancement leading to a decrease in accuracy) are marked in **red**.

(a) Intervention on neurons

Method	Enhancement ΔAcc (%) (\uparrow)			Removal ΔAcc (%) (\downarrow)		
	ResNet-50	ViT-B/16	CLIP	ResNet-50	ViT-B/16	CLIP
Act-Values	2.27 (± 0.03)	-0.19 (± 0.01)	-8.05 (± 0.02)	-8.98 (± 0.08)	-1.43 (± 0.01)	-23.30 (± 0.00)
Network Dissection	0.78 (± 0.02)	0.35 (± 0.01)	0.23 (± 0.02)	-2.95 (± 0.15)	-0.37 (± 0.03)	-0.88 (± 0.05)
CLIP-dissect	3.05 (± 0.18)	0.19 (± 0.03)	-0.04 (± 0.03)	-12.31 (± 0.67)	-0.04 (± 0.02)	-1.16 (± 0.14)
V-Interp	1.71 (± 0.22)	-0.04 (± 0.02)	-0.29 (± 0.10)	-8.04 (± 0.71)	-0.04 (± 0.00)	-0.14 (± 0.05)
MI-CLIP (Ours)	5.32 (± 0.03)	0.18 (± 0.01)	1.10 (± 0.05)	-17.24 (± 0.05)	-0.04 (± 0.02)	-1.50 (± 0.08)

(b) Intervention on SAE features

Method	Enhancement ΔAcc (%) (\uparrow)			Removal ΔAcc (%) (\downarrow)		
	ResNet-50	ViT-B/16	CLIP	ResNet-50	ViT-B/16	CLIP
Act-Values	4.34 (± 0.00)	3.68 (± 0.02)	0.43 (± 0.08)	-11.98 (± 0.00)	-22.77 (± 0.11)	-15.94 (± 0.06)
Network Dissection	0.02 (± 0.04)	1.12 (± 0.05)	0.50 (± 0.06)	-0.08 (± 0.05)	-4.03 (± 0.13)	-1.99 (± 0.05)
CLIP-dissect	2.27 (± 0.09)	5.04 (± 0.05)	4.85 (± 0.03)	-7.30 (± 0.03)	-27.78 (± 0.09)	-11.05 (± 0.12)
V-Interp	0.91 (± 0.02)	1.90 (± 0.01)	1.33 (± 0.00)	-2.88 (± 0.09)	-7.55 (± 0.06)	-2.83 (± 0.00)
MI-CLIP (Ours)	3.89 (± 0.03)	5.57 (± 0.02)	5.88 (± 0.03)	-10.99 (± 0.02)	-32.04 (± 0.20)	-17.70 (± 0.02)

ing) after interventions on the activations of the following layers: the **10th**-layer for ViT-B/16 and CLIP/ViT-B-16, and the **stages.3.layers.1.shortcut** layer for ResNet-50.

Finding 2: Our method, MI-CLIP, enables precise localization of the mechanisms that govern model classification. For reference, the original classification accuracies of the models are **80.14%** for ResNet-50, **80.32%** for ViT-B/16, and **61.12%** for CLIP. As detailed in Table 2, our MI-CLIP consistently enables a predictable and stable deviation in classification accuracy. In contrast, baselines like Act-Values exhibit an inconsistent response. Although they may show strong performance degradation upon *removal*, the same set of neurons often fails to enhance the model’s performance. The ability of MI-CLIP to both enhance and suppress model performance using the same set of localized representation units provides strong evidence that we have successfully identified the true, functionally relevant neurons and features.

Analysis 3: Verifying the Generalization of Mechanism Localization to Unseen Concepts via Intervention. To evaluate generalization to unseen concepts, we repeat the intervention experiment in **Analysis 2** on the DTD texture dataset, measuring the impact on CLIP’s zero-shot classification accuracy. The original zero-shot classification accuracy of the CLIP model on this dataset is **44.80%**.

Finding 3: The mechanisms identified by MI-CLIP are semantically grounded and generalizable to unseen concepts. As shown in Table 3, our MI-CLIP enables effective interventions on the CLIP/ViT-B-16 model, consistently enhancing or suppressing its zero-shot classification accuracy for unseen concepts. This is demonstrated by the predictable and stable changes observed in the model’s performance metrics when we apply interventions to the localized neurons or features. Although MI-CLIP was trained solely on the ImageNet-1k dataset, its effectiveness in a zero-shot setting highlights its strong generalization capabilities. These results confirm that our approach successfully localizes the key representation units governing model behavior, even for concepts not present in its original training data.

4.4 SEMANTIC ANALYSIS ON MI-CLIP

Analysis 4: Unit Semantic Geometry in the Aligned Embedding Space. In this part, we analyze the semantic geometry of representation units localized by MI-CLIP. This analysis aims to determine

Table 3: Accuracy deviations from enhancement and removal interventions on neurons and features for unseen concepts. The best-performing methods are highlighted in **bold**.

(a) Intervention on neurons

Method	Enhancement		Removal	
	ΔAcc (%) (\uparrow)	ΔAcc (%) (\downarrow)	ΔAcc (%) (\uparrow)	ΔAcc (%) (\downarrow)
CLIP-dissect	0.00 (± 0.15)	-0.65 (± 0.28)		
V-Interp	-0.39 (± 0.24)	0.06 (± 0.37)		
MI-CLIP (Ours)	0.38 (± 0.11)	-0.91 (± 0.20)		

(b) Intervention on SAE features

Method	Enhancement		Removal	
	ΔAcc (%) (\uparrow)	ΔAcc (%) (\downarrow)	ΔAcc (%) (\uparrow)	ΔAcc (%) (\downarrow)
CLIP-dissect	1.84 (± 0.15)	-5.04 (± 0.08)		
V-Interp	0.03 (± 0.01)	-0.04 (± 0.04)		
MI-CLIP (Ours)	2.00 (± 0.10)	-4.98 (± 0.27)		

378 whether the localized SAE features exhibit semantic coherence as concepts. Similarly, we select
 379 concepts c in ImageNet-1k, and then we use WordNet (Miller, 1995) to categorize these concepts
 380 into four categories (“mammal”, “non-mammal”, “tool” and “vehicle”). Following Huben et al.
 381 (2024), we extract localized features from \mathbf{W}_{dec} , i.e., the learned dictionary. Then, we visualize 2D
 382 t-SNE (van der Maaten & Hinton, 2008) of the embeddings of these features in Figure 3. We provide
 383 more details in Appendix D.2.

384 **Finding 4: MiCLIP learns a semantically coherent
 385 feature space.** Figure 3 shows that SAE features
 386 associated with related concepts form coherent clusters
 387 in MiCLIP’s aligned embedding space.

388 **Analysis 5: Visualization Verification of Local-
 389 ized Features via Attention Maps.** In this analysis,
 390 we investigate the spatial grounding of the learned
 391 features by examining their activations within the
 392 model’s attention maps. We adopt the visualization
 393 method from DINO (Caron et al., 2021) to explore
 394 whether the SAE features we have localized corre-
 395 spond to a specific visual concept. Specifically, we
 396 leverage the self-attention map from 8th layer of the
 397 CLIP/ViT-B-16 model, between the **CLS** token and
 398 all other image patch tokens. By preserving the out-
 399 put of specific localized features of image tokens, we generate a saliency map by computing the
 400 attention weights between the **CLS** token and image tokens. This map precisely highlights the re-
 401 gions of the input image that the features are attending to, providing a qualitative verification of
 402 the feature’s intended visual semantics. The attention map shown in Figure 4 visualizes the spatial
 403 grounding of top-5 localized features for the first class “**kit fox**” in the ImageNet-1k metadata class
 404 order. The visualizations are specifically for the first six images of “**kit fox**” from the ImageNet-1k
 405 validation set. Additional results for other classes and images can be found in the Appendix E.1.

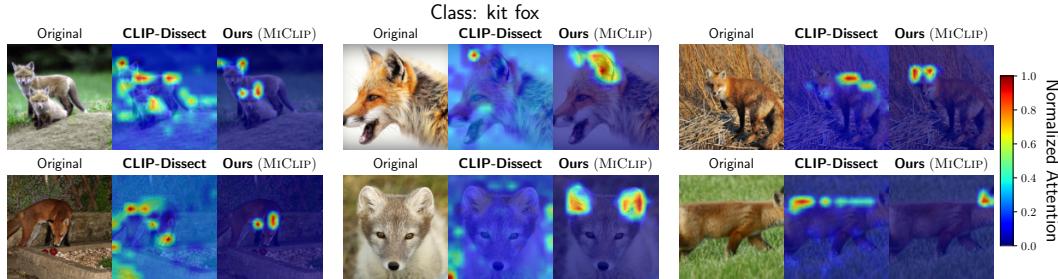


Figure 3: Features belonging to the same semantic category demonstrate compact clustering in the 2D embedding space.

406
 407
 408
 409
 410
 411
 412
 413
 414
 415 Figure 4: Visualizing the spatial grounding of top-5 localized SAE features of class “**kit fox**”. The
 416 attention map highlights the precise location of “**kit fox**” in ImageNet-1k (Russakovsky et al., 2015),
 417 confirming the feature’s effective localization.

418 **Finding 5: MiCLIP effectively localizes features that semantically correspond to specific visual
 419 concepts.** The attention map in Figure 4 highlights that our identified feature consistently activates
 420 around the ears of the “**kit fox**”, a key visual identifier for this class.

4.5 ABLATION STUDY

424 **Analysis 6: Ablation Study on Input- and Output-Grounded Alignment.** To dissect the contrib-
 425 utions of our two alignment components, we perform an ablation study with three variants: MiCLIP
 426 (Input-Only), MiCLIP (Output-Only), and the full MiCLIP. We replicate the intervention experi-
 427 ments on seen concepts from ImageNet-1k (Analysis 2) and unseen texture concepts from DTD
 428 (Analysis 3), evaluating effectiveness by the accuracy change ΔAcc after *enhancement* ($\times 2$) and
 429 *removal* ($\times 0$) of the top-5 localized mechanisms.

430 **Finding 6: The combination of input- and output-grounded alignment is crucial for robust and
 431 generalizable mechanistic interpretability.** The results, presented in Table 4, reveal a clear synergy
 432 between the two alignment strategies. The Output-Only performs strongly on seen ImageNet-1k

432
 433 Table 4: Ablation Study: Accuracy deviations of enhancement and removal interventions on seen
 434 and unseen concepts. Best performing methods are in **bold**, second best underlined, contradictory
 435 values (e.g., enhancement leading to an accuracy decrease) in **red**.

Method	(a) Interventions on ImageNet-1k						(b) Interventions on DTD		
	Enhancement $\Delta Acc\% (\uparrow)$			Removal $\Delta Acc\% (\downarrow)$			Method	Enhancement	Removal
	ResNet-50	ViT-B/16	CLIP	ResNet-50	ViT-B/16	CLIP		$\Delta Acc\% (\uparrow)$	$\Delta Acc\% (\downarrow)$
<i>Neurons</i>									
Input-Only	3.71 (± 0.02)	0.12 (± 0.07)	0.31 (± 1.02)	-12.63 (± 0.11)	-0.18 (± 0.06)	-4.09 (± 2.51)	Input-Only	0.69 (± 0.36)	-5.18 (± 1.62)
Output-Only	5.71 (± 0.01)	<u>0.21</u> (± 0.03)	0.44 (± 0.41)	-17.98 (± 0.04)	-0.26 (± 0.01)	-1.17 (± 0.03)	Output-Only	-2.60 (± 2.50)	-0.53 (± 0.30)
MiCLIP	5.32 (± 0.03)	0.18 (± 0.01)	1.10 (± 0.05)	-17.24 (± 0.05)	-0.04 (± 0.02)	-1.50 (± 0.08)	MiCLIP	0.38 (± 0.11)	-0.91 (± 0.20)
<i>SAE Features</i>									
Input-Only	2.52 (± 0.05)	4.47 (± 0.88)	5.49 (± 0.04)	-8.11 (± 0.05)	-24.29 (± 5.97)	-15.25 (± 0.14)	Input-Only	2.84 (± 0.16)	-6.85 (± 0.16)
Output-Only	4.05 (± 0.01)	5.69 (± 0.03)	5.32 (± 0.03)	-11.17 (± 0.01)	-32.79 (± 0.04)	-16.59 (± 0.08)	Output-Only	1.15 (± 0.01)	-2.96 (± 0.03)
MiCLIP	3.89 (± 0.03)	5.57 (± 0.02)	5.88 (± 0.03)	-10.99 (± 0.02)	-32.04 (± 0.20)	-17.70 (± 0.02)	MiCLIP	2.00 (± 0.10)	-4.98 (± 0.27)

444
 445 concepts but fails to generalize to the unseen DTD dataset, as evidenced by its poor performance
 446 and contradictory results (e.g., enhancement causing an accuracy drop). Conversely, the Input-
 447 Only shows better generalization to DTD but is less effective on ImageNet-1k. The full MiCLIP
 448 achieves strong performance on seen concepts while maintaining robust generalization to novel ones,
 449 confirming that integrating both alignment strategies is essential.

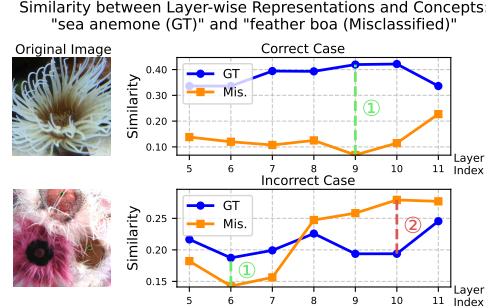
450 4.6 UNDERSTANDING FLAWED VISUAL REASONING IN MODEL PREDICTIONS

451
 452 We leverage MiCLIP to diagnose failures in visual
 453 reasoning in the CLIP/ViT-B-16 model by tracing
 454 the semantic trajectory of an image’s internal
 455 representations across layers. This is achieved by
 456 projecting layer-specific activations into a seman-
 457 tically aligned embedding space via the neuron en-
 458 coder E_n . We then compute cosine similarities to
 459 text embeddings of the **ground-truth (GT)** and
 460 **misclassified labels in the incorrect case** using
 461 the CLIP text encoder E_c . For the incorrect case,
 462 the predicted label is the misclassification, which
 463 is also used for comparison in the correct case.
 464 As illustrated in Figure 5, presenting an example
 465 with a GT of “*sea anemone*” and a misclassifica-
 466 tion of “*feather boa*”. Correct predictions maintain
 467 a higher GT similarity across all residual layers.
 468 Erroneous predictions show a clear point where
 469 predicted-label similarity **surpasses** GT, pointing
 470 out where the model’s view shifts. With this diag-
 471 nose method, MiCLIP is able to trace the semantic trajectory of the reasoning process, and localize
 472 the layer where the representation shifts from the correct concept to the incorrect one.

473 4.7 VISUALIZING LOW-LEVEL FEATURE PRIMITIVES

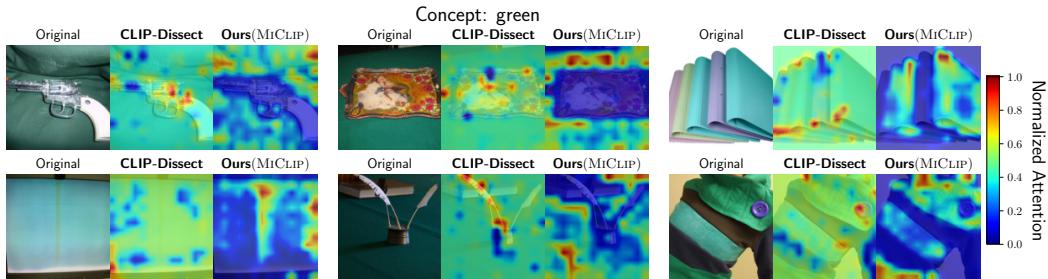
474
 475 **Analysis 7: Visualization Verification of Low-Level Features.** In this analysis, we extend our
 476 investigation to ascertain whether our learned features also correspond to low-level visual primitives,
 477 such as colors, shapes and textures. To explore the spatial grounding of these elementary features, we
 478 employ the same attention map visualization technique detailed in Analysis 5, specifically utilizing
 479 the attention maps from relatively low-level layers (i.e., the 3rd) layer of the CLIP/ViT-B-16 model.

480
 481 While the ImageNet-1k dataset lacks explicit labels for such primitives, we identified representative
 482 samples by selecting images that exhibited high activations for certain localized features discov-
 483 ered by MiCLIP. For instance, we found features that systematically activate on images containing
 484 prominent green regions, and indeed, their top-activating images from the dataset consistently share
 485 this specific visual characteristic. The attention maps shown in Figure 6 visualize the spatial ground-
 486 ing for this feature, confirming its specialization for the color “**green**”. This provides a qualitative



487 Figure 5: The plot shows cosine similarities
 488 between layer-wise representation embeddings
 489 and text embeddings of the ground-truth (GT;
 490 blue) and misclassified label (Mis.; orange).
 491 ① marks the layer where GT dominates most,
 492 while ② marks where Mis. overtakes GT, re-
 493 vealing the failure point.

486 verification that our method can effectively identify and localize not only high-level semantic
 487 concepts but also fundamental visual building blocks. Additional results for other low-level features,
 488 such as a shape-detecting feature for grids, can be found in Appendix E.3.



499
 500 Figure 6: Visualizing the spatial grounding of a localized SAE feature for the color “green”. The
 501 attention maps highlight that this feature consistently activates on green-colored regions across
 502 different images from ImageNet-1k (Russakovsky et al., 2015), confirming its effective localization of
 503 this low-level visual property.

504 **Finding 7: MiCLIP effectively localizes low-level features that correspond to fundamental**
 505 **visual primitives.** As demonstrated in Figure 6, the attention maps for the identified “green” feature
 506 consistently and precisely highlight green-colored regions, regardless of the object’s semantics. This
 507 confirms that our method can ground foundational visual concepts, like specific colors, to their
 508 corresponding spatial locations within an image.

510 5 CONCLUSION

511
 512 We propose MiCLIP, a representation-based automated mechanistic interpretability framework that
 513 bridges the gap between the internal mechanisms of vision models and human-understandable
 514 concepts, through aligning them in a shared semantic embedding space. MiCLIP eliminates the
 515 reliance on the activation-magnitude assumption and jointly leverages semantic signals from both the
 516 inputs and outputs of vision models, thereby capturing a more comprehensive and faithful view of
 517 the model’s reasoning process. By leveraging contrastive learning to align internal features with
 518 semantic concepts, MiCLIP provides fine-grained and precise mechanistic interpretation across di-
 519 verse vision models. Coupled with external modules such as k-SAE, it supports both neuron- and
 520 feature-level analysis, establishing a universal framework for interpretability. Extensive qualitative
 521 and quantitative experiments confirm its effectiveness in interpreting, localizing, and steering inter-
 522 nternal features. Moreover, our results show that MiCLIP generalizes to unseen concepts, is applicable
 523 across architectures, and even sheds light on analyzing flawed model behaviors, consistently uncov-
 524 ering robust and generalizable mechanistic patterns.

525 Despite these advancements, we acknowledge certain limitations. First, the interpretability fidelity
 526 of MiCLIP is inherently bounded by the semantic coverage and potential biases of the pre-trained
 527 CLIP embedding space. However, our empirical observations indicate that CLIP’s classification
 528 biases do not necessarily hamper MiCLIP’s intervention capabilities; valid features can still be
 529 identified and steered even in classes where CLIP performs poorly. Furthermore, orthogonal ad-
 530 vancements in mitigating CLIP’s biases could be integrated to further enhance fidelity. Second, our
 531 current validation is restricted to discriminative vision models. Future work includes extending this
 532 approach to generative architectures, thereby broadening the applicability and impact of mechanistic
 533 interpretability in real-world AI systems.

534 6 ETHICS STATEMENT

535
 536 This research complies with the ICLR ethical guidelines, upholding transparency, reproducibility,
 537 and responsible use of AI. Our work aims to make vision models more transparent and interpretable,
 538 contributing to society by enabling safer and more responsible AI systems. We believe that increas-
 539 ing model transparency benefits a broad range of stakeholders and helps mitigate potential misuse.

540 This research does not involve human subjects, personal data, or sensitive information, and thus
 541 poses no risks to privacy, health, or safety.
 542

543 We have faithfully reported our findings without fabrication or falsification. All datasets, baselines,
 544 and related works are properly cited, and our methods are designed to be transparent and repro-
 545 ducible. We have discussed the limitations of our work and possible future extensions.

546 We appreciate prior contributions in mechanistic interpretability and aim for our work to further
 547 promote fairness, accountability, and responsible AI deployment.
 548

549 7 REPRODUCIBILITY STATEMENT

551 To ensure the reproducibility of our work, this paper provides comprehensive details regarding our
 552 experimental setup, models, and evaluation protocols. Specifically:
 553

- 554 • **Models and Datasets:** The target models (ResNet-50, ViT-B-16, and CLIP/ViT-B-16)
 555 and datasets (ImageNet-1k and DTD) used for our experiments are explicitly stated in
 556 Section 4.1.
- 557 • **Implementation Details:** Key details for implementing our method, MiCLIP, are provided
 558 in Section 4.1. This includes the training data size (100,000 images from ImageNet-1k), the
 559 use of frozen CLIP encoders, the architecture of the neuron encoder (E_n), and the choice
 560 of k-SAE for feature disentangling. Further details on baseline methods are available in
 561 Appendix D.1.
- 562 • **Experimental Procedures:** Each analysis is described with its specific protocol. For in-
 563 stance, the quantitative evaluation framework is detailed in Section 4.2 (Analysis 1). The
 564 intervention strategy, including the specific layers targeted and scaling factors, is described
 565 in Section 4.3 (Analysis 2). All other analyses are similarly detailed in their respective
 566 sections.

567 All codes will be released upon the acceptance of this paper.
 568

569 REFERENCES

571 Nicholas Bai, Rahul Ajay Iyer, Tuomas Oikarinen, Akshay R. Kulkarni, and Tsui-Wei Weng. Interpreting neurons in deep vision networks with language models. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=x1dXvvElVd>.
 572

573 Sriram Balasubramanian, Samyadeep Basu, and Soheil Feizi. Decomposing and interpreting image
 574 representations via text in vits beyond CLIP. In *The Thirty-eighth Annual Conference on Neu-
 575 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=Vhh7ONtfvV>.
 576

577 David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
 578 Quantifying interpretability of deep visual representations. In *Proceedings of the IEEE conference
 579 on computer vision and pattern recognition*, pp. 6541–6549, 2017.
 580

581 Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
 582 Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
 583 neurons in language models. <https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html>, 2023.
 584

585 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 586 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
 587 the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9650–9660, October
 588 2021.
 589

590 M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
 591 *Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2014.
 592

594 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 595 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 596 pp. 248–255. Ieee, 2009.

597

598 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 599 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 600 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
 601 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

602

603 Javier Ferrando, Oscar Balcells Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know
 604 this entity? knowledge awareness and hallucinations in language models. In *The Thirteenth*
 605 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=WCRQFlji2q>.

606

607 Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. Interpreting the second-order effects of
 608 neurons in clip, 2025. URL <https://arxiv.org/abs/2406.04341>.

609

610 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 611 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth Inter-*
 612 *national Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tcsZt9ZNKD>.

613

614 Yoav Gur-Arieh, Roy Mayan, Chen Agassy, Atticus Geiger, and Mor Geva. Enhancing automated
 615 interpretability with output-centric feature descriptions. In Wanxiang Che, Joyce Nabende, Eka-
 616 terina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meet-*
 617 *ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5757–5778,
 618 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 619 251-0. doi: 10.18653/v1/2025.acl-long.288. URL <https://aclanthology.org/2025.acl-long.288/>.

620

621

622 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 623 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 624 770–778, 2016.

625

626 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 627 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on*
 628 *Computer Vision and Pattern Recognition (CVPR)*, June 2020.

629

630 Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
 631 Andreas. Natural language descriptions of deep visual features. In *International Conference on*
 632 *Learning Representations*, 2021.

633

634 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 635 autoencoders find highly interpretable features in language models. In *The Twelfth Interna-*
 636 *tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.

637

638 Neha Kalibhat, Shweta Bhardwaj, Bayan Bruss, Hamed Firooz, Maziar Sanjabi, and Soheil Feizi.
 639 Identifying interpretable subspaces in image representations. In *Proceedings of the 40th Interna-*
 640 *tional Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

641

642 Hang Li, Chengzhi Shen, Philip Torr, Volker Tresp, and Jindong Gu. Self-discovering inter-
 643 pretable diffusion latent directions for responsible text-to-image generation. In *Proceedings of the*
 644 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12006–12016, 2024.

645

646 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. In *International Conference on Learn-*
 647 *ing Representations*, 2014.

648

649 George A. Miller. Wordnet: A lexical database for english. *Communications of the ACM*, 38(11):
 650 39–41, 1995.

648 Jesse Mu and Jacob Andreas. Compositional explanations of neurons. In *Advances in Neu-
649 ral Information Processing Systems*, volume 33, pp. 17153–17163. Curran Associates, Inc.,
650 2020. URL [https://proceedings.neurips.cc/paper_files/paper/2020/
651 file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf).

652 Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
653 Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, Eric Todd, David Bau, and
654 Yonatan Belinkov. The quest for the right mediator: A history, survey, and theoretical grounding
655 of causal interpretability, 2024. URL <https://arxiv.org/abs/2408.01416>.

656 Tuomas Oikarinen and Tsui-Wei Weng. CLIP-dissect: Automatic description of neuron representa-
657 tions in deep vision networks. In *The Eleventh International Conference on Learning Repre-
658 sentations*, 2023. URL <https://openreview.net/forum?id=iPWiwWHc1V>.

659 Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. *Distill*, 2017. doi:
660 10.23915/distill.00007. <https://distill.pub/2017/feature-visualization>.

661 Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions
662 of features in large language models. *arXiv preprint arXiv:2410.13928*, 2024.

663 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
664 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
665 models from natural language supervision. In *International conference on machine learning*, pp.
666 8748–8763. PMLR, 2021.

667 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
668 Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing
669 Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks,
670 2024. URL <https://arxiv.org/abs/2401.14159>.

671 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
672 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
673 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

674 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
675 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
676 Imagenet large scale visual recognition challenge. *International Journal of Computer Vision*, 115
677 (3):211–252, 2015. doi: 10.1007/s11263-015-0816-y. URL [https://doi.org/10.1007/
678 s11263-015-0816-y](https://doi.org/10.1007/s11263-015-0816-y).

679 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
680 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
681 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
682 2017.

683 Yingdong Shi, Changming Li, Yifan Wang, Yongxiang Zhao, Anqi Pang, Sibei Yang, Jingyi Yu, and
684 Kan Ren. Dissecting and mitigating diffusion bias via mechanistic interpretability. In *Proceedings
685 of the Computer Vision and Pattern Recognition Conference*, pp. 8192–8202, 2025.

686 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Ma-
687 chine Learning Research*, 9(86):2579–2605, 2008. URL [http://jmlr.org/papers/v9/
688 vandermaaten08a.html](http://jmlr.org/papers/v9/vandermaaten08a.html).

689 Yifan Wang, Yifei Liu, Yingdong Shi, Changming Li, Anqi Pang, Sibei Yang, Jingyi Yu, and Kan
690 Ren. Discovering influential neuron path in vision transformers. In *The Thirteenth International
691 Conference on Learning Representations*, 2025. URL [https://openreview.net/forum/?
692 id=WQQyJbr5Lh](https://openreview.net/forum/?id=WQQyJbr5Lh).

693 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
694 *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12,
695 2014, Proceedings, Part I 13*, pp. 818–833. Springer, 2014.

696 Kaichen Zhang, Yifei Shen, Bo Li, and Ziwei Liu. Large multi-modal models can interpret features
697 in large multi-modal models. *arXiv preprint arXiv:2411.14982*, 2024.

702 **A USAGE OF LARGE LANGUAGE MODELS (LLMs)**
703

704 In this work, LLMs are used in some automated interpretability baselines (Zhang et al., 2024) to
705 generate or summarize textual explanations. Our proposed method does not rely on LLMs, and their
706 use is restricted to fair comparison with prior approaches.
707

708 During paper writing, LLMs are only used to polish the language and use of words. We promise
709 they are **not** used to generate ideas, methodology design, and experimental analysis.
710

711 **B MiCLIP ALGORITHMS**
712

713 In this section, we elaborate on the methodology of our MiCLIP, as introduced in Section 3.1 and
714 Section 3.2. For clarity, we present two algorithms that outline the key steps of the approach in
715 detail.
716

717 **B.1 CONTRASTIVE LEARNING FOR ALIGNMENT**
718

719 We introduce the detailed steps of our contrastive learning (Section 3.1) in Algorithm 1. We only
720 train the neuron encoder $E_n(\cdot; \theta_n)$.
721

722

Algorithm 1 Mechanism-Concept Alignment using CLIP-based Encoders

723 **Input:** Input image set $\mathcal{X} = \{x_i\}_{i=1}^N$, activation set $\mathcal{A} = \{a_i\}_{i=1}^N$, predicted output set $\{\hat{c}_i\}_{i=1}^N$
724 Pretrained CLIP visual encoder E_v and text encoder $E_c(\cdot)$.
725 Batch size B , step size η .
726 **Output:** Trained parameter θ_n of neuron encoder $E_n(\cdot; \theta_n)$.
727

728
729 1: $\theta_n^0 \leftarrow \text{RandomInit}(\theta_n)$ \triangleright Initialization.
730 2: **for** $t = 1, \dots, T$ **do** \triangleright Batch training, terminate until θ_n converges.
731 3: $\{(x_i, a_i, \hat{c}_i)\}_{i=1}^B \leftarrow \text{SampleBatch}(\mathcal{D}, B)$
732
733 4: **for** $i = 1, \dots, B$ **do** \triangleright Compute embeddings.
734 5: $\mathbf{n}_i \leftarrow E_n(a_i; \theta_n^{t-1})$ \triangleright Section 3.1
735 6: $\mathbf{c}_i \leftarrow E_c(\hat{c}_i)$
736 7: $\mathbf{x}_i \leftarrow E_v(x_i)$
737 8: **for** $(i, j) \in \{1, \dots, B\}^2$ **do** \triangleright Compute scores.
738 9: $S_{ij}^c \leftarrow \frac{\mathbf{n}_i \cdot \mathbf{c}_j}{\|\mathbf{n}_i\| \cdot \|\mathbf{c}_j\|}$
739 10: $S_{ij}^x \leftarrow \frac{\mathbf{n}_i \cdot \mathbf{x}_j}{\|\mathbf{n}_i\| \cdot \|\mathbf{x}_j\|}$
740
741 11: $\mathcal{L}_{\text{CLIP}}^{\text{out}} \leftarrow -\frac{1}{2B} \sum_{i=1}^B \log \frac{e^{S_{ii}^c}}{\sum_{j=1}^B e^{S_{ij}^c}} - \frac{1}{2B} \sum_{j=1}^B \log \frac{e^{S_{jj}^c}}{\sum_{i=1}^B e^{S_{ij}^c}}$ \triangleright Neuron-concept loss
742
743 12: $\mathcal{L}_{\text{CLIP}}^{\text{in}} \leftarrow -\frac{1}{2B} \sum_{i=1}^B \log \frac{e^{S_{ii}^x}}{\sum_{j=1}^B e^{S_{ij}^x}} - \frac{1}{2B} \sum_{j=1}^B \log \frac{e^{S_{jj}^x}}{\sum_{i=1}^B e^{S_{ij}^x}}$ \triangleright Neuron-image loss
744
745 13: $\mathcal{L}_{\text{alignment}} \leftarrow \mathcal{L}_{\text{CLIP}}^{\text{out}} + \mathcal{L}_{\text{CLIP}}^{\text{in}}$ \triangleright Equation 2
746
747 14: $\theta_n^t \leftarrow \theta_n^{t-1} + \eta \nabla_{\theta_n} \mathcal{L}_{\text{alignment}}$ \triangleright Update. GD as an example.
748 15: $\theta_n \leftarrow \theta_n^T$
749 16: **Return:** θ_n .

750
751

752 **B.2 LOCALIZATION AND DESCRIPTION OF REPRESENTATION UNITS**
753

754 We also describe the detailed steps of our feature localization and descriptions (Section 3.2) in
755 Algorithm 2. For interpretation, we can get \mathbf{L}_c (top τ feature indices for concept c) or \mathbf{D}_{u_i} (top τ
756 concepts for unit u_i).
757

756 **Algorithm 2** Representation-Based Mechanism-Concept Identification

757 **Input:** Feature vector $\mathbf{f} \in \mathbb{R}^m$ for input \mathbf{x} (from k-SAE, optional).
 758 Concept set \mathcal{C} .
 759 Dictionary $\mathbf{W}_{\text{dec}} \in \mathbb{R}^{n \times m}$, bias $\mathbf{b}_{\text{pre}} \in \mathbb{R}^n$.
 760 Pre-trained encoders E_n, E_c .
 761 Hyper-parameter τ .
 762 One-hot vectors $e^{(i)} = [0, \dots, \underbrace{1}_{i\text{-th position}}, \dots, 0]^\top \in \mathbb{R}^m$, $i = 1, \dots, m$.
 763 (Optional) Specific concept $c \in \mathcal{C}$ (for localization) or feature index i (for description).
 764 (Optional) Feature vector $\mathbf{f} \in \mathbb{R}^m$ for input \mathbf{x} (from k-SAE).
 765 **Output:** \mathbf{L}_c (top τ unit indices for concept c) or \mathbf{D}_{f_i} (top τ concepts for unit u_i).
 766

767 1: **function** CONCEPT-TO-MECHANISM LOCALIZATION(c) \triangleright Given concept c .
 768 2: $\mathbf{c} \leftarrow E_c(c)$
 769 3: **for** $i = 1$ to m **do** \triangleright Localize SAE feature
 770 4: **if** $\mathbf{f} \neq \text{None}$ **then** \triangleright Equation 6
 771 5: $\bar{\mathbf{a}}_i \leftarrow \mathbf{W}_{\text{dec}}(\mathbf{f} \odot e^{(i)}) + \mathbf{b}_{\text{pre}}$ \triangleright Localize neuron
 772 6: **else**
 773 7: $\bar{\mathbf{a}}_i \leftarrow e^{(i)}$
 774 8: $\bar{\mathbf{n}}_i \leftarrow E_n(\bar{\mathbf{a}}_i)$
 775 9: $\text{sim}(u_i, c) \leftarrow \frac{\bar{\mathbf{n}}_i \cdot \mathbf{c}}{\|\bar{\mathbf{n}}_i\| \|\mathbf{c}\|}$ \triangleright Compute relevance score.
 776 10: $\mathbf{L}_c \leftarrow \text{SelectTop-}\tau \{ \text{sim}(u_i, c) \}_{i=1}^i$ \triangleright Equation 3
 777 11: **return** \mathbf{L}_c
 778

779 12: **function** MECHANISM-TO-CONCEPT DESCRIPTION(i) \triangleright Given feature index i .
 780 13: **if** $\mathbf{f} \neq \text{None}$ **then** \triangleright Describe SAE feature
 781 14: $\bar{\mathbf{a}}_i \leftarrow \mathbf{W}_{\text{dec}}(\mathbf{f} \odot e^{(i)}) + \mathbf{b}_{\text{pre}}$ \triangleright Equation 6
 782 15: **else** \triangleright Describe neuron
 783 16: $\bar{\mathbf{a}}_i \leftarrow e^{(i)}$
 784 17: $\bar{\mathbf{n}}_i \leftarrow E_n(\bar{\mathbf{a}}_i)$
 785 18: **for** $c_j \in \mathcal{C}$ **do** \triangleright Compute relevance score.
 786 19: $\mathbf{c}_j \leftarrow E_c(c_j)$
 787 20: $\text{sim}(u_i, c_j) \leftarrow \frac{\bar{\mathbf{n}}_i \cdot \mathbf{c}_j}{\|\bar{\mathbf{n}}_i\| \|\mathbf{c}_j\|}$ \triangleright Equation 4
 788 21: $\mathbf{D}_{u_i} \leftarrow \text{SelectTop-}\tau \{ \text{sim}(u_i, c_j) \}_{c_j \in \mathcal{C}}$ \triangleright Equation 4
 789 22: **return** \mathbf{D}_{u_i}
 790

792 **C IMPLEMENTATION DETAILS**793 **C.1 FEATURE DISENTANGLEMENT**

794 In addition to aligning model neurons with semantic concepts, MiCLIP can adopt widgets to dis-
 795 entangle the neuron space into a sparse feature space, to address the issue of *polysemy* Mu
 796 & Andreas (2020), where a single neuron may encode multiple unrelated concepts. In this sec-
 797 tion, we introduce k-Sparse Autoencoders (k-SAE) Makhzani & Frey (2014) that transform obscure
 798 neuron activations into sparse features that expose more interpretable relationships with human-
 799 understandable semantic concepts. It is applicable together with MiCLIP, as mentioned in Sec-
 800 tion 3.2.

801 For a representation $\mathbf{a} \in \mathbb{R}^n$ from one specific layer in the model, k-SAE follows the dictionary
 802 learning paradigm and conducts encoding and decoding stages as shown as follows:

803
$$\mathbf{f} = [v_1, v_2, \dots, v_m] = \underbrace{\text{Top-}k(\mathbf{W}_{\text{enc}}(\mathbf{a} - \mathbf{b}_{\text{pre}}))}_{\text{encoding}}, \quad \hat{\mathbf{a}} = \underbrace{\mathbf{W}_{\text{dec}}\mathbf{f} + \mathbf{b}_{\text{pre}}}_{\text{decoding}}. \quad (6)$$

804 The k-SAE encodes \mathbf{a} into an m -dimensional feature $\mathbf{f} \in \mathbb{R}^m$ and then reconstructs it as $\hat{\mathbf{a}}$, a
 805 combination of the features, where the encoder and decoder matrix $\mathbf{W}_{\text{enc}} \in \mathbb{R}^{m \times n}$, $\mathbf{W}_{\text{dec}} \in \mathbb{R}^{n \times m}$

810
811 Table 5: Comparison of computational cost (FLOPs) and resource usage to analyze mechanisms
812 over 100,000 images using ViT-B-16. “-” or “N/A” indicates no training phase is required.

813 814 Method	FLOPs (T-FLOPs)				Time		Memory	
	815 Training	816 Neuron Loc.	817 Feature Loc.	818 Total	819 Training	820 Inference	821 VRAM	822 Storage
823 MiCLIP (Ours)	7290.39	0.10	186.60	7477.09	30 min	2 min	16 GB	94 MB
Act-Values	-	3524.01	4256.42	7780.43	-	30 min	16 GB	97 MB
CLIP-Dissect	-	7270.72	7769.20	15039.92	-	30 min	16 GB	9.7 GB

823 and the bias $\mathbf{b}_{\text{pre}} \in \mathbb{R}^n$ are learnable parameters, denoted together by θ_{SAE} . Top-k(\cdot) is an operator
824 that selects the top k largest feature values and leaves them unchanged while setting the remaining
825 features to zero. This introduces the sparsity constraint on the features Makhzani & Frey (2014),
826 requiring $\|\mathbf{f}\|_0 \leq k$.

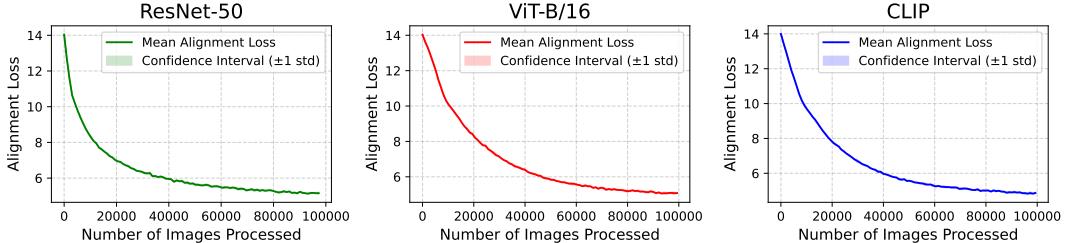
827 The k -SAE is trained by minimizing the representation reconstruction error while enforcing the
828 feature sparsity constraint. The objective is formulated in Equation 7.

$$\underset{\theta_{\text{SAE}}}{\text{minimize}} \quad \mathcal{L}(\theta_{\text{SAE}}; \mathbf{a}) = \|\mathbf{a} - \hat{\mathbf{a}}\|_2^2, \text{ subject to } \|\mathbf{f}\|_0 \leq k. \quad (7)$$

829 C.2 TRAINING DETAILS

830 **831 Training Details of Mechanism-Concept Alignment.** Our MiCLIP was trained for a single epoch
832 on a subset of 100,000 images sampled from the ImageNet-1k training set. We employed the **Adam**
833 **834 optimizer** with a fixed learning rate of 1×10^{-4} . The training was performed with a batch size of
1024.

835 Alignment Loss Curves for Different Target Models



836 Figure 7: Alignment loss curves for three target models. The curves represent the mean alignment
837 loss and its standard deviation calculated across three random seeds for each model during training.

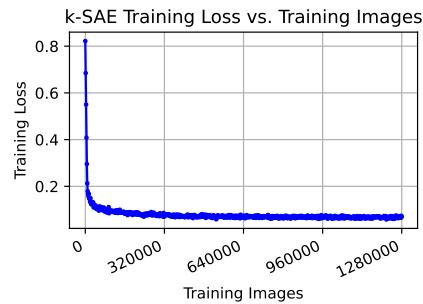
838 **839 Training Details of k-SAE.** Our k-SAE was trained on the entire ImageNet-1k training set. We
840 employed the Adam optimizer with a fixed learning rate of 1×10^{-3} . The training was performed
841 with a batch size of 32 (see Figure 8).

842 **843 Training Efficiency.** As shown in Table 5, our MiCLIP
844 achieves comparable training and inference efficiency to
845 the baselines, despite requiring a one-time training phase.

846 D EXPERIMENTAL SETTINGS

847 D.1 BASELINES

848 **849 Act-Values** is a fundamental baseline identifies class-
850 specific mechanisms (neurons or features) by ranking
851 them based on their average activation for a given class.
852 The top-ranked mechanisms are then used for intervention-
853 tasks (Section 4.3).



854 Figure 8: Training loss curve of k-SAE
855 for ViT-B-16 model.

864 **Network Dissection** (Bau et al., 2017) is a classic interpretability method that identifies concept
 865 detectors by measuring the alignment between a neuron’s or feature’s activation map and a concept’s
 866 semantic segmentation. We follow its core principle of using Intersection over Union (IoU) as
 867 the alignment metric. However, to enable analysis on a broader range of concepts in ImageNet-
 868 1k (Russakovsky et al., 2015), we leverage Grounded SAM(Ren et al., 2024) to generate concept
 869 masks.

870 **CLIP-Dissect** (Oikarinen & Weng, 2023) uses CLIP to describe the function of individual neurons.
 871 For our description accuracy comparison (Section 4.2), we follow its original procedure. For inter-
 872 vention experiments (Section 4.3), we rank the neurons or features identified by CLIP-Dissect, then
 873 select those with the highest similarities for a target class.

874 **V-Interp** (Zhang et al., 2024) is inspired by text-based methods where large models explain smaller
 875 ones (Bills et al., 2023; Paulo et al., 2024). We implement a visual equivalent based on (Zhang
 876 et al., 2024). This approach identifies the image patches that cause the highest neuron or feature
 877 activations and feeds them to a powerful “explainer” Large Multimodal Model (LMM). The LMM’s
 878 zero-shot descriptions of these patches serve as the final captions of neurons or features. Since this
 879 process yields a free-text description for each neuron or feature, we then use the CLIP/ViT-B-16 text
 880 encoder to select the unit whose description is most semantically similar to a given target concept.
 881

882 D.2 SEMANTIC ANALYSIS

884 D.2.1 VISUALIZATION OF LOCALIZATION FEATURES

885 In this section, we provide details for the analysis of semantic geometry of SAE features in Mi-
 886 CLIP’s learned embedding space. We select a set of concepts from the labels of ImageNet-1k, then
 887 categorize them into four groups using WordNet (Miller, 1995) that are “mammal”, “non-mammal”,
 888 “tool”, “vehicle”.

889 To be more specific, “mammal” and “vehicle” refer to synset “mammal.n.01” and “vehicle.n.01”
 890 respectively; “non-mammal” refers to the combination of “bird.n.01”, “fish.n.01”, “reptile.n.01”,
 891 “amphibian.n.01” and “invertebrate.n.01”. “tool” refers to the combination of synsets “tool.n.01”,
 892 “appliance.n.01”, “furniture.n.01” and “instrument.n.01”.

894 D.2.2 ATTENTION MAP VISUALIZATION

895 To qualitatively verify that our localized SAE features correspond to distinct and correct regions
 896 of an input image, we introduce a visualization technique based on feature-conditioned attention.
 897 This method adapts the attention map visualization from DINO (Caron et al., 2021) but introduces
 898 a critical intervention step. Instead of merely observing the model’s natural attention, we constrain
 899 the model’s activations to lie within the subspace of specific, pre-selected features. This allows us
 900 to generate a saliency map that directly reveals the spatial regions the model focuses on when its
 901 reasoning is guided only by the features associated with a given concept.

903 The process consists of three main steps: a partial forward pass, a targeted activation intervention,
 904 and the generation of the final attention map.

906 1. Partial Forward Pass and Activation Extraction

907 Given an input image x and a target intervention layer l , we perform a forward pass up
 908 to that layer. We extract the activations for all tokens, separating the activation vector for
 909 the **CLS** token, $\mathbf{a}_{\text{CLS}}^{(l)} \in \mathbb{R}^n$, from the matrix of activation vectors for the P image patch
 910 tokens, $\mathcal{A}_{\text{patches}}^{(l)} \in \mathbb{R}^{P \times n}$. *Our intervention is applied exclusively to the patch tokens; the*
 911 *CLS token’s activation remains unmodified.*

912 2. Activation Intervention on Patch Tokens

913 This step is the core of our method. Given a set of τ SAE feature indices $\{i\}_{i \in \mathcal{L}_c}$ that have
 914 been localized to a concept c (using Equation 3), we intervene on the patch activations by
 915 passing them through the SAE and filtering the resulting sparse code.

916 First, each patch’s activation vector $\mathbf{a}_p^{(l)}$ from $\mathcal{A}_{\text{patches}}^{(l)}$ is passed through the pre-trained
 917 SAE encoder, \mathbf{W}_{enc} , to obtain its corresponding sparse feature activation vector $\mathbf{z}_p \in \mathbb{R}^{d_s}$,

918 where d_s is the dictionary size:
 919

$$\mathbf{z}_p = \mathbf{W}_{\text{enc}}(\mathbf{a}_p^{(l)} - \mathbf{b}_{\text{pre}}) \quad (8)$$

920 Next, we generate a masked sparse vector, $\tilde{\mathbf{z}}_p$, by retaining only the activation values at
 921 the indices corresponding to our target concept and setting all others to zero. This can be
 922 expressed as an element-wise product with a mask vector $\mathbf{m}_c \in \{0, 1\}^{d_s}$, where $(\mathbf{m}_c)_i = 1$
 923 if $i \in \mathbf{L}_c$ and 0 otherwise:
 924

$$\tilde{\mathbf{z}}_p = \mathbf{z}_p \odot \mathbf{m}_c \quad (9)$$

925 Finally, this filtered sparse code is passed through the SAE decoder, \mathbf{W}_{dec} , to reconstruct
 926 the activation vector in the original activation space. This yields the modified patch activa-
 927 tion vector $\tilde{\mathbf{a}}_p^{(l)}$:
 928

$$\tilde{\mathbf{a}}_p^{(l)} = \mathbf{W}_{\text{dec}} \tilde{\mathbf{z}}_p + \mathbf{b}_{\text{pre}} \quad (10)$$

929 This operation is applied to all patch tokens, resulting in a matrix of modified activations,
 930 $\tilde{\mathcal{A}}_{\text{patches}}^{(l)} = [\tilde{\mathbf{a}}_1^{(l)}, \dots, \tilde{\mathbf{a}}_P^{(l)}]^\top$.
 931

3. Feature-Conditioned Attention Map Generation

932 The full set of activations for subsequent layers is reassembled by concatenating the origi-
 933 nal, unmodified **CLS** activation with the modified patch activations. The forward pass then
 934 resumes from this reassembled state. We compute the self-attention weights in a sub-
 935 sequent block, focusing on the attention between the **CLS** token and the now-modified patch
 936 tokens.
 937

938 For a specific attention head h (out of H total heads), the attention weights $\alpha^{(h)} \in \mathbb{R}^P$ are
 939 calculated as:
 940

$$\alpha^{(h)} = \text{softmax} \left(\frac{(\mathbf{q}_{\text{CLS}}^{(h)})^\top \mathbf{K}_{\text{patches}}^{(h)}}{\sqrt{d_k}} \right) \quad (11)$$

941 where the query vector $\mathbf{q}_{\text{CLS}}^{(h)} \in \mathbb{R}^{d_k}$ is derived from the original **CLS** activation $\mathbf{a}_{\text{CLS}}^{(l)}$, and
 942 the matrix of key vectors $\mathbf{K}_{\text{patches}}^{(h)} \in \mathbb{R}^{P \times d_k}$ is derived from the intervened patch activations
 943 $\tilde{\mathcal{A}}_{\text{patches}}^{(l)}$.
 944

945 The final 2D saliency map \mathbf{S} is generated by averaging these attention weights across all
 946 attentions heads and reshaping the resulting P -dimensional vector to match the spatial
 947 layout of the image patches.
 948

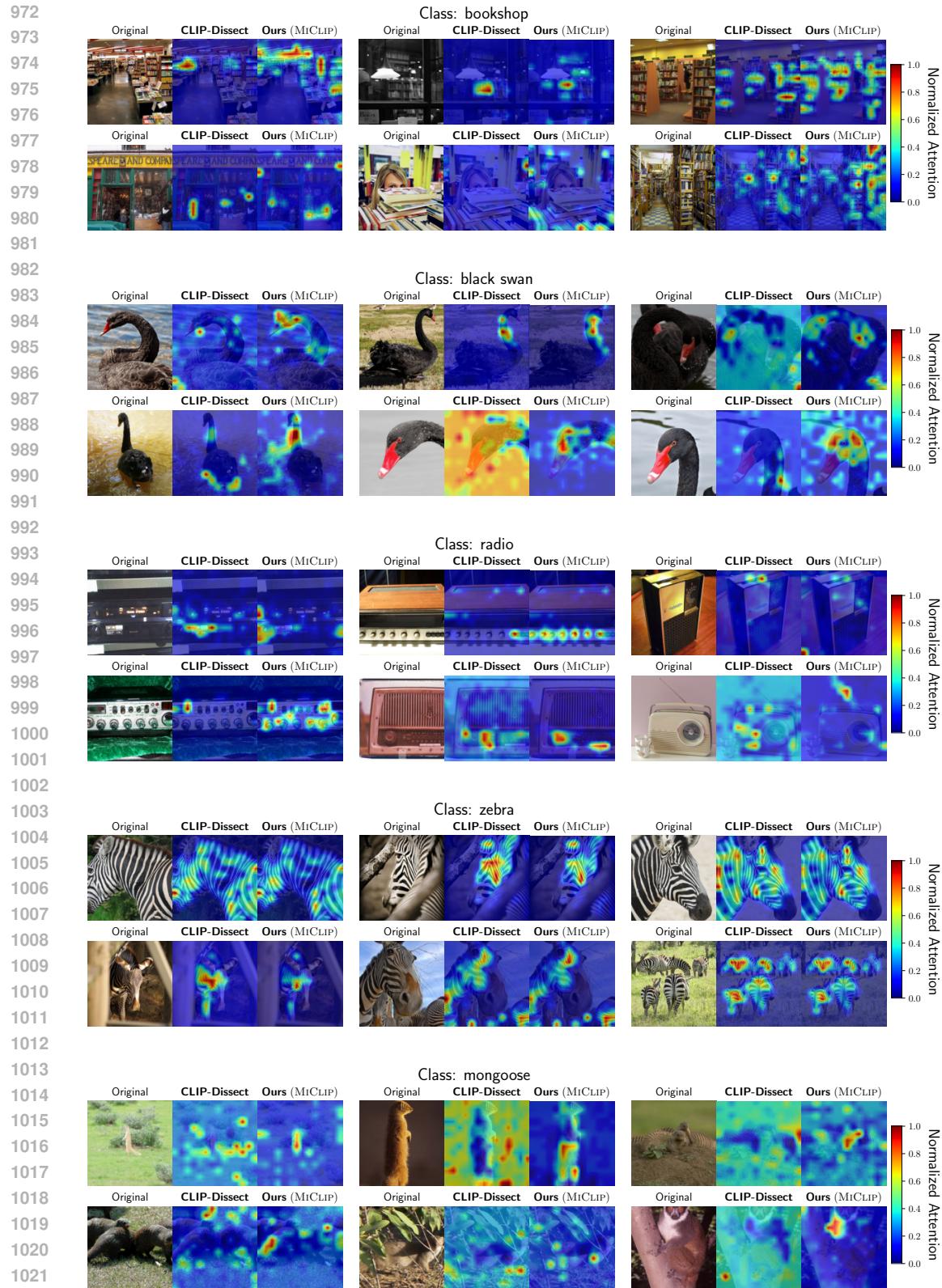
E MORE RESULTS

E.1 SEMANTIC ANALYSIS

949 To further demonstrate the effectiveness and robustness of our method in localizing features that
 950 correspond to specific visual concepts, this appendix provides a more extensive set of examples
 951 across various classes. As detailed in the **Analysis 5**, we verify the spatial grounding of our learned
 952 features by visualizing their corresponding attention maps.
 953

954 We follow the same visualization methodology described in **Analysis 5**. Specifically, we leverage
 955 the self-attention maps from the **8th** layer of the CLIP/ViT-B-16 model, computed between the **CLS**
 956 token and all image patch tokens. The resulting saliency maps highlight the precise image regions
 957 to which the identified features attend. The visualizations shown in Figure 9 and Figure 10 are
 958 generated for top-localized features across a diverse set of classes, using images from the ImageNet-
 959 1k validation set.
 960

961 The results in Figure 9 and Figure 10 demonstrate that our MiCLIP consistently localizes features
 962 to the relevant semantic regions across a wide array of classes. For each class, the attention maps
 963 reliably highlight the areas that define the core visual concept, and this localization remains stable
 964 across different images within that class. This consistency underscores the robustness of our ap-
 965 proach, confirming that the identified features are not artifacts of specific images but are genuinely
 966 tied to the underlying visual semantics of the category.
 967



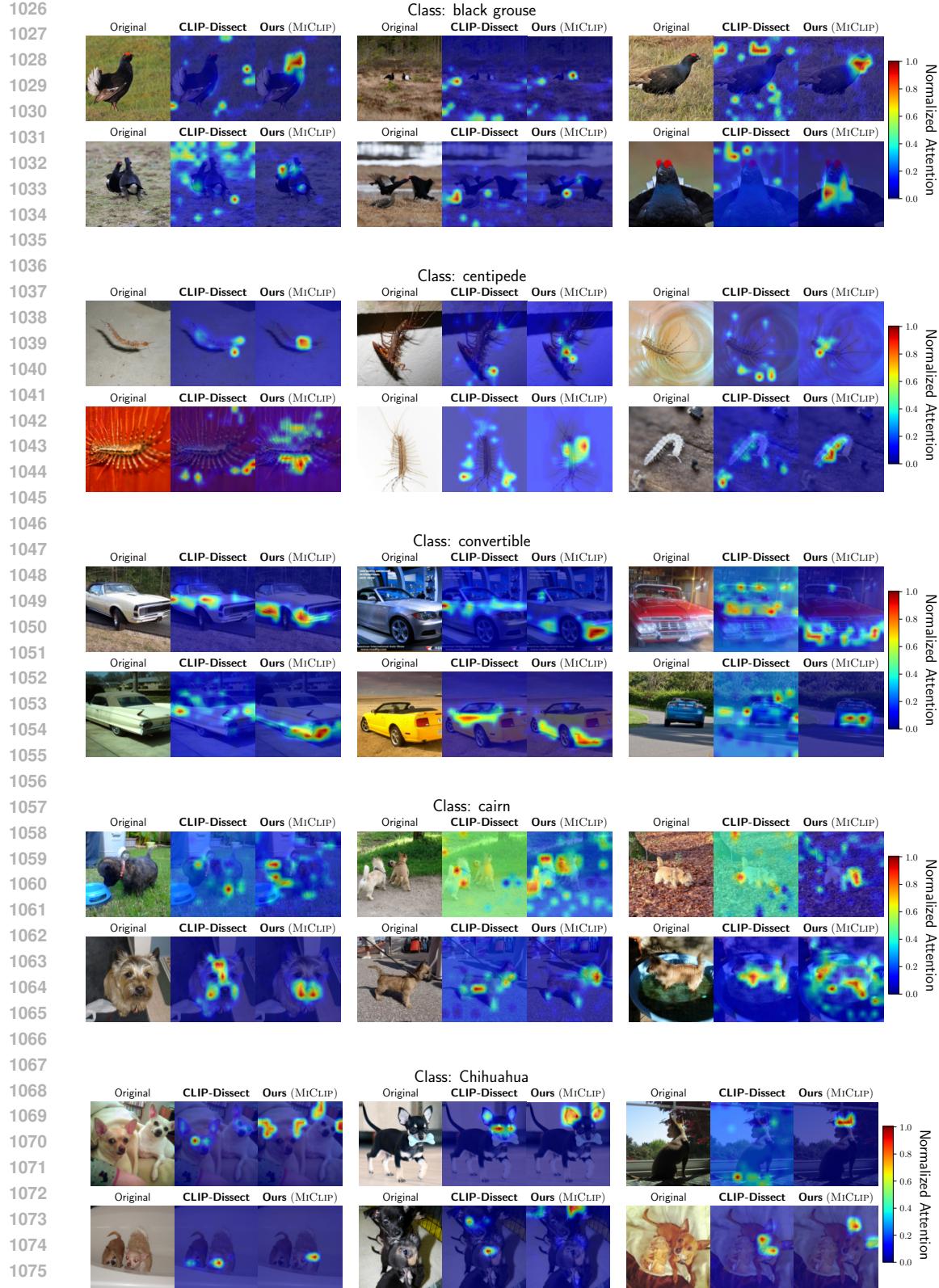


Figure 10: More results for visualizing the spatial grounding of top-5 localized features.

1080
1081

E.2 ADDITIONAL CASE STUDIES OF UNDERSTANDING FLAWED VISUAL REASONING

1082
1083
1084
1085

In this section, we provide additional case studies to further validate the diagnostic capabilities of MiCLIP, as introduced in Section 4.6. Our approach pinpoints reasoning failures within the CLIP/ViT-B-16 model by tracing the semantic alignment of an image’s internal representations on a layer-by-layer basis.

1086
1087
1088
1089
1090
1091

As a brief recall, the methodology involves projecting layer-specific activations into a shared semantic space using the neuron encoder E_n . We then compute the cosine similarity of these evolving representations against the text embeddings of both the ground-truth (GT) label and the label the model incorrectly predicted (the misclassified label). A divergence point, where the representation’s similarity to the misclassified label surpasses that of the GT, marks the specific layer where the model’s reasoning process falters.

1092
1093
1094
1095
1096
1097

Figure 11 presents four additional examples of this flaw analysis. Each case demonstrates a distinct failure mode, yet our diagnostic method consistently identifies the critical layer where the semantic trajectory shifts away from the correct interpretation. These examples underscore the reliability of MiCLIP as a tool for gaining precise insights into model failures, confirming that the crossover phenomenon is a general indicator of flawed visual reasoning.

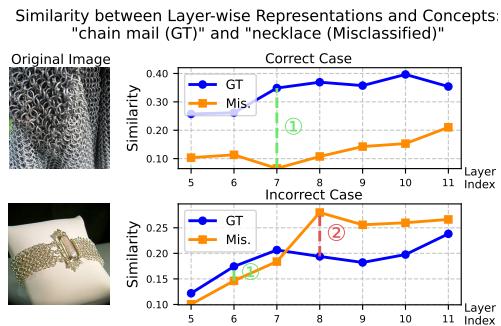
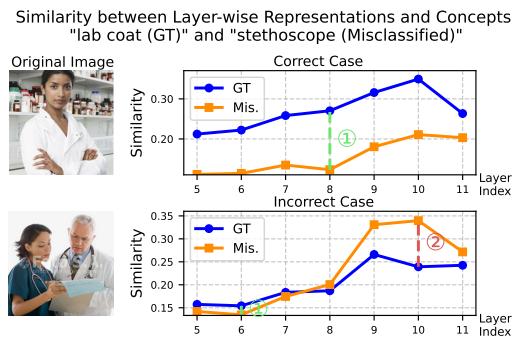
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
11081109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
11201121
1122
1123
1124
1125

Figure 11: Additional results for flaw analysis. Each plot shows the cosine similarities between layer-wise representation embeddings and the text embeddings of the ground-truth (GT; blue) and the misclassified label (Mis.; orange). The layer where the GT similarity has the largest lead is marked by ①, while the critical failure point where the misclassified label’s similarity overtakes the GT’s is marked by ②.

1126
1127

E.3 ADDITIONAL VISUALIZATION OF LOW LEVEL FEATURES

1128
1129
1130
1131
1132
1133

To further substantiate MiCLIP’s capability in identifying and localizing fundamental visual primitives, this appendix provides extended visualization results focusing on low-level features. While **Analysis 7** demonstrated the localization of color concepts (e.g., “green”), here we examine whether our method can effectively ground more complex low-level features, such as shapes, colors and textures, which are typically encoded in the early layers of the model.

1134 We follow the identical visualization methodology described in **Analysis 7**. Specifically, we visualize
 1135 the self-attention maps from the **3rd layer** of the CLIP/ViT-B-16 model.
 1136

1137 Figure 12 and Figure 13 illustrates more spatial grounding of feature identified by MiCLIP as cor-
 1138 responding to a “**shapes**”, “**colors**” or “**textures**” pattern. The results show that this feature con-
 1139 sistently attends to structures, such as “red”, “grid”, or “round”, across a diverse set of images. The
 1140 results from object semantics verifies MiCLIP’s effectiveness in interpreting the model’s behavior at
 1141 different levels of granularity.
 1142

E.4 USER STUDY OF LOCALIZED FEATURES

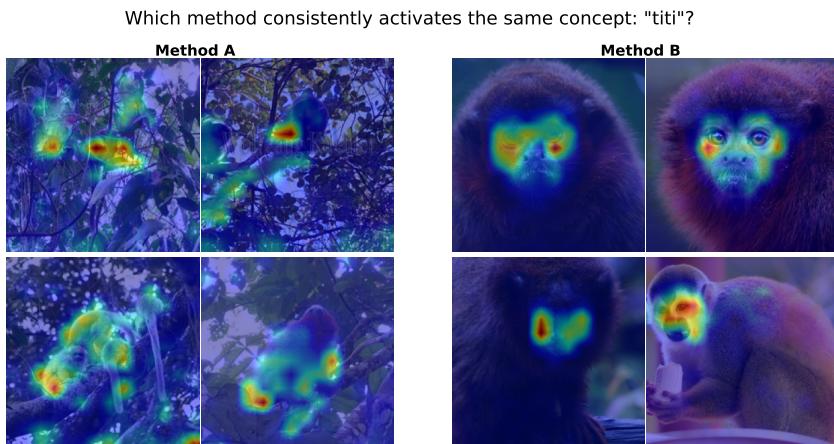
1144 To quantitatively evaluate the quality of the interpretability heatmaps produced by our method, we
 1145 conducted a user study to compare the ability of MiCLIP and CLIP-Dissect to localize relevant
 1146 image regions. To ensure a fair comparison, we adhered to a strict blind testing protocol. An
 1147 example of a question from our survey is shown in Figure 14.

1148 **Participants and Recruitment.** We recruited
 1149 13 participants with backgrounds in computer
 1150 vision. None of the participants were authors
 1151 of this paper, ensuring independence. We col-
 1152 lected a total of 13 participants with 130 re-
 1153 sponses. The results, summarized in Table 6,
 1154 show a clear user preference for MiCLIP over
 1155 CLIP-Dissect.

1156 We collected a total of 13 valid responses. The
 1157 results, summarized in Table 6, show a clear
 1158 user preference for MiCLIP over CLIP-Dissect.
 1159

Table 6: User study results: User preference for explanations generated by each method.

Method	User Preference (%)
CLIP-dissect	23.08%
MiCLIP (Ours)	76.92%



1174 Figure 14: An example from our user study questionnaire. Participants were shown feature maps
 1175 generated by two different methods (Method A and Method B, in random order) and were asked to
 1176 select which one better explains the image’s classification.
 1177

E.5 VERIFYING MECHANISM LOCALIZATION VIA INTERVENTION ON LARGE VISION-LANGUAGE MODEL

1181 To demonstrate the scalability of MiCLIP, we extend our intervention analysis to the llava-
 1182 hf/llava-v1.6-mistral-7b-hf model. We evaluate the model on the ImageNet-1k closed-set classi-
 1183 fication task (original accuracy 11.78%) using a specific prompt containing all 1,000 class labels
 1184 (`{options_text}`).
 1185

1186 We use the following prompt instructs the model: “What type of object is in this photo? Below is
 1187 the exact list of choices. Each choice is enclosed in `<>` brackets for clarity. `{options_text}`
 1188 Instructions: - Think step by step and then output the label. Choose EXACTLY ONE from the list

1188 above. Output the label inside the `<>` brackets. For example, if the answer is ‘sea snake’, output
 1189 `< sea snake >`. Your response label must be a perfect and totally match to one of the labels.”
 1190

1191 Accuracy is calculated via exact string matching. The model’s original classification accuracy is
 1192 11.78%. We perform interventions on SAE features within the **22nd layer** of the LLaVA vision
 1193 tower. We compare MiCLIP against CLIP-Dissect (Oikarinen & Weng, 2023) using enhancement
 1194 ($\times 2$ scaling) and removal ($\times 0$ scaling) settings, averaged over three random seeds.
 1195

1196 Table 7: Accuracy deviations ($\Delta Acc \%$) from enhancement and removal interventions on features
 1197 on llava-hf/llava-v1.6-mistral-7b-hf model.

Method	Enhancement (\uparrow)	Removal (\downarrow)
CLIP-dissect	0.00 (± 0.06)	0.03 (± 0.03)
MiCLIP (Ours)	1.11 (± 0.01)	-1.87 (± 0.05)

1202 As shown in Table 7, MiCLIP effectively controls model behavior, achieving a **1.11%** gain in en-
 1203 hancement and a **1.87%** drop in removal. In contrast, the baseline CLIP-Dissect shows negligible
 1204 impact, verifying that MiCLIP correctly identifies functionally relevant mechanisms in large-scale
 1205 vision-language model.
 1206

1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

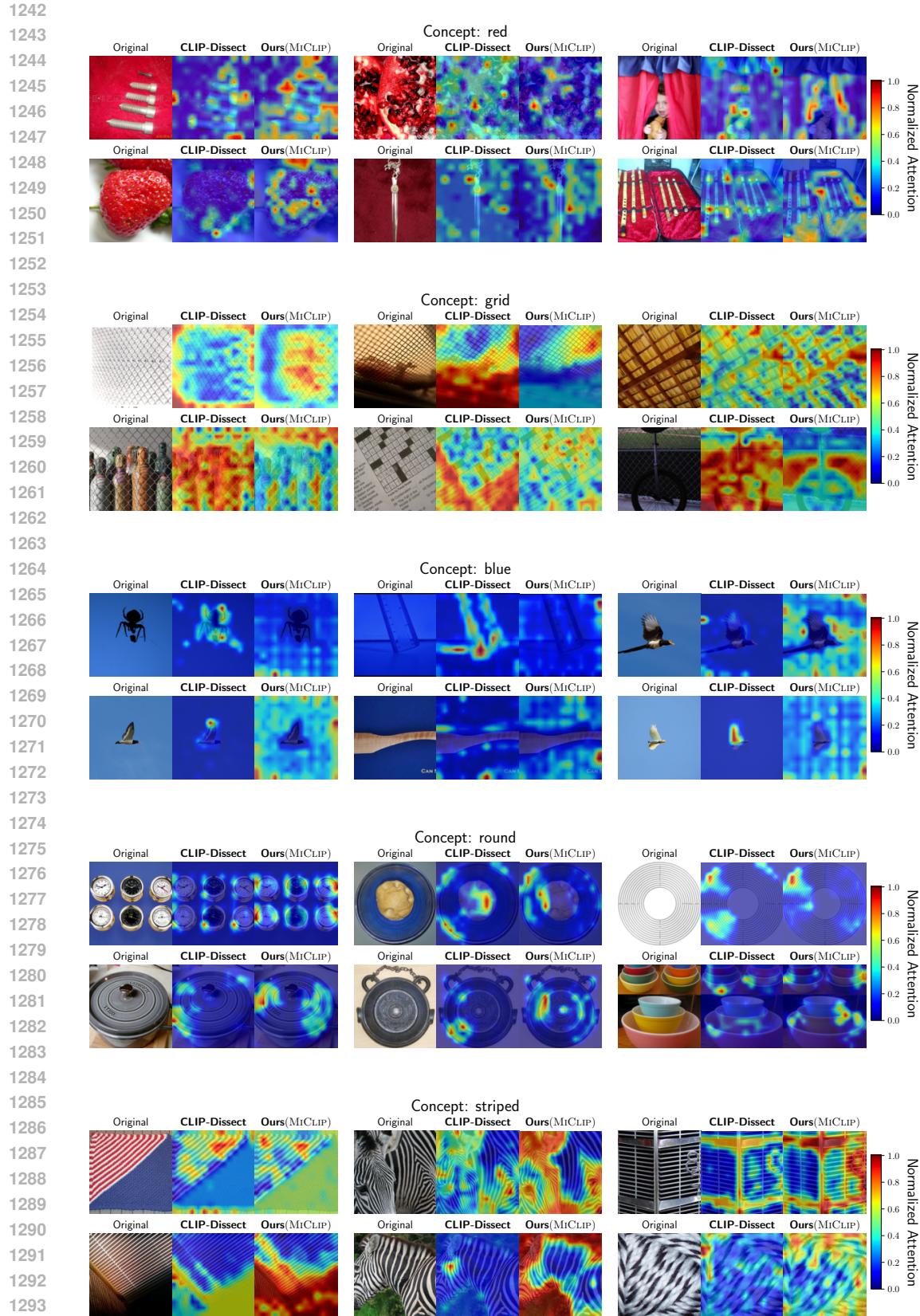


Figure 12: More results for visualizing the spatial grounding of color, shape and texture features.

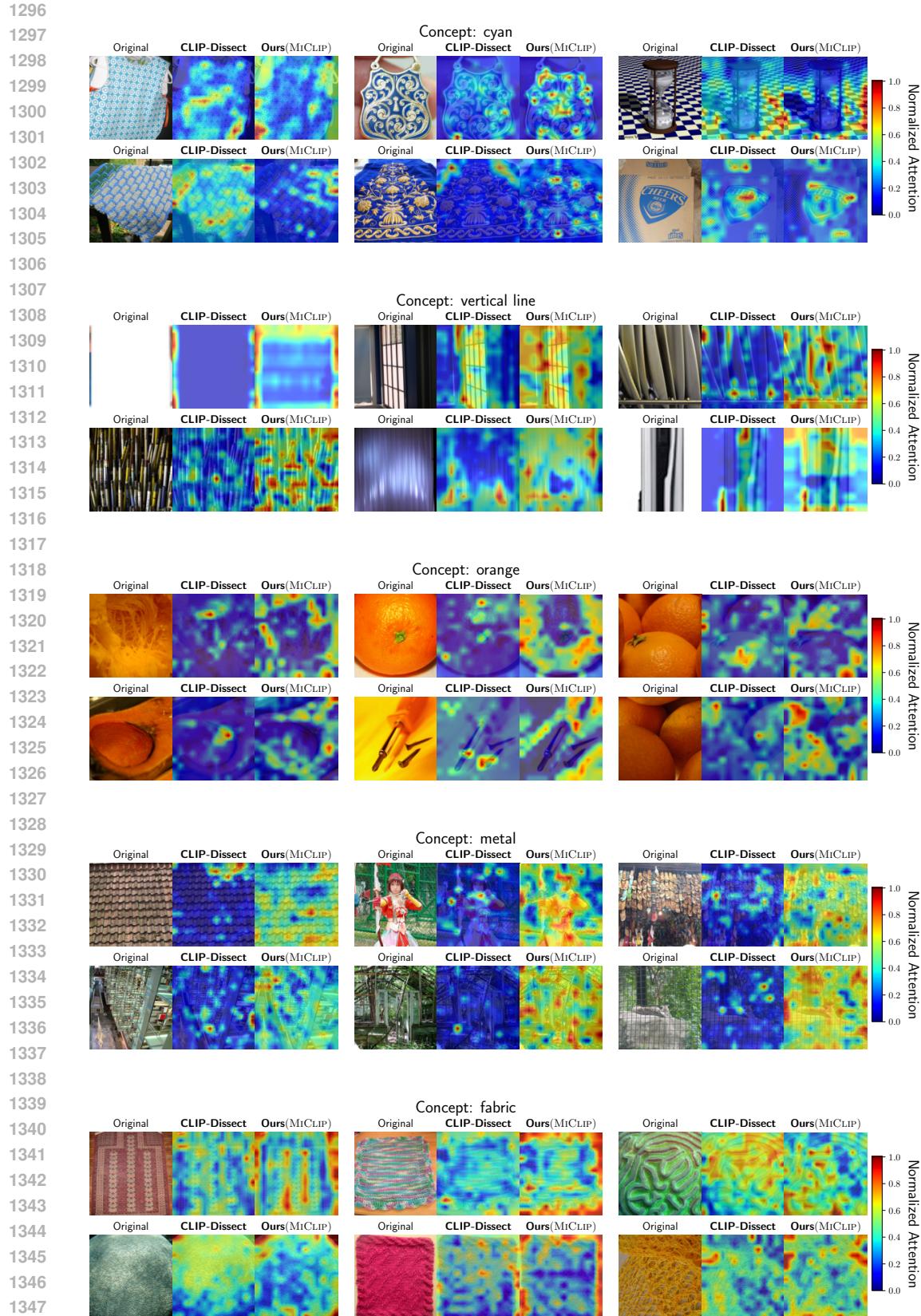


Figure 13: More results for visualizing the spatial grounding of color, shape and texture features.