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Abstract

Large language models have demonstrated their capabilities in materials science,
generating thermodynamically stable crystal structures without explicit domain
training. However, the internal mechanisms enabling this scientific reasoning
remain unclear, limiting our ability to develop reliable and controllable Al systems
for materials discovery. This work investigates how LLMs encode crystallographic
knowledge, process multi-structure reasoning, and whether mechanistic insights
can enable controlled crystal structure optimization. We introduce the Latent Crys-
tallography Microscope (LCM), the first mechanistic interpretability framework
designed to reverse-engineer crystallographic reasoning in large language models.
Through systematic linear probing across Llama 3.1-70B’s transformer layers, we
identify a hierarchical knowledge architecture where crystallographic concepts
emerge across distinct processing phases from early chemical composition through
intermediate thermodynamic and geometric reasoning to final symmetry classifi-
cation. Our attention flow analysis reveals strong position bias effects in compu-
tational resource allocation. We further expose the limitations of prompt-based
control approaches through ablation experiments. Moving beyond prompt-level
control, we demonstrate that mechanistic insights enable targeted manipulation of
crystal structure generation through layer-specific neural interventions, achieving
systematic improvements in thermodynamic stability while preserving structural
diversity. This work investigates scientific reasoning mechanisms in large language
models and demonstrates that mechanistic interpretability can enable practical
control over materials discovery processes, providing critical foundations for de-
veloping interpretable and controllable Al systems that can serve as reliable tools
in autonomous materials discovery.

1 Introduction

The emergence of Large Language Models (LLMs) as powerful tools for scientific discovery has
revolutionized computational materials science, with recent breakthroughs demonstrating their ability
to generate thermodynamically stable crystal structures [2, 10, 11]. These models can predict material
properties with accuracy comparable to specialized graph neural networks [5, 30] and generate novel
crystalline structures through autoregressive text modeling, functioning as "innate crystal structure
generators" without explicit domain training [10]. However, despite these impressive capabilities, the
internal mechanisms by which LL.Ms encode, process, and manipulate crystallographic knowledge
remain fundamentally unclear, which represent a critical gap that limits both scientific understanding
and practical control over materials discovery applications.
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This gap constitutes a fundamental barrier to trustworthy Al-driven materials discovery. When LLMs
generate crystal structures or demonstrate sophisticated understanding of space group symmetries
and thermodynamic properties, we lack insight into the computational pathways enabling these
behaviors. The lack of mechanistic interpretability prevents systematic debugging when models
generate thermodynamically unstable structures, limits targeted interventions to guide generation
toward specific material properties, and hinders the development of more controllable and reliable
materials discovery systems.

Modern materials discovery faces a persistent stability-novelty dilemma, as comprehensively docu-
mented in recent benchmarking studies [21]. Traditional techniques like data-driven ion exchange
achieve impressive thermodynamic stability rates (9.2%) by performing substitutions on known stable
compounds, but exhibit zero prototype novelty because they rely exclusively on existing structural
templates. Conversely, advanced generative models like Crystal Diffusion Variational Autoencoder
(CDVAE) [31] and MatterGen [33] excel at structural innovation with prototype novelty rates up to
8.2%, but suffer from poor stability rates (1.8-3.0%) as most novel prototypes are thermodynamically
unstable [21]. This trade-off presents researchers with a limiting choice: pursue stability at the
expense of innovation, or chase novelty at the risk of instability.

Recent advances in mechanistic interpretability offer a promising path forward by developing sophis-
ticated techniques for reverse-engineering neural network computational mechanisms into human-
understandable components [8, 18]. Linear probing methods reveal how different types of knowledge
are encoded across transformer layers [1, 7], while causal intervention techniques like activation patch-
ing enable direct manipulation of model behaviors [15, 25]. Sparse autoencoders decompose neural
representations into interpretable features [4, 22], providing unprecedented insight into complex
concept representation.

However, these interpretability techniques have focused primarily on linguistic tasks, leaving scientific
reasoning domains largely unexplored. Materials science presents unique interpretability challenges,
requiring models to integrate discrete categorical variables (space groups), continuous geometric
parameters (lattice constants), and emergent physical properties (formation energies). Understanding
how LLMs process these diverse crystallographic concepts could unlock principled approaches to the
stability-novelty dilemma through targeted neural interventions.

In this work, we introduce the Latent Crystallography Microscope (LCM) framework to reverse-
engineer crystallographic reasoning in LLMs and translate mechanistic insights into practical crystal
structure optimization strategies. We investigate three fundamental questions: How do LLMs
internally represent crystallographic knowledge across computational layers? How does attention
allocation reveal processing mechanisms during multi-structure reasoning? How can mechanistic
understanding enable targeted control over materials discovery?

We map the hierarchical organization of crystallographic knowledge through linear probing across
transformer layers of Llama 3.1-70B, identifying distinct processing phases for different crystallo-
graphic properties. Through attention flow analysis with position bias correction, we reveal strong
recency effects that dominate content-based preferences, while prompt engineering provides only
modest control. Most significantly, we demonstrate how mechanistic insights translate into practical
improvements: targeted neural interventions at specific layers enhance thermodynamic stability in
generated crystal structures.

This work represents the first mechanistic analysis of crystallographic knowledge in LLMs. Our
findings establish that layer-specific interventions can achieve meaningful control over materials
properties, suggesting a promising direction for crystal structure optimization through targeted
neural modifications. The framework provides both theoretical understanding of how LLMs process
scientific knowledge and practical tools for enhancing materials discovery applications.

2 Related Work

2.1 Mechanistic Interpretability of Large Language Models

Mechanistic interpretability seeks to reverse-engineer the computational mechanisms learned by
neural networks into human-understandable algorithms and concepts [8, 18]. This field has developed
sophisticated methodologies for understanding transformer architectures, moving beyond black-box
analysis to provide granular, causal understanding of model behaviors. Linear probing has emerged as
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a fundamental technique for assessing what information is encoded within neural representations [1],
with Conneau et al. [7] demonstrating that sentence embeddings contain rich linguistic structure
accessible through linear classifiers. Subsequent work revealed hierarchical organization of syntactic
knowledge across transformer layers [23], while recent advances have extended these insights to reveal
linear structure in how models represent truth [14] and sentiment [24], supporting the hypothesis that
many concepts are encoded as linear directions in activation space.

Understanding correlation between representations and concepts requires establishing causal re-
lationships through direct intervention. Vig et al. [26] pioneered causal mediation analysis for
language models, while Meng et al. [15] developed techniques for locating and editing specific
factual associations in GPT models. Activation patching has emerged as a particularly powerful
intervention technique [25], with recent work establishing best practices for applying these methods
systematically [34]. A major breakthrough has been the development of sparse autoencoders (SAEs)
for decomposing neural representations into interpretable features [4]. Building on theoretical founda-
tions in superposition [9], SAEs address the fundamental challenge of polysemanticity by extracting
monosemantic features from entangled neural activations. Recent scaling work has demonstrated
that these techniques can be applied to production-scale models like Claude 3 Sonnet [22], revealing
highly abstract features that capture sophisticated reasoning patterns. Understanding how features
interact requires mapping the computational circuits that connect inputs to outputs. Olsson et al. [19]
identified induction heads as a key mechanism for in-context learning, while Conmy et al. [6] devel-
oped automated techniques for discovering computational circuits, enabling detailed understanding
of specific reasoning tasks [27].

2.2 Large Language Models in Materials Science

The application of LL.Ms to materials science has emerged as a transformative approach that chal-
lenges traditional computational methods. Unlike specialized architectures that require explicit
geometric encodings, LLMs process crystallographic information through unified textual representa-
tions, offering unprecedented flexibility and generality. Before the emergence of LLMs, materials
property prediction was dominated by graph neural network approaches. Crystal Graph Convolutional
Neural Networks (CGCNNG5s) [30] provided the first systematic framework for learning from crystal
structures, while MEGNet [5] established graph networks as a universal framework for molecular
and crystalline systems. Recent scaling efforts have pushed these approaches to handle massive
datasets [16], setting performance benchmarks for materials discovery applications.

The breakthrough application of LLMs to crystal generation began with CrystalLLM [2], which
demonstrated that autoregressive modeling of Crystallographic Information Files (CIF) could generate
thermodynamically plausible structures. Gruver et al. [11] demonstrated that fine-tuning pre-trained
LLMs could generate stable inorganic materials with higher success rates than specialized diffusion
models, achieving 49% vs 28% metastable generation rates compared to CDVAE baselines. Recently
MatLLMSearchGan et al. [10] has revealed remarkable capabilities of pre-trained LLMs functioning
as "innate crystal structure generators" without additional training, achieving high metastable rates
through evolutionary search. Beyond direct structure generation, sophisticated frameworks have
emerged that combine multiple AI components. GenMS [32] integrates language models with
diffusion models and graph neural networks to enable hierarchical materials search from natural
language descriptions. Technical innovations include invariant tokenization approaches [28] that
ensure SE(3) and periodic invariance in crystal representations, and text-conditioned generation
methods [20] that enable targeted design through natural language prompts.

2.3 Interpretability Challenges in Scientific Domains

While mechanistic interpretability has made significant progress in linguistic tasks, its application to
scientific reasoning presents unique challenges that remain largely unaddressed. Recent systematic
investigations have revealed fundamental limitations when interpretability methods are applied to
scientific domains. In biology-inspired deep learning, systematic analysis has demonstrated that
interpretations lack robustness upon repeated training and are systematically influenced by biases
in knowledge graphs, with interpretation variability increasing with network depth and knowledge
incompleteness creating spurious feature attributions [3]. Comprehensive reviews of biologically-
informed models have found that interpretation reliability decreases significantly when models
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encounter data distributions outside their training domain, highlighting fundamental generalization
challenges in scientific interpretability [29].

Existing analysis of explainable Al methods applied to regulatory genomics has revealed that
commonly used attribution methods produce inconsistent explanations across model architectures
and training procedures [17]. The evaluations show that gradient-based interpretations often fail to
capture true causal relationships in biological systems, with explanation fidelity varying dramatically
based on input representation format choices. Recent work in computational biology has identified
specific failure modes where attention-based explanations highlight irrelevant regions due to models’
reliance on long-range dependencies that attention mechanisms cannot reliably capture [3], while
gradient-based interpretations systematically conflate input relevance with gradient magnitude [13].

The application of interpretability to scientific domains faces the fundamental challenge of validation
against domain-specific ground truth [12]. Many interpretability techniques designed for natural data
assume clear categorical distinctions that apply to continuous scientific phenomena. In materials
science, this lead to the challenge of validating interpretations against quantum mechanical princi-
ples, crystallographic theory, and thermodynamic constraints—domains where "ground truth" itself
may be computationally intractable or experimentally inaccessible. These challenges motivate the
development of specialized interpretability frameworks that can handle the unique requirements of
scientific reasoning domains while providing reliable insights into model behavior.

3 Experiment 1: Hierarchical Knowledge Architecture via Linear Probing

3.1 Motivation and Experimental Setup

Understanding how crystallographic knowledge is organized within large language models is funda-
mental to developing controllable materials discovery systems. Linear probing provides a systematic
methodology to map the hierarchical organization of crystallographic concepts across transformer
layers, revealing where and how scientific knowledge are encoded. We identified several key crystal-
lographic concepts including pace groups, formation energies, bulk moduli, and lattice parameters.
Then we investigate how different crystallographic concepts are distributed across Llama 3.1-70B’s
80 layers to establish the mechanistic foundation for subsequent intervention experiments.

Our analysis uses 10,000 diverse crystal structures from the Materials Project database, covering
193 space groups and formation energies spanning -13.214 to -0.437 eV/atom. For each structure,
we transform it into POSCAR format inputs and extract mean-pooled activation vectors h, € R8192
from each transformer layer. We train linear probes for space group classification (logistic regression,
F1 scores) and continuous property prediction (linear regression, R? scores), with control probes on
shuffled labels ensuring genuine knowledge detection.

3.2 Results and Analysis

Our analysis reveals distinct layer-wise specializations for different crystallographic properties,
providing the computational roadmap for targeted interventions.

Space group classification shows early emergence (F1 = 0.1 at layer 10) with progressive improvement
to peak performance (F1 = 0.54) at layers 65-75. This extended development demonstrates that while
basic symmetry patterns are detected early, complete crystallographic classification requires sustained
processing across nearly the entire network depth. Formation energy prediction achieves sustained
high performance (R? ~ 0.95-1.0) across lower to middle layers, with peak in the middle layers.
This sustained plateau indicates robust thermodynamic reasoning circuits that integrate chemical
composition with energetic principles. Bulk modulus maintains consistent performance (R? =
0.6-0.7) across middle layers, while lattice parameters show peak processing (R? ~ 0.65) around
lower to middle layers, indicating geometric reasoning demands in intermediate layers.

Through the analysis, we identify four groups of transformer layers that intrinsically focus on specific
knowledge: Chemistry Foundation (0-15): Initial chemical composition processing as the founda-
tion for crystallographic reasoning; Formation Energy Processing (8-45): Sustained thermodynamic
reasoning integrates chemical principles with energy considerations; Lattice Processing (15-45):
Geometric reasoning circuits handle structural arrangement optimization; Space Group Processing
(45-75): Final symmetry classification resolves complex crystallographic relationships.
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Figure 1: Knowledge Emer- Fjoyre 2: Layer-wise Crystallographic Knowledge Architecture.
gence Pattern. Temporal pro- performance curves showing probe accuracy across all 80 layers for
gression of crystallographic - four crystallographic concepts, revealing distinct processing special-

concept accessibility across jzations that inform subsequent intervention strategies.
transformer layers.

3.3 Implications for Mechanistic Control

These layer specializations directly inform our experimental design. For Experiment 2, we focus on
the formation energy layers (8-45) and space group layers (45-75) as these show the most distinct
processing characteristics, enabling us to test whether attention allocation during multi-structure
reasoning reflects these computational specializations. For Experiment 3, we employ the identified
layer groups to perform targeted neural interventions: chemistry circuits (0-15) for compositional
stability, formation energy circuits for thermodynamic optimization, lattice circuits for geometric
reasoning, and space group circuits for symmetry processing. This mechanistic understanding enables
specific interventions that enhance specific crystallographic reasoning capabilities while preserving
the crystal structure generation ability.

4 Experiment 2: Attention Flow Analysis

4.1 Motivation and Research Framework

Building on the layer-wise knowledge architecture identified in Experiment 1, we investigate compu-
tational attention allocation during crystallographic reasoning involving multiple competing structural
representations. We address the research question: How does computational attention allocation
reveal crystallographic processing mechanisms during multi-structure reasoning? Our analysis
examines attention distribution between competing structures, evaluates prompt influence on attention
patterns, and distinguishes architectural constraints from task-dependent behaviors.

4.2 Experimental Design and Position Bias Correction

We analyze attention distribution using "later token attention" methodology, measuring attention
from final processing tokens to each parent structure across the four processing phases. Our dataset
consists of 1,000 crystal structure pairs, each containing a flawed prototype (A) generated by DiffCSP
and a stable reference (B) retrieved from MatBench-bandgap through composition similarity.

The attention analysis extracts raw attention weights from all transformer layers, averages across
attention heads, and calculates attention ratios by computing (Attention to Parent B) / (Attention to
Parent A), where values above 1.0 indicate greater focus on the stable reference.

Initial analysis revealed substantial recency effects: when we tested both presentation orders (A — B
and B — A), attention patterns shifted systematically based on which structure appeared later in
the prompt. To isolate genuine computational mechanisms from presentation order artifacts, we
implemented a dual-ordering correction framework:
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where Rcomrected TEPresents position-independent attention allocation using geometric mean correction.

We further quantify position effects using complementary measures presented in Figure 5. Position
effect magnitude (a) measures how much attention depends on presentation order. Bias magnitude

(b) measures deviation from balanced attention, calculated as the absolute difference from perfect
balance (1.0 ratio).

4.3 Key Observations

Strong recency effects dominate attention allocation. Figure 4 demonstrates systematic position-
dependent biases across all layer groups, with raw attention ratios varying dramatically based on
presentation order rather than crystallographic content. The attention landscape reveals that positional
encoding creates architectural constraints that override specialized reasoning, with later-presented
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structures receiving disproportionate attention regardless of their stability properties. This finding
establishes position correction as essential for isolating genuine computational mechanisms.

Prompt engineering provides measurable but limited control. Figure 5 quantifies the effects
of instruction design on attention patterns. Stability-focused prompts reduce position dependency
by 11-13% across layer groups (a), decrease bias magnitudes toward more balanced attention (b),
and produce tighter distributions with improved consistency (c). However, these improvements
remain modest, indicating that prompt-based interventions face fundamental limitations imposed by
architectural constraints.

Layer groups exhibit minimal attention differentiation after correction. Following position
correction, attention preferences show narrow variation: Chemistry layers (bias magnitude 0.41),
Formation layers (0.29), Lattice layers (0.30), and Space Group layers (0.45) as shown in Figure
5(b). The uniform pattern across processing phases indicates that attention allocation may not simply
follows a specialization organization.

4.4 Implications for Mechanistic Control

These findings reveal fundamental limitations of attention-based approaches for controlling crystallo-
graphic reasoning. The dominance of recency effects over content-based preferences, combined with
modest prompt engineering benefits and minimal layer-specific differentiation, demonstrates that
attention patterns provide insufficient leverage for precise mechanistic intervention. The disconnect
between attention allocation and the layer-wise knowledge architecture established in Experiment 1
indicates that achieving meaningful control over specific crystallographic properties requires direct
manipulation of computational pathways rather than attention-based approaches. These limitations
directly motivate Experiment 3’s causal intervention methodology.

S Experiment 3: Layer-wise Causal Intervention Analysis

5.1 Motivation and Research Framework

The findings from Experiments 1 and 2 reveal fundamental constraints on controllable Al systems
for scientific discovery. Experiment 2 demonstrates that prompt engineering provides only modest
control over crystallographic reasoning, with attention allocation governed primarily by architec-
tural properties rather than instruction-following mechanisms. This establishes that prompting are
insufficient for precise control, necessitating direct intervention in internal computational pathways.

Building on the layer-wise knowledge architecture identified in Experiment 1, we investigate our cen-
tral research question: Can mechanistic insights enable precise causal control over crystallographic
reasoning and materials optimization? We systematically test which layer groups demonstrate causal
control over specific properties, how interventions affect parent-child inheritance mechanisms, and
the trade-offs between stability improvement and structural diversity.

5.2 Experimental Design and Intervention Framework

We implement targeted neural interventions during crystal structure optimization, modifying activa-
tions at specific layers while the model processes pairs of structures: a thermodynamically unstable
prototype (Parent A) and a stable reference (Parent B). Six intervention conditions are tested: baseline
control (1.0x strength), chemistry enhancement (layers 0-15, 1.5x), formation energy enhancement
(layers 845, 1.5x), lattice enhancement (layers 15-45, 1.5x), spacegroup enhancement (layers
45-75, 1.5x), and integrated enhancement combining multiple pathways with conservative strengths.

The experiment analyzes 1,000 parent structure pairs across all intervention conditions, providing
6,000 total generation attempts. We evaluate structural similarity using RMS-based structural similar-
ity metrics, defining novel structures as those with similarity < 0.5 to both parents simultaneously.
This threshold ensures generated structures are genuinely innovative rather than simple copies or
blends of parent structures.



278

279

281
282
283

284
285
286
287
288

289
290
291
292
293
294

Table 1: Intervention Performance Comparison

Intervention Success Rate (%) Avg FE, (eV/atom) Stability Improvement (eV/atom) Avg Tokens
Integrated Optimal 70.3 0.627 -0.259 416.5
Baseline 69.8 - - 389.8
Chemistry Enhancement 68.4 0.872 -0.248 396.0
Spacegroup Enhancement 68.4 - - 386.3
Formation Energy Enhancement 67.9 0.844 -0.226 399.9
Lattice Enhancement 67.7 1.007 -0.341 391.1

. (a) Child E4 Distribution

(b) Stability Inheritance (c) Stablllty Correlation (d) Generation Complexity
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Figure 6: Intervention Effects on Crystal Structure Generation. Analysis showing (a) thermo-
dynamic stability distributions across interventions, (b) stability inheritance patterns, (c) parent
similarity correlations, and (d) generation complexity metrics.

5.3 Key Observations

Novel structures dominate generation and achieve superior stability. Figure 6(a,c) reveals
that 45.4% of generated structures are novel (structurally distinct from both parents), achieving
deformation energies of 0.13-0.16 eV/atom compared to 0.70-0.80 eV/atom for hybrid structures.
This demonstrates that interventions preferentially generate innovative structures with enhanced
thermodynamic properties rather than simple parent combinations.

Computational complexity correlates with structural innovation. Higher token generation
requirements correlate with novel structure production, indicating that creating genuinely innovative
crystal structures demands more sophisticated computational pathways. Figure 6(d) shows this
relationship holds consistently across all interventions, suggesting an intrinsic connection between
computational effort and crystallographic innovation.

Different interventions implement distinct inheritance strategies. Figure 6(b,c) reveals
intervention-specific patterns in parent-child relationships. Formation energy interventions achieve
the most balanced inheritance from both parents, chemistry enhancements show stronger prototype
dependence, while spacegroup interventions enable structural reorganization with minimal parent
similarity. These patterns demonstrate controllable inheritance mechanisms rather than random
generation.

Parent A Parent B Child Child
DiffCSP Prototype Stable Reference Formation Energy Integrated Intervention

ﬂiﬁﬁ‘ W
e BT

NaMnF, NasMnFg NaMnFg Na,MnFg
P1 Triclinic P2_1/c Monoclinic P1 Triclinic P2/m Monoclinic
E,;=0.2500 eV/atom E,;=0.0009 eV/atom E4=-0.0406 eV/atom E;=-0.0764 eV/atom

Figure 7: Representative Parent-Child Inheritance Patterns. Structural comparison showing
Parent A (unstable prototype), Parent B (stable reference), and generated child structures across
intervention conditions, demonstrating distinct inheritance mechanisms.
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5.4 Implications for Mechanistic Control

The experimental results establish layer-wise causal intervention as a viable approach for controlling
crystallographic reasoning in LLMs. The consistent preference for novel structure generation across
all interventions, combined with superior thermodynamic properties and distinct inheritance patterns,
demonstrates that mechanistic understanding translates into practical control over materials discovery.
The correlation between computational complexity and structural innovation suggests that targeted
interventions amplify existing architectural capabilities rather than creating entirely new optimization
mechanisms.

6 Limitations and Future Directions

While our work establishes the first comprehensive mechanistic analysis of crystallographic reasoning
in LLMs, several methodological limitations present valuable opportunities for future research. Our
linear probing approach reveals correlational rather than definitively causal relationships between
layer activations and crystallographic knowledge, and mean-pooled representations may obscure
fine-grained activation patterns that could provide deeper mechanistic insights. Our intervention
methods, while demonstrating systematic improvements, operate at coarse layer-group granularity
rather than feature-level precision. The analysis demonstrates that certain regions are causally
significant but cannot identify confounding factors or the specific computational circuits within those
regions responsible for the observed effects.

Additionally, our evaluation framework relies primarily on CHGNet-based stability metrics, creat-
ing a "model-evaluates-model" paradigm that lacks grounding in first-principles physics and risks
optimizing for evaluator biases rather than true physical stability. The analysis is currently limited
to a single model architecture (Llama 3.1-70B), and the parent structure pairs sometimes involve
simple compositions from DiffCSP prototypes, which may be less representative of complex mate-
rials discovery challenges. Future research should prioritize adoption of first-principles validation
through Density Functional Theory calculations, systematic generalization studies across different
LLM architectures, and incorporation of monosemantic feature discovery to enable more surgical
interventions on complex crystal structures with higher compositional complexity.

7 Conclusion

This research provides the first mechanistic understanding of how large language models process
crystallographic knowledge, revealing that LLMs organize scientific concepts through distinct hierar-
chical processing phases that mirror the conceptual structure of crystallographic theory. Our attention
flow analysis further reveals computational resource allocation of LLMs when performing crystal
structure generation as well as the limitations of prompt-based control approaches. Most signifi-
cantly, our causal intervention experiments demonstrate that mechanistic insights can be translated
into practical control over materials discovery processes, with targeted layer-specific interventions
achieving improvements in thermodynamic stability while preserving structural innovation. Our
Latent Crystallography Microscope framework validates mechanistic interpretability as a viable
approach for controllable LLMs-based scientific discovery, which is generalizable for investigating
domain-specific reasoning in transformers. This work provides practical insights on applying LLMs
to materials science and broader scientific domains where precise control over model behavior is
essential for reliable discovery.

References

[1] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. In International Conference on Learning Representations (ICLR), 2017. 2, 3

[2] Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with
autoregressive large language modeling. Nature Communications, 15:10570, 2024. 1, 3

[3] Ziga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-
Barwinska, Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley.



343
344

345

347
348
349
350
351

352
353
354

355
356
357

358
359
360
361

363
364

365
366
367

368
369

371
372
373

374
375
376
377

379
380
381

382
383
384

385
386
387

388
389
390

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Effective gene expression prediction from sequence by integrating long-range interactions.
Nature Methods, 18(10):1196-1203, 2021. doi: 10.1038/s41592-021-01252-x. 3, 4

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yuxin Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E. Burke, Tristan Hume, Shan Carter, Tom
Henighan, and Chris Olah. Towards monosemanticity: Decomposing language models with
dictionary learning. Transformer Circuits Thread, 2023. URL https://transformer-cir
cuits.pub/2023/monosemantic-features. 2,3

Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a
universal machine learning framework for molecules and crystals. Chemistry of Materials, 31
(9):3564-3572, 2019. 1, 3

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In

Advances in Neural Information Processing Systems 36 (NeurIPS), 2023. 3

Alexis Conneau, German Kruszewski, Guillaume Lample, Loic Barrault, and Marco Baroni.
What you can cram into a single vector: Probing sentence embeddings for linguistic properties.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2126-2136, 2018. 2, 3

Nelson Elhage, Neel Nanda, Catherine Olsson, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 2021. URL https://transformer-circuits.pub/
2021/framework/index.html. 2

Nelson Elhage, Tristan Hume, Catherine Olsson, et al. Toy models of superposition. Transformer
Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/toy_model/i
ndex.html. 3

Jingru Gan, Peichen Zhong, Yuanqi Du, Yangiao Zhu, Chenru Duan, Haorui Wang, Carla P.
Gomes, Kristin A. Persson, Daniel Schwalbe-Koda, and Wei Wang. Large language models are
innate crystal structure generators. arXiv preprint arXiv:2502.20933, 2025. 1, 3

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick,
and Zachary Ulissi. Fine-tuned language models generate stable inorganic materials as text.
arXiv preprint arXiv:2402.04379, 2024. 1, 3

Frederick Klauschen, Jonas Dippel, Philipp Keyl, Philipp Jurmeister, Michael Bockmayr, Oliver
Buchstab, Maximilian Alber, Lynton Grabbed, Helena Kindermann, Eva Krieghoff-Henning,
et al. Toward explainable artificial intelligence for precision pathology. Annual Review of
Pathology: Mechanisms of Disease, 19:541-570, 2024. doi: 10.1146/annurev-pathmechdis-051
222-014750. 4

Antonio Majdandzic, Chandana Rajesh, and Peter K Koo. Correcting gradient-based inter-
pretations of deep neural networks for genomics. Genome Biology, 24(1):109, 2023. doi:
10.1186/513059-023-02956-3. 4

Samuel Marks and Max Tegmark. The geometry of truth: emergent linear structure in large
language model representations of true/false datasets. arXiv preprint arXiv:2310.06824, 2023.
3

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual

associations in gpt. In Advances in Neural Information Processing Systems, volume 35, pages
17359-17372,2022. 2,3

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and

Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80-85,
2023. 3

10


https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

391
392
393

395
396

397
398
399

400
401
402

403
404

405
406
407
408

410
411

412
413
414
415

416
417

418
419

420
421
422

423
424
425
426

427
428

429
430
431
432

434
435

437
438

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Gherman Novakovsky, Nick Dexter, Maxwell W Libbrecht, Wyeth W Wasserman, and Sara
Mostafavi. Obtaining genetics insights from deep learning via explainable artificial intelligence.
Nature Reviews Genetics, 24(2):125-137, 2023. doi: 10.1038/s41576-022-00532-2. 4

Christopher Olah. Mechanistic interpretability, variables, and the importance of interpretable
bases. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/
2022/mech-interp-essay. 2

Catherine Olsson, Nelson Flhage, Neel Nanda, et al. In-context learning and induction heads.
Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/1
n-context-learning-and-induction-heads/index.html. 3

Md Rashidul Rahman, Akib Haque, Tamzidul Hassan, et al. Crystext: A generative ai approach
for text-conditioned crystal structure generation using llm. ChemRxiv preprint, 2024. doi:
10.26434/chemrxiv-2024-gkxzm. 3

Nathan J. Szymanski and Christopher J. Bartel. Establishing baselines for generative discovery
of inorganic crystals. Materials Horizons, 2025. 2

Adly Templeton, Trenton Bricken, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yuxin Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E. Burke, Tristan Hume, Shan Carter, Tom
Henighan, and Chris Olah. Scaling monosemanticity: Extracting interpretable features from
claude 3 sonnet. Transformer Circuits Thread, 2024. URL https://transformer-circuit
s.pub/2024/scaling-monosemanticity. 2, 3

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung
Kim, Benjamin Van Durme, Samuel R Bowman, Dipanjan Das, and Ellie Pavlick. What do you
learn from context? probing for sentence structure in contextualized word representations. In
International Conference on Learning Representations (ICLR), 2019. 3

Cathy Tigges, Oskar Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
sentiment in large language models. arXiv preprint arXiv:2310.15154,2023. 3

Alexandre Variengien and Eric Winsor. How to use and interpret activation patching. arXiv
preprint arXiv:2404.15255, 2023. 2, 3

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Shusen Qian, Daniel Nevo, Yoav Singer, and
Emma Strubell. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388—-12401, 2020. 3

Kevin Wang, Vatsal Varma, Alex Chris, Ryan Li, Aman BELLE, Jacob Meister, Jacob Andreas,
Catherine Olsson, David Bau, et al. Interpretability in the wild: a circuit for indirect object
identification in gpt-2 small. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 10839-10854, 2022. 3

Yuxin Wang, Hao Chen, Yang Liu, and Wei Zhang. Invariant tokenization of crystalline
materials for language model enabled generation. arXiv preprint arXiv:2405.09341, 2024. 3

Magdalena Wysocka, Oskar Wysocki, Marie Zufferey, Dario Landers, and Andre Freitas. A
systematic review of biologically-informed deep learning models for cancer: fundamental
trends for encoding and interpreting oncology data. BMC Bioinformatics, 24(1):198, 2023. doi:
10.1186/s12859-023-05262-8. 4

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties. Physical Review Letters, 120(14):145301,
2018. 1,3

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, Tommi Jaakkola, et al. Crystal

diffusion variational autoencoder for periodic material generation. In Advances in Neural
Information Processing Systems, volume 34, pages 21961-21973, 2021. 2

11


https://transformer-circuits.pub/2022/mech-interp-essay
https://transformer-circuits.pub/2022/mech-interp-essay
https://transformer-circuits.pub/2022/mech-interp-essay
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity
https://transformer-circuits.pub/2024/scaling-monosemanticity
https://transformer-circuits.pub/2024/scaling-monosemanticity

439
440
441

442
443
444

445
446

[32] Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Pierson, Ekin Dogus Cubuk, Ste-
fano Ermon, and Doina Precup. Generative hierarchical materials search. arXiv preprint
arXiv:2409.06762, 2024. 3

[33] Claudio Zeni, Robert Pinsler, Daniel Ziigner, Andrew Fowler, Matthew Horton, Xiang Fu,
et al. A generative model for inorganic materials design. Nature, 639:624-632, 2025. doi:
10.1038/s41586-025-08628-5. 2

[34] Jing Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. In International Conference on Learning Representations, 2024. 3

12



	Introduction
	Related Work
	Experiment 1: Hierarchical Knowledge Architecture via Linear Probing
	Experiment 2: Attention Flow Analysis
	Experiment 3: Layer-wise Causal Intervention Analysis
	Limitations and Future Directions
	Conclusion

