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Abstract

Large language models have demonstrated their capabilities in materials science,1

generating thermodynamically stable crystal structures without explicit domain2

training. However, the internal mechanisms enabling this scientific reasoning3

remain unclear, limiting our ability to develop reliable and controllable AI systems4

for materials discovery. This work investigates how LLMs encode crystallographic5

knowledge, process multi-structure reasoning, and whether mechanistic insights6

can enable controlled crystal structure optimization. We introduce the Latent Crys-7

tallography Microscope (LCM), the first mechanistic interpretability framework8

designed to reverse-engineer crystallographic reasoning in large language models.9

Through systematic linear probing across Llama 3.1-70B’s transformer layers, we10

identify a hierarchical knowledge architecture where crystallographic concepts11

emerge across distinct processing phases from early chemical composition through12

intermediate thermodynamic and geometric reasoning to final symmetry classifi-13

cation. Our attention flow analysis reveals strong position bias effects in compu-14

tational resource allocation. We further expose the limitations of prompt-based15

control approaches through ablation experiments. Moving beyond prompt-level16

control, we demonstrate that mechanistic insights enable targeted manipulation of17

crystal structure generation through layer-specific neural interventions, achieving18

systematic improvements in thermodynamic stability while preserving structural19

diversity. This work investigates scientific reasoning mechanisms in large language20

models and demonstrates that mechanistic interpretability can enable practical21

control over materials discovery processes, providing critical foundations for de-22

veloping interpretable and controllable AI systems that can serve as reliable tools23

in autonomous materials discovery.24

1 Introduction25

The emergence of Large Language Models (LLMs) as powerful tools for scientific discovery has26

revolutionized computational materials science, with recent breakthroughs demonstrating their ability27

to generate thermodynamically stable crystal structures [2, 10, 11]. These models can predict material28

properties with accuracy comparable to specialized graph neural networks [5, 30] and generate novel29

crystalline structures through autoregressive text modeling, functioning as "innate crystal structure30

generators" without explicit domain training [10]. However, despite these impressive capabilities, the31

internal mechanisms by which LLMs encode, process, and manipulate crystallographic knowledge32

remain fundamentally unclear, which represent a critical gap that limits both scientific understanding33

and practical control over materials discovery applications.34
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This gap constitutes a fundamental barrier to trustworthy AI-driven materials discovery. When LLMs35

generate crystal structures or demonstrate sophisticated understanding of space group symmetries36

and thermodynamic properties, we lack insight into the computational pathways enabling these37

behaviors. The lack of mechanistic interpretability prevents systematic debugging when models38

generate thermodynamically unstable structures, limits targeted interventions to guide generation39

toward specific material properties, and hinders the development of more controllable and reliable40

materials discovery systems.41

Modern materials discovery faces a persistent stability-novelty dilemma, as comprehensively docu-42

mented in recent benchmarking studies [21]. Traditional techniques like data-driven ion exchange43

achieve impressive thermodynamic stability rates (9.2%) by performing substitutions on known stable44

compounds, but exhibit zero prototype novelty because they rely exclusively on existing structural45

templates. Conversely, advanced generative models like Crystal Diffusion Variational Autoencoder46

(CDVAE) [31] and MatterGen [33] excel at structural innovation with prototype novelty rates up to47

8.2%, but suffer from poor stability rates (1.8-3.0%) as most novel prototypes are thermodynamically48

unstable [21]. This trade-off presents researchers with a limiting choice: pursue stability at the49

expense of innovation, or chase novelty at the risk of instability.50

Recent advances in mechanistic interpretability offer a promising path forward by developing sophis-51

ticated techniques for reverse-engineering neural network computational mechanisms into human-52

understandable components [8, 18]. Linear probing methods reveal how different types of knowledge53

are encoded across transformer layers [1, 7], while causal intervention techniques like activation patch-54

ing enable direct manipulation of model behaviors [15, 25]. Sparse autoencoders decompose neural55

representations into interpretable features [4, 22], providing unprecedented insight into complex56

concept representation.57

However, these interpretability techniques have focused primarily on linguistic tasks, leaving scientific58

reasoning domains largely unexplored. Materials science presents unique interpretability challenges,59

requiring models to integrate discrete categorical variables (space groups), continuous geometric60

parameters (lattice constants), and emergent physical properties (formation energies). Understanding61

how LLMs process these diverse crystallographic concepts could unlock principled approaches to the62

stability-novelty dilemma through targeted neural interventions.63

In this work, we introduce the Latent Crystallography Microscope (LCM) framework to reverse-64

engineer crystallographic reasoning in LLMs and translate mechanistic insights into practical crystal65

structure optimization strategies. We investigate three fundamental questions: How do LLMs66

internally represent crystallographic knowledge across computational layers? How does attention67

allocation reveal processing mechanisms during multi-structure reasoning? How can mechanistic68

understanding enable targeted control over materials discovery?69

We map the hierarchical organization of crystallographic knowledge through linear probing across70

transformer layers of Llama 3.1-70B, identifying distinct processing phases for different crystallo-71

graphic properties. Through attention flow analysis with position bias correction, we reveal strong72

recency effects that dominate content-based preferences, while prompt engineering provides only73

modest control. Most significantly, we demonstrate how mechanistic insights translate into practical74

improvements: targeted neural interventions at specific layers enhance thermodynamic stability in75

generated crystal structures.76

This work represents the first mechanistic analysis of crystallographic knowledge in LLMs. Our77

findings establish that layer-specific interventions can achieve meaningful control over materials78

properties, suggesting a promising direction for crystal structure optimization through targeted79

neural modifications. The framework provides both theoretical understanding of how LLMs process80

scientific knowledge and practical tools for enhancing materials discovery applications.81

2 Related Work82

2.1 Mechanistic Interpretability of Large Language Models83

Mechanistic interpretability seeks to reverse-engineer the computational mechanisms learned by84

neural networks into human-understandable algorithms and concepts [8, 18]. This field has developed85

sophisticated methodologies for understanding transformer architectures, moving beyond black-box86

analysis to provide granular, causal understanding of model behaviors. Linear probing has emerged as87
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a fundamental technique for assessing what information is encoded within neural representations [1],88

with Conneau et al. [7] demonstrating that sentence embeddings contain rich linguistic structure89

accessible through linear classifiers. Subsequent work revealed hierarchical organization of syntactic90

knowledge across transformer layers [23], while recent advances have extended these insights to reveal91

linear structure in how models represent truth [14] and sentiment [24], supporting the hypothesis that92

many concepts are encoded as linear directions in activation space.93

Understanding correlation between representations and concepts requires establishing causal re-94

lationships through direct intervention. Vig et al. [26] pioneered causal mediation analysis for95

language models, while Meng et al. [15] developed techniques for locating and editing specific96

factual associations in GPT models. Activation patching has emerged as a particularly powerful97

intervention technique [25], with recent work establishing best practices for applying these methods98

systematically [34]. A major breakthrough has been the development of sparse autoencoders (SAEs)99

for decomposing neural representations into interpretable features [4]. Building on theoretical founda-100

tions in superposition [9], SAEs address the fundamental challenge of polysemanticity by extracting101

monosemantic features from entangled neural activations. Recent scaling work has demonstrated102

that these techniques can be applied to production-scale models like Claude 3 Sonnet [22], revealing103

highly abstract features that capture sophisticated reasoning patterns. Understanding how features104

interact requires mapping the computational circuits that connect inputs to outputs. Olsson et al. [19]105

identified induction heads as a key mechanism for in-context learning, while Conmy et al. [6] devel-106

oped automated techniques for discovering computational circuits, enabling detailed understanding107

of specific reasoning tasks [27].108

2.2 Large Language Models in Materials Science109

The application of LLMs to materials science has emerged as a transformative approach that chal-110

lenges traditional computational methods. Unlike specialized architectures that require explicit111

geometric encodings, LLMs process crystallographic information through unified textual representa-112

tions, offering unprecedented flexibility and generality. Before the emergence of LLMs, materials113

property prediction was dominated by graph neural network approaches. Crystal Graph Convolutional114

Neural Networks (CGCNNs) [30] provided the first systematic framework for learning from crystal115

structures, while MEGNet [5] established graph networks as a universal framework for molecular116

and crystalline systems. Recent scaling efforts have pushed these approaches to handle massive117

datasets [16], setting performance benchmarks for materials discovery applications.118

The breakthrough application of LLMs to crystal generation began with CrystaLLM [2], which119

demonstrated that autoregressive modeling of Crystallographic Information Files (CIF) could generate120

thermodynamically plausible structures. Gruver et al. [11] demonstrated that fine-tuning pre-trained121

LLMs could generate stable inorganic materials with higher success rates than specialized diffusion122

models, achieving 49% vs 28% metastable generation rates compared to CDVAE baselines. Recently123

MatLLMSearchGan et al. [10] has revealed remarkable capabilities of pre-trained LLMs functioning124

as "innate crystal structure generators" without additional training, achieving high metastable rates125

through evolutionary search. Beyond direct structure generation, sophisticated frameworks have126

emerged that combine multiple AI components. GenMS [32] integrates language models with127

diffusion models and graph neural networks to enable hierarchical materials search from natural128

language descriptions. Technical innovations include invariant tokenization approaches [28] that129

ensure SE(3) and periodic invariance in crystal representations, and text-conditioned generation130

methods [20] that enable targeted design through natural language prompts.131

2.3 Interpretability Challenges in Scientific Domains132

While mechanistic interpretability has made significant progress in linguistic tasks, its application to133

scientific reasoning presents unique challenges that remain largely unaddressed. Recent systematic134

investigations have revealed fundamental limitations when interpretability methods are applied to135

scientific domains. In biology-inspired deep learning, systematic analysis has demonstrated that136

interpretations lack robustness upon repeated training and are systematically influenced by biases137

in knowledge graphs, with interpretation variability increasing with network depth and knowledge138

incompleteness creating spurious feature attributions [3]. Comprehensive reviews of biologically-139

informed models have found that interpretation reliability decreases significantly when models140
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encounter data distributions outside their training domain, highlighting fundamental generalization141

challenges in scientific interpretability [29].142

Existing analysis of explainable AI methods applied to regulatory genomics has revealed that143

commonly used attribution methods produce inconsistent explanations across model architectures144

and training procedures [17]. The evaluations show that gradient-based interpretations often fail to145

capture true causal relationships in biological systems, with explanation fidelity varying dramatically146

based on input representation format choices. Recent work in computational biology has identified147

specific failure modes where attention-based explanations highlight irrelevant regions due to models’148

reliance on long-range dependencies that attention mechanisms cannot reliably capture [3], while149

gradient-based interpretations systematically conflate input relevance with gradient magnitude [13].150

The application of interpretability to scientific domains faces the fundamental challenge of validation151

against domain-specific ground truth [12]. Many interpretability techniques designed for natural data152

assume clear categorical distinctions that apply to continuous scientific phenomena. In materials153

science, this lead to the challenge of validating interpretations against quantum mechanical princi-154

ples, crystallographic theory, and thermodynamic constraints—domains where "ground truth" itself155

may be computationally intractable or experimentally inaccessible. These challenges motivate the156

development of specialized interpretability frameworks that can handle the unique requirements of157

scientific reasoning domains while providing reliable insights into model behavior.158

3 Experiment 1: Hierarchical Knowledge Architecture via Linear Probing159

3.1 Motivation and Experimental Setup160

Understanding how crystallographic knowledge is organized within large language models is funda-161

mental to developing controllable materials discovery systems. Linear probing provides a systematic162

methodology to map the hierarchical organization of crystallographic concepts across transformer163

layers, revealing where and how scientific knowledge are encoded. We identified several key crystal-164

lographic concepts including pace groups, formation energies, bulk moduli, and lattice parameters.165

Then we investigate how different crystallographic concepts are distributed across Llama 3.1-70B’s166

80 layers to establish the mechanistic foundation for subsequent intervention experiments.167

Our analysis uses 10,000 diverse crystal structures from the Materials Project database, covering168

193 space groups and formation energies spanning -13.214 to -0.437 eV/atom. For each structure,169

we transform it into POSCAR format inputs and extract mean-pooled activation vectors hℓ ∈ R8192170

from each transformer layer. We train linear probes for space group classification (logistic regression,171

F1 scores) and continuous property prediction (linear regression, R2 scores), with control probes on172

shuffled labels ensuring genuine knowledge detection.173

3.2 Results and Analysis174

Our analysis reveals distinct layer-wise specializations for different crystallographic properties,175

providing the computational roadmap for targeted interventions.176

Space group classification shows early emergence (F1 = 0.1 at layer 10) with progressive improvement177

to peak performance (F1 = 0.54) at layers 65-75. This extended development demonstrates that while178

basic symmetry patterns are detected early, complete crystallographic classification requires sustained179

processing across nearly the entire network depth. Formation energy prediction achieves sustained180

high performance (R2 ≈ 0.95-1.0) across lower to middle layers, with peak in the middle layers.181

This sustained plateau indicates robust thermodynamic reasoning circuits that integrate chemical182

composition with energetic principles. Bulk modulus maintains consistent performance (R2 ≈183

0.6-0.7) across middle layers, while lattice parameters show peak processing (R2 ≈ 0.65) around184

lower to middle layers, indicating geometric reasoning demands in intermediate layers.185

Through the analysis, we identify four groups of transformer layers that intrinsically focus on specific186

knowledge: Chemistry Foundation (0-15): Initial chemical composition processing as the founda-187

tion for crystallographic reasoning; Formation Energy Processing (8-45): Sustained thermodynamic188

reasoning integrates chemical principles with energy considerations; Lattice Processing (15-45):189

Geometric reasoning circuits handle structural arrangement optimization; Space Group Processing190

(45-75): Final symmetry classification resolves complex crystallographic relationships.191
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Figure 1: Knowledge Emer-
gence Pattern. Temporal pro-
gression of crystallographic
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Figure 2: Layer-wise Crystallographic Knowledge Architecture.
Performance curves showing probe accuracy across all 80 layers for
four crystallographic concepts, revealing distinct processing special-
izations that inform subsequent intervention strategies.

3.3 Implications for Mechanistic Control192

These layer specializations directly inform our experimental design. For Experiment 2, we focus on193

the formation energy layers (8-45) and space group layers (45-75) as these show the most distinct194

processing characteristics, enabling us to test whether attention allocation during multi-structure195

reasoning reflects these computational specializations. For Experiment 3, we employ the identified196

layer groups to perform targeted neural interventions: chemistry circuits (0-15) for compositional197

stability, formation energy circuits for thermodynamic optimization, lattice circuits for geometric198

reasoning, and space group circuits for symmetry processing. This mechanistic understanding enables199

specific interventions that enhance specific crystallographic reasoning capabilities while preserving200

the crystal structure generation ability.201

4 Experiment 2: Attention Flow Analysis202

4.1 Motivation and Research Framework203

Building on the layer-wise knowledge architecture identified in Experiment 1, we investigate compu-204

tational attention allocation during crystallographic reasoning involving multiple competing structural205

representations. We address the research question: How does computational attention allocation206

reveal crystallographic processing mechanisms during multi-structure reasoning? Our analysis207

examines attention distribution between competing structures, evaluates prompt influence on attention208

patterns, and distinguishes architectural constraints from task-dependent behaviors.209

4.2 Experimental Design and Position Bias Correction210

We analyze attention distribution using "later token attention" methodology, measuring attention211

from final processing tokens to each parent structure across the four processing phases. Our dataset212

consists of 1,000 crystal structure pairs, each containing a flawed prototype (A) generated by DiffCSP213

and a stable reference (B) retrieved from MatBench-bandgap through composition similarity.214

The attention analysis extracts raw attention weights from all transformer layers, averages across215

attention heads, and calculates attention ratios by computing (Attention to Parent B) / (Attention to216

Parent A), where values above 1.0 indicate greater focus on the stable reference.217

Initial analysis revealed substantial recency effects: when we tested both presentation orders (A → B218

and B → A), attention patterns shifted systematically based on which structure appeared later in219

the prompt. To isolate genuine computational mechanisms from presentation order artifacts, we220

implemented a dual-ordering correction framework:221
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Figure 5: Position Effect Comparison. Stability-focused prompts reduce position dependency across
layer groups. (a) Position effect magnitude measures position-dependent bias strength. (b) Bias
magnitude shows deviation from balanced attention. (c) Distribution comparison reveals improved
consistency.

RA→B =
AA→B

to B

AA→B
to A

, RB→A =
AB→A

to B

AB→A
to A

, Rcorrected =
√
RA→B ·RB→A (1)

where Rcorrected represents position-independent attention allocation using geometric mean correction.222

We further quantify position effects using complementary measures presented in Figure 5. Position223

effect magnitude (a) measures how much attention depends on presentation order. Bias magnitude224

(b) measures deviation from balanced attention, calculated as the absolute difference from perfect225

balance (1.0 ratio).226

4.3 Key Observations227

Strong recency effects dominate attention allocation. Figure 4 demonstrates systematic position-228

dependent biases across all layer groups, with raw attention ratios varying dramatically based on229

presentation order rather than crystallographic content. The attention landscape reveals that positional230

encoding creates architectural constraints that override specialized reasoning, with later-presented231
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structures receiving disproportionate attention regardless of their stability properties. This finding232

establishes position correction as essential for isolating genuine computational mechanisms.233

Prompt engineering provides measurable but limited control. Figure 5 quantifies the effects234

of instruction design on attention patterns. Stability-focused prompts reduce position dependency235

by 11-13% across layer groups (a), decrease bias magnitudes toward more balanced attention (b),236

and produce tighter distributions with improved consistency (c). However, these improvements237

remain modest, indicating that prompt-based interventions face fundamental limitations imposed by238

architectural constraints.239

Layer groups exhibit minimal attention differentiation after correction. Following position240

correction, attention preferences show narrow variation: Chemistry layers (bias magnitude 0.41),241

Formation layers (0.29), Lattice layers (0.30), and Space Group layers (0.45) as shown in Figure242

5(b). The uniform pattern across processing phases indicates that attention allocation may not simply243

follows a specialization organization.244

4.4 Implications for Mechanistic Control245

These findings reveal fundamental limitations of attention-based approaches for controlling crystallo-246

graphic reasoning. The dominance of recency effects over content-based preferences, combined with247

modest prompt engineering benefits and minimal layer-specific differentiation, demonstrates that248

attention patterns provide insufficient leverage for precise mechanistic intervention. The disconnect249

between attention allocation and the layer-wise knowledge architecture established in Experiment 1250

indicates that achieving meaningful control over specific crystallographic properties requires direct251

manipulation of computational pathways rather than attention-based approaches. These limitations252

directly motivate Experiment 3’s causal intervention methodology.253

5 Experiment 3: Layer-wise Causal Intervention Analysis254

5.1 Motivation and Research Framework255

The findings from Experiments 1 and 2 reveal fundamental constraints on controllable AI systems256

for scientific discovery. Experiment 2 demonstrates that prompt engineering provides only modest257

control over crystallographic reasoning, with attention allocation governed primarily by architec-258

tural properties rather than instruction-following mechanisms. This establishes that prompting are259

insufficient for precise control, necessitating direct intervention in internal computational pathways.260

Building on the layer-wise knowledge architecture identified in Experiment 1, we investigate our cen-261

tral research question: Can mechanistic insights enable precise causal control over crystallographic262

reasoning and materials optimization? We systematically test which layer groups demonstrate causal263

control over specific properties, how interventions affect parent-child inheritance mechanisms, and264

the trade-offs between stability improvement and structural diversity.265

5.2 Experimental Design and Intervention Framework266

We implement targeted neural interventions during crystal structure optimization, modifying activa-267

tions at specific layers while the model processes pairs of structures: a thermodynamically unstable268

prototype (Parent A) and a stable reference (Parent B). Six intervention conditions are tested: baseline269

control (1.0× strength), chemistry enhancement (layers 0–15, 1.5×), formation energy enhancement270

(layers 8–45, 1.5×), lattice enhancement (layers 15–45, 1.5×), spacegroup enhancement (layers271

45–75, 1.5×), and integrated enhancement combining multiple pathways with conservative strengths.272

The experiment analyzes 1,000 parent structure pairs across all intervention conditions, providing273

6,000 total generation attempts. We evaluate structural similarity using RMS-based structural similar-274

ity metrics, defining novel structures as those with similarity < 0.5 to both parents simultaneously.275

This threshold ensures generated structures are genuinely innovative rather than simple copies or276

blends of parent structures.277
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Table 1: Intervention Performance Comparison
Intervention Success Rate (%) Avg Ed (eV/atom) Stability Improvement (eV/atom) Avg Tokens

Integrated Optimal 70.3 0.627 -0.259 416.5
Baseline 69.8 – – 389.8

Chemistry Enhancement 68.4 0.872 -0.248 396.0
Spacegroup Enhancement 68.4 – – 386.3

Formation Energy Enhancement 67.9 0.844 -0.226 399.9
Lattice Enhancement 67.7 1.007 -0.341 391.1
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Figure 6: Intervention Effects on Crystal Structure Generation. Analysis showing (a) thermo-
dynamic stability distributions across interventions, (b) stability inheritance patterns, (c) parent
similarity correlations, and (d) generation complexity metrics.

5.3 Key Observations278

Novel structures dominate generation and achieve superior stability. Figure 6(a,c) reveals279

that 45.4% of generated structures are novel (structurally distinct from both parents), achieving280

deformation energies of 0.13-0.16 eV/atom compared to 0.70-0.80 eV/atom for hybrid structures.281

This demonstrates that interventions preferentially generate innovative structures with enhanced282

thermodynamic properties rather than simple parent combinations.283

Computational complexity correlates with structural innovation. Higher token generation284

requirements correlate with novel structure production, indicating that creating genuinely innovative285

crystal structures demands more sophisticated computational pathways. Figure 6(d) shows this286

relationship holds consistently across all interventions, suggesting an intrinsic connection between287

computational effort and crystallographic innovation.288

Different interventions implement distinct inheritance strategies. Figure 6(b,c) reveals289

intervention-specific patterns in parent-child relationships. Formation energy interventions achieve290

the most balanced inheritance from both parents, chemistry enhancements show stronger prototype291

dependence, while spacegroup interventions enable structural reorganization with minimal parent292

similarity. These patterns demonstrate controllable inheritance mechanisms rather than random293

generation.294
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Figure 7: Representative Parent-Child Inheritance Patterns. Structural comparison showing
Parent A (unstable prototype), Parent B (stable reference), and generated child structures across
intervention conditions, demonstrating distinct inheritance mechanisms.
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5.4 Implications for Mechanistic Control295

The experimental results establish layer-wise causal intervention as a viable approach for controlling296

crystallographic reasoning in LLMs. The consistent preference for novel structure generation across297

all interventions, combined with superior thermodynamic properties and distinct inheritance patterns,298

demonstrates that mechanistic understanding translates into practical control over materials discovery.299

The correlation between computational complexity and structural innovation suggests that targeted300

interventions amplify existing architectural capabilities rather than creating entirely new optimization301

mechanisms.302

6 Limitations and Future Directions303

While our work establishes the first comprehensive mechanistic analysis of crystallographic reasoning304

in LLMs, several methodological limitations present valuable opportunities for future research. Our305

linear probing approach reveals correlational rather than definitively causal relationships between306

layer activations and crystallographic knowledge, and mean-pooled representations may obscure307

fine-grained activation patterns that could provide deeper mechanistic insights. Our intervention308

methods, while demonstrating systematic improvements, operate at coarse layer-group granularity309

rather than feature-level precision. The analysis demonstrates that certain regions are causally310

significant but cannot identify confounding factors or the specific computational circuits within those311

regions responsible for the observed effects.312

Additionally, our evaluation framework relies primarily on CHGNet-based stability metrics, creat-313

ing a "model-evaluates-model" paradigm that lacks grounding in first-principles physics and risks314

optimizing for evaluator biases rather than true physical stability. The analysis is currently limited315

to a single model architecture (Llama 3.1-70B), and the parent structure pairs sometimes involve316

simple compositions from DiffCSP prototypes, which may be less representative of complex mate-317

rials discovery challenges. Future research should prioritize adoption of first-principles validation318

through Density Functional Theory calculations, systematic generalization studies across different319

LLM architectures, and incorporation of monosemantic feature discovery to enable more surgical320

interventions on complex crystal structures with higher compositional complexity.321

7 Conclusion322

This research provides the first mechanistic understanding of how large language models process323

crystallographic knowledge, revealing that LLMs organize scientific concepts through distinct hierar-324

chical processing phases that mirror the conceptual structure of crystallographic theory. Our attention325

flow analysis further reveals computational resource allocation of LLMs when performing crystal326

structure generation as well as the limitations of prompt-based control approaches. Most signifi-327

cantly, our causal intervention experiments demonstrate that mechanistic insights can be translated328

into practical control over materials discovery processes, with targeted layer-specific interventions329

achieving improvements in thermodynamic stability while preserving structural innovation. Our330

Latent Crystallography Microscope framework validates mechanistic interpretability as a viable331

approach for controllable LLMs-based scientific discovery, which is generalizable for investigating332

domain-specific reasoning in transformers. This work provides practical insights on applying LLMs333

to materials science and broader scientific domains where precise control over model behavior is334

essential for reliable discovery.335
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