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ABSTRACT

In many real-world scenarios, obtaining fully observed samples is prohibitively
expensive or even infeasible, while partial and noisy observations are comparatively
easy to collect. In this work, we study distribution restoration with abundant noisy
samples, assuming the corruption process is available as a black-box generator.
We show that this task can be framed as a one-sided entropic optimal transport
problem and solved via an EM-like algorithm. We further provide a test criterion to
determine whether the true underlying distribution is recoverable under per-sample
information loss, and show that in otherwise unrecoverable cases, a small num-
ber of clean samples can render the distribution largely recoverable. Building on
these insights, we introduce SFBD-OMNI, a bridge model-based framework that
maps corrupted sample distributions to the ground-truth distribution. Our method
generalizes Stochastic Forward-Backward Deconvolution (SFBD; Lu et al., 2025)
to handle arbitrary measurement models beyond Gaussian corruption. Experi-
ments across benchmark datasets and diverse measurement settings demonstrate
significant improvements in both qualitative and quantitative performance.

1 INTRODUCTION

Diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;b;
2023) have attracted growing interest and are now regarded as one of the most powerful frameworks
for modelling high-dimensional distributions. They have enabled remarkable progress across various
domains (Croitoru et al., 2023), including image (Ho et al., 2020; Song et al., 2021a;b; Rombach
et al., 2022b), audio (Kong et al., 2021; Yang et al., 2023), and video generation (Ho et al., 2022).
Today, most state-of-the-art image and video generative models are diffusion-based or their variants,
such as flow matching (Lipman et al., 2023) and consistency models (Song et al., 2023).

While much of their success is attributed to stable training dynamics, diffusion models (DMs), like
nearly all other generative frameworks, also depend on large collections of high-quality training data.
In many practical domains, however, such data are costly or even infeasible to obtain, whereas large
volumes of corrupted samples are readily available. For example, in medical imaging, acquiring
cleaner X-ray scans requires higher radiation doses, which can endanger patient health (Seibert, 2008),
making most available scans inherently noisy. Likewise, in ground-based astronomical imaging,
clean deep-space observations demand long exposures under ideal atmospheric conditions, yet most
telescope images are degraded by atmospheric turbulence, sensor noise, and light pollution (Chimitt
& Chan, 2023).

Given this reality, a natural question arises: With only a limited number of clean samples but an
abundance of corrupted ones, can we train a model to recover the clean sample distribution? Under
suitable identifiability conditions on the corruption process, Bora et al. (2018) demonstrated that
a generative model can indeed be trained using only corrupted samples, by leveraging the GAN
framework (Goodfellow, 2016). Building on this idea and the remarkable success of diffusion models,
subsequent works have sought to recover data distributions under specific corruption processes–
for example, Ambient Diffusion for pixel masking (Daras & Dimakis, 2023), Tweedie Diffusion
(Daras et al., 2023), and Stochastic Forward-Backward Deconvolution (SFBD, Lu et al. 2025) for
additive Gaussian noise. However, to the best of our knowledge, there is no existing framework that
both accommodates general corruption processes and theoretical guarantees, while exploiting the
advantages of diffusion models. A more detailed review of related literature is provided in Sec B.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we address this gap by proposing a principled framework for the distribution recovery
problem through diffusion-based models. Instead of formulating distribution learning as a min-max
game via the variational representation of the Kullback-Leibler (KL) divergence, as in GANs, we
show that an alternative variational form, provided by the Donsker-Varadhan principle (Donsker &
Varadhan, 1983), reveals the problem to be essentially equivalent to a one-sided entropic optimal
transport objective. This reformulation naturally yields an alternative minimization pipeline that
fully leverages the design advantages of diffusion-based models. Importantly, our approach avoids
adversarial training, making it both simpler to implement and more stable in practice. Since the
method can be viewed as a generalization of the SFBD algorithm, we refer to it as SFBD-OMNI.

Under suitable identifiability conditions on the corruption process, the proposed method is theo-
retically guaranteed to recover the ground-truth clean data distribution. For practical corruption
processes that do not satisfy these conditions, we further show that the clean distribution can still
be largely recovered when a limited number of clean samples are available, and we provide conver-
gence guarantees for this setting. Since the proposed alternating minimization algorithm requires
training a sequence of neural networks, we also introduce an online variant that enables end-to-end
training, simplifying implementation and potentially accelerating convergence, while still preserving
optimality guarantees. Empirical results corroborate our theoretical analysis, and experiments across
benchmark datasets demonstrate significant and consistent improvements over strong baselines under
diverse measurement settings. A key strength of SFBD-OMNI is its robustness in scenarios where
the identifiability condition fails: by incorporating a small number of clean samples, the method is
still able to effectively guide recovery toward the true data distribution.

2 PRELIMINARY

Diffusion models and SFBD. Diffusion models learn distributions by progressively corrupting data
with Gaussian noise and then training a model to approximate the reverse process through successive
denoising steps. Formally, given a distribution µ over Rd, the forward process is governed by a
stochastic differential equation (SDE):

dxt = dwt, x0 ∼ µ (1)

where {wt}t∈[0,T ] is the standard Brownian motion. Eq (1) induces a transition kernel pt|s(xt|xs) =

N (x0, (t − s) I) for t ≥ s ≥ 0. Let pµt (xt) =
∫
pt|s(xt|x0)µ(x0) dx0 denote the marginal

distribution of xt (in particular, pµ0 = µ). Anderson (1982) showed that the backward SDE can
describe the time-reversed process corresponding to the forward SDE:

dxt = −s(xt, t)dt+ dw̄t, xτ ∼ pτ , (2)

where τ > 0, w̄t is standard Brownian motion in reverse time and s(·, t) = ∇ log pt(·) is the score
function. In practice, the score can be efficiently approximated via a neural network sθ trained by
minimizing the conditional score matching loss LCSM(sθ, µ) (Song et al., 2021b). Crucially, this
reverse SDE induces transition kernels that coincide with the posterior of the forward process:

pµs|t(xs|xt) =
pt|s(xt|xs) p

µ
s (xs)

pµ
t (xt)

, for s ≤ t in [0, τ ]. (3)

Consequently, sampling from pµs|τ (xs | xτ ) can be carried out by integrating Eq (2) backward from
xτ with t = τ . In standard diffusion models, τ is chosen sufficiently large so that pµτ ≈ N (0, τI).
Thus, sampling from the model amounts to drawing xτ ∼ N (0, τI) followed by x0 ∼ pµ0|τ (x0 | xτ ).

In contrast, SFBD (Lu et al., 2025) operates in the regime of finite τ , specifically considering
a Gaussian corruption process realized through the forward transition kernel pτ |0(xτ | x0). In
particular, they assume access to a limited set of clean samples Eclean and a large set of Gaussian
corrupted ones Enoisy obtained through this forward transition kernel. For a set of samples E , let pE
denote the corresponding empirical distribution. Starting from a pretrained model sθ0 by minimizing
LCSM(sθ, Eclean), the algorithm proceeds as follows: for k = 1, 2, . . . ,K

Ek ← {x0 : y ∈ Enoisy, solve Eq (2) from t = τ to 0, with xτ = y and s = sθk−1
. } (4)

θk ← Continue training sθk−1
to obtain sθk

by minimizing LCSM(sθ, Ek) (5)
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Lu et al. (2025) proved that as K →∞, pEK
converges to the true distribution pdata by analyzing the

evolution of the underlying stochastic processes, leveraging the relation in Eq (3) for all (s, t) ∈ [0, τ ].
However, this relation is inherently tied to the Gaussian forward corruption process in Eq (1), which
makes extending the approach to arbitrary corruption processes challenging.

Interestingly, the sampling step (4) essentially corresponds to drawing from pµ0|τ with µ = pEk−1
.

This observation suggests that, rather than enforcing the posterior relation in (3) for all (s, t) ∈ [0, τ ]
and learning it via score function approximation in (2), it may be sufficient to train a model that
learns only the posterior pµ0|τ . In this case, we may extend the forward kernel pτ |0 to arbitrary
corruption processes. Indeed, when the corruption process satisfies suitable identifiability conditions,
a generalized SFBD method can be employed to recover the data distribution, as we will show in
Sec 5. We conclude this section by presenting a unified framework to learn pµ0|τ with bridge models.

Learning posterior distributions with bridge models. Unlike standard diffusion models, which
learn to transform Gaussian noise into data samples via the backward SDE (2), bridge models
generalize this idea to transformations between arbitrary distributions (Lipman et al., 2023; Peluchetti,
2023; Zhou et al., 2024). Given paired samples (x,y) ∼ π(x,y) from a joint distribution π, a
bridge model constructs a distributional path connecting the x-marginal πx and the y-marginal πy

by interpolating between each pair (x,y) through transition processes (Peluchetti, 2023). Typical
choices include line segments in flow matching and rectified flow (Liu et al., 2022; Lipman et al.,
2023), or Brownian bridges in DDBM and I2SB (Liu et al., 2023; Zhou et al., 2024). The resulting
process defines a transition path distribution pt|01(xt | x0 = x,x1 = y), whose evolution from t = 1
to 0 can often be expressed in closed form via a backward SDE (Peluchetti, 2023):

dxt = f(xt;x0,x1, t) dt+ g(t) dw̄t. (6)

Let fθ(xt;x1, t) be the minimizer of the conditional drift matching (CDM) loss

LCDM(θ, π) = Et∼U E(x0,x1)∼π Ext∼pt|01

∥∥ f(xt;x0,x1, t)− fθ(xt;x1, t)
∥∥2, (7)

where U is a sampling distribution over t ∈ (0, 1). It then follows that samples from π0|1(x0 | y) can
be obtained by integrating from t = 1 to 0 with x1 = y (Peluchetti, 2023; De Bortoli et al., 2023):1

dxt = fθ(xt;x1, t) dt+ g(t) dw̄t. (8)

In this way, given a Markov kernel r(y | x) for a general corruption process and a sample distribution
µ, the joint distribution of (x,y) is π(x,y) = µ(x) r(y | x). A bridge model can then be trained to
learn the posterior distribution in a manner analogous to diffusion models, using a CDM loss LCDM
corresponding to the chosen transition process.

3 KULLBACK–LEIBLER AMBIENT PROJECTION PROBLEM

Let r(· | x) denote the Markov kernel for the corruption process. Define the corresponding corruption
operator Tr, which maps a clean distribution µ to its corrupted counterpart:

Trµ (y) :=

∫
r(y | x)µ(x) dx. (9)

Given the corrupted data distribution q := Trpdata, our objective, following the classical GAN
formulation in AmbientGAN (Bora et al., 2018), is to recover pdata by solving

p∗ = argminp DKL (q ∥ Trp) . (10)

The intuition is that minimizing the discrepancy between corrupted distributions drives p toward
the true clean distribution pdata. We refer to this optimization task as the Kullback–Leibler Ambient
Projection (KLAP) problem.

1If x and y are connected by a deterministic path (i.e., g = 0 in Eq (6)), the sampling process may become
ill-conditioned, as it degenerates to a deterministic mapping. To mitigate this, y can be perturbed with a small
Gaussian noise during both training and sampling. See Sec C for details.
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3.1 IDENTIFIABILITY

Whether the recovery is possible depends on the choice of the corruption kernel r(· | y). For instance,
if x is an image and r(· | y) always outputs a white patch, then the corrupted distribution q = Trpdata
collapses to a single point mass on the white patch, regardless of pdata. In this degenerate case, every
distribution p achieves the same objective value in (10), so the minimizer p∗ need not equal the true
distribution pdata. The next proposition characterizes when minimizing (10) recovers p∗.

Proposition 1 (Identifiability Condition). Let P(X) denote the set of clean sample distributions.
When the corruption kernel r(· | x) depends continuously on x, the convex objective in Eq (10)
admits a unique minimizer p∗ = pdata whenever Tr is injective on P(X). If Tr is not injective, the
objective is still convex, but all distributions p satisfying Trp = Trpdata are minimizers.

pdata

S(q)

p∗λ

P(X)

h†

h

as λ → 0

Figure 1: Effect of λ on p∗λ. As λ → 0,
the first term in Eq (11) ensures that p
remains within S(q), while the second
term selects the element h† ∈ S(q) clos-
est to h. Consequently, p∗λ converges to
h†, which represents the projection of h
onto the feasible set S(q).

All proofs are deferred to the appendix. We highlight sev-
eral common corruption operators Tr together with their
injectivity properties:
Additive noise. If y = x + ϵ with noise ϵ ∼ ν, then
r(y | x) = ν(y−x). When ν has a characteristic function
without zeros (e.g., Gaussian), the induced convolution
operator p 7→ p ∗ ν is injective. This setting corresponds
to the classical density deconvolution problem (Meister,
2009), with SFBD (Lu et al., 2025) addressing the Gaus-
sian case in particular.
Random dropout. Each pixel is masked with probability
α > 0 and otherwise unchanged. It can be shown that
when each pixel is masked independently, Tr is injective
(Bora et al., 2018). (Non-injective when α = 1.)
Linear transforms. If y = Ax for a linear map A,
r(y | x) = δ(y −Ax). If A has full column rank (hence
is injective), then Tr is also injective. (Non-injective if A
has a nontrivial nullspace, such as projections or grayscale
conversions of images.)

3.2 AUGMENTED KLAP

As noted in Prop 1, if Tr is not injective, the objective is convex but not strictly convex. In this case,
any distribution p ∈ P(X) with Trp = Trpdata is a minimizer, and we denote this solution set by
S(q). Thus, pdata cannot be uniquely identified from the noisy distribution. One way to overcome
this ambiguity is to incorporate additional information. In practice, this often comes from a small
number of clean samples or, more generally, from a prior distribution h over pdata. This motivates the
following augmented formulation.

Given the corruption operator Tr defined in Eq (9), a prior distribution h over pdata, and a regulariza-
tion parameter λ ≥ 0, we consider the following optimization problem:

p∗λ = argminp∈P(X) Jλ(p), where Jλ(p) := DKL (q ∥ Trp) + λDKL (h ∥ p) . (11)

For λ > 0, the strict convexity of the second term ensures the entire objective is strictly convex with
a unique minimizer p∗λ, whereas for λ = 0 it reduces to the classical ambient problem.

For intuition, consider a corruption process r that maps colour images to grayscale, with pdata
consisting of human face images. Here Tr is not injective, since many different colourings yield the
same grayscale distribution. In other words, S(q) contains multiple elements. Thus, when λ = 0,
we can recover the distribution of face structures but not the true colour patterns. To capture the full
colour distribution, we may assume access to a few clean colour images from pdata and encourage p
to align with their empirical distribution h by choosing λ > 0.

Fig 1 illustrates how the additional regularization term shapes the optimal solution. As λ→ 0, the
first term in Eq (11) keeps p within S(q), while the second selects the element h† ∈ S(q) closest to
h. We formalize this observation in the following proposition.
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Proposition 2. Let h† = argminp∈S(q) DKL (h ∥ p) denote the Information-projection of h onto
the original KLAP solution set. Then the minimizer of Eq (11), p∗λ, converges to h† as λ→ 0.

Clean samples also matter under injective Tr – Identifiability ̸= Recoverability. While Prop 1
shows that if Tr is injective, then pdata is in principle recoverable by minimizing Eq (10), this guarantee
relies on having access to the true corrupted density q = Trpdata. In practice, however, q must be
estimated from finitely many noisy samples, and the resulting estimation error is amplified through
the inverse of Tr. Consequently, the minimizer of Eq (10) based on an empirical estimate of q can
deviate substantially from pdata. For additive-noise corruption operators Tr, the unfavourable sample
complexity of this inverse problem is well documented in the density deconvolution literature (see,
e.g., Meister (2009)), and the pessimistic rates suggest that acquiring enough noisy samples to train a
high-quality model is often practically infeasible (Lu et al., 2025). To overcome this issue, in Sec 6,
we show that even a very small number of clean samples (as few as 50) can substantially mitigate this
difficulty, consistent with the findings of Lu et al. (2025).

4 TWO VARIATIONAL PERSPECTIVES OF KLAP

In this section, we present two variational perspectives for characterizing KLAP, each derived from
a different variational formulation of the KL divergence. The first perspective corresponds to the
classical formulation, which was previously employed in training Ambient GANs (Bora et al., 2018),
and is included here for completeness. The second perspective reveals that the classical KLAP can
be viewed as a one-sided entropic optimal transport (OT) problem and also leads to an alternative
minimization algorithm for solving both the classical and augmented KLAP formulation.

4.1 AMBIENT GAN’S FORMULATION

For any convex function f , a corresponding f -divergence can be defined: Df (q∥m) =∫
m(y)f( q(y)

m(y) )dy (Nowozin et al., 2016), which also admits an variational form

Df (q∥m) = maxg
{
Eq[g(Y )]− Em[f∗(g(Y ))]

}
, (12)

where f∗ is the convex conjugate of f . When f(x) = x lnx, Df reduces to the KL divergence. As a
result, with this choice of f , the original KLAP problem (10) can be rewritten as

minp Df (q ∥ Trp) = minp maxg
{
Eq[g(Y )]− ETrp

[
f∗(g(Y ))

]}
. (13)

This min-max formulation can be naturally implemented in the standard GAN framework (Good-
fellow, 2016), with g as the discriminator and p parameterized by the generator. Bora et al. (2018)
showed that this setup can recover pdata when Tr is injective and the corruption process is differentiable
with respect to the clean inputs.

To the best of our knowledge, existing KLAP-based frameworks cannot directly incorporate the
additional identifiability term or support a more scalable, diffusion/bridge-style generator. In Sec 4.2,
we introduce an alternative variational formulation that yields an alternating-minimization algorithm
(Sec 5) addressing both issues. Notably, the method requires only black-box access to the corruption
process, without any differentiability assumptions.

4.2 ONE-SIDED ENTROPIC OPTIMAL TRANSPORT FORMULATION

Let fy(x) = log r(y | x).2 Rather than invoking the variational representation of KL-divergence, we
apply the Donsker-Varadhan variational principle (Donsker & Varadhan, 1983):

logEx∼p

[
efy(x)

]
= maxuy Ex∼uy [fy(x)]−DKL (uy ∥ p) , (14)

where uy denotes a distribution of x given y. Taking expectation over y ∼ q and rearranging yields

DKL (q ∥ Trp) = minuy Ey∼q

[
DKL (uy ∥ p)− Ex∼uy [fy(x)]

]
+ C, (15)

where C collects the terms independent of p (see Sec E for the derivation). As a result, the augmented
KLAP problem (11) is equivalent to

argminp minuy Fλ(p, uy) (16)

2We assume r(· | x) has full support; this can be enforced by injecting an infinitesimal Gaussian noise to y.
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with
Fλ(p, uy) := Ey∼q

[
DKL (uy ∥ p)− Ex∼uy [fy(x)]

]
+ λDKL (h ∥ p) .

This nested minimization suggests an alternative strategy for solving the (augmented) KLAP problem
in Sec 5. We conclude this section by noting that this observation allows KLAP to be viewed as a
variant of classical entropic OT, offering a new perspective to understand the KLAP problem.
Proposition 3. Define the cost function c(x,y) := − log r(y | x). Problem (16) is equivalent to

argminp Φ(p) + λDKL (h ∥ p)

with

Φ(p) := min
π∈Πy(q)

∫∫
c(x,y)π(x,y) dxdy +DKL (π ∥ p⊗ q)

where Πy(q) denotes the set of joint distributions of (x,y) with y-marginal fixed to q. Moreover,
when λ = 0, the optimal solution p∗ coincides with the x-marginal of the corresponding minimizer
π∗ in the inner problem.

Notably, Φ(p) in Prop 3 coincides with the entropic OT objective (Cuturi, 2013), but with constraints
imposed only on the y-marginal rather than on both marginals. In particular, when the cost function
is quadratic, as in the case of a Gaussian corruption kernel, the optimal coupling π∗ corresponds
to the Schrödinger Bridge (Léonard, 2014). Moreover, Prop 3 shows that in the absence of the
regularization toward the prior distribution h (i.e., when λ = 0), the optimal solution p∗ induces an
optimal coupling π∗ in the inner entropic OT problem whose marginals are precisely p∗ and q. This
interpretation suggests that solving KLAP amounts to finding a distribution p that minimizes the
transportation cost induced by the corruption kernel, subject to entropy regularization. The methods
introduced in Sec 5 provide an effective approach for solving this one-sided entropic OT problem.

5 STOCHASTIC FORWARD-BACKWARD DECONVOLUTION-OMNI

The variational formulation of the augmented KLAP in Eq (16) suggests an alternative minimization
approach for finding the minimizer p∗λ defined in Eq (11). This leads to an algorithm that generalizes
SFBD (Lu et al., 2025) to arbitrary corruption models, which we call SFBD-OMNI.

SFBD-OMNI. Starting from an arbitrary initialization p0(x), we minimize F(p, uy) in (16) by
alternating updates over p and uy, holding the other fixed. Specifically, at each iteration, we compute

uk
y = argminuy

Fλ(p
k, uy), pk+1 = argminp Fλ(p, u

k
y), (17)

where both subproblems admit closed-form solutions:

uk
y(x) =

pk(x) r(y | x)
Trpk(y)

, pk+1(x) =
1

1 + λ
p̃k+1(x) +

λ

1 + λ
h(x), (18)

with p̃k+1(x) =
∫
q(y)uk

y(x) dy.

Note that uk
y is the posterior distribution of pk(x) under the joint distribution π(x,y) = pk(x) r(y|x).

As described in Sec 2, by introducing a transition process connecting x and y, we can leverage a
bridge model to learn this posterior in a manner analogous to diffusion models, by minimizing the
corresponding CDM loss LCDM. Let uθ denote the learnt posterior distribution. The quantity p̃k is
then approximated using samples from uθ(· | y) with y ∼ q(y).

We describe the implementation of SFBD-OMNI in Alg 1, assuming access to a small set of clean
samples that define the prior h, denoted hclean, which also serves as the initialization p0. During
training, p̃k is approximated by pE and updated iteratively, while the mixture of pE and hEclean is
realized through a weighted sampler.

Online SFBD-OMNI. The implementation of Alg 1 alternates between training and sampling, which
in practice demands considerable manual intervention. Moreover, because E changes drastically at
each iteration, optimizers such as Adam (Kingma & Ba, 2015) must be reset after every fine-tuning
step; otherwise, stale momentum can trigger a sharp and irreversible increase in training loss. To

6
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Algorithm 1 SFBD-OMNI

Input: clean data Eclean = {x(i)}Mi=1, noisy data
Enoisy = {y(i)}Ni=1, CDM loss LCDM

// Pretrain using clean samples
1 θ ←Minimizing LCDM

(
θ, hEclean

(
x) r(y|x)

)
2 E ← {x(i) : take one sample from uθ(x|y) for

each corrupted sample y ∈ Enoisy }.
// Iteratively optimize with

corrupted samples

3 for k = 1, 2, . . . ,K do
4 θ ← Minimizing LCDM

(
θ, p(x) r(y|x)

)
with p = 1

1+λpE + λ
1+λhEclean .

5 E ← {x(i) : take one sample from uθ(x|y)
for each corrupted sample y ∈ Enoisy }

Output: Final uθ

Algorithm 2 Online SFBD-OMNI

Input: clean data Eclean = {x(i)}Mi=1, noisy data
Enoisy = {y(i)}Ni=1, gradient steps m,
CDM loss LCDM

// Pretrain using clean samples
1 θ ←Minimizing LCDM

(
θ, hEclean

(
x) r(y|x)

)
2 E ← {x(i) : take one sample from uθ(x|y) for

each corrupted sample y ∈ Enoisy }.
// Iteratively optimize with

corrupted samples (online
updates)

3 for k = 1, 2, . . . ,K do
4 θ ← Minimizing LCDM

(
θ, p(x) r(y|x)

)
with p = 1

1+λpE + λ
1+λhEclean .

5 E ← {Replace ratio γ of samples in E with
the new ones by sampling x from uθ(x|y)
for y drawn from Enoisy}

Output: Final uθ

guarantee convergence in each iteration, the network must also be optimized for a sufficiently large
number of steps. However, this can lead to overfitting on the current iterate pk, making subsequent
adaptation to new targets more difficult.

To address these challenges, we introduce an online variant in Alg 2, where a fraction γ of the
reconstructed set E is refreshed at each iteration. This corresponds to updating p̃k+1(x) in Eq (18) as

p̃k+1(x) = γ

∫
q(y)uk

y(x) dy + (1− γ) p̃k(x) with p̃0(x) =

∫
q(y)u0

y(x) dy. (19)

When γ = 1, the algorithm reduces to the standard SFBD-OMNI. Because E changes only slightly
after each update, we can continue optimizing uθ for additional gradient steps without resetting the
optimizer state, allowing it to adapt smoothly to the new minimum. This strategy reduces manual
intervention and accelerates convergence. In Prop 4, we show that this “lazy” update scheme still
guarantees convergence to the optimum. Since the result covers the case γ = 1, it also establishes the
convergence of SFBD-OMNI.
Proposition 4 (Convergence to the optimum). Let the distribution sequences {uk

y} and {pk} evolve
according to Eq (18), with p̃k updated by Eq (19). Starting from an arbitrary initialization p0 and for
γ ∈ (0, 1], under mild assumptions, we have pk → p∗λ as k →∞. Moreover, when λ→ 0, we have

lim
k→∞

pk = h†, DKL

(
h† ∥ pk+1

)
≤ DKL

(
h† ∥ pk

)
. (20)

In addition, the following bounds hold:

min
1≤k≤K

DKL

(
q ∥ Trpk

)
≤

DKL

(
h† ∥ p0

)
γK

, (21)

where K denotes the total number of iterations and q = Trpdata.

While Eq (21) may suggest that a smaller γ leads to slower convergence, note that with smaller γ, the
set E is only partially updated, so the network uθ requires fewer steps to converge. Thus, although a
larger K may be needed to guarantee convergence, each step is cheaper, and the total training time
does not necessarily increase. In practice, since the optimizer does not need to reset, training time
can even decrease.

Comparison to existing methods. When λ = 0 and the corruption process is Gaussian noise
injection, with the posterior modeled via the backward SDE in Sec 2, our framework reduces to
SFBD (Lu et al., 2025). In EMDiffusion, Bai et al. (2024) heuristically derive an iterative rule that
coincides with SFBD-OMNI’s update in Eq (18) when λ = 0; our work establishes convergence of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method CIFAR-10 CelebA

Pixel Masking (✓) Additive Gauss. (✓) Grayscale (✗) Gauss. Blur (✗) Grayscale (✗)

Noise2Self (Batson & Royer, 2019) – 92.06 – – –
SURE-Score (Aali et al., 2023) 220.01 132.61 109.04 191.96 219.81
AmbientDiff (Daras & Dimakis, 2023) 28.88 – – – –
EMDiffusion (Bai et al., 2024) 21.08 86.47 115.11 91.89 59.04
SFBD (Lu et al., 2025) – 13.53 – – –
SFBD-OMNI (ours) 21.31 10.81 32.61 11.60 11.85
Online SFBD-OMNI (ours) 22.43 11.06 31.32 10.28 11.21

Table 1: FID scores across different corruption processes on CIFAR-10 and CelebA. Processes
marked with ✓ satisfy the identifiability condition, while those marked with ✗ do not. Pixel masking
is applied with probability p = 0.6 per pixel. Additive Gaussian corruption adds noise with σ = 0.2
to each clean sample. The grayscale process converts a color image into a single-channel grayscale
image, while Gaussian blur is applied with a kernel size of nine and σ = 2. All methods, except
Noise2Self, are pretrained on 50 clean images randomly sampled from the training dataset.

this rule to the optimal solution, which EMDiffusion does not, and further extends it with an online
formulation and the ability to handle non-identifiable corruption processes. Unlike AmbientGAN
(Bora et al., 2018), which requires differentiating noisy samples with respect to clean ones and cannot
address non-identifiable corruption processes, SFBD-OMNI and the online version assume black-box
access to the corruption process, avoid adversarial training, and thus sidestep common issues such
as gradient vanishing (Goodfellow et al., 2014; Miyato et al., 2018; Fedus et al., 2018) and mode
collapse (Goodfellow, 2016; Arjovsky & Bottou, 2017; Mescheder et al., 2018).

6 EMPIRICAL STUDY

In this section, we evaluate the proposed SFBD-OMNI framework introduced in Sec 5. Across diverse
benchmark settings, both SFBD-OMNI and its online variant demonstrate superior performance
over existing approaches for recovering the original data distribution from corrupted observations.
Furthermore, our ablation studies show that the method can effectively address non-identifiable
corruption processes.

Datasets and evaluation metrics. Our experiments are performed on CIFAR-10 (Krizhevsky &
Hinton, 2009) and CelebA (Liu et al., 2022), with image sizes of 32× 32 and 64× 64, respectively.
CIFAR-10 contains 50,000 training samples and 10,000 test samples spanning 10 object categories.
CelebA is a large-scale dataset of human faces with a standard split of 162,770 training, 19,867
validation, and 19,962 test images. For CelebA, preprocessing follows the official tool released with
DDIM (Song et al., 2021a).

Models and other configurations. In our implementation, we parameterize uθ(x | y) with a
flow-matching model (Lipman et al., 2023) and apply small endpoint perturbations to y to avoid
degeneracy, as described in Sec C. We adopt flow matching because it converges faster and has a
lower-variance training objective than diffusion-based models, while achieving comparable or even
superior sample quality. This computational efficiency is particularly important in our framework,
where the bridge models are trained repeatedly against a moving target distribution. To further
mitigate overfitting, we adopt the non-leaky augmentation technique (Karras et al., 2022). For the
classical SFBD-OMNI, after pretraining on a small set of clean samples, we set the clean-sample
weight λ

1+λ to zero when the corruption process satisfies the identifiability condition; otherwise, we
use λ

1+λ = 0.2, unless specified otherwise. For the flow variant, we fix λ
1+λ = 0.2, as this setting

yields more stable training. In addition, unless noted, we set the noisy-set update ratio to γ = 0.002
and perform the update at the end of each training epoch. For sampling, we generate samples by first
picking y from the noisy dataset and then sampling from the final uθ(x | y). Additional training
configurations are provided in Sec G. We evaluate image quality using the Frechet Inception Distance
(FID), computed between the reference dataset and 50,000 images generated by the models.

Performance comparison. In Table 1, we compare SFBD-OMNI with representative models trained
on noisy images corrupted by various processes. As discussed in Sec 3.1, pixel masking and additive
Gaussian noise satisfy the identifiability condition, making it theoretically possible to recover the data
distribution using only noisy samples. In contrast, grayscale conversion and Gaussian blur do not
satisfy this condition, meaning that additional prior information is required for effective distribution
recovery. (Notably, Gaussian blur discards high-frequency components of an image and can be
viewed as a projection in the Fourier domain.)
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Figure 2: FID scores of Online SFBD-OMNI under different clean sample weights p = λ
1+λ across

various corruption processes. Processes marked with ✓ satisfy the identifiability condition, while
those marked with ✗ do not.

For the baseline models, Noise2Self (Batson & Royer, 2019) is a general-purpose denoising method
trained with self-supervised techniques. SURE-Score (Aali et al., 2023) and EMDiffusion (Bai
et al., 2024) address general inverse problems, leveraging Stein’s unbiased risk estimate and expecta-
tion–maximization, respectively. Notably, the update rules of EMDiffusion coincide with those of
standard SFBD-OMNI when no additional prior information is incorporated, rendering it ineffective
for non-identifiable corruption processes. AmbientDiff (Daras & Dimakis, 2023), in contrast, is
specifically designed to train diffusion models on images corrupted by masking. We also report results
from the original SFBD, which is tailored to additive Gaussian noise (Lu et al., 2025). (A discussion
and empirical comparison with a very recent work, Ambient Diffusion OMNI (Daras et al., 2025b), is
provided in Sec I.) Following Bai et al. (2024), unless otherwise stated, all methods except Noise2Self
are pretrained on 50 clean images randomly sampled from the training dataset. In SFBD-OMNI
and the flow variant, these images are further used as prior information during sequential training
whenever the clean-sample weight λ

1+λ > 0. For all reported results, we consistently use the same
set of 50 clean images.

As shown in Table 1, apart from the pixel masking corruption process, SFBD-OMNI and its flow
variant consistently outperform the baselines, achieving substantially better performance on the non-
identifiable processes. In the pixel masking case, EMDiffusion reports a marginally lower FID than
SFBD-OMNI; however, the difference is negligible, indicating that SFBD-OMNI performs on par
with EMDiffusion in this setting. For the non-identifiable corruptions, we observe that incorporating
prior information, by jointly training the model with reconstructed samples in E and clean samples,
effectively guides the model toward the true data distribution, as reflected in the much lower FID
scores. In addition, because the flow-variant implementation always assigns a non-zero weight λ

1+λ
to clean samples for added stability, its optimal solution p∗λ deviates from the true data distribution
in identifiable cases, leading to a slightly higher FID than classical SFBD-OMNI. In contrast, for
the non-identifiable processes, this additional regularization is essential and applied in both variants.
Consequently, the smooth updates and end-to-end training pipeline of the flow model provide it with
an additional advantage, enabling it to achieve lower FID scores.

Effect of the clean sample weights. To examine how SFBD-OMNI leverages clean samples to
mitigate identifiability issues, Fig 2 reports FID curves under varying clean-sample weights and
corruption types (settings follow Table 1). When identifiability does not hold, using clean samples as
a soft prior constraint guides the model toward the correct distribution; however, overly large weights
pull the solution away from the target, increasing FID. Conversely, when identifiability is satisfied,
this regularization is unnecessary and may even degrade performance. This phenomenon corroborates
our discussion in Sec 3 and Sec 4. In particular, in identifiable setups, clean samples mainly help
initialize p0, after which training proceeds best without them (e.g., CIFAR-10 with Gaussian noise).
When identifiability fails, clean samples must remain active (λ > 0) to avoid convergence to an
arbitrary element of S(q), as seen in CelebA with Grayscale and Gaussian Blur, where removing
clean samples increases FID dramatically. These trends align directly with the theoretical role of
identifiability. Since the clean samples are only used for initializing p0 when the identifiability
condition is satisfied, we show in Sec J that it is acceptable to use samples from a similar distribution
instead when clean samples are not available.

Effect of the number of clean samples. Fig 3a reports the FID scores of Online SFBD-OMNI on
CelebA under Grayscale corruption for different amounts of clean data. Increasing the number of
clean samples improves performance at both the pretraining and iterative optimization stages, though
with diminishing returns. This is expected and aligned with our discussions in Sec 5: more clean
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Figure 3: FID scores of SFBD-OMNI under different settings. (a) Online SFBD-OMNI FIDs
under grayscale corruption for varying numbers of clean samples. (b) FID trajectories of the online
version under additive Gaussian corruption (σ = 0.5) with 2k clean samples, for both the running
reconstructed set E and a newly generated sample set. (c) FIDs of the classical SFBD-OMNI under
additive Gaussian (σ = 0.2) without clean samples; iteration 0 represents the untrained model.

samples make the empirical clean distribution hclean closer to pdata, yielding a better initialization
p0 = hclean and a limiting distribution p⋆λ (defined in Eq (11)) that more closely matches pdata. Once
hclean is already a good approximation, however, additional samples provide only marginal benefit.

Effect of the update ratio γ. Fig 3b shows the FID trajectories of both the running reconstructed
sample set E and a newly generated sample set during the iterative optimization stage of Online
SFBD-OMNI, evaluated under different reconstructed-sample update ratios γ. The experiment is
conducted on CIFAR-10 with additive Gaussian corruption (σ = 0.5) and 2,000 clean samples. A
larger γ causes the reconstructed set E to be refreshed more frequently, which yields a sharper early
decrease in FID (as seen for γ = 0.5). Yet, because E changes so rapidly, the model cannot fully
adjust to the current reconstruction set before it is updated again. This instability appears as a growing
discrepancy between the FIDs of reconstructed and newly generated samples after epoch 6, eventually
degrading reconstruction quality and causing both FID curves to rise. In contrast, smaller γ values
make E evolve more gradually, giving the model enough time to optimize with respect to the current
set. This leads to more stable training, delays degradation, and achieves lower overall FIDs. Hence,
in practice, a relatively small γ is generally preferable.

Identifiability vs. practical recoverability. As discussed in Sec 3, although injective corruption
operators in principle allow recovery of pdata from corrupted samples alone, the unfavourable sample-
complexity rates make this practically infeasible. Fig 3c shows the iteration-wise FID of classical
SFBD-OMNI under additive Gaussian noise with no clean samples (λ = 0). The steadily decreasing
FID is consistent with Prop 4, which states DKL

(
pdata ∥ pk

)
decreases monotonically (as h† = pdata

if the corruption is injective and λ = 0), starting from the untrained model p0. However, even after
saturating around iteration 4, the FID remains at 80.37–substantially worse than the 10.81 achieved
when just 50 clean samples are provided. This gap supports our claim: relying solely on corrupted
samples is impractical, whereas even a very small clean set dramatically alleviates the issue.

Further empirical evaluation and insights on practical limitations. To further demonstrate the
effectiveness of SFBD-OMNI, we evaluate it on high-resolution satellite and MRI images with
Poisson and compressive sensing corruption; see Sec K. The results support our theoretical findings,
yet the remaining artifacts suggest that achieving deployment-quality reconstructions may require
domain-aware priors or problem-specific design choices.

7 DISCCUSION

In this work, we proposed SFBD-OMNI, a principled framework for distribution recovery based on
diffusion-related models. Unlike GAN-based approaches that rely on adversarial training, our method
builds on the Donsker–Varadhan representation of the KL divergence, which reveals an equivalence
to a one-sided entropic optimal transport objective. This reformulation naturally yields an alternating
minimization scheme that is theoretically grounded and practically stable.

Our analysis shows that SFBD-OMNI can recover the clean data distribution under identifiability
conditions, and with the aid of a small set of clean samples, it remains effective even when these
conditions fail. To address the computational challenges of sequential training, we introduced
an online variant that enables end-to-end optimization without sacrificing optimality guarantees.
Experiments on CIFAR-10 and CelebA confirm that the proposed method achieves consistent
improvements over representative baselines across a range of corruption processes.
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A LLM USAGE

LLMs were used to assist with text refinement and data formatting, but not for generating core
research content.

B RELATED WORK

Recovering the underlying clean distribution from noisy or incomplete observations has been an active
line of research in recent years. Bora et al. (2018) introduced AmbientGAN, demonstrating both
theoretically and empirically that GANs can recover the true distribution even when only corrupted
samples, such as randomly masked images, are available. Extending this idea, Wang et al. (2023)
showed that, under mild assumptions, if corrupted real and generated samples are indistinguishable,
the learned model necessarily recovers the ground-truth distribution. In this work, we present a
comprehensive study of the identifiability conditions of corruption processes. When these conditions
are satisfied, the clean distribution can be recovered directly from corrupted data. When they are not,
we propose an effective strategy that leverages a small number of clean samples to enable substantial
recovery of the underlying distribution.

Building on the success of training GANs with corrupted data, several recent studies have investigated
whether diffusion models can also be trained under additive Gaussian corruption (Daras & Dimakis,
2023; Daras et al., 2024). Daras et al. (2024) demonstrated that when corruption is induced by a
forward diffusion process, the marginal distribution at any time step constrains those at all other
steps through a set of consistency relations. Exploiting this property, they showed that training on
distributions above the corruption noise level allows the model to infer distributions at lower noise
levels by enforcing consistency—an approach that has proven effective for fine-tuning latent diffusion
models. Nevertheless, subsequent work found that training such models from scratch is impractical,
as it would require an unrealistically large number of corrupted samples (Lu et al., 2025; Daras et al.,
2025a). To address this, both Lu et al. (2025) and Daras et al. (2025a) proposed augmenting training
with a small set of copyright-free clean samples, demonstrating that diffusion models can indeed be
trained from scratch to achieve strong performance, albeit through distinct methodological routes.

Beyond recovering data distributions from corrupted observations, there has been growing interest in
leveraging pretrained diffusion models to solve inverse problems, where the goal is to reconstruct
underlying images from corrupted inputs (Chung et al., 2023; Feng et al., 2023; Zhang et al., 2023;
Chung et al., 2022; Song et al., 2022; Murata et al., 2023). While these methods also perform recovery,
they operate in a fundamentally different regime: they assume access to a pretrained diffusion model
that already encodes the ground-truth distribution. By contrast, our work addresses the from-scratch
setting, where the objective is to learn the ground-truth distribution itself directly from corrupted
samples, without relying on a pretrained model.

Very recently, Daras et al. (2025b) proposed a complementary strategy, Ambient-o, which also
seeks to align corrupted samples with the clean distribution. The method adds extra Gaussian noise
to corrupted inputs so that, once sufficiently noised, they become nearly indistinguishable from
clean–noisy samples and can be used directly for diffusion-model training – an idea similar in spirit to
SDEdit (Meng et al., 2022). Because the alignment is achieved through noising rather than modelling
the corruption, Ambient-o is agnostic to the underlying corruption process and requires no knowledge
of it. However, this design introduces a trade-off: stronger noising improves distributional alignment
but may also remove informative structure from the observations. In contrast, by assuming access to
the corruption process as a black-box generator, SFBD-OMNI requires no extra noise and therefore
preserves the full signal.

C GAUSSIAN NOISE REGULARIZATION FOR DETERMINISTIC SAMPLING PATHS

In Sec 2, we discuss how bridge models can be employed to learn the posterior distribution

uy(x) =
µ(x) r(y | x)∫

µ(x′) r(y | x′)dx′ ,
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given access to samples from µ(x) and the ability to query the corruption kernel r(y | x) as a
black-box generator.

A challenge arises when the interpolation path is chosen to be the straight-line segment between x
and y. In this case, the backward sampling scheme in Eq (8) reduces to the special case g = 0, so
sampling is performed by solving an ODE. Because the dynamics is deterministic, the model can no
longer represent a distribution, leading to a degeneracy.

To avoid this issue, we perturb y with a small Gaussian noise before using it as the endpoint x1 in
both training and sampling. This restores the stochasticity of the interpolation: the model learns a
deterministic flow transporting uy(x) to N (y, σ2I), which aligns well with standard flow-matching
formulations (Lipman et al., 2023; Liu et al., 2022).

Importantly, the perturbation is applied only to the endpoint used as the ODE’s initial condition; the
model itself is still conditioned on the original, unperturbed y. Thus, the perturbation alters only the
sampling path, not the conditioning variable.

From a conditional VAE perspective, this is similar to adding a small noise to the latent code z while
keeping the conditioning variable fixed (e.g., a class label or observed image). Such perturbations
regularize the decoder but do not change the underlying conditional distribution p(x | y) being
modelled. Likewise, in our setting, the flow model continues to learn the correct posterior uθ(x | y)
because y, the variable that defines the conditional law, remains unchanged. The perturbation merely
prevents degeneracy in the ODE initialization and does not distort the learned conditional mapping.

D THEORETICAL RESULTS RELATED TO THE IDENTIFIABILITY

Proposition 1 (Identifiability Condition). Let P(X) denote the set of clean sample distributions.
When the corruption kernel r(· | x) depends continuously on x, the convex objective in Eq (10)
admits a unique minimizer p∗ = pdata whenever Tr is injective on P(X). If Tr is not injective, the
objective is still convex, but all distributions p satisfying Trp = Trpdata are minimizers.

Proof. Let q := Trpdata and define

J(p) := DKL (q ∥ Trp) .

Convexity. For p1, p2 ∈ P(X) and t ∈ (0, 1),

Tr
(
tp1 + (1− t)p2

)
= t Trp1 + (1− t) Trp2.

Since the map m 7→ DKL (q ∥ m) is strictly convex,

J
(
tp1 + (1− t)p2

)
= DKL (q ∥ t Trp1 + (1− t) Trp2) < tJ(p1) + (1− t) J(p2).

Injective case. Assume Tr is injective on P(X). If p1 ̸= p2 then Trp1 ̸= Trp2, and by strict convexity
of m 7→ DKL (m ∥ q),

J
(
tp1 + (1− t)p2

)
< tJ(p1) + (1− t) J(p2) (t ∈ (0, 1)).

Thus J is strictly convex in p. Since J(pdata) = DKL (q ∥ q) = 0, pdata is the unique minimizer,
i.e., p∗ = pdata. (Continuity of x 7→

∫
f(y) r(y | x)dy for bounded continuous f gives the usual

l.s.c./compactness to ensure well-posedness; uniqueness comes from strict convexity.)

Non-injective case. If Tr is not injective, then for any p with Trp = q,

J(p) = DKL (q ∥ q) = 0,

which is the global minimum. Hence every p ∈ S(q) := {p ∈ P(X) : Trp = q} is a minimizer.

Proposition 2. Let h† = argminp∈S(q) DKL (h ∥ p) denote the Information-projection of h onto
the original KLAP solution set. Then the minimizer of Eq (11), p∗λ, converges to h† as λ→ 0.
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Proof. Let Trp = mp and define

F (p) := DKL(q∥Trp), G(p) := DKL(h∥p).

For λ > 0 define
p⋆λ ∈ argmin

p

{
F (p) + λG(p)

}
,

Then the optimality against h† gives, for each λ > 0,

F (p⋆λ) + λG(p⋆λ) ≤ F (h†) + λG(h†) = λG(h†),

since F (h†) = 0. Hence

0 ≤ F (p⋆λ) ≤ λ
(
G(h†)−G(h⋆

λ)
)
≤ λG(h†) → 0.

By compactness of P(X), pick a subsequence λk ↓ 0 with p⋆λk
→ p̄. By lower semicontinuity of F ,

F (p̄) ≤ lim infk F (p⋆λk
) = 0, hence p̄ ∈ S(q). From the same inequality, λkG(p⋆λk

) ≤ λkG(h†), so
dividing by λk > 0 and taking lim sup gives lim supk G(p⋆λk

) ≤ G(h†). By lower semicontinuity of
G and convergence p⋆λk

→ p̄,

G(p̄) ≤ lim inf
k

G(p⋆λk
) ≤ lim sup

k
G(p⋆λk

) ≤ G(h†).

Thus G(p̄) = minp∈S(q) G(p). As the minimizer h† is unique, p⋆λ → h†.

E THEORETICAL RESULTS RELATED TO THE ONE-SIDED OT

The derivation of Eq (15).

DKL (q ∥ Tp) =
∫

q(y) log
q(y)

Trp(y)
dy =

∫
q(y) log

q(y)∫
p(x′)r(y | x′)dx′ dy

= −
∫

q(y) log

∫
p(x′) r(y | x′)dx′ + C

= −
∫

q(y) log Ep

(
exp fy(x)

)
+ C

= −
∫

q(y)max
uy

[
Euy [fy(x)]−DKL (uy ∥ p)

]
+ C

= min
uy

Eq

[
DKL (uy ∥ p)− Euy [fy(x)]

]
+ C,

where we have applied Eq (14), the Donsker-Varadhan variational principle (Donsker & Varadhan,
1983) in the second last equation.

Lemma 1. Given the cost function be c(x,y) = − log r(y | x) for some corruption kernel r,
consider the problem

min
π∈Πy(q)

∫∫
π(x,y) c(x,y) dx dy +DKL

(
π ∥ p⊗ q

)
,

where Πy(q) is the set of joint distributions with fixed y-marginal q. If q is realizable under p via r,
i.e. p ∈ S(q), then the optimizer is

π⋆(x,y) = p(x | y) q(y),

which has marginals π⋆
x = p and π⋆

y = q.

Proof. Introducing a Lagrange multiplier for the constraint
∫
π(x,y) dx = q(y), the optimal solution

takes the form

π⋆(x,y) =
p(x) q(y) e−c(x,y)

Z(y)
, Z(y) =

∫
p(x) e−c(x,y) dx.
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With c(x,y) = − log r(y | x), this becomes

π⋆(x | y) ∝ p(x) r(y | x).

If q(y) =
∫
p(x) r(y | x) dx, then Z(y) = q(y), and thus

π⋆(x | y) = p(x)r(y | x)
q(y)

= p(x | y).

Therefore,
π⋆(x,y) = q(y) p(x | y),

which indeed has marginals π⋆
X = p and π⋆

Y = q.

Proposition 3. Define the cost function c(x,y) := − log r(y | x). Problem (16) is equivalent to

argminp Φ(p) + λDKL (h ∥ p)

with

Φ(p) := min
π∈Πy(q)

∫∫
c(x,y)π(x,y) dxdy +DKL (π ∥ p⊗ q)

where Πy(q) denotes the set of joint distributions of (x,y) with y-marginal fixed to q. Moreover,
when λ = 0, the optimal solution p∗ coincides with the x-marginal of the corresponding minimizer
π∗ in the inner problem.

Proof. We note that, by definition, c = −fy. Then starting from Eq (15), we have

min
uy

Eq

[
DKL (uy ∥ p)− Euy [fy(x)]

]
=min

π

∫∫
π(x,y) log

π(x,y)

p(x)q(y)
dxdy +

∫∫
π(x,y)c(x,y)dxdy

=min
π

∫∫
π(x,y)c(x,y)dxdy +DKL (π ∥ p⊗ q) .

where π(x,y) = uy(x) q(y) consisting of all joint distributions of x and y with the y-marginal
equal to q.

For the second part of the proposition, when λ = 0, our discussion in Sec 3.2 shows we have
p∗ ∈ S(q). Therefore, by Lem 1, we complete the proof.

F THEORETICAL RESULTS RELATED TO SFBD-OMNI

Proposition 4 (Convergence to the optimum). Let the distribution sequences {uk
y} and {pk} evolve

according to Eq (18), with p̃k updated by Eq (19). Starting from an arbitrary initialization p0 and for
γ ∈ (0, 1], under mild assumptions, we have pk → p∗λ as k →∞. Moreover, when λ→ 0, we have

lim
k→∞

pk = h†, DKL

(
h† ∥ pk+1

)
≤ DKL

(
h† ∥ pk

)
. (20)

In addition, the following bounds hold:

min
1≤k≤K

DKL

(
q ∥ Trpk

)
≤

DKL

(
h† ∥ p0

)
γK

, (21)

where K denotes the total number of iterations and q = Trpdata.

Convergence to p∗λ. By collecting the terms involving uy, Fλ(p
k, uy) defined in Eq (16) can be

written as

Fλ(p
k, uy) = Eq

(
DKL

(
uy ∥ uk

y

))
+Ak (22)
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where uk
y(x) is defined in Eq (18) and Ak contains all the terms independent of uy. As a result,

taking the minimizer of the objective in Eq (22) gives the update rule of uy in Eq (18). Note that the
result also shows that:

Fλ(p
k, uk−1

y )−Fλ(p
k, uk

y) = Eq

[
DKL

(
uy ∥ uk

y

)]
. (23)

In addition, according to the Donsker-Varadhan variational principle (Donsker & Varadhan, 1983),
when uy is picked to the minimizer of the current pk, we have

Fy(p
k, uk+1

y ) = Jλ(pk), (24)

with Jλ(pk) defined in Eq (11).

When p̃k is updated in an incrementable way as shown in Eq (19), we claim pk+1 is updated by
minimizing

Fλ(p, u
k
y) + νDKL

(
pk ∥ p

)
(25)

with ν = (1−γ)(1+λ)
γ . Notably, when updating ratio γ = 1, the entire sampling set E will be replaced,

and we recover the original SFBD-OMNI. In this case, ν = 0, the update of pk is then obtained by
taking the minimizer of Fλ(p, u

k
y) with uk

y fixed.

Note that

Fλ(p, u
k
y) + νDKL

(
pk ∥ p

)
= (1 + λ+ ν)DKL

(
1

1 + λ+ ν
(mk

p + λh+ νpk) ∥ p
)
+Bk,

(26)

where Bk collects all the terms not involving p and

mk
p(x) =

∫
q(y)uk

y(x)dy. (27)

If we take pk+1 as the minimizer of Eq (26), we have

pk+1 =
1

1 + λ+ ν
(mk

p + λh+ νpk). (28)

By choosing ν = (1−γ)(1+λ)
γ , the update rule of pk+1 coincides with the one in Eq (18) with p̃k

updated according to Eq (19).

To see this, we note that, when ν = (1−γ)(1+λ)
γ , the weights of mk

p =
∫
q(y)uk

y(x) dy in Eq (18)
and Eq (28) are matched and equal to γ

1+λ . In addition, the weight ratios between mk−1
p and mk

p

(absorbed respectively in pk in Eq (28) and p̃k in Eq (19)) are both 1 − γ. This suggests that for
both update rules, mk

p’s are mixed in exactly the same way. As a result, the two update rules must be
equivalent.

The optimiality of pk+1 also suggest,(
Fλ(p

k, uk
y) + νDKL

(
pk ∥ pk

) )
−

(
Fλ(p, u

k
y) + νDKL

(
pk ∥ pk+1

) )
=(1 + λ+ ν)DKL

(
1

1 + λ+ ν
(mk

p + λh+ νpk) ∥ pk
)
,

which implies

Fλ(p
k, uk

y)−Fλ(p
k+1, uk

y) ≥ 0. (29)

As a result, according to Eq (23) and Eq (29), we have Fλ(p
k, uk

y) → Fλ(p
k, uk+1

y ) →
Fλ(p

k+1, uk+1
y ) decreases monotonically. Combined with Eq (24), we have Jλ(pk) decreases

monotonically as well. In addition, as Jλ(pk) is bounded below, Jλ(pk) much converge to some
limit J∞

λ . As a result, for every subsequence of pk, it must converge to some cluster point p̄, where p̄
is then a fixed point under the update rules in Eq (18). That is,

p̄ =
1

1 + λ+ ν
(mp̄ + λh+ νp̄),
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where mp̄(x) =
∫
q(y)ūy(x)dy and the posterier distribution ūy(x) = p̄(x | y) = p̄(x)r(x|y)

Tr p̄(y)
. After

rearrangement, we have

1

1 + λ
mp̄ +

λ

1 + λ
h = p̄. (30)

We complete the proof of the optimal convergence by showing that the only p satisfying Eq (30) is
p∗λ.
Lemma 2. The following are equivalent for such p:

p(x) =
1

1 + λ

∫
q(y) p(x|y) dy + λ

1 + λ
h(x), (31)

∃µ ∈ R s.t. −
∫

q(y)

Tr(y)
r(y|x) dy − λ

h(x)

p(x)
+ µ = 0 (32)

Moreover as Jλ is strictly convex on the probability simplex, so any solution of (31) is the unique
global minimizer of Jλ.

Proof. (⇒). Multiply (32) by p(z) and apply∫
q(y)

Tr(y)
r(y|x) dy =

1

p(x)

∫
q(y) p(x|y) dy,

to obtain ∫
q(y) p(x|y) dy + λh(x) = µ p(x).

Integrate both sides over x:

1 + λ = µ

∫
p(x) dx = µ ⇒ µ = 1 + λ,

and substitute back to get (31).

(⇐). Starting from (31), rearrange:

(1 + λ)p(x)− λh(x) =

∫
q(y) p(x|y) dy = p(x)

∫
q(y)

Tr(y)
r(y|x) dy.

Divide by p(y) > 0 and rearrange:

−
∫

q(y)

Tr(y)
r(y|x) dy − λ

h(x)

p(x)
+ (1 + λ) = 0,

which is (32) with µ = 1 + λ.

In addition, the Lagrangian for minp≥0,
∫
p=1 Jλ(p) is L(p) = Jλ(p) + µ

(∫
p− 1

)
. For interior

p > 0, the Gateaux derivative of Jλ at p equals the left side of (32) minus µ. Thus (32) is the
first-order condition ∇L(p) = 0. Since Jλ is convex, any interior stationary point is a global
minimizer.

By Lem 2, we know that p̄ = p∗λ is the unique minimizer of Jλ for λ > 0. Moreover, as λ → 0,
Prop 2 implies that p∗λ → h†, which establishes the first part of the statement.

Convergence rate when λ→ 0. DefineH(p) = DKL

(
h† ∥ p

)
. When λ→ 0, as ν = (1−γ)(1+λ)

γ =
1−γ
γ , Eq (28) reduces to

pk+1 = γ mk
p + (1− γ) pk, (33)

where mk
p(x) =

∫
q(y)uk

y(x)dy and uk
y is updated according to Eq (18). Then by the convexity of

the KL divergence, we have

H(pk+1) ≤ (1− γ)H(pk) + γH(mk
p). (34)
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Rearrangement yields

H(mk
p) ≥ H(pk) +

1

γ

(
H(pk+1)−H(pk)

)
. (35)

Let H† denote the joint distribution induced by h†(x)r(y|x) and likewise P k the one by pk(x)r(y|x).
In addition, let u†

y denote the posterior distribution of H†. Note that, as h† ∈ S(q), we have
h†(x)r(y | x) = q(y)u†

y(x). Then, by the disintegration theorem (Vargas et al., 2021), we have

H(pk) = DKL

(
h† ∥ pk

)
= DKL

(
H† ∥ P k

)
= DKL

(
q ∥ Trpk

)
+ EH†

[
DKL

(
u†
y ∥ uk

y

)]
≥ DKL

(
q ∥ Trpk

)
+DKL

(
h† ∥ mk

p

) (35)

≥ DKL

(
q ∥ Trpk

)
+H(pk) + 1

γ

(
H(pk+1)−H(pk)

)
.

Cancel outH(pk) and rearrange to obtain the monotonic decrease of DKL

(
h† ∥ pk

)
−γDKL

(
q ∥ T pk

)
≥ H(pk+1)−H(pk). (36)

Telescoping it yields

H(p0) ≥
K∑

k=0

[
H(pk)−H(pk+1)

]
≥ γ

K∑
k=1

DKL

(
q ∥ T pk

)
. (37)

As a result,

min
k∈{1,2,...,K}

DKL

(
q ∥ T pk

)
≤ H(p

0)

γK
=

DKL

(
h† ∥ p0

)
γK

. (38)

G EXPERIMENT CONFIGURATIONS

All SFBD-OMNI models were trained on one to four L40 GPUs using a SLURM scheduling system.
With the standard SFBD-OMNI, training on CIFAR-10 takes about 5 days and on CelebA about 8
days. The online variant is more efficient, requiring roughly 4 days for CIFAR-10 and 6 days for
CelebA.

G.1 MODEL ARCHITECTURES

We implement the proposed methods using the EDM backbone (Karras et al., 2022) without precon-
ditioning, and adopt this configuration throughout our empirical studies. The training pipeline is built
on flow matching (Lipman et al., 2023).

Table 2: Experimental Configuration for CIFAR-10 and CelebA

Parameter CIFAR-10 CelebA

General
Batch Size 256 256
Loss Function Flow matching loss (Lip-

man et al., 2023)
Flow matching loss (Lip-
man et al., 2023)

Denoising Method torchdiffeq (Chen, 2018) torchdiffeq (Chen, 2018)
Sampling Method torchdiffeq (Chen, 2018) torchdiffeq (Chen, 2018)

Network Configuration
Dropout 0.3 0.3
Channel Multipliers {2, 2, 2} {2, 2, 2}
Model Channels 128 128
Channel Mult Noise 2 2

Optimizer Configuration
Optimizer Class RAdam (Kingma & Ba, 2015; Liu

et al., 2020)
RAdam (Kingma & Ba, 2015; Liu
et al., 2020)

Learning Rate 0.0001 0.0001
Betas (0.9, 0.95) (0.9, 0.95)
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G.2 DATASETS

All experiments on CIFAR-10 (Krizhevsky & Hinton, 2009) and CelebA (Liu et al., 2015) are
performed using only the training splits. For FID evaluation, each model generates 50,000 samples,
and the score is computed against the entire training set.
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H SAMPLING RESULTS

H.1 CIFAR-10

(a) SFBD-OMNI (FID: 21.31) (b) Online SFBD-OMNI (FID: 22.43)

Figure 4: Pixel Masking

(a) SFBD-OMNI (FID: 10.81) (b) Online SFBD-OMNI (FID: 11.06)

Figure 5: Addictive Gauss.
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(a) SFBD-OMNI (FID: 32.61) (b) Online SFBD-OMNI (FID: 31.32)

Figure 6: Grayscale

H.2 CELEBA

(a) SFBD-OMNI (FID: 11.60) (b) Online SFBD-OMNI (FID: 10.28)

Figure 7: Gauss. Blur
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(a) SFBD-OMNI (FID: 11.85) (b) Online SFBD-OMNI (FID: 11.21)

Figure 8: Grayscale

I DISCUSSION ON AMBIENT DIFFUSION OMNI

Ambient diffusion-Omni (Ambient-o) incorporates corrupted samples by injecting additional Gaus-
sian noise. The key idea is that once sufficient Gaussian noise is added, the corrupted-noisy distribu-
tion and the clean-noisy distribution become harder to distinguish. This observation suggests that
a corrupted sample, after being further noised, can effectively be treated as a noised clean sample,
allowing it to be used in standard diffusion-model training. This effect does not depend on the specific
form of the corruption process, allowing AD-OMNI to operate without requiring knowledge of the
corruption mechanism. However, this strategy comes with an inherent trade-off. While heavy noising
helps align corrupted samples with clean ones, it also risks erasing useful structure and details within
the observations. In other words, sufficient noise is needed for Ambient-o to function as intended, but
excessive noise may suppress the informative signal that could otherwise benefit model learning.

In contrast, SFBD-OMNI does not inject additional noise into the samples and therefore preserves the
full information of the observations. Rather than relying on excessive noising to align distributions,
our method leverages knowledge of the corruption process itself, avoiding information destruction
while still enabling effective training.

In Table 3, following the Ambient-o setting, we apply a Gaussian blur with varying strengths σ and
assume access to 10% clean samples. The table shows that, by fully leveraging the information

Blur Strength (σ) Ambient-o Online SFBD-OMNI

0.6 5.34 0.97
1.0 6.16 3.07

Table 3: Ambient-o vs. online SFBD-OMNI: FID under Gaussian blur of varying strengths.

contained in the corrupted samples, SFBD-OMNI achieves substantially lower FID across blur levels,
outperforming Ambient-o by a large margin.

J PRETRAINING MODELS USING SAMPLES FROM A SIMILAR DISTRIBUTION

As mentioned in Sec 6, according to our theory, when the corruption function is identifiable, a small
number of clean samples are needed only to obtain a good initial distribution p0. This also implies
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that if clean samples from the target distribution are unavailable, it is acceptable to use samples from
a similar distribution instead. To demonstrate this, we pretrain the model on CIFAR-10 using clean
samples from the truck class, and then apply iterative optimization to recover the distributions of
automobile, ship, and horse, where all samples are corrupted by additive Gaussian noise with noise
level σ = 0.2. The FID scores before and after iterative optimization are shown in Table 4.

Class After Pretrain Final

Automobile 8.36 6.19
Ship 13.96 8.78
Horse 25.87 13.55
Horse (no pretrain) – 80.17

Table 4: FID comparison across CIFAR-10 classes before and after finetuning, with pretraining
conducted on the truck class.

As the table shows, for classes similar to truck – such as automobile – the model successfully recovers
the target distribution, as indicated by the low final FID. For classes that are less similar, pretraining
still provides substantial benefits. In particular, for horse, pretraining on the truck class reduces the
final FID dramatically from 80.17 (without pretraining) to 13.55, illustrating the importance of a
good initial distribution even when the clean samples are drawn from a different – but related – class.
(Notably, the horse and truck classes still share several low-level characteristics such as edges and
common background elements like grass or road surfaces.)

K SUPPLEMENTARY EMPIRICAL RESULTS IN LATENT SPACE

In this section, we provide additional empirical results on high-resolution satellite (256 x 256) and
MRI datasets (320 x 320) corrupted by Poisson noise and compressive sensing (CS). For MRI,
the experiments are conducted in the latent space for computational efficiency. The results remain
consistent with those in the main text, further validating the effectiveness of SFBD-OMNI across
diverse corruption settings. At the same time, qualitative inspection reveals visible reconstruction
artifacts, indicating remaining limitations and motivating future work that incorporates stronger priors
or modality-specific inductive biases.

Satellite images and Poisson noise. We use satellite images from the training split of the NWPU-
RESISC45 dataset (Cheng et al., 2017), which contains 45 scene classes with 600 images per
class.

For this dataset, we consider Poisson noise corruption. Poisson noise arises naturally in photon-limited
imaging systems, including satellite and remote-sensing cameras, where the number of detected
photons per pixel is inherently stochastic and follows Poisson statistics (Hasinoff, 2014; Schott,
2007). Following common practice in Poisson-noise simulation studies, we vary the photon budget
as α ∈ 10, 50, 100, corresponding to severe, moderate, and mild shot-noise conditions, respectively.
We simulate Poisson noise by interpreting each pixel intensity xi,j,c ∈ [0, 1] as a normalized photon
arrival rate and sampling

yi,j,c ∼
1

α
Poisson(αxi,j,c),

followed by clipping the resulting values to the valid range [0, 1] (Makitalo & Foi, 2011).

MRI image set and compressive sensing corruption. We conduct our experiments on the fastMRI
brain dataset (Zbontar et al., 2018), using its multicoil training subset, which provides fully sampled
raw k-space data from clinical brain MRI scans. For each volume, we discard the final four slices, as
these typically contain little or no brain anatomy. After filtering, the dataset contains 52,778 MRI
slices, from which we randomly sample 2,000 as the clean set.

For this dataset, we consider the compressive sensing degradation, which is a natural corruption
model for MRI. In particular, MRI scanners do not acquire images directly; instead, they measure the
spatial frequencies of the underlying anatomy in k-space (Lustig et al., 2007). The acquisition process
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Stage Satellite — Poisson Noise MRI
Compressive Sensingα = 10 α = 50 α = 100

After Pretrain 9.32 5.71 4.43 36.98
Final Result 7.11 4.13 3.40 28.71

Table 5: FID Scores of Online SFBD-OMNI for satellite images (Poisson noise with α = 10, 50,
100) and MRI scans (compressive sensing).

Figure 9: Reconstructed Satellite Images – Poisson Noise (photo budget α = 10, 50, 100).

therefore corresponds to sampling the Fourier transform of the image. Because clinical MRI protocols
routinely undersample k-space to shorten scan time, compressed-sensing MRI accelerates acquisition
by collecting only a subset of frequency coefficients and relying on reconstruction algorithms to
recover the missing data. Consequently, partial Fourier undersampling is not an artificial degradation,
but a realistic and practically motivated corruption process for accelerated MRI.

To simulate a realistic compressive sensing degradation, we follow the standard undersampled MRI
acquisition model of Lustig et al. (2007). Given an image x ∈ RH×W , the corrupted observation is
obtained by undersampling its Fourier transform:

y = PΩ(F(x)) ,

where F denotes the 2-D discrete Fourier transform and PΩ is a binary mask selecting a subset Ω
of frequency coefficients. We use a fixed variable-density sampling mask, generated once at the
beginning of the experiment and reused for all samples. Following common practice in compressed-
sensing MRI, the central low-frequency region of k-space (10% of the spatial extent) is fully sampled
to preserve global structure, while coefficients outside this region are sampled independently with
probability 0.20. This produces a realistic and reproducible compressive sensing corruption operator
that retains essential low-frequency content while heavily undersampling high-frequency components.

Implementation. For satellite images, we continue using the model architectures described in Sec G.
For the experiments on MRI, we use the pretrained autoencoder (VAE) from Stable Diffusion v1.5
(Rombach et al., 2022a) to encode images into the latent space and to decode the model outputs. We
keep the model architectures described in Sec G unchanged, except for adjusting the input and output
channels to 4 to match the dimensionality of the latent representations.

Results. Table 5 summarizes the FID performance of online SFBD-OMNI for satellite images
with Poisson corruption and MRI scans under compressive sensing, measured after pretraining
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Figure 10: Reconstructed MRI – Compressive Sensing

and after online iterative refinement. Across all evaluated settings, the online phase yields a clear
improvement over the pretrained model, demonstrating the effectiveness of SFBD-OMNI as a general
reconstruction framework for real-world corruption processes.

We provide qualitative reconstructions in Figures 9 and 10. On satellite images, SFBD-OMNI visibly
recovers large-scale structures – such as building layouts, runway geometry, and aircraft outlines –
that are heavily disrupted by Poisson shot noise. In the MRI setting, despite severe undersampling,
the method reconstructs coherent tissue boundaries and globally consistent anatomical structure.

Limitations and noise sensitivity. While our framework produces promising reconstructions, the
Poisson-noise results also reveal a clear limitation. As the photon budget decreases (i.e., noise
increases), output quality degrades, with more residual artifacts and reduced fine-grained fidelity.
This trend is reflected quantitatively in Table 5, where performance drops moving from α=100 to
α=10. Qualitative examples in Fig 9 further highlight these failure modes–under extreme shot noise,
texture-level restoration remains challenging and fine structure is only partially recovered. Likewise,
for MRI samples corrupted by compressive sensing, we still notice some visible artifacts as shown in
Fig 10.

Across both Poisson-corrupted satellite imagery and compressive-sensed MRI scans, SFBD-OMNI
reliably recovers the global structure of the underlying data distribution, but struggles to reconstruct
fine details, particularly under severe corruption. Poisson noise reduces the amount of usable
information in low-photon settings, and similarly, heavy MRI undersampling restricts the available
signal for reconstruction. In such cases, recovering the clean distribution becomes inherently more
challenging and may require stronger priors or model-specific inductive biases.
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