

# 000 SFBD-OMNI: BRIDGE MODELS FOR LOSSY MEASURE- 001 002 MENT RESTORATION WITH LIMITED CLEAN SAMPLES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

## 007 008 ABSTRACT 009

011 In many real-world scenarios, obtaining fully observed samples is prohibitively  
012 expensive or even infeasible, while partial and noisy observations are comparatively  
013 easy to collect. In this work, we study distribution restoration with abundant noisy  
014 samples, assuming the corruption process is available as a black-box generator.  
015 We show that this task can be framed as a one-sided entropic optimal transport  
016 problem and solved via an EM-like algorithm. We further provide a test criterion to  
017 determine whether the true underlying distribution is recoverable under per-sample  
018 information loss, and show that in otherwise unrecoverable cases, a small num-  
019 ber of clean samples can render the distribution largely recoverable. Building on  
020 these insights, we introduce SFBD-OMNI, a bridge model-based framework that  
021 maps corrupted sample distributions to the ground-truth distribution. Our method  
022 generalizes Stochastic Forward-Backward Deconvolution (SFBD; Lu et al., 2025)  
023 to handle arbitrary measurement models beyond Gaussian corruption. Experi-  
024 ments across benchmark datasets and diverse measurement settings demonstrate  
025 significant improvements in both qualitative and quantitative performance.

## 026 1 INTRODUCTION

029 Diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;b;  
030 2023) have attracted growing interest and are now regarded as one of the most powerful frameworks  
031 for modelling high-dimensional distributions. They have enabled remarkable progress across various  
032 domains (Croitoru et al., 2023), including image (Ho et al., 2020; Song et al., 2021a;b; Rombach  
033 et al., 2022b), audio (Kong et al., 2021; Yang et al., 2023), and video generation (Ho et al., 2022).  
034 Today, most state-of-the-art image and video generative models are diffusion-based or their variants,  
035 such as flow matching (Lipman et al., 2023) and consistency models (Song et al., 2023).

036 While much of their success is attributed to stable training dynamics, diffusion models (DMs), like  
037 nearly all other generative frameworks, also depend on large collections of high-quality training data.  
038 In many practical domains, however, such data are costly or even infeasible to obtain, whereas large  
039 volumes of corrupted samples are readily available. For example, in medical imaging, acquiring  
040 cleaner X-ray scans requires higher radiation doses, which can endanger patient health (Seibert, 2008),  
041 making most available scans inherently noisy. Likewise, in ground-based astronomical imaging,  
042 clean deep-space observations demand long exposures under ideal atmospheric conditions, yet most  
043 telescope images are degraded by atmospheric turbulence, sensor noise, and light pollution (Chimitt  
& Chan, 2023).

044 Given this reality, a natural question arises: *With only a limited number of clean samples but an*  
045 *abundance of corrupted ones, can we train a model to recover the clean sample distribution?* Under  
046 suitable identifiability conditions on the corruption process, Bora et al. (2018) demonstrated that  
047 a generative model can indeed be trained using only corrupted samples, by leveraging the GAN  
048 framework (Goodfellow, 2016). Building on this idea and the remarkable success of diffusion models,  
049 subsequent works have sought to recover data distributions under specific corruption processes—  
050 for example, Ambient Diffusion for pixel masking (Daras & Dimakis, 2023), Tweedie Diffusion  
051 (Daras et al., 2023), and Stochastic Forward-Backward Deconvolution (SFBD, Lu et al. 2025) for  
052 additive Gaussian noise. However, to the best of our knowledge, there is no existing framework that  
053 both accommodates general corruption processes and theoretical guarantees, while exploiting the  
advantages of diffusion models. A more detailed review of related literature is provided in Sec B.

In this work, we address this gap by proposing a principled framework for the distribution recovery problem through diffusion-based models. Instead of formulating distribution learning as a min-max game via the variational representation of the Kullback-Leibler (KL) divergence, as in GANs, we show that an alternative variational form, provided by the Donsker-Varadhan principle (Donsker & Varadhan, 1983), reveals the problem to be essentially equivalent to a one-sided entropic optimal transport objective. This reformulation naturally yields an alternative minimization pipeline that fully leverages the design advantages of diffusion-based models. Importantly, our approach avoids adversarial training, making it both simpler to implement and more stable in practice. Since the method can be viewed as a generalization of the SFBD algorithm, we refer to it as *SFBD-OMNI*.

Under suitable identifiability conditions on the corruption process, the proposed method is theoretically guaranteed to recover the ground-truth clean data distribution. For practical corruption processes that do not satisfy these conditions, we further show that the clean distribution can still be largely recovered when a limited number of clean samples are available, and we provide convergence guarantees for this setting. Since the proposed alternating minimization algorithm requires training a sequence of neural networks, we also introduce an online variant that enables end-to-end training, simplifying implementation and potentially accelerating convergence, while still preserving optimality guarantees. Empirical results corroborate our theoretical analysis, and experiments across benchmark datasets demonstrate significant and consistent improvements over strong baselines under diverse measurement settings. A key strength of SFBD-OMNI is its robustness in scenarios where the identifiability condition fails: by incorporating a small number of clean samples, the method is still able to effectively guide recovery toward the true data distribution.

## 2 PRELIMINARY

**Diffusion models and SFBD.** Diffusion models learn distributions by progressively corrupting data with Gaussian noise and then training a model to approximate the reverse process through successive denoising steps. Formally, given a distribution  $\mu$  over  $\mathbb{R}^d$ , the forward process is governed by a stochastic differential equation (SDE):

$$d\mathbf{x}_t = d\mathbf{w}_t, \quad \mathbf{x}_0 \sim \mu \quad (1)$$

where  $\{\mathbf{w}_t\}_{t \in [0, T]}$  is the standard Brownian motion. Eq (1) induces a transition kernel  $p_{t|s}(\mathbf{x}_t | \mathbf{x}_s) = \mathcal{N}(\mathbf{x}_0, (t-s)\mathbf{I})$  for  $t \geq s \geq 0$ . Let  $p_t^\mu(\mathbf{x}_t) = \int p_{t|s}(\mathbf{x}_t | \mathbf{x}_0) \mu(\mathbf{x}_0) d\mathbf{x}_0$  denote the marginal distribution of  $\mathbf{x}_t$  (in particular,  $p_0^\mu = \mu$ ). Anderson (1982) showed that the backward SDE can describe the time-reversed process corresponding to the forward SDE:

$$d\mathbf{x}_t = -\mathbf{s}(\mathbf{x}_t, t)dt + d\bar{\mathbf{w}}_t, \quad \mathbf{x}_\tau \sim p_\tau, \quad (2)$$

where  $\tau > 0$ ,  $\bar{\mathbf{w}}_t$  is standard Brownian motion in reverse time and  $\mathbf{s}(\cdot, t) = \nabla \log p_t(\cdot)$  is the score function. In practice, the score can be efficiently approximated via a neural network  $\mathbf{s}_\theta$  trained by minimizing the conditional score matching loss  $\mathcal{L}_{\text{CSM}}(\mathbf{s}_\theta, \mu)$  (Song et al., 2021b). Crucially, this reverse SDE induces transition kernels that coincide with the posterior of the forward process:

$$p_{s|t}^\mu(\mathbf{x}_s | \mathbf{x}_t) = \frac{p_{t|s}(\mathbf{x}_t | \mathbf{x}_s) p_s^\mu(\mathbf{x}_s)}{p_t^\mu(\mathbf{x}_t)}, \quad \text{for } s \leq t \text{ in } [0, \tau]. \quad (3)$$

Consequently, sampling from  $p_{s|\tau}^\mu(\mathbf{x}_s | \mathbf{x}_\tau)$  can be carried out by integrating Eq (2) backward from  $\mathbf{x}_\tau$  with  $t = \tau$ . In standard diffusion models,  $\tau$  is chosen sufficiently large so that  $p_\tau^\mu \approx \mathcal{N}(0, \tau\mathbf{I})$ . Thus, sampling from the model amounts to drawing  $\mathbf{x}_\tau \sim \mathcal{N}(0, \tau\mathbf{I})$  followed by  $\mathbf{x}_0 \sim p_{0|\tau}^\mu(\mathbf{x}_0 | \mathbf{x}_\tau)$ .

In contrast, SFBD (Lu et al., 2025) operates in the regime of finite  $\tau$ , specifically considering a Gaussian corruption process realized through the forward transition kernel  $p_{\tau|0}(\mathbf{x}_\tau | \mathbf{x}_0)$ . In particular, they assume access to a limited set of clean samples  $\mathcal{E}_{\text{clean}}$  and a large set of Gaussian corrupted ones  $\mathcal{E}_{\text{noisy}}$  obtained through this forward transition kernel. For a set of samples  $\mathcal{E}$ , let  $p_{\mathcal{E}}$  denote the corresponding empirical distribution. Starting from a pretrained model  $\mathbf{s}_{\theta_0}$  by minimizing  $\mathcal{L}_{\text{CSM}}(\mathbf{s}_\theta, \mathcal{E}_{\text{clean}})$ , the algorithm proceeds as follows: for  $k = 1, 2, \dots, K$

$$\mathcal{E}_k \leftarrow \{ \mathbf{x}_0 : \mathbf{y} \in \mathcal{E}_{\text{noisy}}, \text{ solve Eq (2) from } t = \tau \text{ to } 0, \text{ with } \mathbf{x}_\tau = \mathbf{y} \text{ and } \mathbf{s} = \mathbf{s}_{\theta_{k-1}} \} \quad (4)$$

$$\theta_k \leftarrow \text{Continue training } \mathbf{s}_{\theta_{k-1}} \text{ to obtain } \mathbf{s}_{\theta_k} \text{ by minimizing } \mathcal{L}_{\text{CSM}}(\mathbf{s}_\theta, \mathcal{E}_k) \quad (5)$$

108 Lu et al. (2025) proved that as  $K \rightarrow \infty$ ,  $p_{\mathcal{E}_K}$  converges to the true distribution  $p_{\text{data}}$  by analyzing the  
 109 evolution of the underlying stochastic processes, leveraging the relation in Eq (3) for all  $(s, t) \in [0, \tau]$ .  
 110 However, this relation is inherently tied to the Gaussian forward corruption process in Eq (1), which  
 111 makes extending the approach to arbitrary corruption processes challenging.

112 Interestingly, the sampling step (4) essentially corresponds to drawing from  $p_{0|\tau}^\mu$  with  $\mu = p_{\mathcal{E}_{k-1}}$ .  
 113 This observation suggests that, rather than enforcing the posterior relation in (3) for all  $(s, t) \in [0, \tau]$   
 114 and learning it via score function approximation in (2), it may be sufficient to train a model that  
 115 learns only the posterior  $p_{0|\tau}^\mu$ . In this case, we may extend the forward kernel  $p_{\tau|0}$  to arbitrary  
 116 corruption processes. Indeed, when the corruption process satisfies suitable identifiability conditions,  
 117 a generalized SFBD method can be employed to recover the data distribution, as we will show in  
 118 Sec 5. We conclude this section by presenting a unified framework to learn  $p_{0|\tau}^\mu$  with bridge models.  
 119

120 **Learning posterior distributions with bridge models.** Unlike standard diffusion models, which  
 121 learn to transform Gaussian noise into data samples via the backward SDE (2), bridge models  
 122 generalize this idea to transformations between arbitrary distributions (Lipman et al., 2023; Peluchetti,  
 123 2023; Zhou et al., 2024). Given paired samples  $(\mathbf{x}, \mathbf{y}) \sim \pi(\mathbf{x}, \mathbf{y})$  from a joint distribution  $\pi$ , a  
 124 bridge model constructs a distributional path connecting the  $x$ -marginal  $\pi_x$  and the  $y$ -marginal  $\pi_y$   
 125 by interpolating between each pair  $(\mathbf{x}, \mathbf{y})$  through transition processes (Peluchetti, 2023). Typical  
 126 choices include line segments in flow matching and rectified flow (Liu et al., 2022; Lipman et al.,  
 127 2023), or Brownian bridges in DDBM and I2SB (Liu et al., 2023; Zhou et al., 2024). The resulting  
 128 process defines a transition path distribution  $p_{t|01}(\mathbf{x}_t \mid \mathbf{x}_0 = \mathbf{x}, \mathbf{x}_1 = \mathbf{y})$ , whose evolution from  $t = 1$   
 129 to 0 can often be expressed in closed form via a backward SDE (Peluchetti, 2023):  
 130

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t; \mathbf{x}_0, \mathbf{x}_1, t) dt + g(t) d\bar{\mathbf{w}}_t. \quad (6)$$

131 Let  $\mathbf{f}_\theta(\mathbf{x}_t; \mathbf{x}_1, t)$  be the minimizer of the conditional drift matching (CDM) loss  
 132

$$\mathcal{L}_{\text{CDM}}(\theta, \pi) = \mathbb{E}_{t \sim \mathcal{U}} \mathbb{E}_{(\mathbf{x}_0, \mathbf{x}_1) \sim \pi} \mathbb{E}_{\mathbf{x}_t \sim p_{t|01}} \|\mathbf{f}(\mathbf{x}_t; \mathbf{x}_0, \mathbf{x}_1, t) - \mathbf{f}_\theta(\mathbf{x}_t; \mathbf{x}_1, t)\|^2, \quad (7)$$

133 where  $\mathcal{U}$  is a sampling distribution over  $t \in (0, 1)$ . It then follows that samples from  $\pi_{0|1}(\mathbf{x}_0 \mid \mathbf{y})$  can  
 134 be obtained by integrating from  $t = 1$  to 0 with  $\mathbf{x}_1 = \mathbf{y}$  (Peluchetti, 2023; De Bortoli et al., 2023):<sup>1</sup>  
 135

$$d\mathbf{x}_t = \mathbf{f}_\theta(\mathbf{x}_t; \mathbf{x}_1, t) dt + g(t) d\bar{\mathbf{w}}_t. \quad (8)$$

136 In this way, given a Markov kernel  $r(\mathbf{y} \mid \mathbf{x})$  for a general corruption process and a sample distribution  
 137  $\mu$ , the joint distribution of  $(\mathbf{x}, \mathbf{y})$  is  $\pi(\mathbf{x}, \mathbf{y}) = \mu(\mathbf{x}) r(\mathbf{y} \mid \mathbf{x})$ . A bridge model can then be trained to  
 138 learn the posterior distribution in a manner analogous to diffusion models, using a CDM loss  $\mathcal{L}_{\text{CDM}}$   
 139 corresponding to the chosen transition process.  
 140

### 3 KULLBACK–LEIBLER AMBIENT PROJECTION PROBLEM

141 Let  $r(\cdot \mid \mathbf{x})$  denote the Markov kernel for the corruption process. Define the corresponding corruption  
 142 operator  $\mathcal{T}_r$ , which maps a clean distribution  $\mu$  to its corrupted counterpart:  
 143

$$\mathcal{T}_r \mu(\mathbf{y}) := \int r(\mathbf{y} \mid \mathbf{x}) \mu(\mathbf{x}) d\mathbf{x}. \quad (9)$$

144 Given the corrupted data distribution  $q := \mathcal{T}_r p_{\text{data}}$ , our objective, following the classical GAN  
 145 formulation in AmbientGAN (Bora et al., 2018), is to recover  $p_{\text{data}}$  by solving  
 146

$$p^* = \arg \min_p D_{\text{KL}}(q \parallel \mathcal{T}_r p). \quad (10)$$

147 The intuition is that minimizing the discrepancy between corrupted distributions drives  $p$  toward  
 148 the true clean distribution  $p_{\text{data}}$ . We refer to this optimization task as the Kullback–Leibler Ambient  
 149 Projection (KLAP) problem.  
 150

151 <sup>1</sup>If  $\mathbf{x}$  and  $\mathbf{y}$  are connected by a deterministic path (i.e.,  $g = 0$  in Eq (6)), the sampling process may become  
 152 ill-conditioned, as it degenerates to a deterministic mapping. To mitigate this,  $\mathbf{y}$  can be perturbed with a small  
 153 Gaussian noise during both training and sampling. See Sec C for details.

162  
163

## 3.1 IDENTIFIABILITY

164 Whether the recovery is possible depends on the choice of the corruption kernel  $r(\cdot | \mathbf{y})$ . For instance,  
 165 if  $\mathbf{x}$  is an image and  $r(\cdot | \mathbf{y})$  always outputs a white patch, then the corrupted distribution  $q = \mathcal{T}_r p_{\text{data}}$   
 166 collapses to a single point mass on the white patch, regardless of  $p_{\text{data}}$ . In this degenerate case, every  
 167 distribution  $p$  achieves the same objective value in (10), so the minimizer  $p^*$  need not equal the true  
 168 distribution  $p_{\text{data}}$ . The next proposition characterizes when minimizing (10) recovers  $p^*$ .

169 **Proposition 1** (Identifiability Condition). *Let  $\mathcal{P}(X)$  denote the set of clean sample distributions.  
 170 When the corruption kernel  $r(\cdot | \mathbf{x})$  depends continuously on  $\mathbf{x}$ , the convex objective in Eq (10)  
 171 admits a unique minimizer  $p^* = p_{\text{data}}$  whenever  $\mathcal{T}_r$  is injective on  $\mathcal{P}(X)$ . If  $\mathcal{T}_r$  is not injective, the  
 172 objective is still convex, but all distributions  $p$  satisfying  $\mathcal{T}_r p = \mathcal{T}_r p_{\text{data}}$  are minimizers.*

173

174 All proofs are deferred to the appendix. We highlight several common corruption operators  $\mathcal{T}_r$  together with their  
 175 injectivity properties:

176 *Additive noise.* If  $\mathbf{y} = \mathbf{x} + \epsilon$  with noise  $\epsilon \sim \nu$ , then  
 177  $r(\mathbf{y} | \mathbf{x}) = \nu(\mathbf{y} - \mathbf{x})$ . When  $\nu$  has a characteristic function  
 178 without zeros (e.g., Gaussian), the induced convolution  
 179 operator  $p \mapsto p * \nu$  is injective. This setting corresponds  
 180 to the classical density deconvolution problem (Meister,  
 181 2009), with SFBD (Lu et al., 2025) addressing the Gaus-  
 182 sian case in particular.

183 *Random dropout.* Each pixel is masked with probability  
 184  $\alpha > 0$  and otherwise unchanged. It can be shown that  
 185 when each pixel is masked independently,  $\mathcal{T}_r$  is injective  
 186 (Bora et al., 2018). (Non-injective when  $\alpha = 1$ .)

187 *Linear transforms.* If  $\mathbf{y} = A\mathbf{x}$  for a linear map  $A$ ,  
 188  $r(\mathbf{y} | \mathbf{x}) = \delta(\mathbf{y} - A\mathbf{x})$ . If  $A$  has full column rank (hence  
 189 is injective), then  $\mathcal{T}_r$  is also injective. (Non-injective if  $A$   
 190 has a nontrivial nullspace, such as projections or grayscale  
 191 conversions of images.)

192

## 3.2 AUGMENTED KLP

193  
194

195 As noted in Prop 1, if  $\mathcal{T}_r$  is not injective, the objective is convex but not strictly convex. In this case,  
 196 any distribution  $p \in \mathcal{P}(X)$  with  $\mathcal{T}_r p = \mathcal{T}_r p_{\text{data}}$  is a minimizer, and we denote this solution set by  
 197  $\mathcal{S}(q)$ . Thus,  $p_{\text{data}}$  cannot be uniquely identified from the noisy distribution. One way to overcome  
 198 this ambiguity is to incorporate additional information. In practice, this often comes from a small  
 199 number of clean samples or, more generally, from a prior distribution  $h$  over  $p_{\text{data}}$ . This motivates the  
 200 following augmented formulation.

201

202 Given the corruption operator  $\mathcal{T}_r$  defined in Eq (9), a *prior distribution*  $h$  over  $p_{\text{data}}$ , and a *regulariza-*  
 203 *tion parameter*  $\lambda \geq 0$ , we consider the following optimization problem:

204

$$p_{\lambda}^* = \arg \min_{p \in \mathcal{P}(X)} \mathcal{J}_{\lambda}(p), \quad \text{where } \mathcal{J}_{\lambda}(p) := D_{\text{KL}}(q \parallel \mathcal{T}_r p) + \lambda D_{\text{KL}}(h \parallel p). \quad (11)$$

205

206 For  $\lambda > 0$ , the strict convexity of the second term ensures the entire objective is strictly convex with  
 207 a unique minimizer  $p_{\lambda}^*$ , whereas for  $\lambda = 0$  it reduces to the classical ambient problem.

208

209 For intuition, consider a corruption process  $r$  that maps colour images to grayscale, with  $p_{\text{data}}$   
 210 consisting of human face images. Here  $\mathcal{T}_r$  is not injective, since many different colourings yield the  
 211 same grayscale distribution. In other words,  $\mathcal{S}(q)$  contains multiple elements. Thus, when  $\lambda = 0$ ,  
 212 we can recover the distribution of face structures but not the true colour patterns. To capture the full  
 213 colour distribution, we may assume access to a few clean colour images from  $p_{\text{data}}$  and encourage  $p$   
 214 to align with their empirical distribution  $h$  by choosing  $\lambda > 0$ .

215

Fig 1 illustrates how the additional regularization term shapes the optimal solution. As  $\lambda \rightarrow 0$ , the  
 216 first term in Eq (11) keeps  $p$  within  $\mathcal{S}(q)$ , while the second selects the element  $h^{\dagger} \in \mathcal{S}(q)$  closest to  
 217  $h$ . We formalize this observation in the following proposition.

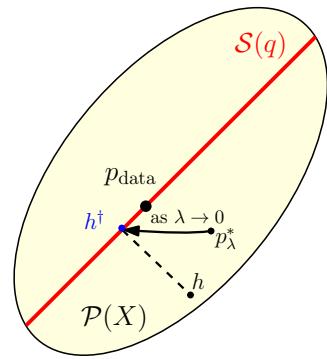


Figure 1: Effect of  $\lambda$  on  $p_{\lambda}^*$ . As  $\lambda \rightarrow 0$ , the first term in Eq (11) ensures that  $p$  remains within  $\mathcal{S}(q)$ , while the second term selects the element  $h^{\dagger} \in \mathcal{S}(q)$  closest to  $h$ . Consequently,  $p_{\lambda}^*$  converges to  $h^{\dagger}$ , which represents the projection of  $h$  onto the feasible set  $\mathcal{S}(q)$ .

216 **Proposition 2.** Let  $h^\dagger = \arg \min_{p \in \mathcal{S}(q)} D_{\text{KL}}(h \parallel p)$  denote the Information-projection of  $h$  onto  
 217 the original KLP solution set. Then the minimizer of Eq (11),  $p_\lambda^*$ , converges to  $h^\dagger$  as  $\lambda \rightarrow 0$ .  
 218

219 **Clean samples also matter under injective  $\mathcal{T}_r$  – Identifiability  $\neq$  Recoverability.** While Prop 1  
 220 shows that if  $\mathcal{T}_r$  is injective, then  $p_{\text{data}}$  is in principle recoverable by minimizing Eq (10), this guarantee  
 221 relies on having access to the true corrupted density  $q = \mathcal{T}_r p_{\text{data}}$ . In practice, however,  $q$  must be  
 222 estimated from finitely many noisy samples, and the resulting estimation error is amplified through  
 223 the inverse of  $\mathcal{T}_r$ . Consequently, the minimizer of Eq (10) based on an empirical estimate of  $q$  can  
 224 deviate substantially from  $p_{\text{data}}$ . For additive-noise corruption operators  $\mathcal{T}_r$ , the unfavourable sample  
 225 complexity of this inverse problem is well documented in the density deconvolution literature (see,  
 226 e.g., Meister (2009)), and the pessimistic rates suggest that acquiring enough noisy samples to train a  
 227 high-quality model is often practically infeasible (Lu et al., 2025). To overcome this issue, in Sec 6,  
 228 we show that even a very small number of clean samples (as few as 50) can substantially mitigate this  
 229 difficulty, consistent with the findings of Lu et al. (2025).  
 230

## 231 4 TWO VARIATIONAL PERSPECTIVES OF KLP

232 In this section, we present two variational perspectives for characterizing KLP, each derived from  
 233 a different variational formulation of the KL divergence. The first perspective corresponds to the  
 234 classical formulation, which was previously employed in training Ambient GANs (Bora et al., 2018),  
 235 and is included here for completeness. The second perspective reveals that the classical KLP can  
 236 be viewed as a one-sided entropic optimal transport (OT) problem and also leads to an alternative  
 237 minimization algorithm for solving both the classical and augmented KLP formulation.  
 238

### 239 4.1 AMBIENT GAN’S FORMULATION

240 For any convex function  $f$ , a corresponding  $f$ -divergence can be defined:  $D_f(q \parallel m) =$   
 241  $\int m(\mathbf{y}) f\left(\frac{q(\mathbf{y})}{m(\mathbf{y})}\right) d\mathbf{y}$  (Nowozin et al., 2016), which also admits an variational form  
 242

$$243 D_f(q \parallel m) = \max_g \left\{ \mathbb{E}_q[g(Y)] - \mathbb{E}_m[f^*(g(Y))] \right\}, \quad (12)$$

244 where  $f^*$  is the convex conjugate of  $f$ . When  $f(x) = x \ln x$ ,  $D_f$  reduces to the KL divergence. As a  
 245 result, with this choice of  $f$ , the original KLP problem (10) can be rewritten as  
 246

$$247 \min_p D_f(q \parallel \mathcal{T}_r p) = \min_p \max_g \left\{ \mathbb{E}_q[g(Y)] - \mathbb{E}_{\mathcal{T}_r p}[f^*(g(Y))] \right\}. \quad (13)$$

248 This min-max formulation can be naturally implemented in the standard GAN framework (Good-  
 249 fellow, 2016), with  $g$  as the discriminator and  $p$  parameterized by the generator. Bora et al. (2018)  
 250 showed that this setup can recover  $p_{\text{data}}$  when  $\mathcal{T}_r$  is injective and the corruption process is differentiable  
 251 with respect to the clean inputs.

252 To the best of our knowledge, existing KLP-based frameworks cannot directly incorporate the  
 253 additional identifiability term or support a more scalable, diffusion/bridge-style generator. In Sec 4.2,  
 254 we introduce an alternative variational formulation that yields an alternating-minimization algorithm  
 255 (Sec 5) addressing both issues. Notably, the method requires only black-box access to the corruption  
 256 process, without any differentiability assumptions.  
 257

### 258 4.2 ONE-SIDED ENTROPIC OPTIMAL TRANSPORT FORMULATION

259 Let  $f_{\mathbf{y}}(\mathbf{x}) = \log r(\mathbf{y} \mid \mathbf{x})$ .<sup>2</sup> Rather than invoking the variational representation of KL-divergence, we  
 260 apply the Donsker-Varadhan variational principle (Donsker & Varadhan, 1983):  
 261

$$262 \log \mathbb{E}_{\mathbf{x} \sim p}[e^{f_{\mathbf{y}}(\mathbf{x})}] = \max_{u_{\mathbf{y}}} \mathbb{E}_{\mathbf{x} \sim u_{\mathbf{y}}}[f_{\mathbf{y}}(\mathbf{x})] - D_{\text{KL}}(u_{\mathbf{y}} \parallel p), \quad (14)$$

263 where  $u_{\mathbf{y}}$  denotes a distribution of  $\mathbf{x}$  given  $\mathbf{y}$ . Taking expectation over  $\mathbf{y} \sim q$  and rearranging yields  
 264

$$265 D_{\text{KL}}(q \parallel \mathcal{T}_r p) = \min_{u_{\mathbf{y}}} \mathbb{E}_{\mathbf{y} \sim q} [D_{\text{KL}}(u_{\mathbf{y}} \parallel p) - \mathbb{E}_{\mathbf{x} \sim u_{\mathbf{y}}}[f_{\mathbf{y}}(\mathbf{x})]] + C, \quad (15)$$

266 where  $C$  collects the terms independent of  $p$  (see Sec E for the derivation). As a result, the augmented  
 267 KLP problem (11) is equivalent to

$$268 \arg \min_p \min_{u_{\mathbf{y}}} \mathcal{F}_{\lambda}(p, u_{\mathbf{y}}) \quad (16)$$

269 <sup>2</sup>We assume  $r(\cdot \mid \mathbf{x})$  has full support; this can be enforced by injecting an infinitesimal Gaussian noise to  $\mathbf{y}$ .

270 with

271 
$$\mathcal{F}_\lambda(p, u_y) := \mathbb{E}_{y \sim q} [D_{\text{KL}}(u_y \| p) - \mathbb{E}_{x \sim u_y} [f_y(x)]] + \lambda D_{\text{KL}}(h \| p).$$
 272

273 This nested minimization suggests an alternative strategy for solving the (augmented) K LAP problem  
274 in Sec 5. We conclude this section by noting that this observation allows K LAP to be viewed as a  
275 variant of classical entropic OT, offering a new perspective to understand the K LAP problem.276 **Proposition 3.** Define the cost function  $c(x, y) := -\log r(y | x)$ . Problem (16) is equivalent to

277 
$$\arg \min_p \Phi(p) + \lambda D_{\text{KL}}(h \| p)$$
 278

279 with

280 
$$\Phi(p) := \min_{\pi \in \Pi_y(q)} \iint c(x, y) \pi(x, y) dx dy + D_{\text{KL}}(\pi \| p \otimes q)$$
 281

282 where  $\Pi_y(q)$  denotes the set of joint distributions of  $(x, y)$  with  $y$ -marginal fixed to  $q$ . Moreover,  
283 when  $\lambda = 0$ , the optimal solution  $p^*$  coincides with the  $x$ -marginal of the corresponding minimizer  
284  $\pi^*$  in the inner problem.285 Notably,  $\Phi(p)$  in Prop 3 coincides with the entropic OT objective (Cuturi, 2013), but with constraints  
286 imposed only on the  $y$ -marginal rather than on both marginals. In particular, when the cost function  
287 is quadratic, as in the case of a Gaussian corruption kernel, the optimal coupling  $\pi^*$  corresponds  
288 to the Schrödinger Bridge (Léonard, 2014). Moreover, Prop 3 shows that in the absence of the  
289 regularization toward the **prior distribution**  $h$  (i.e., when  $\lambda = 0$ ), the optimal solution  $p^*$  induces an  
290 optimal coupling  $\pi^*$  in the inner entropic OT problem whose marginals are precisely  $p^*$  and  $q$ . This  
291 interpretation suggests that solving K LAP amounts to finding a distribution  $p$  that minimizes the  
292 transportation cost induced by the corruption kernel, subject to entropy regularization. The methods  
293 introduced in Sec 5 provide an effective approach for solving this one-sided entropic OT problem.

## 294

295 

## 5 STOCHASTIC FORWARD-BACKWARD DECONVOLUTION-OMNI

296 The variational formulation of the augmented K LAP in Eq (16) suggests an alternative minimization  
297 approach for finding the minimizer  $p_\lambda^*$  defined in Eq (11). This leads to an algorithm that generalizes  
298 SFBD (Lu et al., 2025) to arbitrary corruption models, which we call *SFBD-OMNI*.301 **SFBD-OMNI.** Starting from an arbitrary initialization  $p^0(x)$ , we minimize  $\mathcal{F}(p, u_y)$  in (16) by  
302 alternating updates over  $p$  and  $u_y$ , holding the other fixed. Specifically, at each iteration, we compute

303 
$$u_y^k = \arg \min_{u_y} \mathcal{F}_\lambda(p^k, u_y), \quad p^{k+1} = \arg \min_p \mathcal{F}_\lambda(p, u_y^k), \quad (17)$$
 304

305 where both subproblems admit closed-form solutions:

306 
$$u_y^k(x) = \frac{p^k(x) r(y | x)}{\mathcal{T}_r p^k(y)}, \quad p^{k+1}(x) = \frac{1}{1 + \lambda} \tilde{p}^{k+1}(x) + \frac{\lambda}{1 + \lambda} h(x), \quad (18)$$
 307

308 with  $\tilde{p}^{k+1}(x) = \int q(y) u_y^k(x) dy$ .309 Note that  $u_y^k$  is the posterior distribution of  $p^k(x)$  under the joint distribution  $\pi(x, y) = p^k(x) r(y | x)$ .  
310 As described in Sec 2, by introducing a transition process connecting  $x$  and  $y$ , we can leverage a  
311 bridge model to learn this posterior in a manner analogous to diffusion models, by minimizing the  
312 corresponding CDM loss  $\mathcal{L}_{\text{CDM}}$ . Let  $u_\theta$  denote the learnt posterior distribution. The quantity  $\tilde{p}_k$  is  
313 then approximated using samples from  $u_\theta(\cdot | y)$  with  $y \sim q(y)$ .314 We describe the implementation of SFBD-OMNI in Alg 1, assuming access to a small set of clean  
315 samples that define the prior  $h$ , denoted  $h_{\text{clean}}$ , which also serves as the initialization  $p^0$ . During  
316 training,  $\tilde{p}^k$  is approximated by  $p_\varepsilon$  and updated iteratively, while the mixture of  $p_\varepsilon$  and  $h_{\mathcal{E}_{\text{clean}}}$  is  
317 realized through a weighted sampler.318 **Online SFBD-OMNI.** The implementation of Alg 1 alternates between training and sampling, which  
319 in practice demands considerable manual intervention. Moreover, because  $\mathcal{E}$  changes drastically at  
320 each iteration, optimizers such as Adam (Kingma & Ba, 2015) must be reset after every fine-tuning  
321 step; otherwise, stale momentum can trigger a sharp and irreversible increase in training loss. To

324

325

326

**Algorithm 1** SFBD-OMNI

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

**Input:** clean data  $\mathcal{E}_{\text{clean}} = \{\mathbf{x}^{(i)}\}_{i=1}^M$ , noisy data $\mathcal{E}_{\text{noisy}} = \{\mathbf{y}^{(i)}\}_{i=1}^N$ , CDM loss  $\mathcal{L}_{\text{CDM}}$ 

// Pretrain using clean samples

**1**  $\theta \leftarrow \text{Minimizing } \mathcal{L}_{\text{CDM}}(\theta, h_{\mathcal{E}_{\text{clean}}}(\mathbf{x}) r(\mathbf{y}|\mathbf{x}))$ **2**  $\mathcal{E} \leftarrow \{\mathbf{x}^{(i)} : \text{take one sample from } u_{\theta}(\mathbf{x}|\mathbf{y}) \text{ for each corrupted sample } \mathbf{y} \in \mathcal{E}_{\text{noisy}}\}.$ 

// Iteratively optimize with corrupted samples

**3 for**  $k = 1, 2, \dots, K$  **do****4**     $\theta \leftarrow \text{Minimizing } \mathcal{L}_{\text{CDM}}(\theta, p(\mathbf{x}) r(\mathbf{y}|\mathbf{x}))$   
      with  $p = \frac{1}{1+\lambda} p_{\mathcal{E}} + \frac{\lambda}{1+\lambda} h_{\mathcal{E}_{\text{clean}}}.$ **5**     $\mathcal{E} \leftarrow \{\mathbf{x}^{(i)} : \text{take one sample from } u_{\theta}(\mathbf{x}|\mathbf{y}) \text{ for each corrupted sample } \mathbf{y} \in \mathcal{E}_{\text{noisy}}\}$ **Output:** Final  $u_{\theta}$ **Algorithm 2** Online SFBD-OMNI**Input:** clean data  $\mathcal{E}_{\text{clean}} = \{\mathbf{x}^{(i)}\}_{i=1}^M$ , noisy data $\mathcal{E}_{\text{noisy}} = \{\mathbf{y}^{(i)}\}_{i=1}^N$ , gradient steps  $m$ , CDM loss  $\mathcal{L}_{\text{CDM}}$ 

// Pretrain using clean samples

**1**  $\theta \leftarrow \text{Minimizing } \mathcal{L}_{\text{CDM}}(\theta, h_{\mathcal{E}_{\text{clean}}}(\mathbf{x}) r(\mathbf{y}|\mathbf{x}))$ **2**  $\mathcal{E} \leftarrow \{\mathbf{x}^{(i)} : \text{take one sample from } u_{\theta}(\mathbf{x}|\mathbf{y}) \text{ for each corrupted sample } \mathbf{y} \in \mathcal{E}_{\text{noisy}}\}.$ 

// Iteratively optimize with corrupted samples (online updates)

**3 for**  $k = 1, 2, \dots, K$  **do****4**     $\theta \leftarrow \text{Minimizing } \mathcal{L}_{\text{CDM}}(\theta, p(\mathbf{x}) r(\mathbf{y}|\mathbf{x}))$   
      with  $p = \frac{1}{1+\lambda} p_{\mathcal{E}} + \frac{\lambda}{1+\lambda} h_{\mathcal{E}_{\text{clean}}}.$  $\mathcal{E} \leftarrow \{\text{Replace ratio } \gamma \text{ of samples in } \mathcal{E} \text{ with the new ones by sampling } \mathbf{x} \text{ from } u_{\theta}(\mathbf{x}|\mathbf{y}) \text{ for } \mathbf{y} \text{ drawn from } \mathcal{E}_{\text{noisy}}\}$ **Output:** Final  $u_{\theta}$ 

guarantee convergence in each iteration, the network must also be optimized for a sufficiently large number of steps. However, this can lead to overfitting on the current iterate  $p^k$ , making subsequent adaptation to new targets more difficult.

To address these challenges, we introduce an online variant in Alg 2, where a fraction  $\gamma$  of the reconstructed set  $\mathcal{E}$  is refreshed at each iteration. This corresponds to updating  $\tilde{p}^{k+1}(\mathbf{x})$  in Eq (18) as

$$\tilde{p}^{k+1}(\mathbf{x}) = \gamma \int q(\mathbf{y}) u_{\mathbf{y}}^k(\mathbf{x}) d\mathbf{y} + (1 - \gamma) \tilde{p}^k(\mathbf{x}) \quad \text{with} \quad \tilde{p}^0(\mathbf{x}) = \int q(\mathbf{y}) u_{\mathbf{y}}^0(\mathbf{x}) d\mathbf{y}. \quad (19)$$

When  $\gamma = 1$ , the algorithm reduces to the standard SFBD-OMNI. Because  $\mathcal{E}$  changes only slightly after each update, we can continue optimizing  $u_{\theta}$  for additional gradient steps without resetting the optimizer state, allowing it to adapt smoothly to the new minimum. This strategy reduces manual intervention and accelerates convergence. In Prop 4, we show that this “lazy” update scheme still guarantees convergence to the optimum. Since the result covers the case  $\gamma = 1$ , it also establishes the convergence of SFBD-OMNI.

**Proposition 4** (Convergence to the optimum). *Let the distribution sequences  $\{u_y^k\}$  and  $\{p^k\}$  evolve according to Eq (18), with  $\tilde{p}^k$  updated by Eq (19). Starting from an arbitrary initialization  $p^0$  and for  $\gamma \in (0, 1]$ , under mild assumptions, we have  $p^k \rightarrow p_{\lambda}^*$  as  $k \rightarrow \infty$ . Moreover, when  $\lambda \rightarrow 0$ , we have*

$$\lim_{k \rightarrow \infty} p^k = h^{\dagger}, \quad D_{\text{KL}}(h^{\dagger} \parallel p^{k+1}) \leq D_{\text{KL}}(h^{\dagger} \parallel p^k). \quad (20)$$

In addition, the following bounds hold:

$$\min_{1 \leq k \leq K} D_{\text{KL}}(q \parallel \mathcal{T}_r p^k) \leq \frac{D_{\text{KL}}(h^{\dagger} \parallel p^0)}{\gamma K}, \quad (21)$$

where  $K$  denotes the total number of iterations and  $q = \mathcal{T}_r p_{\text{data}}$ .

While Eq (21) may suggest that a smaller  $\gamma$  leads to slower convergence, note that with smaller  $\gamma$ , the set  $\mathcal{E}$  is only partially updated, so the network  $u_{\theta}$  requires fewer steps to converge. Thus, although a larger  $K$  may be needed to guarantee convergence, each step is cheaper, and the total training time does not necessarily increase. In practice, since the optimizer does not need to reset, training time can even decrease.

**Comparison to existing methods.** When  $\lambda = 0$  and the corruption process is Gaussian noise injection, with the posterior modeled via the backward SDE in Sec 2, our framework reduces to SFBD (Lu et al., 2025). In EMDiffusion, Bai et al. (2024) heuristically derive an iterative rule that coincides with SFBD-OMNI’s update in Eq (18) when  $\lambda = 0$ ; our work establishes convergence of

| Method                              | CIFAR-10          |                     |               | CelebA          |               |
|-------------------------------------|-------------------|---------------------|---------------|-----------------|---------------|
|                                     | Pixel Masking (✓) | Additive Gauss. (✓) | Grayscale (✗) | Gauss. Blur (✗) | Grayscale (✗) |
| Noise2Self (Batson & Royer, 2019)   | –                 | 92.06               | –             | –               | –             |
| SURE-Score (Aali et al., 2023)      | 220.01            | 132.61              | <b>109.04</b> | 191.96          | <b>219.81</b> |
| AmbientDiff (Daras & Dimakis, 2023) | 28.88             | –                   | –             | –               | –             |
| EMDiffusion (Bai et al., 2024)      | <b>21.08</b>      | 86.47               | 115.11        | 91.89           | 59.04         |
| SFBD (Lu et al., 2025)              | –                 | 13.53               | –             | –               | –             |
| SFBD-OMNI (ours)                    | 21.31             | <b>10.81</b>        | 32.61         | 11.60           | 11.85         |
| Online SFBD-OMNI (ours)             | 22.43             | 11.06               | <b>31.32</b>  | <b>10.28</b>    | <b>11.21</b>  |

Table 1: FID scores across different corruption processes on CIFAR-10 and CelebA. Processes marked with ✓ satisfy the identifiability condition, while those marked with ✗ do not. Pixel masking is applied with probability  $p = 0.6$  per pixel. Additive Gaussian corruption adds noise with  $\sigma = 0.2$  to each clean sample. The grayscale process converts a color image into a single-channel grayscale image, while Gaussian blur is applied with a kernel size of nine and  $\sigma = 2$ . All methods, except Noise2Self, are pretrained on 50 clean images randomly sampled from the training dataset.

this rule to the optimal solution, which EMDiffusion does not, and further extends it with an online formulation and the ability to handle non-identifiable corruption processes. Unlike AmbientGAN (Bora et al., 2018), which requires differentiating noisy samples with respect to clean ones and cannot address non-identifiable corruption processes, SFBD-OMNI and the online version assume black-box access to the corruption process, avoid adversarial training, and thus sidestep common issues such as gradient vanishing (Goodfellow et al., 2014; Miyato et al., 2018; Fedus et al., 2018) and mode collapse (Goodfellow, 2016; Arjovsky & Bottou, 2017; Mescheder et al., 2018).

## 6 EMPIRICAL STUDY

In this section, we evaluate the proposed SFBD-OMNI framework introduced in Sec 5. Across diverse benchmark settings, both SFBD-OMNI and its online variant demonstrate superior performance over existing approaches for recovering the original data distribution from corrupted observations. Furthermore, our ablation studies show that the method can effectively address non-identifiable corruption processes.

**Datasets and evaluation metrics.** Our experiments are performed on CIFAR-10 (Krizhevsky & Hinton, 2009) and CelebA (Liu et al., 2022), with image sizes of  $32 \times 32$  and  $64 \times 64$ , respectively. CIFAR-10 contains 50,000 training samples and 10,000 test samples spanning 10 object categories. CelebA is a large-scale dataset of human faces with a standard split of 162,770 training, 19,867 validation, and 19,962 test images. For CelebA, preprocessing follows the official tool released with DDIM (Song et al., 2021a).

**Models and other configurations.** In our implementation, we parameterize  $u_\theta(\mathbf{x} \mid \mathbf{y})$  with a flow-matching model (Lipman et al., 2023) and apply small endpoint perturbations to  $\mathbf{y}$  to avoid degeneracy, as described in Sec C. We adopt flow matching because it converges faster and has a lower-variance training objective than diffusion-based models, while achieving comparable or even superior sample quality. This computational efficiency is particularly important in our framework, where the bridge models are trained repeatedly against a moving target distribution. To further mitigate overfitting, we adopt the non-leaky augmentation technique (Karras et al., 2022). For the classical SFBD-OMNI, after pretraining on a small set of clean samples, we set the clean-sample weight  $\frac{\lambda}{1+\lambda}$  to zero when the corruption process satisfies the identifiability condition; otherwise, we use  $\frac{\lambda}{1+\lambda} = 0.2$ , unless specified otherwise. For the flow variant, we fix  $\frac{\lambda}{1+\lambda} = 0.2$ , as this setting yields more stable training. In addition, unless noted, we set the noisy-set update ratio to  $\gamma = 0.002$  and perform the update at the end of each training epoch. For sampling, we generate samples by first picking  $\mathbf{y}$  from the noisy dataset and then sampling from the final  $\mathbf{u}_\theta(\mathbf{x} \mid \mathbf{y})$ . Additional training configurations are provided in Sec G. We evaluate image quality using the Frechet Inception Distance (FID), computed between the reference dataset and 50,000 images generated by the models.

**Performance comparison.** In Table 1, we compare SFBD-OMNI with representative models trained on noisy images corrupted by various processes. As discussed in Sec 3.1, pixel masking and additive Gaussian noise satisfy the identifiability condition, making it theoretically possible to recover the data distribution using only noisy samples. In contrast, grayscale conversion and Gaussian blur do not satisfy this condition, meaning that additional prior information is required for effective distribution recovery. (Notably, Gaussian blur discards high-frequency components of an image and can be viewed as a projection in the Fourier domain.)

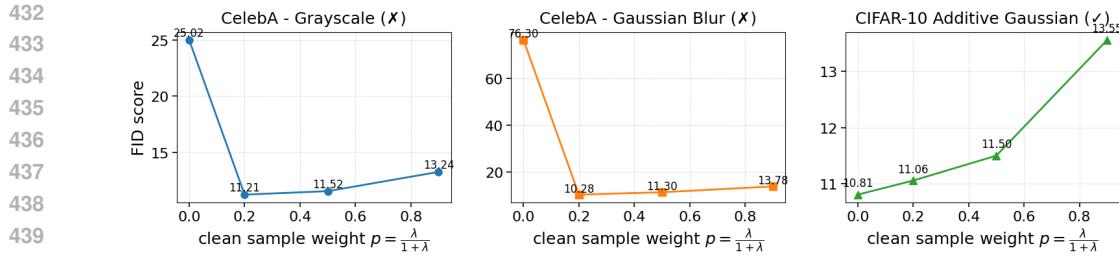


Figure 2: FID scores of Online SFBD-OMNI under different clean sample weights  $p = \frac{\lambda}{1+\lambda}$  across various corruption processes. Processes marked with  $\checkmark$  satisfy the identifiability condition, while those marked with  $\times$  do not.

For the baseline models, Noise2Self (Batson & Royer, 2019) is a general-purpose denoising method trained with self-supervised techniques. SURE-Score (Aali et al., 2023) and EMDiffusion (Bai et al., 2024) address general inverse problems, leveraging Stein’s unbiased risk estimate and expectation–maximization, respectively. Notably, the update rules of EMDiffusion coincide with those of standard SFBD-OMNI when no additional prior information is incorporated, rendering it ineffective for non-identifiable corruption processes. AmbientDiff (Daras & Dimakis, 2023), in contrast, is specifically designed to train diffusion models on images corrupted by masking. We also report results from the original SFBD, which is tailored to additive Gaussian noise (Lu et al., 2025). (A discussion and empirical comparison with a very recent work, Ambient Diffusion OMNI (Daras et al., 2025b), is provided in Sec I.) Following Bai et al. (2024), unless otherwise stated, all methods except Noise2Self are pretrained on 50 clean images randomly sampled from the training dataset. In SFBD-OMNI and the flow variant, these images are further used as prior information during sequential training whenever the clean-sample weight  $\frac{\lambda}{1+\lambda} > 0$ . For all reported results, we consistently use the same set of 50 clean images.

As shown in Table 1, apart from the pixel masking corruption process, SFBD-OMNI and its flow variant consistently outperform the baselines, achieving substantially better performance on the non-identifiable processes. In the pixel masking case, EMDiffusion reports a marginally lower FID than SFBD-OMNI; however, the difference is negligible, indicating that SFBD-OMNI performs on par with EMDiffusion in this setting. For the non-identifiable corruptions, we observe that incorporating prior information, by jointly training the model with reconstructed samples in  $\mathcal{E}$  and clean samples, effectively guides the model toward the true data distribution, as reflected in the much lower FID scores. In addition, because the flow-variant implementation always assigns a non-zero weight  $\frac{\lambda}{1+\lambda}$  to clean samples for added stability, its optimal solution  $p_\lambda^*$  deviates from the true data distribution in identifiable cases, leading to a slightly higher FID than classical SFBD-OMNI. In contrast, for the non-identifiable processes, this additional regularization is essential and applied in both variants. Consequently, the smooth updates and end-to-end training pipeline of the flow model provide it with an additional advantage, enabling it to achieve lower FID scores.

**Effect of the clean sample weights.** To examine how SFBD-OMNI leverages clean samples to mitigate identifiability issues, Fig 2 reports FID curves under varying clean-sample weights and corruption types (settings follow Table 1). When identifiability does not hold, using clean samples as a soft prior constraint guides the model toward the correct distribution; however, overly large weights pull the solution away from the target, increasing FID. Conversely, when identifiability is satisfied, this regularization is unnecessary and may even degrade performance. This phenomenon corroborates our discussion in Sec 3 and Sec 4. In particular, in identifiable setups, clean samples mainly help initialize  $p_0$ , after which training proceeds best without them (e.g., CIFAR-10 with Gaussian noise). When identifiability fails, clean samples must remain active ( $\lambda > 0$ ) to avoid convergence to an arbitrary element of  $\mathcal{S}(q)$ , as seen in CelebA with Grayscale and Gaussian Blur, where removing clean samples increases FID dramatically. These trends align directly with the theoretical role of identifiability. Since the clean samples are only used for initializing  $p_0$  when the identifiability condition is satisfied, we show in Sec J that it is acceptable to use samples from a similar distribution instead when clean samples are not available.

**Effect of the number of clean samples.** Fig 3a reports the FID scores of Online SFBD-OMNI on CelebA under Grayscale corruption for different amounts of clean data. Increasing the number of clean samples improves performance at both the pretraining and iterative optimization stages, though with diminishing returns. This is expected and aligned with our discussions in Sec 5: more clean

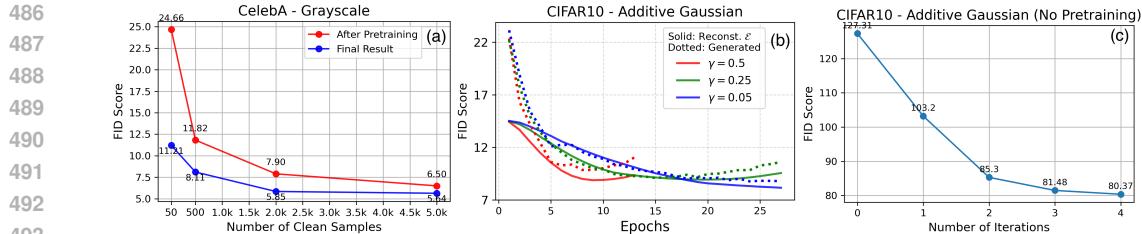


Figure 3: FID scores of SFBD-OMNI under different settings. (a) Online SFBD-OMNI FIDs under grayscale corruption for varying numbers of clean samples. (b) FID trajectories of the online version under additive Gaussian corruption ( $\sigma = 0.5$ ) with 2k clean samples, for both the running reconstructed set  $\mathcal{E}$  and a newly generated sample set. (c) FIDs of the classical SFBD-OMNI under additive Gaussian ( $\sigma = 0.2$ ) without clean samples; iteration 0 represents the untrained model.

samples make the empirical clean distribution  $h_{\text{clean}}$  closer to  $p_{\text{data}}$ , yielding a better initialization  $p^0 = h_{\text{clean}}$  and a limiting distribution  $p_\lambda^*$  (defined in Eq (11)) that more closely matches  $p_{\text{data}}$ . Once  $h_{\text{clean}}$  is already a good approximation, however, additional samples provide only marginal benefit.

**Effect of the update ratio  $\gamma$ .** Fig 3b shows the FID trajectories of both the running reconstructed sample set  $\mathcal{E}$  and a newly generated sample set during the iterative optimization stage of Online SFBD-OMNI, evaluated under different reconstructed-sample update ratios  $\gamma$ . The experiment is conducted on CIFAR-10 with additive Gaussian corruption ( $\sigma = 0.5$ ) and 2,000 clean samples. A larger  $\gamma$  causes the reconstructed set  $\mathcal{E}$  to be refreshed more frequently, which yields a sharper early decrease in FID (as seen for  $\gamma = 0.5$ ). Yet, because  $\mathcal{E}$  changes so rapidly, the model cannot fully adjust to the current reconstruction set before it is updated again. This instability appears as a growing discrepancy between the FIDs of reconstructed and newly generated samples after epoch 6, eventually degrading reconstruction quality and causing both FID curves to rise. In contrast, smaller  $\gamma$  values make  $\mathcal{E}$  evolve more gradually, giving the model enough time to optimize with respect to the current set. This leads to more stable training, delays degradation, and achieves lower overall FIDs. Hence, in practice, a relatively small  $\gamma$  is generally preferable.

**Identifiability vs. practical recoverability.** As discussed in Sec 3, although injective corruption operators in principle allow recovery of  $p_{\text{data}}$  from corrupted samples alone, the unfavourable sample-complexity rates make this practically infeasible. Fig 3c shows the iteration-wise FID of classical SFBD-OMNI under additive Gaussian noise with no clean samples ( $\lambda = 0$ ). The steadily decreasing FID is consistent with Prop 4, which states  $D_{\text{KL}}(p_{\text{data}} \parallel p^k)$  decreases monotonically (as  $h^\dagger = p_{\text{data}}$  if the corruption is injective and  $\lambda = 0$ ), starting from the untrained model  $p^0$ . However, even after saturating around iteration 4, the FID remains at 80.37—substantially worse than the 10.81 achieved when just 50 clean samples are provided. This gap supports our claim: relying solely on corrupted samples is impractical, whereas even a very small clean set dramatically alleviates the issue.

**Further empirical evaluation and insights on practical limitations.** To further demonstrate the effectiveness of SFBD-OMNI, we evaluate it on high-resolution satellite and MRI images with Poisson and compressive sensing corruption; see Sec K. The results support our theoretical findings, yet the remaining artifacts suggest that achieving deployment-quality reconstructions may require domain-aware priors or problem-specific design choices.

## 7 DISCCUSION

In this work, we proposed SFBD-OMNI, a principled framework for distribution recovery based on diffusion-related models. Unlike GAN-based approaches that rely on adversarial training, our method builds on the Donsker–Varadhan representation of the KL divergence, which reveals an equivalence to a one-sided entropic optimal transport objective. This reformulation naturally yields an alternating minimization scheme that is theoretically grounded and practically stable.

Our analysis shows that SFBD-OMNI can recover the clean data distribution under identifiability conditions, and with the aid of a small set of clean samples, it remains effective even when these conditions fail. To address the computational challenges of sequential training, we introduced an online variant that enables end-to-end optimization without sacrificing optimality guarantees. Experiments on CIFAR-10 and CelebA confirm that the proposed method achieves consistent improvements over representative baselines across a range of corruption processes.

540 REFERENCES  
541

542 Asad Aali, Marius Arvinte, Sidharth Kumar, and Jonathan I. Tamir. Solving inverse problems  
543 with score-based generative priors learned from noisy data. In *57th Asilomar Conference on*  
544 *Signals, Systems, and Computers*, pp. 837–843, 2023. URL <https://doi.org/10.1109/IEEECONF59524.2023.10477042>.

545

546 B D O Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Ap-*  
547 *plications*, 12(3):313–326, 1982. URL [https://doi.org/10.1016/0304-4149\(82\)90051-5](https://doi.org/10.1016/0304-4149(82)90051-5).

548

549 Martin Arjovsky and Leon Bottou. Towards principled methods for training generative adversarial  
550 networks. In *International Conference on Learning Representations*, 2017. URL [https://openreview.net/forum?id=Hk4\\_qw5xe](https://openreview.net/forum?id=Hk4_qw5xe).

551

552 Weimin Bai, Yifei Wang, Wenzheng Chen, and He Sun. An expectation-maximization algorithm  
553 for training clean diffusion models from corrupted observations. In *The Thirty-eighth Annual*  
554 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=jURBh4V9N4>.

555

556

557 Joshua Batson and Loic Royer. Noise2Self: Blind denoising by self-supervision. In Kamalika  
558 Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on*  
559 *Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 524–533. PMLR,  
560 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/batson19a.html>.

561

562 Ashish Bora, Eric Price, and Alexandros G. Dimakis. AmbientGAN: Generative models from  
563 lossy measurements. In *International Conference on Learning Representations*, 2018. URL  
564 <https://openreview.net/forum?id=Hy7fDog0b>.

565

566 Ricky T. Q. Chen. torchdiffeq, 2018. URL <https://github.com/rtqichen/torchdiffeq>.

567

568 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark  
569 and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, Oct 2017. ISSN 1558-2256.  
570 doi: 10.1109/jproc.2017.2675998. URL <http://dx.doi.org/10.1109/JPROC.2017.2675998>.

571

572 Nicholas Chimitt and Stanley H. Chan. Computational imaging through atmospheric turbulence.  
573 *Foundations and Trends in Computer Graphics and Vision*, 15(4):253–508, 2023. doi: 10.1561/0600000103.

574

575 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for  
576 inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*,  
577 35:25683–25696, 2022.

578

579 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.  
580 Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International*  
581 *Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=OnD9zGAGT0k>.

582

583 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models  
584 in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):  
585 10850–10869, 2023. URL <https://doi.org/10.1109/TPAMI.2023.3261988>.

586

587 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *Advances in*  
588 *Neural Information Processing Systems (NeurIPS)*, 2013.

589

590 Giannis Daras and Alex Dimakis. Solving inverse problems with ambient diffusion. In *NeurIPS*  
591 *2023 Workshop on Deep Learning and Inverse Problems*, 2023. URL <https://openreview.net/forum?id=mGwg10bgHk>.

592

593 Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans. Am-  
594 bient diffusion: Learning clean distributions from corrupted data. In *Thirty-seventh Conference on*  
595 *Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=wBJBLy9kBY>.

594 Giannis Daras, Alex Dimakis, and Constantinos Costis Daskalakis. Consistent diffusion meets  
 595 tweedie: Training exact ambient diffusion models with noisy data. In *Forty-first International*  
 596 *Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=P1VjIGaFdH>.

597

598 Giannis Daras, Yeshwanth Cherapanamjeri, and Constantinos Costis Daskalakis. How much is a  
 599 noisy image worth? data scaling laws for ambient diffusion. In *The Thirteenth International*  
 600 *Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=qZwtPEw2qN>.

601

602

603 Giannis Daras, Adrian Rodriguez-Munoz, Adam Klivans, Antonio Torralba, and Constantinos Costis  
 604 Daskalakis. Ambient diffusion omni. In *NeurIPS 2025 Workshop: Reliable ML from Unreliable*  
 605 *Data*, 2025b. URL <https://openreview.net/forum?id=cGLjmD07s9>.

606

607 Valentin De Bortoli, Guo-Hua Liu, Tianrong Chen, Evangelos A. Theodorou, and Weili Nie. Aug-  
 608 mented bridge matching. *arXiv preprint arXiv:2311.06978*, 2023. URL <https://arxiv.org/abs/2311.06978>.

609

610 M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process expectations  
 611 for large time. iv. *Communications on Pure and Applied Mathematics*, 36(2):183–212, 1983. doi:  
 612 <https://doi.org/10.1002/cpa.3160360204>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160360204>.

613

614

615 William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, and  
 616 Ian Goodfellow. Many paths to equilibrium: GANs do not need to decrease a divergence at  
 617 every step. In *International Conference on Learning Representations*, 2018. URL <https://openreview.net/forum?id=ByQpn1ZA->.

618

619 Berthy T. Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L. Bouman, and  
 620 William T. Freeman. Score-based diffusion models as principled priors for inverse imaging. In  
 621 *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 10520–  
 622 10531, October 2023.

623

624 Ian Goodfellow. Neurips 2016 tutorial: Generative adversarial networks. *arXiv preprint*  
 625 *arXiv:1701.00160*, 2016.

626

627 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,  
 628 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in Neural Infor-*  
 629 *mation Processing Systems*, 2014. URL [https://proceedings.neurips.cc/paper\\_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf).

630

631 Samuel W. Hasinoff. Photon, poisson noise. In Katsushi Ikeuchi (ed.), *Computer Vision: A*  
 632 *Reference Guide*, pp. 608–610. Springer US, Boston, MA, 2014. ISBN 978-0-387-31439-6. doi:  
 633 [10.1007/978-0-387-31439-6\\_482](https://doi.org/10.1007/978-0-387-31439-6_482).

634

635 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.  
 636 In *Advances in Neural Information Processing Systems*, pp. 6840–6851, 2020. URL  
 637 [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf).

638

639 Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J.  
 640 Fleet. Video diffusion models. In *Advances in Neural Information Processing Systems*, 2022. URL  
 641 [https://openreview.net/forum?id=f3zNgKga\\_ep](https://openreview.net/forum?id=f3zNgKga_ep).

642

643 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-  
 644 based generative models. In *Advances in Neural Information Processing Systems*, 2022. URL  
 645 <https://openreview.net/forum?id=k7FuTOWMoc7>.

646

647 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*  
 648 *Conference for Learning Representations*, 2015. URL <https://arxiv.org/abs/1412.6980>.

648 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile  
 649 diffusion model for audio synthesis. In *International Conference on Learning Representations*,  
 650 2021. URL <https://openreview.net/forum?id=a-xFK8Ymz5J>.

651

652 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.  
 653 Technical report, University of Toronto, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

654

655 Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal  
 656 transport. *Discrete and Continuous Dynamical Systems - A*, 34(4):1533–1574, 2014.

657

658 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow  
 659 matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

660

661 Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos Theodorou, Weili Nie, and Anima  
 662 Anandkumar. I<sup>2</sup>SB: Image-to-image schrödinger bridge. In Andreas Krause, Emma Brunskill,  
 663 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of  
 664 the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine  
 665 Learning Research*, pp. 22042–22062. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/liu23ai.html>.

666

667 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and  
 668 Jiawei Han. On the variance of the adaptive learning rate and beyond. In *International Conference  
 669 on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rkgz2aEKDr>.

670

671

672 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate  
 673 and transfer data with rectified flow. In *The Eleventh International Conference on Learning  
 674 Representations*, 2022. URL <https://openreview.net/forum?id=XVjTT1nw5z>.

675

676 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the  
 677 wild. *Proceedings of International Conference on Computer Vision (ICCV)*, 2015. URL <http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html>.

678

679 Haoye Lu, Qifan Wu, and Yaoliang Yu. Stochastic forward backward deconvolution: Training  
 680 diffusion models with finite noisy datasets. In *Forty-second International Conference on Machine  
 681 Learning*, 2025. URL <https://openreview.net/forum?id=WrWqv3mpQx>.

682

683 Michael Lustig, David Donoho, and John M. Pauly. Sparse mri: The application of compressed  
 684 sensing for rapid mr imaging. *Magnetic Resonance in Medicine*, 58(6):1182–1195, 2007. doi:  
 685 10.1002/mrm.21391.

686

687 Markku Makitalo and Alessandro Foi. Optimal inversion of the anscombe transformation in low-  
 688 count poisson image denoising. *IEEE Transactions on Image Processing*, 20(1):99–109, 2011. doi:  
 689 10.1109/TIP.2010.2056693.

690

691 Alexander Meister. *Deconvolution Problems in Nonparametric Statistics*. Springer, 2009. URL  
<https://doi.org/10.1007/978-3-540-87557-4>.

692

693 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.  
 694 SDEdit: Guided image synthesis and editing with stochastic differential equations. In *International  
 695 Conference on Learning Representations*, 2022.

696

697 Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for GANs do  
 698 actually converge? In *Proceedings of the 35th International Conference on Machine Learning*,  
 699 volume 80 of *Proceedings of Machine Learning Research*, pp. 3481–3490. PMLR, 10–15 Jul 2018.  
 URL <https://proceedings.mlr.press/v80/mescheder18a.html>.

700

701 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for  
 702 generative adversarial networks. In *International Conference on Learning Representations*, 2018.  
 URL <https://openreview.net/forum?id=B1QRgziT->.

702 Naoki Murata, Koichi Saito, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Yuki Mitsufuji,  
 703 and Stefano Ermon. GibbsDDRM: A partially collapsed Gibbs sampler for solving blind inverse  
 704 problems with denoising diffusion restoration. In Andreas Krause, Emma Brunskill, Kyunghyun  
 705 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th*  
 706 *International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning*  
 707 *Research*, pp. 25501–25522. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/murata23a.html>.

709 Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers  
 710 using variational divergence minimization. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and  
 711 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Asso-  
 712 ciates, Inc., 2016. URL [https://proceedings.neurips.cc/paper\\_files/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf).

714 Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and generative  
 715 modeling. *Journal of Machine Learning Research*, 24(374):1–51, 2023. URL <http://jmlr.org/papers/v24/23-0527.html>.

718 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 719 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-  
 720 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022a.

721 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 722 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-  
 723 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, 2022b. URL  
 724 <https://doi.org/10.1109/CVPR52688.2022.01042>.

726 John R. Schott. *Remote Sensing: The Image Chain Approach*. Oxford Scholarship Online. Oxford  
 727 University Press, New York, 2nd edition, 2007. ISBN 0-19-773259-3.

728 J. Anthony Seibert. Digital radiography: image quality and radiation dose. *Health Physics*, 95(5):  
 729 586–598, November 2008. ISSN 0017-9078. doi: 10.1097/01.HP.0000326338.14198.a2.

731 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised  
 732 learning using nonequilibrium thermodynamics. In *Proceedings of the 32nd International Con-  
 733 ference on Machine Learning*, pp. 2256–2265, 2015. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

735 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-  
 736 national Conference on Learning Representations*, 2021a. URL <https://openreview.net/forum?id=St1giarCHLP>.

739 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
 740 Poole. Score-based generative modeling through stochastic differential equations. In *International  
 741 Conference on Learning Representations*, 2021b. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

743 Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging  
 744 with score-based generative models. In *International Conference on Learning Representations*,  
 745 2022. URL <https://openreview.net/forum?id=vaRCHVj0uGI>.

747 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *Proceedings  
 748 of the 40th International Conference on Machine Learning*, pp. 32211–32252, 2023. URL  
 749 <https://proceedings.mlr.press/v202/song23a.html>.

750 Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrodinger  
 751 bridges via maximum likelihood. *Entropy*, 23(9), 2021. URL <https://www.mdpi.com/1099-4300/23/9/1134>.

754 Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-  
 755 GAN: Training GANs with diffusion. In *The Eleventh International Conference on Learning  
 Representations*, 2023. URL <https://openreview.net/forum?id=HZf7UbpWHuA>.

756 Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.  
 757     Diffsound: Discrete diffusion model for text-to-sound generation. *IEEE/ACM Transactions on*  
 758     *Audio, Speech, and Language Processing*, 31:1720–1733, 2023. URL <https://doi.org/10.1109/TASLP.2023.3268730>.

760 Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley,  
 761     Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras,  
 762     Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzał, Adriana Romero, Michael  
 763     Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, C. Lawrence  
 764     Zitnick, Michael P. Recht, Daniel K. Sodickson, and Yvonne W. Lui. fastmri: An open dataset and  
 765     benchmarks for accelerated mri, 2018.

766 Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, and Shiyu Chang. Towards coherent  
 767     image inpainting using denoising diffusion implicit models. In Andreas Krause, Emma Brunskill,  
 768     Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of*  
 769     *the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine*  
 770     *Learning Research*, pp. 41164–41193. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/zhang23q.html>.

771 Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.  
 772     In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=FKksTayvGo>.

773  
 774  
 775  
 776  
 777  
 778  
 779  
 780  
 781  
 782  
 783  
 784  
 785  
 786  
 787  
 788  
 789  
 790  
 791  
 792  
 793  
 794  
 795  
 796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809

810  
811  
**A LLM USAGE**812  
813 LLMs were used to assist with text refinement and data formatting, but not for generating core  
814 research content.  
815816  
817  
**B RELATED WORK**818  
819 Recovering the underlying clean distribution from noisy or incomplete observations has been an active  
820 line of research in recent years. Bora et al. (2018) introduced AmbientGAN, demonstrating both  
821 theoretically and empirically that GANs can recover the true distribution even when only corrupted  
822 samples, such as randomly masked images, are available. Extending this idea, Wang et al. (2023)  
823 showed that, under mild assumptions, if corrupted real and generated samples are indistinguishable,  
824 the learned model necessarily recovers the ground-truth distribution. In this work, we present a  
825 comprehensive study of the identifiability conditions of corruption processes. When these conditions  
826 are satisfied, the clean distribution can be recovered directly from corrupted data. When they are not,  
827 we propose an effective strategy that leverages a small number of clean samples to enable substantial  
828 recovery of the underlying distribution.  
829830 Building on the success of training GANs with corrupted data, several recent studies have investigated  
831 whether diffusion models can also be trained under additive Gaussian corruption (Daras & Dimakis,  
832 2023; Daras et al., 2024). Daras et al. (2024) demonstrated that when corruption is induced by a  
833 forward diffusion process, the marginal distribution at any time step constrains those at all other  
834 steps through a set of consistency relations. Exploiting this property, they showed that training on  
835 distributions above the corruption noise level allows the model to infer distributions at lower noise  
836 levels by enforcing consistency—an approach that has proven effective for fine-tuning latent diffusion  
837 models. Nevertheless, subsequent work found that training such models from scratch is impractical,  
838 as it would require an unrealistically large number of corrupted samples (Lu et al., 2025; Daras et al.,  
839 2025a). To address this, both Lu et al. (2025) and Daras et al. (2025a) proposed augmenting training  
840 with a small set of copyright-free clean samples, demonstrating that diffusion models can indeed be  
841 trained from scratch to achieve strong performance, albeit through distinct methodological routes.  
842843 Beyond recovering data distributions from corrupted observations, there has been growing interest in  
844 leveraging pretrained diffusion models to solve inverse problems, where the goal is to reconstruct  
845 underlying images from corrupted inputs (Chung et al., 2023; Feng et al., 2023; Zhang et al., 2023;  
846 Chung et al., 2022; Song et al., 2022; Murata et al., 2023). While these methods also perform recovery,  
847 they operate in a fundamentally different regime: they assume access to a pretrained diffusion model  
848 that already encodes the ground-truth distribution. By contrast, our work addresses the from-scratch  
849 setting, where the objective is to learn the ground-truth distribution itself directly from corrupted  
850 samples, without relying on a pretrained model.  
851852 **Very recently, Daras et al. (2025b) proposed a complementary strategy, Ambient-o, which also**  
853 **seeks to align corrupted samples with the clean distribution. The method adds extra Gaussian noise**  
854 **to corrupted inputs so that, once sufficiently noised, they become nearly indistinguishable from**  
855 **clean–noisy samples and can be used directly for diffusion-model training – an idea similar in spirit to**  
856 **SDEdit (Meng et al., 2022). Because the alignment is achieved through noising rather than modelling**  
857 **the corruption, Ambient-o is agnostic to the underlying corruption process and requires no knowledge**  
858 **of it. However, this design introduces a trade-off: stronger noising improves distributional alignment**  
859 **but may also remove informative structure from the observations. In contrast, by assuming access to**  
860 **the corruption process as a black-box generator, SFBD-OMNI requires no extra noise and therefore**  
861 **preserves the full signal.**  
862863  
864  
**C GAUSSIAN NOISE REGULARIZATION FOR DETERMINISTIC SAMPLING PATHS**865  
866 In Sec 2, we discuss how bridge models can be employed to learn the posterior distribution  
867

868  
869  
$$u_{\mathbf{y}}(\mathbf{x}) = \frac{\mu(\mathbf{x}) r(\mathbf{y} \mid \mathbf{x})}{\int \mu(\mathbf{x}') r(\mathbf{y} \mid \mathbf{x}') d\mathbf{x}'},$$

given access to samples from  $\mu(\mathbf{x})$  and the ability to query the corruption kernel  $r(\mathbf{y} \mid \mathbf{x})$  as a black-box generator.

A challenge arises when the interpolation path is chosen to be the straight-line segment between  $\mathbf{x}$  and  $\mathbf{y}$ . In this case, the backward sampling scheme in Eq (8) reduces to the special case  $g = 0$ , so sampling is performed by solving an ODE. Because the dynamics is deterministic, the model can no longer represent a distribution, leading to a degeneracy.

To avoid this issue, we perturb  $\mathbf{y}$  with a small Gaussian noise before using it as the endpoint  $\mathbf{x}_1$  in both training and sampling. This restores the stochasticity of the interpolation: the model learns a deterministic flow transporting  $u_{\mathbf{y}}(\mathbf{x})$  to  $\mathcal{N}(\mathbf{y}, \sigma^2 \mathbf{I})$ , which aligns well with standard flow-matching formulations (Lipman et al., 2023; Liu et al., 2022).

Importantly, the perturbation is applied only to the endpoint used as the ODE’s initial condition; the model itself is still conditioned on the original, unperturbed  $\mathbf{y}$ . Thus, the perturbation alters only the sampling path, not the conditioning variable.

From a conditional VAE perspective, this is similar to adding a small noise to the latent code  $\mathbf{z}$  while keeping the conditioning variable fixed (e.g., a class label or observed image). Such perturbations regularize the decoder but do not change the underlying conditional distribution  $p(\mathbf{x} \mid \mathbf{y})$  being modelled. Likewise, in our setting, the flow model continues to learn the correct posterior  $u_{\theta}(\mathbf{x} \mid \mathbf{y})$  because  $\mathbf{y}$ , the variable that defines the conditional law, remains unchanged. The perturbation merely prevents degeneracy in the ODE initialization and does not distort the learned conditional mapping.

## D THEORETICAL RESULTS RELATED TO THE IDENTIFIABILITY

**Proposition 1** (Identifiability Condition). *Let  $\mathcal{P}(X)$  denote the set of clean sample distributions. When the corruption kernel  $r(\cdot \mid \mathbf{x})$  depends continuously on  $\mathbf{x}$ , the convex objective in Eq (10) admits a unique minimizer  $p^* = p_{\text{data}}$  whenever  $\mathcal{T}_r$  is injective on  $\mathcal{P}(X)$ . If  $\mathcal{T}_r$  is not injective, the objective is still convex, but all distributions  $p$  satisfying  $\mathcal{T}_r p = \mathcal{T}_r p_{\text{data}}$  are minimizers.*

*Proof.* Let  $q := \mathcal{T}_r p_{\text{data}}$  and define

$$J(p) := D_{\text{KL}}(q \parallel \mathcal{T}_r p).$$

*Convexity.* For  $p_1, p_2 \in \mathcal{P}(X)$  and  $t \in (0, 1)$ ,

$$\mathcal{T}_r(tp_1 + (1-t)p_2) = t \mathcal{T}_r p_1 + (1-t) \mathcal{T}_r p_2.$$

Since the map  $m \mapsto D_{\text{KL}}(q \parallel m)$  is strictly convex,

$$J(tp_1 + (1-t)p_2) = D_{\text{KL}}(q \parallel t \mathcal{T}_r p_1 + (1-t) \mathcal{T}_r p_2) < t J(p_1) + (1-t) J(p_2).$$

*Injective case.* Assume  $\mathcal{T}_r$  is injective on  $\mathcal{P}(X)$ . If  $p_1 \neq p_2$  then  $\mathcal{T}_r p_1 \neq \mathcal{T}_r p_2$ , and by strict convexity of  $m \mapsto D_{\text{KL}}(m \parallel q)$ ,

$$J(tp_1 + (1-t)p_2) < t J(p_1) + (1-t) J(p_2) \quad (t \in (0, 1)).$$

Thus  $J$  is strictly convex in  $p$ . Since  $J(p_{\text{data}}) = D_{\text{KL}}(q \parallel q) = 0$ ,  $p_{\text{data}}$  is the unique minimizer, i.e.,  $p^* = p_{\text{data}}$ . (Continuity of  $\mathbf{x} \mapsto \int f(\mathbf{y}) r(\mathbf{y} \mid \mathbf{x}) d\mathbf{y}$  for bounded continuous  $f$  gives the usual l.s.c./compactness to ensure well-posedness; uniqueness comes from strict convexity.)

*Non-injective case.* If  $\mathcal{T}_r$  is not injective, then for any  $p$  with  $\mathcal{T}_r p = q$ ,

$$J(p) = D_{\text{KL}}(q \parallel q) = 0,$$

which is the global minimum. Hence every  $p \in \mathcal{S}(q) := \{p \in \mathcal{P}(X) : \mathcal{T}_r p = q\}$  is a minimizer.  $\square$

**Proposition 2.** *Let  $h^{\dagger} = \arg \min_{p \in \mathcal{S}(q)} D_{\text{KL}}(h \parallel p)$  denote the Information-projection of  $h$  onto the original KLAP solution set. Then the minimizer of Eq (11),  $p_{\lambda}^*$ , converges to  $h^{\dagger}$  as  $\lambda \rightarrow 0$ .*

918 *Proof.* Let  $\mathcal{T}_r p = m_p$  and define

$$919 \quad F(p) := D_{\text{KL}}(q \parallel \mathcal{T}_r p), \quad G(p) := D_{\text{KL}}(h \parallel p).$$

920 For  $\lambda > 0$  define

$$921 \quad p_\lambda^* \in \arg \min_p \left\{ F(p) + \lambda G(p) \right\},$$

922 Then the optimality against  $h^\dagger$  gives, for each  $\lambda > 0$ ,

$$923 \quad F(p_\lambda^*) + \lambda G(p_\lambda^*) \leq F(h^\dagger) + \lambda G(h^\dagger) = \lambda G(h^\dagger),$$

924 since  $F(h^\dagger) = 0$ . Hence

$$925 \quad 0 \leq F(p_\lambda^*) \leq \lambda(G(h^\dagger) - G(h_\lambda^*)) \leq \lambda G(h^\dagger) \rightarrow 0.$$

926 By compactness of  $\mathcal{P}(X)$ , pick a subsequence  $\lambda_k \downarrow 0$  with  $p_{\lambda_k}^* \rightarrow \bar{p}$ . By lower semicontinuity of  $F$ ,  
927  $F(\bar{p}) \leq \liminf_k F(p_{\lambda_k}^*) = 0$ , hence  $\bar{p} \in \mathcal{S}(q)$ . From the same inequality,  $\lambda_k G(p_{\lambda_k}^*) \leq \lambda_k G(h^\dagger)$ , so  
928 dividing by  $\lambda_k > 0$  and taking  $\limsup$  gives  $\limsup_k G(p_{\lambda_k}^*) \leq G(h^\dagger)$ . By lower semicontinuity of  
929  $G$  and convergence  $p_{\lambda_k}^* \rightarrow \bar{p}$ ,

$$930 \quad G(\bar{p}) \leq \liminf_k G(p_{\lambda_k}^*) \leq \limsup_k G(p_{\lambda_k}^*) \leq G(h^\dagger).$$

931 Thus  $G(\bar{p}) = \min_{p \in \mathcal{S}(q)} G(p)$ . As the minimizer  $h^\dagger$  is unique,  $p_\lambda^* \rightarrow h^\dagger$ .  $\square$

## 932 E THEORETICAL RESULTS RELATED TO THE ONE-SIDED OT

933 **The derivation of Eq (15).**

$$934 \quad D_{\text{KL}}(q \parallel \mathcal{T}_p) = \int q(\mathbf{y}) \log \frac{q(\mathbf{y})}{\mathcal{T}_r p(\mathbf{y})} d\mathbf{y} = \int q(\mathbf{y}) \log \frac{q(\mathbf{y})}{\int p(\mathbf{x}') r(\mathbf{y} \mid \mathbf{x}') d\mathbf{x}'} d\mathbf{y}$$

$$935 \quad = - \int q(\mathbf{y}) \log \int p(\mathbf{x}') r(y \mid \mathbf{x}') d\mathbf{x}' + C$$

$$936 \quad = - \int q(\mathbf{y}) \log \mathbb{E}_p(\exp f_{\mathbf{y}}(\mathbf{x})) + C$$

$$937 \quad = - \int q(\mathbf{y}) \max_{u_{\mathbf{y}}} \left[ \mathbb{E}_{u_{\mathbf{y}}}[f_{\mathbf{y}}(\mathbf{x})] - D_{\text{KL}}(u_{\mathbf{y}} \parallel p) \right] + C$$

$$938 \quad = \min_{u_{\mathbf{y}}} \mathbb{E}_q [D_{\text{KL}}(u_{\mathbf{y}} \parallel p) - \mathbb{E}_{u_{\mathbf{y}}}[f_{\mathbf{y}}(\mathbf{x})]] + C,$$

939 where we have applied Eq (14), the Donsker-Varadhan variational principle (Donsker & Varadhan,  
940 1983) in the second last equation.

941 **Lemma 1.** *Given the cost function be  $c(\mathbf{x}, \mathbf{y}) = -\log r(\mathbf{y} \mid \mathbf{x})$  for some corruption kernel  $r$ ,  
942 consider the problem*

$$943 \quad \min_{\pi \in \Pi_{\mathbf{y}}(q)} \iint \pi(\mathbf{x}, \mathbf{y}) c(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} + D_{\text{KL}}(\pi \parallel p \otimes q),$$

944 where  $\Pi_{\mathbf{y}}(q)$  is the set of joint distributions with fixed  $\mathbf{y}$ -marginal  $q$ . If  $q$  is realizable under  $p$  via  $r$ ,  
945 i.e.  $p \in \mathcal{S}(q)$ , then the optimizer is

$$946 \quad \pi^*(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} \mid \mathbf{y}) q(\mathbf{y}),$$

947 which has marginals  $\pi_{\mathbf{x}}^* = p$  and  $\pi_{\mathbf{y}}^* = q$ .

948 *Proof.* Introducing a Lagrange multiplier for the constraint  $\int \pi(\mathbf{x}, \mathbf{y}) d\mathbf{x} = q(\mathbf{y})$ , the optimal solution  
949 takes the form

$$950 \quad \pi^*(\mathbf{x}, \mathbf{y}) = \frac{p(\mathbf{x}) q(\mathbf{y}) e^{-c(\mathbf{x}, \mathbf{y})}}{Z(\mathbf{y})}, \quad Z(\mathbf{y}) = \int p(\mathbf{x}) e^{-c(\mathbf{x}, \mathbf{y})} d\mathbf{x}.$$

972 With  $c(\mathbf{x}, \mathbf{y}) = -\log r(\mathbf{y} \mid \mathbf{x})$ , this becomes  
 973

$$\pi^*(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{x}) r(\mathbf{y} \mid \mathbf{x}).$$

975 If  $q(\mathbf{y}) = \int p(\mathbf{x}) r(\mathbf{y} \mid \mathbf{x}) d\mathbf{x}$ , then  $Z(\mathbf{y}) = q(\mathbf{y})$ , and thus  
 976

$$\pi^*(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{x})r(\mathbf{y} \mid \mathbf{x})}{q(\mathbf{y})} = p(\mathbf{x} \mid \mathbf{y}).$$

979 Therefore,  
 980

$$\pi^*(\mathbf{x}, \mathbf{y}) = q(\mathbf{y}) p(\mathbf{x} \mid \mathbf{y}),$$

982 which indeed has marginals  $\pi_X^* = p$  and  $\pi_Y^* = q$ .  $\square$   
 983

984 **Proposition 3.** Define the cost function  $c(\mathbf{x}, \mathbf{y}) := -\log r(\mathbf{y} \mid \mathbf{x})$ . Problem (16) is equivalent to  
 985

$$\arg \min_p \Phi(p) + \lambda D_{\text{KL}}(h \parallel p)$$

986 with  
 987

$$\Phi(p) := \min_{\pi \in \Pi_{\mathbf{y}}(q)} \iint c(\mathbf{x}, \mathbf{y}) \pi(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} + D_{\text{KL}}(\pi \parallel p \otimes q)$$

991 where  $\Pi_{\mathbf{y}}(q)$  denotes the set of joint distributions of  $(\mathbf{x}, \mathbf{y})$  with  $\mathbf{y}$ -marginal fixed to  $q$ . Moreover,  
 992 when  $\lambda = 0$ , the optimal solution  $p^*$  coincides with the  $\mathbf{x}$ -marginal of the corresponding minimizer  
 993  $\pi^*$  in the inner problem.  
 994

995 *Proof.* We note that, by definition,  $c = -f_{\mathbf{y}}$ . Then starting from Eq (15), we have  
 996

$$\begin{aligned} & \min_{u_{\mathbf{y}}} \mathbb{E}_q [D_{\text{KL}}(u_{\mathbf{y}} \parallel p) - \mathbb{E}_{u_{\mathbf{y}}}[f_{\mathbf{y}}(\mathbf{x})]] \\ &= \min_{\pi} \iint \pi(\mathbf{x}, \mathbf{y}) \log \frac{\pi(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})q(\mathbf{y})} d\mathbf{x} d\mathbf{y} + \iint \pi(\mathbf{x}, \mathbf{y}) c(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} \\ &= \min_{\pi} \iint \pi(\mathbf{x}, \mathbf{y}) c(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} + D_{\text{KL}}(\pi \parallel p \otimes q). \end{aligned}$$

1003 where  $\pi(\mathbf{x}, \mathbf{y}) = u_{\mathbf{y}}(\mathbf{x}) q(\mathbf{y})$  consisting of all joint distributions of  $\mathbf{x}$  and  $\mathbf{y}$  with the  $\mathbf{y}$ -marginal  
 1004 equal to  $q$ .  
 1005

1006 For the second part of the proposition, when  $\lambda = 0$ , our discussion in Sec 3.2 shows we have  
 1007  $p^* \in \mathcal{S}(q)$ . Therefore, by Lem 1, we complete the proof.  $\square$   
 1008

## 1009 F THEORETICAL RESULTS RELATED TO SFBD-OMNI

1011 **Proposition 4** (Convergence to the optimum). Let the distribution sequences  $\{u_y^k\}$  and  $\{p^k\}$  evolve  
 1012 according to Eq (18), with  $\tilde{p}^k$  updated by Eq (19). Starting from an arbitrary initialization  $p^0$  and for  
 1013  $\gamma \in (0, 1]$ , under mild assumptions, we have  $p^k \rightarrow p_\lambda^*$  as  $k \rightarrow \infty$ . Moreover, when  $\lambda \rightarrow 0$ , we have  
 1014

$$\lim_{k \rightarrow \infty} p^k = h^\dagger, \quad D_{\text{KL}}(h^\dagger \parallel p^{k+1}) \leq D_{\text{KL}}(h^\dagger \parallel p^k). \quad (20)$$

1015 In addition, the following bounds hold:  
 1016

$$\min_{1 \leq k \leq K} D_{\text{KL}}(q \parallel \mathcal{T}_r p^k) \leq \frac{D_{\text{KL}}(h^\dagger \parallel p^0)}{\gamma K}, \quad (21)$$

1021 where  $K$  denotes the total number of iterations and  $q = \mathcal{T}_r p_{\text{data}}$ .  
 1022

1023 **Convergence to  $p_\lambda^*$ .** By collecting the terms involving  $u_{\mathbf{y}}$ ,  $\mathcal{F}_\lambda(p^k, u_{\mathbf{y}})$  defined in Eq (16) can be  
 1024 written as

$$\mathcal{F}_\lambda(p^k, u_{\mathbf{y}}) = \mathbb{E}_q (D_{\text{KL}}(u_{\mathbf{y}} \parallel u_{\mathbf{y}}^k)) + A_k \quad (22)$$

1026 where  $u_{\mathbf{y}}^k(x)$  is defined in Eq (18) and  $A_k$  contains all the terms independent of  $u_{\mathbf{y}}$ . As a result,  
 1027 taking the minimizer of the objective in Eq (22) gives the update rule of  $u_{\mathbf{y}}$  in Eq (18). Note that the  
 1028 result also shows that:

$$1029 \quad 1030 \quad \mathcal{F}_{\lambda}(p^k, u_{\mathbf{y}}^{k-1}) - \mathcal{F}_{\lambda}(p^k, u_{\mathbf{y}}^k) = \mathbb{E}_q [D_{\text{KL}}(u_{\mathbf{y}} \parallel u_{\mathbf{y}}^k)]. \quad (23)$$

1031 In addition, according to the Donsker-Varadhan variational principle (Donsker & Varadhan, 1983),  
 1032 when  $u_{\mathbf{y}}$  is picked to the minimizer of the current  $p^k$ , we have

$$1033 \quad 1034 \quad \mathcal{F}_{\mathbf{y}}(p^k, u_{\mathbf{y}}^{k+1}) = \mathcal{J}_{\lambda}(p_k), \quad (24)$$

1035 with  $\mathcal{J}_{\lambda}(p_k)$  defined in Eq (11).

1036 When  $\tilde{p}^k$  is updated in an incrementable way as shown in Eq (19), we claim  $p^{k+1}$  is updated by  
 1037 minimizing

$$1039 \quad \mathcal{F}_{\lambda}(p, u_{\mathbf{y}}^k) + \nu D_{\text{KL}}(p^k \parallel p) \quad (25)$$

1040 with  $\nu = \frac{(1-\gamma)(1+\lambda)}{\gamma}$ . Notably, when updating ratio  $\gamma = 1$ , the entire sampling set  $\mathcal{E}$  will be replaced,  
 1041 and we recover the original SFBD-OMNI. In this case,  $\nu = 0$ , the update of  $p^k$  is then obtained by  
 1042 taking the minimizer of  $\mathcal{F}_{\lambda}(p, u_{\mathbf{y}}^k)$  with  $u_{\mathbf{y}}^k$  fixed.

1043 Note that

$$1046 \quad 1047 \quad \mathcal{F}_{\lambda}(p, u_{\mathbf{y}}^k) + \nu D_{\text{KL}}(p^k \parallel p) = (1 + \lambda + \nu) D_{\text{KL}}\left(\frac{1}{1 + \lambda + \nu}(m_p^k + \lambda h + \nu p^k) \parallel p\right) + B_k, \quad (26)$$

1048 where  $B_k$  collects all the terms not involving  $p$  and

$$1051 \quad m_p^k(\mathbf{x}) = \int q(\mathbf{y}) u_{\mathbf{y}}^k(\mathbf{x}) d\mathbf{y}. \quad (27)$$

1053 If we take  $p^{k+1}$  as the minimizer of Eq (26), we have

$$1054 \quad 1055 \quad p^{k+1} = \frac{1}{1 + \lambda + \nu}(m_p^k + \lambda h + \nu p^k). \quad (28)$$

1056 By choosing  $\nu = \frac{(1-\gamma)(1+\lambda)}{\gamma}$ , the update rule of  $p^{k+1}$  coincides with the one in Eq (18) with  $\tilde{p}^k$   
 1057 updated according to Eq (19).

1058 To see this, we note that, when  $\nu = \frac{(1-\gamma)(1+\lambda)}{\gamma}$ , the weights of  $m_p^k = \int q(\mathbf{y}) u_{\mathbf{y}}^k(\mathbf{x}) d\mathbf{y}$  in Eq (18)  
 1059 and Eq (28) are matched and equal to  $\frac{\gamma}{1+\lambda}$ . In addition, the weight ratios between  $m_p^{k-1}$  and  $m_p^k$   
 1060 (absorbed respectively in  $p^k$  in Eq (28) and  $\tilde{p}^k$  in Eq (19)) are both  $1 - \gamma$ . This suggests that for  
 1061 both update rules,  $m_p^k$ 's are mixed in exactly the same way. As a result, the two update rules must be  
 1062 equivalent.

1063 The optimality of  $p^{k+1}$  also suggest,

$$1067 \quad \begin{aligned} & (\mathcal{F}_{\lambda}(p^k, u_{\mathbf{y}}^k) + \nu D_{\text{KL}}(p^k \parallel p^k)) - (\mathcal{F}_{\lambda}(p, u_{\mathbf{y}}^k) + \nu D_{\text{KL}}(p^k \parallel p^{k+1})) \\ &= (1 + \lambda + \nu) D_{\text{KL}}\left(\frac{1}{1 + \lambda + \nu}(m_p^k + \lambda h + \nu p^k) \parallel p^k\right), \end{aligned}$$

1064 which implies

$$1072 \quad \mathcal{F}_{\lambda}(p^k, u_{\mathbf{y}}^k) - \mathcal{F}_{\lambda}(p^{k+1}, u_{\mathbf{y}}^k) \geq 0. \quad (29)$$

1073 As a result, according to Eq (23) and Eq (29), we have  $\mathcal{F}_{\lambda}(p^k, u_{\mathbf{y}}^k) \rightarrow \mathcal{F}_{\lambda}(p^k, u_{\mathbf{y}}^{k+1}) \rightarrow$   
 1074  $\mathcal{F}_{\lambda}(p^{k+1}, u_{\mathbf{y}}^{k+1})$  decreases monotonically. Combined with Eq (24), we have  $\mathcal{J}_{\lambda}(p_k)$  decreases  
 1075 monotonically as well. In addition, as  $\mathcal{J}_{\lambda}(p_k)$  is bounded below,  $\mathcal{J}_{\lambda}(p_k)$  much converge to some  
 1076 limit  $\mathcal{J}_{\lambda}^{\infty}$ . As a result, for every subsequence of  $p_k$ , it must converge to some cluster point  $\bar{p}$ , where  $\bar{p}$   
 1077 is then a fixed point under the update rules in Eq (18). That is,

$$1079 \quad \bar{p} = \frac{1}{1 + \lambda + \nu}(m_{\bar{p}} + \lambda h + \nu \bar{p}),$$

1080 where  $m_{\bar{p}}(\mathbf{x}) = \int q(\mathbf{y}) \bar{u}_{\mathbf{y}}(\mathbf{x}) d\mathbf{y}$  and the posterior distribution  $\bar{u}_{\mathbf{y}}(\mathbf{x}) = \bar{p}(\mathbf{x} | \mathbf{y}) = \frac{\bar{p}(\mathbf{x}) r(\mathbf{x} | \mathbf{y})}{\mathcal{T}_r(\bar{p}(\mathbf{y}))}$ . After  
1081 rearrangement, we have  
1082

$$1083 \frac{1}{1+\lambda} m_{\bar{p}} + \frac{\lambda}{1+\lambda} h = \bar{p}. \quad (30)$$

1085 We complete the proof of the optimal convergence by showing that the only  $p$  satisfying Eq (30) is  
1086  $p_{\lambda}^*$ .  
1087

1088 **Lemma 2.** *The following are equivalent for such  $p$ :*

$$1089 p(\mathbf{x}) = \frac{1}{1+\lambda} \int q(\mathbf{y}) p(\mathbf{x} | \mathbf{y}) d\mathbf{y} + \frac{\lambda}{1+\lambda} h(\mathbf{x}), \quad (31)$$

$$1091 \exists \mu \in \mathbb{R} \text{ s.t. } - \int \frac{q(\mathbf{y})}{\mathcal{T}_r(\mathbf{y})} r(\mathbf{y} | \mathbf{x}) d\mathbf{y} - \lambda \frac{h(\mathbf{x})}{p(\mathbf{x})} + \mu = 0 \quad (32)$$

1094 Moreover as  $\mathcal{J}_{\lambda}$  is strictly convex on the probability simplex, so any solution of (31) is the unique  
1095 global minimizer of  $\mathcal{J}_{\lambda}$ .  
1096

1097 *Proof.* ( $\Rightarrow$ ). Multiply (32) by  $p(\mathbf{z})$  and apply

$$1098 \int \frac{q(\mathbf{y})}{\mathcal{T}_r(\mathbf{y})} r(\mathbf{y} | \mathbf{x}) d\mathbf{y} = \frac{1}{p(\mathbf{x})} \int q(\mathbf{y}) p(\mathbf{x} | \mathbf{y}) d\mathbf{y},$$

1100 to obtain

$$1102 \int q(\mathbf{y}) p(\mathbf{x} | \mathbf{y}) d\mathbf{y} + \lambda h(\mathbf{x}) = \mu p(\mathbf{x}).$$

1104 Integrate both sides over  $\mathbf{x}$ :

$$1105 1 + \lambda = \mu \int p(\mathbf{x}) d\mathbf{x} = \mu \Rightarrow \mu = 1 + \lambda,$$

1107 and substitute back to get (31).  
1108

1109 ( $\Leftarrow$ ). Starting from (31), rearrange:

$$1111 (1 + \lambda)p(\mathbf{x}) - \lambda h(\mathbf{x}) = \int q(\mathbf{y}) p(\mathbf{x} | \mathbf{y}) d\mathbf{y} = p(\mathbf{x}) \int \frac{q(\mathbf{y})}{\mathcal{T}_r(\mathbf{y})} r(\mathbf{y} | \mathbf{x}) d\mathbf{y}.$$

1113 Divide by  $p(\mathbf{y}) > 0$  and rearrange:

$$1115 - \int \frac{q(\mathbf{y})}{\mathcal{T}_r(\mathbf{y})} r(\mathbf{y} | \mathbf{x}) d\mathbf{y} - \lambda \frac{h(\mathbf{x})}{p(\mathbf{x})} + (1 + \lambda) = 0,$$

1117 which is (32) with  $\mu = 1 + \lambda$ .  
1118

1119 In addition, the Lagrangian for  $\min_{p \geq 0, \int p = 1} \mathcal{J}_{\lambda}(p)$  is  $\mathcal{L}(p) = \mathcal{J}_{\lambda}(p) + \mu (\int p - 1)$ . For interior  
1120  $p > 0$ , the Gateaux derivative of  $\mathcal{J}_{\lambda}$  at  $p$  equals the left side of (32) minus  $\mu$ . Thus (32) is the  
1121 first-order condition  $\nabla \mathcal{L}(p) = 0$ . Since  $\mathcal{J}_{\lambda}$  is convex, any interior stationary point is a global  
1122 minimizer.  $\square$   
1123

1124 By Lem 2, we know that  $\bar{p} = p_{\lambda}^*$  is the unique minimizer of  $\mathcal{J}_{\lambda}$  for  $\lambda > 0$ . Moreover, as  $\lambda \rightarrow 0$ ,  
1125 Prop 2 implies that  $p_{\lambda}^* \rightarrow h^{\dagger}$ , which establishes the first part of the statement.  
1126

1127 **Convergence rate when  $\lambda \rightarrow 0$ .** Define  $\mathcal{H}(p) = D_{\text{KL}}(h^{\dagger} \| p)$ . When  $\lambda \rightarrow 0$ , as  $\nu = \frac{(1-\gamma)(1+\lambda)}{\gamma} = \frac{1-\gamma}{\gamma}$ , Eq (28) reduces to  
1128

$$1129 p^{k+1} = \gamma m_p^k + (1 - \gamma) p^k, \quad (33)$$

1130 where  $m_p^k(\mathbf{x}) = \int q(\mathbf{y}) u_{\mathbf{y}}^k(\mathbf{x}) d\mathbf{y}$  and  $u_{\mathbf{y}}^k$  is updated according to Eq (18). Then by the convexity of  
1131 the KL divergence, we have  
1132

$$1133 \mathcal{H}(p^{k+1}) \leq (1 - \gamma) \mathcal{H}(p^k) + \gamma \mathcal{H}(m_p^k). \quad (34)$$

1134 Rearrangement yields  
 1135

$$1136 \quad \mathcal{H}(m_p^k) \geq \mathcal{H}(p^k) + \frac{1}{\gamma} (\mathcal{H}(p^{k+1}) - \mathcal{H}(p^k)). \quad (35)$$

1138 Let  $H^\dagger$  denote the joint distribution induced by  $h^\dagger(\mathbf{x})r(\mathbf{y}|\mathbf{x})$  and likewise  $P^k$  the one by  $p^k(\mathbf{x})r(\mathbf{y}|\mathbf{x})$ .  
 1139 In addition, let  $u_y^\dagger$  denote the posterior distribution of  $H^\dagger$ . Note that, as  $h^\dagger \in \mathcal{S}(q)$ , we have  
 1140  $h^\dagger(\mathbf{x})r(\mathbf{y}|\mathbf{x}) = q(\mathbf{y})u_y^\dagger(\mathbf{x})$ . Then, by the disintegration theorem (Vargas et al., 2021), we have

$$1141 \quad \mathcal{H}(p^k) = D_{\text{KL}}(h^\dagger \parallel p^k) = D_{\text{KL}}(H^\dagger \parallel P^k) = D_{\text{KL}}(q \parallel \mathcal{T}_r p^k) + \mathbb{E}_{H^\dagger} [D_{\text{KL}}(u_y^\dagger \parallel u_y^k)] \\ 1142 \\ 1143 \geq D_{\text{KL}}(q \parallel \mathcal{T}_r p^k) + D_{\text{KL}}(h^\dagger \parallel m_p^k) \stackrel{(35)}{\geq} D_{\text{KL}}(q \parallel \mathcal{T}_r p^k) + \mathcal{H}(p^k) + \frac{1}{\gamma} (\mathcal{H}(p^{k+1}) - \mathcal{H}(p^k)).$$

1144 Cancel out  $\mathcal{H}(p^k)$  and rearrange to obtain the monotonic decrease of  $D_{\text{KL}}(h^\dagger \parallel p^k)$

$$1145 \quad -\gamma D_{\text{KL}}(q \parallel \mathcal{T}_r p^k) \geq \mathcal{H}(p^{k+1}) - \mathcal{H}(p^k). \quad (36)$$

1146 Telescoping it yields  
 1147

$$1148 \quad \mathcal{H}(p^0) \geq \sum_{k=0}^K [\mathcal{H}(p^k) - \mathcal{H}(p^{k+1})] \geq \gamma \sum_{k=1}^K D_{\text{KL}}(q \parallel \mathcal{T}_r p^k). \quad (37)$$

1149 As a result,  
 1150

$$1151 \quad \min_{k \in \{1, 2, \dots, K\}} D_{\text{KL}}(q \parallel \mathcal{T}_r p^k) \leq \frac{\mathcal{H}(p^0)}{\gamma K} = \frac{D_{\text{KL}}(h^\dagger \parallel p^0)}{\gamma K}. \quad (38)$$

## 1152 G EXPERIMENT CONFIGURATIONS

1153 All SFBD-OMNI models were trained on one to four L40 GPUs using a SLURM scheduling system.  
 1154 With the standard SFBD-OMNI, training on CIFAR-10 takes about 5 days and on CelebA about 8  
 1155 days. The online variant is more efficient, requiring roughly 4 days for CIFAR-10 and 6 days for  
 1156 CelebA.

### 1157 G.1 MODEL ARCHITECTURES

1158 We implement the proposed methods using the EDM backbone (Karras et al., 2022) without precon-  
 1159 ditioning, and adopt this configuration throughout our empirical studies. The training pipeline is built  
 1160 on flow matching (Lipman et al., 2023).

1161 Table 2: Experimental Configuration for CIFAR-10 and CelebA

| 1162 <b>Parameter</b>          | 1163 <b>CIFAR-10</b>                           | 1164 <b>CelebA</b>                             |
|--------------------------------|------------------------------------------------|------------------------------------------------|
| <b>General</b>                 |                                                |                                                |
| 1165 Batch Size                | 256                                            | 256                                            |
| 1166 Loss Function             | Flow matching loss (Lip-<br>man et al., 2023)  | Flow matching loss (Lip-<br>man et al., 2023)  |
| 1167 Denoising Method          | torchdiffeq (Chen, 2018)                       | torchdiffeq (Chen, 2018)                       |
| 1168 Sampling Method           | torchdiffeq (Chen, 2018)                       | torchdiffeq (Chen, 2018)                       |
| <b>Network Configuration</b>   |                                                |                                                |
| 1169 Dropout                   | 0.3                                            | 0.3                                            |
| 1170 Channel Multipliers       | {2, 2, 2}                                      | {2, 2, 2}                                      |
| 1171 Model Channels            | 128                                            | 128                                            |
| 1172 Channel Mult Noise        | 2                                              | 2                                              |
| <b>Optimizer Configuration</b> |                                                |                                                |
| 1173 Optimizer Class           | RAdam (Kingma & Ba, 2015; Liu<br>et al., 2020) | RAdam (Kingma & Ba, 2015; Liu<br>et al., 2020) |
| 1174 Learning Rate             | 0.0001                                         | 0.0001                                         |
| 1175 Betas                     | (0.9, 0.95)                                    | (0.9, 0.95)                                    |

1188 G.2 DATASETS  
11891190 All experiments on CIFAR-10 (Krizhevsky & Hinton, 2009) and CelebA (Liu et al., 2015) are  
1191 performed using only the training splits. For FID evaluation, each model generates 50,000 samples,  
1192 and the score is computed against the entire training set.  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241

1242 H SAMPLING RESULTS  
12431244 H.1 CIFAR-10  
12451265 Figure 4: Pixel Masking  
12661286 Figure 5: Addictive Gauss.  
1287

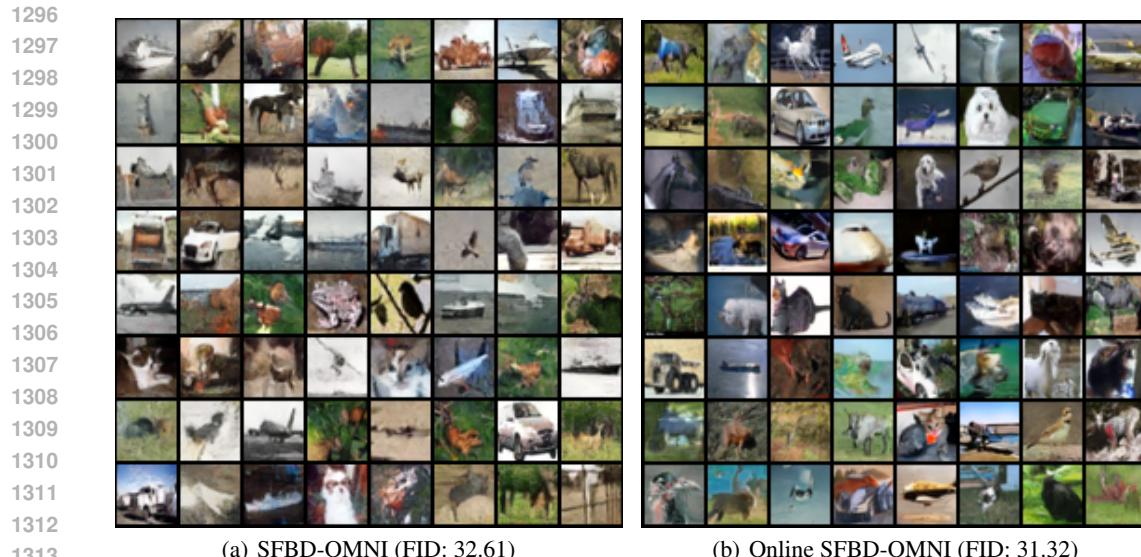


Figure 6: Grayscale

## H.2 CELEBA

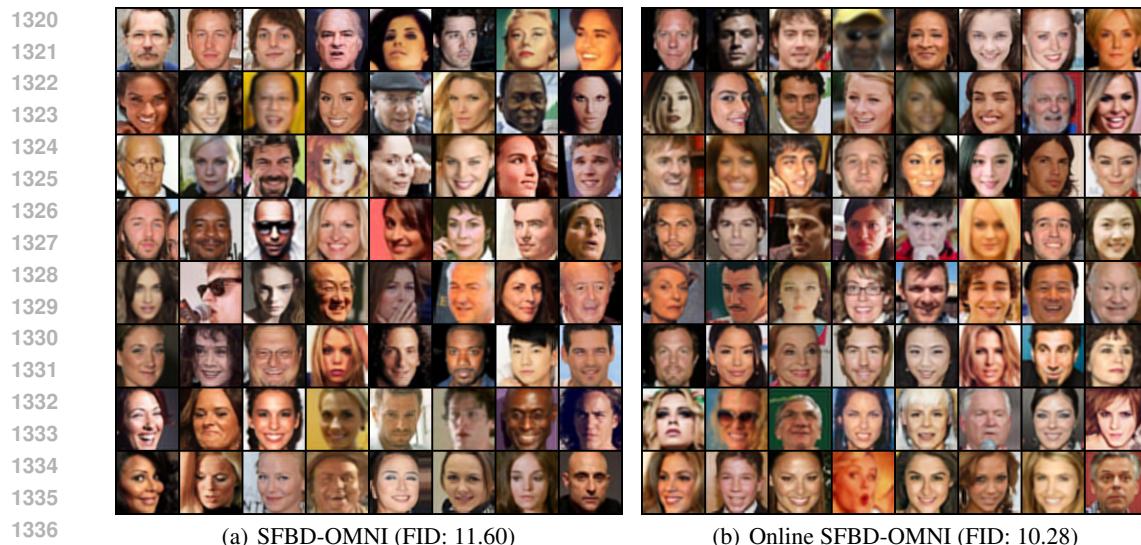


Figure 7: Gauss. Blur

1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349

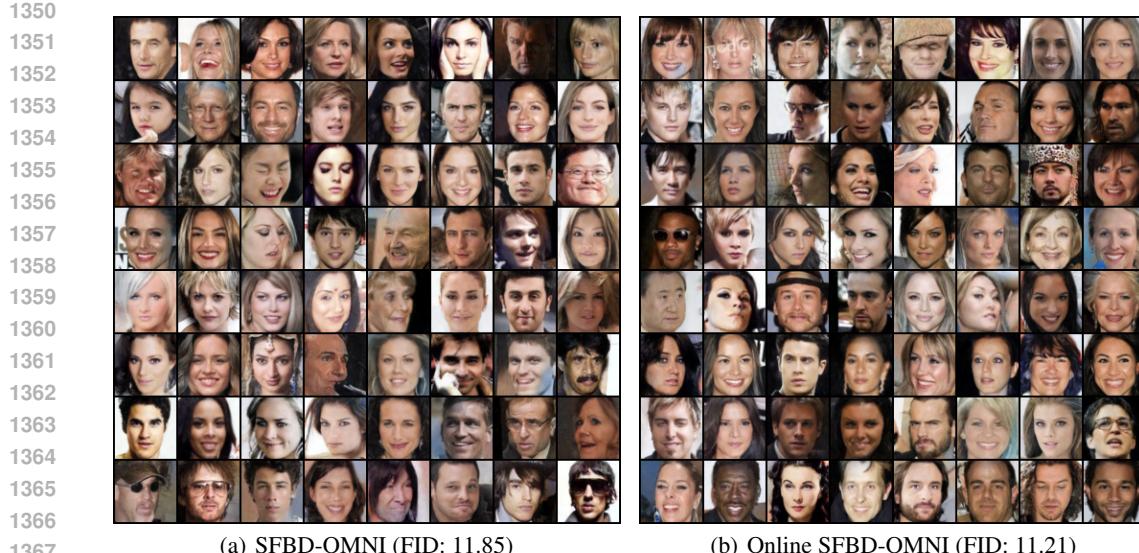


Figure 8: Grayscale

## I DISCUSSION ON AMBIENT DIFFUSION OMNI

Ambient diffusion-Omni (Ambient-o) incorporates corrupted samples by injecting additional Gaussian noise. The key idea is that once sufficient Gaussian noise is added, the corrupted-noisy distribution and the clean-noisy distribution become harder to distinguish. This observation suggests that a corrupted sample, after being further noised, can effectively be treated as a noised clean sample, allowing it to be used in standard diffusion-model training. This effect does not depend on the specific form of the corruption process, allowing AD-OMNI to operate without requiring knowledge of the corruption mechanism. However, this strategy comes with an inherent trade-off. While heavy noising helps align corrupted samples with clean ones, it also risks erasing useful structure and details within the observations. In other words, sufficient noise is needed for Ambient-o to function as intended, but excessive noise may suppress the informative signal that could otherwise benefit model learning.

In contrast, SFBD-OMNI does not inject additional noise into the samples and therefore preserves the full information of the observations. Rather than relying on excessive noising to align distributions, our method leverages knowledge of the corruption process itself, avoiding information destruction while still enabling effective training.

In Table 3, following the Ambient-o setting, we apply a Gaussian blur with varying strengths  $\sigma$  and assume access to 10% clean samples. The table shows that, by fully leveraging the information

| Blur Strength ( $\sigma$ ) | Ambient-o | Online SFBD-OMNI |
|----------------------------|-----------|------------------|
| 0.6                        | 5.34      | 0.97             |
| 1.0                        | 6.16      | 3.07             |

Table 3: Ambient-o vs. online SFBD-OMNI: FID under Gaussian blur of varying strengths.

contained in the corrupted samples, SFBD-OMNI achieves substantially lower FID across blur levels, outperforming Ambient-o by a large margin.

## J PRETRAINING MODELS USING SAMPLES FROM A SIMILAR DISTRIBUTION

As mentioned in Sec 6, according to our theory, when the corruption function is identifiable, a small number of clean samples are needed only to obtain a good initial distribution  $p_0$ . This also implies

that if clean samples from the target distribution are unavailable, it is acceptable to use samples from a similar distribution instead. To demonstrate this, we pretrain the model on CIFAR-10 using clean samples from the truck class, and then apply iterative optimization to recover the distributions of automobile, ship, and horse, where all samples are corrupted by additive Gaussian noise with noise level  $\sigma = 0.2$ . The FID scores before and after iterative optimization are shown in Table 4.

| Class               | After Pretrain | Final |
|---------------------|----------------|-------|
| Automobile          | 8.36           | 6.19  |
| Ship                | 13.96          | 8.78  |
| Horse               | 25.87          | 13.55 |
| Horse (no pretrain) | –              | 80.17 |

Table 4: FID comparison across CIFAR-10 classes before and after finetuning, with pretraining conducted on the truck class.

As the table shows, for classes similar to truck – such as automobile – the model successfully recovers the target distribution, as indicated by the low final FID. For classes that are less similar, pretraining still provides substantial benefits. In particular, for horse, pretraining on the truck class reduces the final FID dramatically from 80.17 (without pretraining) to 13.55, illustrating the importance of a good initial distribution even when the clean samples are drawn from a different – but related – class. (Notably, the horse and truck classes still share several low-level characteristics such as edges and common background elements like grass or road surfaces.)

## K SUPPLEMENTARY EMPIRICAL RESULTS IN LATENT SPACE

In this section, we provide additional empirical results on high-resolution satellite (256 x 256) and MRI datasets (320 x 320) corrupted by Poisson noise and compressive sensing (CS). For MRI, the experiments are conducted in the latent space for computational efficiency. The results remain consistent with those in the main text, further validating the effectiveness of SFBD-OMNI across diverse corruption settings. At the same time, qualitative inspection reveals visible reconstruction artifacts, indicating remaining limitations and motivating future work that incorporates stronger priors or modality-specific inductive biases.

**Satellite images and Poisson noise.** We use satellite images from the training split of the NWPU-RESISC45 dataset (Cheng et al., 2017), which contains 45 scene classes with 600 images per class.

For this dataset, we consider Poisson noise corruption. Poisson noise arises naturally in photon-limited imaging systems, including satellite and remote-sensing cameras, where the number of detected photons per pixel is inherently stochastic and follows Poisson statistics (Hasinoff, 2014; Schott, 2007). Following common practice in Poisson-noise simulation studies, we vary the photon budget as  $\alpha \in 10, 50, 100$ , corresponding to severe, moderate, and mild shot-noise conditions, respectively. We simulate Poisson noise by interpreting each pixel intensity  $x_{i,j,c} \in [0, 1]$  as a normalized photon arrival rate and sampling

$$y_{i,j,c} \sim \frac{1}{\alpha} \text{Poisson}(\alpha x_{i,j,c}),$$

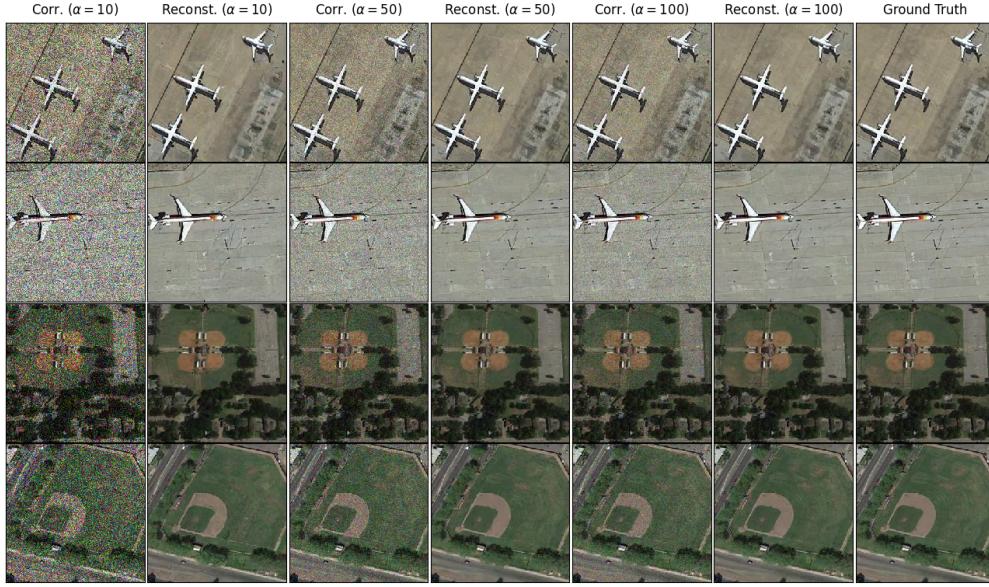
followed by clipping the resulting values to the valid range  $[0, 1]$  (Makitalo & Foi, 2011).

**MRI image set and compressive sensing corruption.** We conduct our experiments on the fastMRI brain dataset (Zbontar et al., 2018), using its multicoil training subset, which provides fully sampled raw  $k$ -space data from clinical brain MRI scans. For each volume, we discard the final four slices, as these typically contain little or no brain anatomy. After filtering, the dataset contains 52,778 MRI slices, from which we randomly sample 2,000 as the clean set.

For this dataset, we consider the compressive sensing degradation, which is a natural corruption model for MRI. In particular, MRI scanners do not acquire images directly; instead, they measure the spatial frequencies of the underlying anatomy in  $k$ -space (Lustig et al., 2007). The acquisition process

| 1458 | 1459 | 1460 | 1461           | 1462 | 1463 | Stage | Satellite — Poisson Noise |               |                | MRI                 | Compressive Sensing |
|------|------|------|----------------|------|------|-------|---------------------------|---------------|----------------|---------------------|---------------------|
|      |      |      |                |      |      |       | $\alpha = 10$             | $\alpha = 50$ | $\alpha = 100$ | Compressive Sensing |                     |
|      |      |      | After Pretrain |      |      |       | 9.32                      | 5.71          | 4.43           |                     | 36.98               |
|      |      |      | Final Result   |      |      |       | 7.11                      | 4.13          | 3.40           |                     | 28.71               |

1464 Table 5: FID Scores of Online SFBD-OMNI for satellite images (Poisson noise with  $\alpha = 10, 50,$   
 1465 100) and MRI scans (compressive sensing).



1466  
 1467  
 1468  
 1469  
 1470  
 1471  
 1472  
 1473  
 1474  
 1475  
 1476  
 1477  
 1478  
 1479  
 1480  
 1481  
 1482  
 1483  
 1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493  
 1494  
 1495  
 1496  
 1497  
 1498  
 1499  
 1500  
 1501  
 1502  
 1503  
 1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511  
 Figure 9: Reconstructed Satellite Images – Poisson Noise (photo budget  $\alpha = 10, 50, 100$ ).

1488 therefore corresponds to sampling the Fourier transform of the image. Because clinical MRI protocols  
 1489 routinely undersample  $k$ -space to shorten scan time, compressed-sensing MRI accelerates acquisition  
 1490 by collecting only a subset of frequency coefficients and relying on reconstruction algorithms to  
 1491 recover the missing data. Consequently, partial Fourier undersampling is not an artificial degradation,  
 1492 but a realistic and practically motivated corruption process for accelerated MRI.

1493 To simulate a realistic compressive sensing degradation, we follow the standard undersampled MRI  
 1494 acquisition model of Lustig et al. (2007). Given an image  $x \in \mathbb{R}^{H \times W}$ , the corrupted observation is  
 1495 obtained by undersampling its Fourier transform:

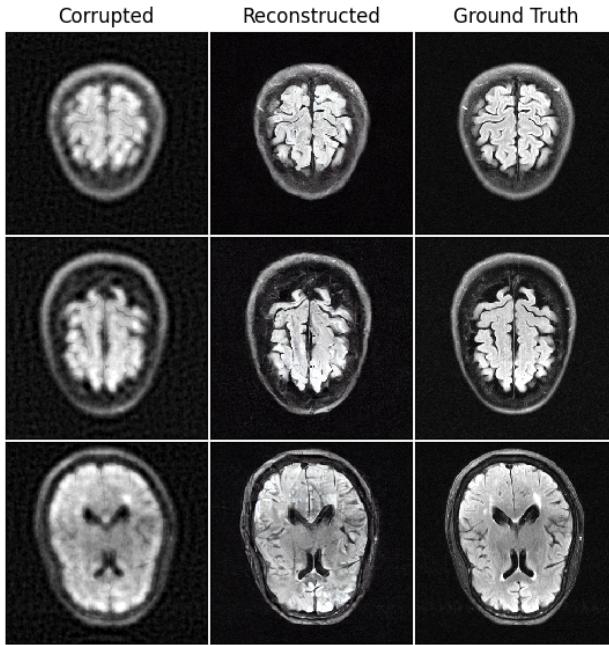
$$y = P_\Omega(\mathcal{F}(x)),$$

1496 where  $\mathcal{F}$  denotes the 2-D discrete Fourier transform and  $P_\Omega$  is a binary mask selecting a subset  $\Omega$   
 1497 of frequency coefficients. We use a fixed variable-density sampling mask, generated once at the  
 1498 beginning of the experiment and reused for all samples. Following common practice in compressed-  
 1499 sensing MRI, the central low-frequency region of  $k$ -space (10% of the spatial extent) is fully sampled  
 1500 to preserve global structure, while coefficients outside this region are sampled independently with  
 1501 probability 0.20. This produces a realistic and reproducible compressive sensing corruption operator  
 1502 that retains essential low-frequency content while heavily undersampling high-frequency components.

1503 **Implementation.** For satellite images, we continue using the model architectures described in Sec G.  
 1504 For the experiments on MRI, we use the pretrained autoencoder (VAE) from Stable Diffusion v1.5  
 1505 (Rombach et al., 2022a) to encode images into the latent space and to decode the model outputs. We  
 1506 keep the model architectures described in Sec G unchanged, except for adjusting the input and output  
 1507 channels to 4 to match the dimensionality of the latent representations.

1508 **Results.** Table 5 summarizes the FID performance of online SFBD-OMNI for satellite images  
 1509 with Poisson corruption and MRI scans under compressive sensing, measured after pretraining

1512  
 1513  
 1514  
 1515  
 1516  
 1517  
 1518  
 1519  
 1520  
 1521  
 1522  
 1523  
 1524  
 1525  
 1526  
 1527  
 1528  
 1529  
 1530  
 1531  
 1532



1533  
 1534 Figure 10: Reconstructed MRI – Compressive Sensing

1535  
 1536 and after online iterative refinement. Across all evaluated settings, the online phase yields a clear  
 1537 improvement over the pretrained model, demonstrating the effectiveness of SFBD-OMNI as a general  
 1538 reconstruction framework for real-world corruption processes.

1539 We provide qualitative reconstructions in Figures 9 and 10. On satellite images, SFBD-OMNI visibly  
 1540 recovers large-scale structures – such as building layouts, runway geometry, and aircraft outlines –  
 1541 that are heavily disrupted by Poisson shot noise. In the MRI setting, despite severe undersampling,  
 1542 the method reconstructs coherent tissue boundaries and globally consistent anatomical structure.

1543 **Limitations and noise sensitivity.** While our framework produces promising reconstructions, the  
 1544 Poisson-noise results also reveal a clear limitation. As the photon budget decreases (i.e., noise  
 1545 increases), output quality degrades, with more residual artifacts and reduced fine-grained fidelity.  
 1546 This trend is reflected quantitatively in Table 5, where performance drops moving from  $\alpha=100$  to  
 1547  $\alpha=10$ . Qualitative examples in Fig 9 further highlight these failure modes—under extreme shot noise,  
 1548 texture-level restoration remains challenging and fine structure is only partially recovered. Likewise,  
 1549 for MRI samples corrupted by compressive sensing, we still notice some visible artifacts as shown in  
 1550 Fig 10.

1551 Across both Poisson-corrupted satellite imagery and compressive-sensed MRI scans, SFBD-OMNI  
 1552 reliably recovers the global structure of the underlying data distribution, but struggles to reconstruct  
 1553 fine details, particularly under severe corruption. Poisson noise reduces the amount of usable  
 1554 information in low-photon settings, and similarly, heavy MRI undersampling restricts the available  
 1555 signal for reconstruction. In such cases, recovering the clean distribution becomes inherently more  
 1556 challenging and may require stronger priors or model-specific inductive biases.

1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565