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Figure 1: Ground-A-Video achieves multi-attribute editing, video style transfer with attribute change, and text-
to-video generation with pose guidance, all in a time-consistent and training-free fashion. The boxes in the
right-bottom images visualize the series of pose guidance.

ABSTRACT

Recent endeavors in video editing have showcased promising results in single-
attribute editing or style transfer tasks, either by training text-to-video (T2V)
models on text-video data or adopting training-free methods. However, when
confronted with the complexities of multi-attribute editing scenarios, they ex-
hibit shortcomings such as omitting or overlooking intended attribute changes,
modifying the wrong elements of the input video, and failing to preserve regions
of the input video that should remain intact. To address this, here we present a
novel grounding-guided video-to-video translation framework called Ground-A-
Video for multi-attribute video editing. Ground-A-Video attains temporally con-
sistent multi-attribute editing of input videos in a training-free manner without
aforementioned shortcomings. Central to our method is the introduction of Cross-
Frame Gated Attention which incorporates groundings information into the latent
representations in a temporally consistent fashion, along with Modulated Cross-
Attention and optical flow guided inverted latents smoothing. Extensive exper-
iments and applications demonstrate that Ground-A-Video’s zero-shot capacity
outperforms other baseline methods in terms of edit-accuracy and frame consis-
tency. Further results and code are available at http://ground-a-video.github.io.

1 INTRODUCTION

Coupled with massive text-image datasets (Schuhmann et al., 2022), diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) have revolutionized text-to-image (T2I)

1

http://ground-a-video.github.io


Published as a conference paper at ICLR 2024

generation, making it increasingly accessible to generate high-quality images from text descriptions.
Additionally, the domain has seen profound expansion into several subfields, including controlled
generation and real-world image editing. On the other hand, the endeavor to extend the success
to the video domain poses a significant computational hurdle. Attaining time-consistent and high-
quality results necessitates training on expensive video datasets—an endeavor beyond the means of
most researchers, particularly given the absence of publicly available, generic text-to-video models.

As such, pioneering approaches exhibit promise in text-to-video generation (Ho et al., 2022b;a)
and video editing (Esser et al., 2023) by repurposing T2I diffusion model weights for extensive
video data training. Specifically, in pursuit of cost-effective video generation, Wu et al. (2022)
suggests fine-tuning the T2I model on a single video, which enables generating variations of the
video. Similar to the practice of manipulating attention maps within the realm of image editing
(Hertz et al., 2022; Tumanyan et al., 2023; Parmar et al., 2023), various methods guide the denoising
process by self-attention maps (Ceylan et al., 2023), cross-attention maps (Liu et al., 2023; Wang
et al., 2023), or both (Qi et al., 2023), which are obtained during the input video inversion stage.
Recently, to incorporate the denoising process with additional structural cues, ControlNet (Zhang &
Agrawala, 2023) has been transferred to video domain, achieving structure-consistent output frames
in video generation (Khachatryan et al., 2023a) and translation (Hu & Xu, 2023; Chu et al., 2023;
Chen et al., 2023; Zhang et al., 2023).

Nonetheless, in the scenario of fine-grained video editing involving multiple attribute changes, i.e.
∆τ={τa�τa′ , τb�τb′ , τc�τc, . . . ,∅�τnew}, where τ represents a specific attributed indexed by
subscript, they encounter issues of degraded frame consistency, severe semantic misalignment (Park
et al., 2023), or both, as depicted in Fig. 2-Left and Sec. E. In specific, instances of neglecting in-
tended attribute edits (τa�τa), modifying the wrong elements (τa�τb′ ), mixing two separate edits
(τa�τa′ ·τb′ ), and struggling to preserve regions that should remain unchanged (τc�τc′ ) are ob-
served. This is because in the existing models, the Cross-Attention layer is the single domain where
the complex semantic changes wield their influence, where the list of intricate changes being entan-
gled as a form of “one-sentence target prompt” makes the problem worse.

The key to address this issue lies in spatially-disentangled layout information, comprising bounding
box coordinates and textual captions, namely ‘groundings’. Groundings disentangle the complex
semantic combination by localizing each semantic element with precise location. Recently, ground-
ing has been successfully employed to text-to-image generation tasks. Li et al. (2023b) and Yang
et al. (2023) finetune existing T2I models to adhere to grounding conditions using box-image paired
datasets, while Xie et al. (2023) achieves training-free box-constrained image generation by inject-
ing binary spatial masks into the cross-attention space. However, unlike the literature on single-
image synthesis, guiding video generation process with groundings alone could significantly detri-
ment frame consistency. One major problem is that localizing the bounding box is insufficient for
the smooth frame transition (Fig. 2-right), which calls the need for additional structural guidance.
Consequently, we propose to integrate two distinct modalities: 1) spatially-continuous conditions,
including depth and optical flow maps, are employed to maintain consistent structure across frames;
2) spatially-discrete conditions, specifically ‘groundings’, enable precise localization and editing
of each attribute within the source video. The principal contributions of Ground-A-Video are
summarized as follows:

• To our knowledge, we present the first groundings-driven video editing framework, also
marking the first instance of integrating both spatially-continuous and discrete conditions.

• We propose a novel Modulated Cross-Attention mechanism which efficiently enables in-
teractions between differently optimized unconditional embeddings.

• To further enhance consistency, we suggest smoothing inverted latent representations using
optical flow information, which can be employed following any type of inversion.

• Extensive experiments and applications demonstrate the effectiveness of our method in
achieving time-consistent and precise multi-attribute editing of input videos.

2 BACKGROUND

Stable Diffusion. Distinct from traditional diffusion models (Ho et al., 2020), Stable Diffusion
(SD) functions within a low-dimensional latent space, which is accessed via VAE autoencoder E ,D
(Kingma & Welling, 2013). More precisely, once the latent representation z0 is obtained by com-
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Figure 2: Left: Failure cases of multi-attribute video editing by various methods, driven by the target text “A
squirrel is eating an orange on the grass, under the aurora.” Ground-A-Video’s successful result for the same
task is shown in the second row of Fig. 1. Right: Input video reconstruction with and without ControlNet.

pressing an input image f ∈ RH×W×3 through the encoder E , i.e. z0 = E(f), diffusion forward
process gradually adds Gaussian noise to z0 to obtain zt through Markov transition with the transi-
tion probability:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI) , t = 1, . . . , T , (1)

where the noise schedule {βt}Tt=1 is an increasing sequence of t and T is the number of diffusion
timesteps. Then, the backward denoising process is given by the transition probability:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σ
2
t I) , t = T, . . . , 1 . (2)

Here, the mean µθ(zt, t) can be represented using the noise predictor ϵθ which is learned by the
minimization of the MSE loss with respect to θ: Ef,τ,ϵ∼N (0,I),t ∥ϵ− ϵθ (zt, t, τ)∥

2
2, where ϵ refers

to the zero mean unit variance Gaussian noise vector, and τ = ψ(T ) is the embedding of a text T .

Specifically, a prevalent approach in diffusion-based image editing is to use the deterministic DDIM
scheme (Song et al., 2020a) to accelerate the sampling process. Within this scheme, the noisy latent
zT can be transformed into a fully denoised latent z0:

zt−1 =

√
αt−1

αt
zt +

√
1− αt−1

αt−1
−

√
1− αt

αt

 ϵθ , t = T, . . . , 1 , (3)

where αt is a reparameterized noise scheduler.

Null-text Optimization. To augment the effect of text conditioning, Ho & Salimans (2022) have
presented the classifier-free guidance technique (cfg), where the noise prediction by ϵθ is also carried
out unconditionally, namely by ‘null text’. Then the null-conditioned prediction is extrapolated with
the text-conditioned prediction to produce the classifier-free guidance prediction:

ϵ̃θ(zt, t, τ,∅) = w · ϵθ(zt, t, τ)︸ ︷︷ ︸
conditional prediction

+(1− w) · ϵθ(zt, t,∅)︸ ︷︷ ︸
unconditional prediction

,
(4)

where ∅ = ψ(“ ”) denotes the embedding of a null text and w denotes the guidance scale. However,
when coupled with cfg featuring large guidance scale w ≫ 1, DDIM inversion accumulates errors
during the denoising process, resulting in flawed image reconstruction. In order to fix these errors,
Mokady et al. (2023) optimizes the embeddings of a null text. First, DDIM inversion trajectory
{z∗t }Tt=0 and the predicated backward trajectory {z̄t}Tt=0 are computed. Then, at each timestep
starting from T , unconditional embeddings {∅t}Tt=1 are tuned towards minimizing

∥∥z̄t−1 − z∗t−1

∥∥2
2
.

3 METHOD

3.1 GROUND-A-VIDEO: OVERVIEW

Given a series of source video frames f1:N and a list of intended edits ∆τ , our goal is to accurately
edit various attributes of the source video while avoiding unwanted modifications, in a zero-shot
yet time-consistent manner. Fig. 3 illustrates the overall architecture of Gound-A-Video to achieve
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this. Initially, we automatically acquire grounding information through GLIP (Li et al., 2022). The
groundings and the source prompt are manually refined to form target groundings and target prompt,
commonly following ∆τ . On the other branch, the input frames undergo individual DDIM inversion
and null optimization, followed by optical flow-based smoothing to form smoothed latent features.
The smoothed latents are separately fed into the inflated SD and ControlNet, which are modified
with a sequence of attentions to achieve the temporal consistency of the video editing. The inflated
ControlNet takes an additional input of depth maps. Subsequently, the target groundings are directed
to the Cross-Frame Gated Attentions of the SD model, while the target prompt and optimized null-
embeddings are channeled into the Modulated Cross Attentions of both SD and ControlNet models.

In Sec. 3.2, we discuss our inflated SD with per-frame inversion approach and proposed attention
mechanisms (Modulated Cross-Attention & Cross-Frame Gated Attention). In Sec. 3.2, we intro-
duce the inflated ControlNet to incorporate a spatially-continuous prior of input video: a sequence
of depth maps. Lastly in Sec. 3.4, we present optical flow guided smoothing which is applied to the
inverted latent features before they are fed into the SD and ControlNet models, to further improve
the consistency across frames.

Figure 3: Left: Input preparation. We automatically obtain video groundings of input video frames f1:N

via GLIP. This is followed by a handcraft editing phase for both the groundings and the source prompt. The
input frames undergo individual inversion and null optimization, followed by optical flow-based smoothing.
Furthermore, ControlNet input d1:N are obtained via ZoeDepth estimator. Right: Denoising process. The
smoothed latents z1:N are fed into the inflated SD and ControlNet. The target grounding tokens U1:N are
directed to Cross-Frame Gated Attention, while context vectors {τ1:N ,∅1:N} are directed to Modulated Cross
Attention. The series of attentions in inflated SD’s transformer blocks includes Spatial-Temporal Attention,
Cross-Frame Gated Attention, and Modulated Cross Attention, whereas Cross-Frame Gated Attention layers
are not appended in inflated ControlNet. If a binary mask, the intersection of common outer spaces of target
bounding boxes, exists, it is utilized for inpainting before each denoising step. This process helps preserve
regions that are not the target of editing (see Sec. 4.4). For brevity, we omitted timestep t in all variables.

3.2 INFLATED STABLE DIFFUSION BACKBONE

Attention Inflation with Spatial-Temporal Self-Attention. To exploit pretrained SD which is
trained without temporal considerations, recent video editing methods (Wu et al., 2022; Qi et al.,
2023; Chen et al., 2023) commonly inflate Spatial Self-Attention along the temporal frame axis.
In a similar vein, Ground-A-Video enables inter-frame interaction by refactoring the Spatial Self-
Attention into Spatial-Temporal Self-Attention while retaining the pretrained weights. In specific,
for the latent representation zit of source frame f i, query features are derived from spatial fea-
tures of zit, while key and value features are computed from spatial features of concatenated latents
[z1t , . . . , z

N
t ]. Specifically, this process can be written by the following mathematical representation:

Q =WQ · zit, K =WK · [z1t , . . . , zNt ], V =WV · [z1t , . . . , zNt ],

where WQ, WK , WV are projection matrices.

Per-frame Inversion with Modulated Cross-Attention. Although model inflation, such as the
Spatial-Temporal Attention discussed above or the Sparse-Causal Attention in (Wu et al., 2022),
can contribute to preserving global semantic consistency across frames, prior research on the model
inflation (Liu et al., 2023) has shown that it adversely degrades the generation quality of the original
SD model, leading to imprecise reconstruction. This occurs because Spatial Self-Attention parame-
ters are employed to compute frame correlations, which have not been taught during the pre-training.
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Hence, the inflated SD model falls short for the approximate inversion. To mitigate this issue, they
fine-tune the attention projection matrices on the input video.

In contrast, our pipeline adopts a per-frame approach to video inversion using the original, non-
inflated SD model without any training. In this process, for each of the N frames within the video
f1:N , we carry out DDIM inversion and null-text inversion (Sec. 2) individually to obtain inverted
latents z1:NT and optimized null-embedding trajectories {∅1:N}Tt=1. The latents z1:NT are then sub-
jected to Optical flow guided latents smoothing (Sec. 3.4), before proceeding to the denoising pro-
cess. Additionally, to guide the separately optimized embeddings {∅1:N}Tt=1 to restore the temporal
correlation, we reengineer the Cross-Attention mechanism within the transformer blocks of SD that
calculates correspondence between latent pixels and context vectors. Specifically, when performing
cfg (Eq. equation 4), unlike conditional prediction where context vectors τ1:N are uniform across
frames, unconditional prediction employs unique context vectors ∅1:N . Since even minor variations
in the context vectors across frames adversely impact the global frame consistency (see Fig. 5), we
propose reprogramming the Cross-Attention mechanism into Modulated Cross-Attention, which
can be formulated as Attn(Q,K, V ) = Softmax(QKT

√
d
V ) , with

Q =WQ · zit, K =

{
WKcit if cond
WK

[
c1t , . . . , c

N
t

]
if uncond , V =

{
WV cit if cond
WV

[
c1t , . . . , c

N
t

]
if uncond .

(5)
Here, zit denotes a spatial latent feature of frame f i at timestep t, while ‘cond’ and ‘uncond’ refer
to conditional and unconditional predictions, respectively. In the process of computing the uncon-
ditional prediction branch of cfg (Eq. (4)), the proposed modulation produces attention maps that
correlate with the similarity between zit and the merged null-embeddings [c1t , . . . , c

N
t ], thus opening

a path for interaction between variant context vectors.

Video Groundings with Cross-Frame Gated Attention. Li et al. (2023b) proposed GLIGEN that
achieves open-world grounded text-to-image generation via continual learning. In specific, they
extend the SD model by adding a gated self-attention layer and fine-tuning this layer to incorporate
layout information, while freezing the original SD weights. Ground-A-Video adopts GLIGEN’s
gated attention module and refactor the operation to accommodate the video-grounding in a time-
consistent fashion, which has not been explored before.

Following the same notations, we denote the semantic information associated with the i-th ground-
ing entity as ei and a set of bounding box coordinates for the i-th grounding entity as li. Next, we
define the concept of ‘grounding’ for a single image, expressed as g= [(e1, l1) , ..., (eM , lM )] with
M denoting the number of entities to ground. Expanding from image space to video space, we ag-
gregate groundings across N frames of the input video, yielding g1:N=

[
g1, ..., gN

]
. Subsequently,

we disentangle the complex editing objectives and introduce handcraft modifications, transitioning
ei to e′i for i=1, . . . ,M , resulting in g′1:N—the revised grounding input for our model. For exam-
ple, consider the first frame’s grounding, denoted as g1, within the input video in Figure 3, which
takes the form of [(‘rabbit’, (0.0, 0.0, 0.7, 0.9)) , . . . , (‘table’, (0.0, 0.8, 1.0, 1.0))]. Then, the editing
objectives ∆τ={τrabbit�τkangaroo, . . . , τtable�τsnow} transforms grounding g1 to grounding
input g′1, which is written as [(‘kangaroo’, (0.0, 0.0, 0.7, 0.9)) , . . . , (‘snow’, (0.0, 0.8, 1.0, 1.0))] .
The prepared grounding input requires post-processing prior to proceeding to the reverse diffu-
sion. The semantic information eji is directed to the CLIP text encoder, where it is transformed
into text tokens. Meanwhile, the layout information lji is encoded using Fourier embedding, follow-
ing Mildenhall et al. (2021), to produce layout tokens. The text tokens and layout tokens are then
projected to the single ‘grounding’ space using an MLP, resulting in grounding tokens:

uji = MLP([ECLIP(e
j
i )︸ ︷︷ ︸

text token

,Fourier(lji )︸ ︷︷ ︸
layout token

]).
(6)

Given the grounding tokens for frame i and an intermediate latent representation of frame i at time t,
denoted as zit, our goal is to project the grounding information onto the visual latent representation.
However, frame-individual projection leads to temporal incoherence as, for example, the same text
conditioning for ‘kangaroo’ is projected differently onto the i-th latent zit and the j-th latent zjt unless
zit is identical to zjt . Therefore, we propose the Cross-Frame Gated Attention which globally
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integrates grounding features onto the latent representation via TS(Softmax(QKT

√
d
V )) with:

Q =WQ · [zit, U i], K =WK · [z1t , U1, . . . , zNt , U
N ], V =WV · [z1t , U1, . . . , zNt , U

N ],

where U i = [ui1, . . . , u
i
M ] for the grounding tokens from equation 6, and the operation TS denotes

the token slicing, which ensures that the output shape of the proposed attention operation remains
consistent with the input shape.

3.3 INFLATED CONTROLNET

ControlNet (Zhang & Agrawala, 2023) starts with a trainable copy of SD UNet, purposefully de-
signed to complement the SD. The trainable branch is then fine-tuned to accommodate task-specific
visual conditions, extending the input of ϵθ (zt, t, c) to (zt, t, c, d), where d represents the addi-
tional conditions such as depth maps or edge maps. This combined locked-copy and trainable-copy
framework preserves the original synthesis capabilities of SD while enabling precise control over
the structural attributes of the generated images.
To incorporate structural guidance into the video generation process, we employ inflated ControlNet
architecture and depth condition. Initially, we estimate depth maps from the source video, converting
d to d1:N , and apply the Self-Attention inflation and Cross-Attention modulation (Sec. 3.2) on
ControlNet while retaining the fine-tuned weights. During the denoising stage, the residual latent
features z1:Nres ∈ RN×h×w×c of ControlNet are first scaled by ‘ControlNet Scale’ hyperparameter,
then transmitted to the inflated SD UNet, as illustrated in Figure 3. The scaling parameter regulates
the degree of structural preservation between the input and output (see Fig. 8, 26).

Algorithm 1 Optical Flow guided Inverted Latents Smoothing

Require: Number of frames N , Source video frames f1:N , Timesteps T , Text-Image Diffusion
Model (SD), Optical flow estimator (RAFT), Threshold for magnitude difference Mthres

z1:NT ←− DDIM INV(f1:N , T , SD) ▷ run inversion (e.g. DDIM inversion)
for all i = 2, 3, ..., N do

mapiopt ←− RAFT(f i−1, f i) ▷ obtain optical flow map
mapimag ←− normalize(∥mapiopt∥)) ▷ compute magnitude map
mapimask ←− mapimag < Mthres ▷ obtain binary mask denoting static region
mapimask = downsample(mapimask) ▷ downsample to latent-level size
ziT = zi−1

T ∗mapimask + ziT ∗ (1−mapimask) ▷ flow guided smoothing
end for
Return z1:NT ▷ temporally smoothed latents

3.4 OPTICAL FLOW GUIDED INVERTED LATENTS SMOOTHING

As a video consists of a temporal series of images with a considerable overlap of nearly identical
pixels, contemporary video compression techniques (Hu et al., 2021; 2022) harness motion infor-
mation to mitigate temporal redundancy instead of saving individual pixels for every frame of a
video. Inspired by this, Chen et al. (2023) introduces pixel-level residuals of the source video into
the diffusion process, while Hu & Xu (2023) leverages motion prior to prevent the regeneration of
redundant areas for frame consistency.
In our framework, latent codes of the input video are individually computed by performing inversion
on each frame through the T2I model. Hence, the approach of aggregating these latent representa-
tions and directly feeding them into the denoising process is suboptimal with respect to preserving
consistency on static regions. Also inspired by the video codecs, we propose to refine the inverted
latents, guided by optical flow information extracted from the input video frames, which accurately
captures the motion changes across frames. The pseudo algorithm is shown in Algorithm 1.
Specifically, we first acquire an optical flow mapmapiopt between the consecutive frames (f i−1, f i)
using an optical flow estimation network. This flow map is represented as a two-channel image,
with each channel capturing vertical and horizontal motion movement. Subsequently, we incorpo-
rate the two different motion channels into a one-channel magnitude map mapimag by calculating
the Euclidean distance at each pixel location, followed by channel-wise normalizations. The result-
ing mapimag represents the comprehensive motion prior between f i−1 and f i. After thresholding
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Figure 4: Qualitative comparison with baseline methods: Our results exhibit superior temporal consistency, no
mutated body parts, accurate structural preservation, and the highest Edit-Accuracy without omitting or mixing
components of edits. Best viewed at high zoom levels.

mapimag on pre-configured threshold Mthres, which generates a binary mask (mapimask), we per-
form smoothing on inverted latents (zi−1

T , ziT ) using the obtained mask. This processing guarantees
that static regions share the same pixel values between frames.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We leverage pretrained weights of Stable Diffusion v1.4 (Rombach et al., 2022) and ControlNet-
Depth (Zhang & Agrawala, 2023) in addition to self gated attention weights from GLIGEN (Li
et al., 2023b). We use a subset of 20 videos from DAVIS dataset (Pont-Tuset et al., 2017). Generated
videos are configured to consist of 8 frames, unless explicitly specified, with a uniform resolution of
512x512. We benefit from BLIP-2 (Li et al., 2023a) for the automated generation of video caption-
ings. We then feed-forward video frames and captionings to GLIP (Li et al., 2022) model to obtain
bounding boxes of the target objects. For the applications of video style transfer, bounding box coor-
dinates are uniformly set as [0.0, 0.0, 1.0, 1.0] which covers the whole frame. RAFT-Large network
(Teed & Deng, 2020) and ZoeDepth (Bhat et al., 2023) are employed for estimating optical flow
maps and depth maps, respectively. In the Appendix (Sec. D), we provide a detailed configuration
of hyperparameters related to the forward and reverse diffusion processes.

4.2 BASELINE COMPARISONS

Qualitative Evaluation. We offer a visual comparison against various state-of-the-art video edit-
ing approaches in Fig. 4. ControlVideo (CV) (Zhang et al., 2023) stands out as the most relevant
work to ours, as it introduces a training-free video editing model that is also conditioned on Con-
trolNet. Control-A-Video (CAV) (Chen et al., 2023) translates a video with ControlNet guidance
as well, with a first-frame conditioning strategy. Tune-A-Video (TAV) (Wu et al., 2022) efficiently
fine-tunes their inflated SD model on the input video. To ensure a fair evaluation, as TAV is not
provided structural guidance, we apply their inflation logic to ControlNet and fine-tune the inflated-
SD-ControlNet on the input video. Gen-1 (Esser et al., 2023) presents a video diffusion architecture
with additional structure and content guidance specifically designed for video editing. It’s worth not-
ing that CAV and Gen-1 train their models with video datasets and that the methods with ControlNet
uniformly employed depth guidance for a fair comparison.
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Quantitative Evaluation. We evaluate the proposed method against aforementioned baselines using
both automatic metrics and a user study. The results are outlined in Tab 1.

Method Text-Align Frame-Con Edit-Acc Preserve-Acc Frame-Con
TAV 0.810 0.959 2.99 3.13 3.05
CAV 0.801 0.955 2.25 2.50 2.88
CV 0.822 0.963 2.36 2.02 2.08

Gen-1 0.833 0.939 2.41 2.51 2.56
Ours 0.837 0.970 4.13 4.24 4.01

Table 1: Summary of quantitative evaluations using
CLIP (Left) and user study (Right).

(a) Automatic metrics. We use CLIP (Radford
et al., 2021) for automatic metrics. For textual
alignment (Hessel et al., 2021), we calculate av-
erage cosine similarity between the target prompt
and the edited frames. For frame consistency, we
compute CLIP image features for all frames in
the output video then calculate the average co-
sine similarity between all pairs of video frames.
As shown in Tab. 1, our method outperforms baselines in both textual alignment and temporal con-
sistency. (b) User study. We surveyed 28 participants to evaluate accuracy of editing and consistency
of frames in the edited videos, utilizing a rating scale ranging from 1 to 5. Specifically, to measure
editing accuracy, we divided the evaluation into two questions: i.“Were all the elements in the in-
put video that needed to be edited accurately edited?” ii.“Were the elements in the output video that
needed to be preserved accurately preserved?” Tab. 1 shows that our method surpasses the baselines
in all three aspects, particularly with a significant lead in Edit-Accuracy and Preserve-Accuracy.

Figure 5: Left: Comparison of Modulated Cross-Attention with the original Cross-Attention, in the context of
individually optimized null-embeddings. Right: Comparison of Cross-Frame Gated Attention against original
frame-independent gated mechanism and the absence of a gated attention layer. The rightmost case shows edit-
ing with frame-independent groundings can yield subpar results compared to editing without any groundings.

4.3 ABLATION STUDIES

Text-Align Frame-Con
w/o Modulated CA 0.835 0.967

w/o Groundings 0.802 0.960
w/o Cross-Frame GA 0.829 0.956

w/o ControlNet 0.823 0.948
Full components 0.837 0.970

Table 2: Quantitative assessments on
pipeline components using CLIP.

Attentions. We compare the use of the original Cross-
Attention with the Modulated Cross-Attention in Fig. 5-Left.
The results reveal variations in unconditional context vectors
lead to distinct appearances of the subject within a video and
the Modulated mechanism promotes the coherency of the sub-
ject’s appearance. In Fig. 5-Right, we compare our proposed
Cross-Frame Gated Attention to scenarios with no gated at-
tention (no grounding conditions) and with the direct applica-
tion of GLIGEN’s Gated Attention. The example of ‘Iron man’ illustrates the semantic edit of ‘man
� Iron man’ is neglected in the absence of groundings guidance and that frame-independent Gated
Attention causes discrepancy in the appearance of the shoulder area of ‘Iron man’ The ‘yellow car’
example reveals that grounding guidance can result in inferior results compared to the generation
with no grounding conditions at all, if not applied in a cross-frame manner. These results under-
score the pivotal role of Cross-Frame Gated Attention in both edit-accuracy and time-consistency.
Moreover, we provide a quantitative analysis detailing the impact of each module in Tab.2.
ControlNet. We ablate the utilization of ControlNet-Depth. Fig. 2- and Fig. 6-Right depict in-
stances of inaccurate reconstruction of the input video. ControlNet’s structure guidance is necessi-
tated to draw accurate structure of ‘rabbit’ and ‘penguin’ inside the bounding boxes, respectively. To
further validate the usage of ControlNet, we conducted a quantitative analysis to assess the impact
of the proposed inflated ControlNet, as presented in Table 2.
Optical Flow Smoothing. To assess the impact of optical flow-guided inverted latents smoothing,
we ablate the smoothing using three threshold values: 0 (no smoothing applied), 0.2 and 0.6. As
revealed in Fig. 6, our flow-guided smoothing effectively eliminates artifacts within static regions
and enhance consistencies. To find optimal threshold value, we computed Frame Consistencies using
thresholds of 0.2, 0.3, and 0.4. Notably, the 0.2 threshold resulted in superior frame consistency
(0.970 for threshold 0.2 > 0.968 for threshold 0.3, 0.964 for threshold 0.4).
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Figure 6: Left: Editing outcomes using different thresholds for Optical Flow Smoothing. Right: Input video
reconstruction results with and without ControlNet guidance.

4.4 APPLICATIONS OF GROUND-A-VIDEO

Groundings-guided Editing with Inpainting. Employing a grounding condition offers a signifi-
cant advantage, as it facilitates the creation of an inpainting mask. This mask is readily obtained by
intersecting the shared outer areas of bounding boxes. By utilizing this acquired mask during edit-
ing, which identifies regions in the source video that should remain unaltered, Preserve-Accuracy is
further enhanced. For instance, in Fig. 7-Middle, the common outer spaces of red bounding boxes
and blue bounding boxes form a binary mask which is used for inpainting. Yet, in Fig. 7-Bottom,
there is no intersection of common outer spaces, and thus, inpainting is not applied in this scenario.
Video Style Transfer & Text-to-video Generation with Pose Control. In the video style transfer
task of 7-Middle, target style texts are injected to UNet backbone in both Cross-Frame Gated Atten-
tion and Modulated Cross Attention layers. The second row showcases the application of style trans-
fer, while the third row shows style transfer combined with attributes editing. Our method adeptly
translates input video into the desired style, all while incorporating semantic edits when necessary.
Fig. 7-Right illustrates the use of Ground-A-Video for zero-shot text-to-video generation with pose
map guidance. The pose map images are sourced from Ma et al. (2023). These spatially-continuous
pose map conditions are integrated into the diffusion reverse process via inflated ControlNet.

Figure 7: Left: Video editing with and without inpainting. Middle: Video style transfer with attribute change.
Right: Text-to-video generation with pose maps. All three results are generated with zero-shot inference.

5 CONCLUSION

Figure 8: Video editing results with
different ControlNet Scales.

In our work, we addressed the problem of complex multi-
attribute editing of a video and proposed an answer of
utilizing both spatially-continuous and discrete conditions.
Ground-A-Video offers precise video editing capabilities
without the need for fine-tuning off-the-shelf diffusion models
on any video data. We demonstrated the power of our method on
various input videos and applications. We provided detailed comparisons to existing baselines along
with an extensive user study, demonstrating its superiority in terms of consistency and accuracy.
Limitations. Since video groundings play a crucial role in our pipeline, misleading groundings
(e.g., incorrect bounding box coordinates) may result in inaccurate editing outcomes. Although the
use of ControlNet inherently brings the issue of structural flexibility between the input and output,
this can be effectively controlled through the ‘ControlNet Scale’ hyperparameter (see Fig. 8, 26).
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Ethics & Reproducibility. The use of T2I foundation models brings forth several ethical con-
siderations. These models possess the potential for malicious applications, such as the creation of
misleading or counterfeit content, which could yield adverse societal consequences. Our work heav-
ily relies on one such model, making it susceptible to these concerns. Furthermore, the models were
trained on a dataset of internet-sourced images (Schuhmann et al., 2022), which may encompass
inappropriate content and inherent biases. Consequently, these models might perpetuate such biases
(Mishkin et al., 2022) and generate inappropriate imagery. To address these potential concerns and
foster reproducibility, we will release our source code, model, and data under a license that encour-
ages ethical and legal usage. Additional information regarding experiments, implementations and
the code base can be found in the Appendix (see Sec. D).
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A COMPARISON TO PER-FRAME T2I EDITING METHODS

To further underscore the effectiveness and indispensability of Ground-A-Video’s pipeline design,
we offer comparisons with two groundbreaking T2I editing methods applied in a per-frame manner,
i.e., per-frame GLIGEN (Li et al., 2023b) editing and per-frame ControlNet (Zhang & Agrawala,
2023) editing. Note that random seeds were consistently fixed when sampling each frame and DDIM
inversion was utilized to give additional compositional guidance for both GLIGEN editing and Con-
trolNet editing. As demonstrated in Fig. 9, a straightforward extension of the T2I methods in a
frame-by-frame fashion leads to significant appearance inconsistencies in the video translation task.

Figure 9: Comparison with GLIGEN inpainting and ControlNet (depth) img2img on a frame-by-frame basis:
The direct application of state-of-the-art image editing methods to the video editing task results in a substantial
lack of appearance consistency among frames.

B UTILIZING OPTICAL FLOW-GUIDED INVERTED LATENTS SMOOTHING IN
TUNE-A-VIDEO

To further validate robustness of the proposed optical flow-guided inverted latents smoothing, we
demonstrate its application within the Tune-A-Video (TAV) (Wu et al., 2022) framework. Similar to
our approach, TAV commences its denoising process from DDIM-inverted latents. Fig. 10 illustrates
a comparison between the application of flow smoothing and its absence within the TAV editing
framework. Our smoothing technique effectively ensures consistency within static regions (e.g., the
avocado on the left and the corn on the right) and eliminates artifacts across frames. It is noteworthy
that our proposed optical flow smoothing is applicable to any video editing framework utilizing
DDIM inversion.
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Figure 10: Application of the flow-guided inverted latents smoothing in the Tune-A-Video framework.

C RELATED WORK

C.1 CONTROL OVER TEXT-TO-IMAGE GENERATION

Internet-scale datasets of image-text pairs (Schuhmann et al., 2022) have driven remarkable ad-
vancements in diffusion models within the realm of text-image generation (Rombach et al., 2022;
Ramesh et al., 2022; Saharia et al., 2022). Consequently, the focus of text-image models natu-
rally shifted towards the challenge of controllable generation. Controlled image generation can be
achieved through two distinct modalities: spatially-continuous conditions and discrete conditions.
Notable contributions in the former include T2I-Adapter (Mou et al., 2023) and ControlNet (Zhang
& Agrawala, 2023), which augment pretrained T2I models with auxiliary networks. These networks
are specifically trained to produce images conditioned on spatially-continuous visual cues such as
depth maps and edge maps. Conversely, GLIGEN (Li et al., 2023b) and Reco (Yang et al., 2023)
fine-tune the T2I model to accommodate discrete layout information, comprising bounding box co-
ordinates and textual captions.

Another approach to exert control over the generation process is to heavily reference the input image,
with the goal of preserving structural and background attributes. Prompt-to-prompt (Hertz et al.,
2022) and Pix2pix-zero (Parmar et al., 2023) achieve structure-preserving image generation by using
cross-attention maps of the input image, while Plug-and-play (Tumanyan et al., 2023) and MasaCtrl
(Cao et al., 2023) manipulates spatial features of the self-attention mechanism, which are extracted
from the input image diffusion trajectory. Alternate strategies (Mokady et al., 2023; Kawar et al.,
2023) attain enhanced editing capabilities through optimization techniques. Yet, straightforward
application of previously mentioned methods in a frame-by-frame manner for video editing outputs
pronounced flickering and temporal inconsistencies.

C.2 DIFFUSION MODELS FOR VIDEO

When juxtaposed with text-image generation, generating videos in a text-only condition poses a sig-
nificantly elevated challenge due to the complexity of constraining temporal consistency along with
the scarcity of extensive text-video datasets, which are both resource-unfriendly. Video Diffusion
Models (VDM) (Ho et al., 2022b) designs a space-time factorized 3D UNet architecture trained
on both image and video modalities. ImagenVideo (Ho et al., 2022a) trains cascaded VDMs with
v-prediction parameterization. Make-A-Video (Singer et al., 2022) and MagicVideo (Zhou et al.,
2022) adopt a similar approach in that they train T2V models transferring from pretrained T2I mod-
els. More recently, Text2Video-Zero (Khachatryan et al., 2023b) achieves zero-shot text-to-video
generation by enhancing the latent features of the generated frames with motion dynamics and re-
structuring the Spatial Self-Attention along the frame-axis.

Simultaneously, significant research efforts have been dedicated to video editing tasks (Xing et al.,
2023). Pioneering work in this field, exemplified by Tune-A-Video (Wu et al., 2022), has employed
the approach of fine-tuning query projection matrices in attention layers to effectively retain infor-
mation from the source video. Video-P2P (Liu et al., 2023) adopts an approach of fine-tuning a
Text-to-Set model on the source video as well, additionally introducing a decoupled-guidance atten-
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tion control for the inference stage. More recent one-shot video editing frameworks include Motion
Director (Zhao et al., 2023) and VMC (Jeong et al., 2023), where they both aim to customize mo-
tion patterns presented in the source video. To eliminate the necessity of optimizing model weights
entirely, various zero-shot editing techniques have been introduced. Vid2vid-zero (Wang et al.,
2023) focus on a cross-attention maps guidance while Pix2Video (Ceylan et al., 2023) employs a
self-attention maps injection mechanism, where the attention maps are obtained in the input video
inversion stage in both methods. It’s worth noting these two distinct attention control methods are
orthogonal and thus can be utilized at the same time. Furthermore, FateZero (Qi et al., 2023) intro-
duces a training-free video editing pipeline that utilizes cross-attention maps from the input video
inversion trajectory. These maps are used to calculate blending masks, aiming to enhance consis-
tency in the background regions of the generated videos. In contrast to approaches that involve
no training on video or training on a single video, Gen-1 (Esser et al., 2023) and Control-A-Video
(Chen et al., 2023) adopt a training-based approach for video translation, incorporating additional
structural guidance. Notably, Control-A-Video achieves efficient convergence through their innova-
tive first-frame conditioning method, optimizing resource utilization. Recent methodologies (Chu
et al., 2023; Hu & Xu, 2023) have made significant advancements in frame consistency by integrat-
ing an optical flow warping mechanism into their generation process. A promising concurrent work,
TokenFlow (Geyer et al., 2023), accomplishes time-consistent video editing that strongly preserves
spatial layout by enforcing consistency on the internal diffusion features across frames during the
denoising process.

D EXPERIMENTAL DETAILS AND IMPLEMENTATIONS

In this section, we provide experimental details of our method and the compared baselines. Ground-
A-Video(Depth) utilizes DDIM inversion then performs null-text optimization with the default hy-
perparameters in Mokady et al. (2023). In the flow-driven inverted latents smoothing stage, the
magnitude threshold Mthres is set to 0.2. At inference, DDIM scheduler (Song et al., 2020a) with
50 steps and classifier-free guidance (Ho & Salimans, 2022) of 12.5 scale is used. The executable
code base will be available at our project’s repository.

For the comparison with Tune-A-Video-Control(Depth) (Wu et al., 2022), we utilize the authors’
provided implementation1 and also adjust ControlNet (Zhang & Agrawala, 2023) following their
inflation guidelines. For fine-tuning, we train the model on each example video for 500 iterations
using their default parameters. During inference, we utilize DDIM inversion with 50 steps and em-
ploy diffusion reverse with the DDIM scheduler, also using 50 steps. The model architecture and
training script for ControlNet-attached Tune-A-Video will also be made available in our project’s
code repository. For the comparison with Control-A-Video(Depth) (Chen et al., 2023), we utilize
their official implementation2 with the following hyperparameter settings: 50 steps for inference,
a video scale of 1.5, and a noise threshold of 0.1. In our comparison with ControlVideo(Depth)
(Zhang et al., 2023), we leverage their open-source code repository3 and demo website4. We per-
form inference using 50 steps, and we apply interleaved-frame smoothing with steps set at [19,
20]. Although Gen-2, the successor to Gen-1 (Esser et al., 2023), has been recently announced, it
is important to note that Gen-2 supports sole text-to-video generation functionality, which differs
from the focus of our paper, which is centered on comparing video editing performance. Thus, we
have utilized Gen-1 for our comparisons and the results from Gen-1 were generated by executing its
web-based product.

1https://github.com/showlab/Tune-A-Video
2https://github.com/Weifeng-Chen/control-a-video
3https://github.com/YBYBZhang/ControlVideo
4https://replicate.com/cjwbw/controlvideo
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Figure 11: Left: Input video and Ground-A-Video’s editing result, driven by the target prompt ”A crow flying
above desert in the forest on fire.” Right: Cases of Neglected Edit and Edit on Wrong Element. The editings
are driven by the same target prompt, using Control-A-Video and Tune-A-Video-ControlNet, respectively.

E SEMANTIC MISALIGNMENT & ADDITIONAL COMPARISONS

In our study, we define the concept of semantic misalignment within the realm of video editing. To
facilitate better understanding, we offer illustrative examples of various forms of semantic misalign-
ment through baseline comparisons.

The most common types of semantic misalignment encountered in video editing are ‘Neglected
Edit’ and ‘Edit on Wrong Element’. Neglected Edit is signified by the omission of one of the
intended attribute edits, while Edit on Wrong Element refers to cases where a semantic edit is ap-
plied to an element that was not the intended target of the edit. These misalignments are typically
observed in scenarios where a wide range of different edits need to be performed. For instance, as
shown in Fig. 11, editing scenario can be represented as {τbird�τcrow, τlake�τdesert, τforest�τon fire}. In
the first row of Fig. 11-right, the edit of ‘τforest�τon fire’ is omitted in the results. The results in the
second row provide an example of Edit on Wrong Element, specifically visualizing the occurrence
of ‘τbird�τon fire. The next type is ‘Mixed edit’, which denotes the situations where two or more sep-
arate edits become intertwined and mutually affect each other, straying from the original intention.
This issue is commonly observed in complex editing scenarios that involve object color changes. For
instance, in the second row of Fig. 12-left, the edits ‘τcar�τred’ and ‘τ∅�τsunset’ become intertwined
as ‘τred · τsunset’ and are applied globally to the entire image within a video. Finally, we address
‘Preservation Failure’, which refers to instances where the generated results fail to preserve the
regions that are not the target of editing. This issue is not exclusive to complex editing scenarios.
For example, in the second row of Fig. 12-right, the edit ‘τpenguin�τkungfu panda’ on the foreground
object has been successfully performed, but it has failed to preserve the background of the source
video.

Figure 12: Left: An example of Mixed Edit. Right: An example of Preservation Failure.
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F SPATIAL CONDITIONS

F.1 DISCRETE AND CONTINUOUS CONDITIONS

Ground-A-Video framework categorizes spatial conditions into two types: Spatially-discrete con-
ditions and Spatially-continuous conditions. Spatially-discrete conditions refer to modalities that
do not rigidly dictate the precise spatial arrangement of objects or elements within the ultimate out-
put image or video. In our work, we utilize a blend of bounding box coordinates and textual descrip-
tions that pertain to the grounded entity. This spatially-discrete condition doesn’t enforce particular
layout or structural constraints within the bounding box but rather determines the positions of the
entities enclosed by the bounding box within the image frame. In contrast, spatially-continuous
conditions provide information that explicitly influences the placement, structure, or spatial distri-
bution of objects throughout every part of the frame, e.g., edge maps and depth maps. To enhance
understanding of these terms, we visualize examples of each modalities that are used in our editing
pipeline in Fig. 13.

Figure 13: Left: Spatially-continuous conditions. Right: Spatially-discrete conditions.

F.2 STATIC AND DYNAMIC GROUNDINGS

Video groundings play a central role in our video editing pipeline, and we would like to classify them
into two separate categories based on the video’s main subject characteristics: Static groundings
and Dynamic groundings. Static groundings refer to groundings that describe a subject that exhibit
minimal movement or remain in a fixed region of the layout. In contrast, dynamic groundings
involve groundings describing a subject that transition from one region to another within a video. In
Fig. 14, the first row presents an input video featuring a static ‘penguin’ subject. The subsequent two
rows below the first row illustrate our method’s successful editing using static groundings associated
with the stationary subject. The first row of Fig.15 showcases a video with a dynamic ‘car’ subject,
and the two rows following it demonstrate our method’s effectiveness in editing the dynamic subject
with the assistance of dynamic groundings.
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Figure 14: Input video of static subject ‘penguin’ and static groundings-driven video editing results.

Figure 15: Input video of dynamic subject ‘car’ and dynamic groundings-driven video editing results.
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G FULL-LENGTH ADDITIONAL RESULTS

G.1 VIDEO STYLE TRANSFER

Ground-A-Video is primarily designed for multi-attribute video editing but can also perform video
style transfer tasks with temporal consistency. Additional video style transfer applications on various
videos are presented in Fig. 16.

Figure 16: Full-length Video Style Transfer results.
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G.2 MULTI-ATTRIBUTE EDITING

We present additional qualitative results of Ground-A-Video on multi-attribute editing. In each of
the Fig. 17, 18, 19, and 20, the top rows visualize5 the optical flow maps estimated from an input
video. The second row shows the input frames, each with annotated bounding boxes around the
entities. Our optical flow estimation network, RAFT (Teed & Deng, 2020), requires consecutive
images for accurate estimation. Consequently, the first frame, lacking a previous frame for com-
parison, does not yield any estimation results. For Fig. 21, 22, 23, 24, and 25, the top two rows
visualize both the estimated optical flow maps and the corresponding magnitude maps. An optical
flow map comprises two-channel images, with each channel representing vertical and horizontal mo-
tion residuals. The magnitude map, which combines motion information from both directions into
a single-channel image, is computed using normmax(∥mapopt∥). The normalization is performed
along the frame dimension. In the examples, the visualization of magnitude maps demonstrates a
successful comprehension of vertical and horizontal movements. On all Fig. 17, 18, 19, 21, 22, 23,
24, 25 under the input video, we present the editing results in ascending order based on the ‘number
of attributes to be changed’ (from small changes to a large number of changes). Furthermore, Fig.
26 presents the editing outcomes using various settings of the ControlNet Scale hyperparameter. It’s
noteworthy that a reduction in the scaling parameter leads to greater independence in the shapes of
the tiger (particularly its ears) and the football from the input video and depth maps. To better assess
temporal consistency, full-length results are provided for all figures.

Figure 17: Various editing results on the video of “A bird flying above lake in the forest.”

5https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_
image.html
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Figure 18: Various editing results on the video of “A black swan with a red beak swimming in a river near a
wall and bushes.”

Figure 19: Various editing results on the video of “A white fox sitting in the grass.”
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Figure 20: Various editing results on the video of “A rabbit is eating strawberries.”

Figure 21: Various editing results on the video of “A cat is roaring.”
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Figure 22: Various editing results on the video of “A squirrel eating a carrot.”
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Figure 23: Various editing results on the video of “Brown bear walking on the rock, against a wall.”
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Figure 24: Various editing results on the video of “A man is walking a dog on the road.”
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Figure 25: Various editing results on the video of “A rabbit is eating a watermelon on the table.”
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Figure 26: Full frame editing result with varying ControlNet Scales.
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