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Abstract

The most popular graph indices for vector search use principles from computational geom-
etry to build the graph. Hence, their formal graph navigability guarantees are only valid in
Euclidean space. In this work, we show that machine learning can be used to build graph
indices for vector search in metric and non-metric vector spaces (e.g., for inner product sim-
ilarity). From this novel perspective, we introduce the Support Vector Graph (SVG), a new
type of graph index that leverages kernel methods to establish the graph connectivity and
that comes with formal navigability guarantees valid in metric and non-metric vector spaces.
In addition, we interpret the most popular graph indices, including HNSW and DiskANN,
as particular specializations of SVG and show that new indices can be derived from the
principles behind this specialization. Finally, we propose SVG-L0 that incorporates an ω0
sparsity constraint into the SVG kernel method to build graphs with a bounded out-degree.
This yields a principled way of implementing this practical requirement, in contrast to the
traditional heuristic of simply truncating the out edges of each node. Additionally, we show
that SVG-L0 has a self-tuning property that avoids the heuristic of using a set of candidates
to find the out-edges of each node and that keeps its computational complexity in check.

1 Introduction

In recent years, vector search has become a critical component of AI infrastructure. For example, in retriever-
augmented generation (RAG) (Lewis et al., 2020), vector search is used to ground knowledge and prevent
hallucinations. In particular, graph-based indices (e.g., Dearholt et al., 1988; Arya & Mount, 1993; Malkov
& Yashunin, 2020; Fu et al., 2019; Subramanya et al., 2019) have been deployed in the real world with great
success. Here, a directed graph, where each vertex corresponds to a database vector and edges represent
neighbor-relationships between vectors, is e!ciently traversed to find the (approximate) nearest neighbors of
a query vector in sublinear time. The graph edges need to be carefully selected to ensure that this traversal
yields correct results (i.e., the graph is navigable). Starting with the seminal works by Dearholt et al. (1988)
and Arya & Mount (1993), navigable graphs are built using computational geometry principles to perform
edge selection. The Delaunay graph is a fully navigable triangulation (Wang et al., 2021) but it is too dense
in higher dimensions. Informally, graph-building algorithms sparsify the graph by examining these triangles
and only keeping a small subset. The Delaunay graph and the triangle pruning rules are defined in Euclidean
space, which limits the navigability guarantees of the resulting graphs to this specific case. However, these
algorithms are commonly used in non-Euclidean spaces, where their underlying principles do not hold, to
build graphs that work well in practice but lack formal guarantees.

In this work, we analyze graph indices from a new perspective: we rely on machine learning instead of
computational geometry. In particular, we study graph indices formally in light of kernel methods. In
this setting, we have a similarity function sim(x, x

→) : Rd → Rd ↑ R and an associated kernel K(x, x
→) =

h(sim(x, x
→)), where h is a (possibly) nonlinear function. Throughout this work, we assume that the kernel

is positive semidefinite, i.e., the feature expansion K(x, x
→) = ε(x)↑

ε(x→) is valid for (possibly infinite-
dimensional) feature vectors ε(x). The exponential kernel is an important class of kernels, widely used in
experimental and theoretical studies,

Kexp (x, x
→) def= exp

(
sim(x, x

→)/ϑ
2)

, (1)
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where the hyperparameter ϑ > 0 is implicit. Two leading examples are given by the similarity functions

simeuc(x, x
→) def= ↓ ↔x ↓ x

→↔2
2 , (2)

simdp(x, x
→) def= x

↑
x

→ (3)

that define the standard Radial Basis Function (a.k.a. Gaussian) and exponential dot product kernels,
respectively. The similarity simdp corresponds to the commonly used maximum inner product (MIP) retrieval
problem. The exponential kernel is a natural choice, as it is used in the training loss (e.g., the entropy loss) of
the embedding models that produce the vectors commonly used in practice (Radford et al., 2021; Karpukhin
et al., 2020). Note that defining sim(x, x

→) def= ↓ dist(x, x
→)2 for any distance function (e.g., Manhattan,

Hamming, etc.) yields a valid exponential kernel.

Using kernels as our vantage point, we present the following contributions (all proofs in the appendix):

• We propose a new graph index, the Support Vector Graph (SVG), with formal navigability guarantees
(under some conditions). This new index arises from a novel perspective on graph indices (Section 2) and
an accompanying formulation that models graph construction as a kernelized nonnegative least squares
(NNLS) problem. This NNLS is equivalent to a support vector machine (SVM) whose support vectors
provide the connectivity of the graph (Section 3).

• We introduce the concept of quasi-navigable networks (Section 3.1). Navigable networks are designed for
the exact nearest neighbor (NN) problem in Euclidean space but are commonly used to find approximate
nearest neighbors (ANN) in non-Euclidean spaces. Quasi-navigable networks rely on kernels, thus covering
many metric and non-metric spaces, and o"er a relaxed definition of navigability more attuned to ANN.

• For SVG, our formal results, valid in metric and non-metric vector spaces, show quasi-navigability for
general kernels and navigability for the exponential kernel with small width ϑ (Section 3.1). To the best
of our knowledge, these are the first navigability results in non-Euclidean vector spaces.

• We formally interpret the most popular graph indices as SVG specializations, where the SVG optimization
problem is used within the aforementioned traditional triangle pruning approach (Section 4). In particular,
our results cover the popular HNSW (Malkov & Yashunin, 2020) and DiskANN (Subramanya et al., 2019).
We also show that new triangle-pruning algorithms, valid in Euclidean and non-Euclidean spaces, can be
derived from the principles behind this specialization.

• Finally, we address the construction of graphs with a bounded out-degree, a common feature in most
practical deployments. For this, we propose SVG-L0 that includes a hard sparsity (ω0) constraint into the
SVG optimization (Section 5). SVG-L0 yields a principled way of handling the requirement, in contrast
with the traditional heuristic, which simply truncates the out edges of each node. Additionally, we show
that SVG-L0 has a self-tuning property, which avoids setting a set of candidate edges for each graph node
and makes its computational complexity sublinear in the number of indexed vectors.

Although this work focuses on a formal analysis of SVG and SVG-L0, we also present some preliminary
empirical results to show that the proposed techniques have practical value beyond their theoretical merits
(Section 6). For reproducibility, we make our implementation available at [anonymized_url].

Notation. We denote the set of natural numbers from 1 to n by [1 . . . n]. We denote vectors/matrices by
lowercase/uppercase bold letters, e.g., v ↗ Rn and A ↗ Rm↓n. Individual entries of a matrix A (resp. vector
v) are denoted by A[ij] (resp. vi). The i-th row and column of A are denoted by A[i:] and A[:i], respectively.
The matrix containing a subset I ↘ [1 . . . m] (resp. J ↘ [1 . . . n]) of the rows (resp. columns) of A ↗ Rm↓n

is denoted by A[I:] (resp. A[:J ]). A directed graph G = ([1 . . . n], E) is composed by the node set [1 . . . n] and
the edge/vertex set E , i.e., a set of ordered pairs #»

ij with i, j ↗ [1 . . . n]. We define the neighborhood of node
i as Ni

def=
{

j | #»
ij ↗ E

}
. A path [v1, · · · , vl] in G is a list of nodes such that (≃i = 1, · · · , l ↓ 1) #          »

vivi+1 ↗ E .

2 Graph indices for vector search in Euclidean Space

Using navigable graphs for vector search has a long history (Dearholt et al., 1988; Arya & Mount, 1993)
but only became prominent in the last ten years (e.g., Subramanya et al., 2019; Malkov & Yashunin, 2020)
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Algorithm 1: Greedy graph search
Input : Query q ↗ Rd, dataset

{
xi ↗ Rd

}n

i=1, graph G = ([1 . . . n], E), entry point iep.
Output: Approximate nearest neighbor i

↔.
1 i

↔ ⇐ iep;
2 Repeat

3 i ⇐ argmin
j↗Ni→

↔q ↓ xj↔2; // Ni→ is the neighborhood of i
↔

4 if ↔q ↓ xi↔2 < ↔q ↓ xi→↔2 then i
↔ ⇐ i; // progress, continue

5 else return i
↔; // no progress, exit

with the increasing scale of unstructured data. Navigability is defined as the ability to reach any node when
conducting a greedy graph traversal (Algorithm 1) using that node as the query. The following definitions
formalize this concept.
Definition 1 (Monotonic Path (Fu et al., 2019)). Given a set of n vectors

{
xi ↗ Rd

}n

i=1, let G = ([1 . . . n], E)
denote a directed graph and s, t ↗ [1 . . . n] be two nodes of G. A path [v1, · · · , vl] from s = v1 to t = vl in G

is a monotonic path if and only if (≃i = 1, · · · , l ↓ 1) ↔xvi ↓ xt↔2 >
∥∥xvi+1 ↓ xt

∥∥
2.

Definition 2 (Monotonic Search Network (Fu et al., 2019)). Given a set of n vectors
{

xi ↗ Rd
}n

i=1 and the
kernel K, a graph G = ([1 . . . n], E) is a generalized monotonic search network if and only if there exists at
least one monotonic path from s to t for any two nodes s, t ↗ [1 . . . n].

A Monotonic Search Network (MSNet) is a navigable graph as demonstrated by the following lemma.
Lemma 1 (Fu et al., 2019). Let G = ([1 . . . n], E) be a monotonic search network. Let s, t ↗ [1 . . . n], then
Algorithm 1 with xt as the query and s as the entry point finds a monotonic path from s to t in G.

The Delaunay graph (DG) is an MSNet (Kurup, 1992). For a graph with n nodes, the number of edges in
the DG rapidly approaches n as the dimensionality grows, limiting its usability for large datasets with high-
dimensional vectors (the memory and computational complexities approach O(n2) and O(n), respectively).
As a consequence, many graph construction algorithms (e.g., Dearholt et al., 1988; Arya & Mount, 1993;
Malkov & Yashunin, 2020; Fu et al., 2019; 2022; Subramanya et al., 2019) have been proposed over the
years, operating under the (sometimes implicit) principle of sparsifying the DG. These algorithms work as
depicted in Algorithm 2. For each node i, a candidate pool is selected (this is commonly implemented as an
approximate nearest neighbor search), and then a pruning algorithm is used to select a maximally diverse
set of nodes (i.e., far away from each other) while being close to i, see Figure 1. In essence, these algorithms
were carefully conceived to analyze the DG triangles (or a superset (Subramanya et al., 2019)) and discard
those edges that are redundant for navigability. While these graphs were designed to have formal navigability
guarantees when Ci = [1 . . . n] \ {i}, they are lost when Ci ↘ [1 . . . n] \ {i}.

More importantly, the DG and the main graph indices (e.g., Malkov & Yashunin, 2020; Fu et al., 2019;
Subramanya et al., 2019) rely on principles from computational geometry, such as triangular inequalities and
(as we show in Section 4) on the law of cosines, which are only valid in Euclidean space. These graph indices
have been used in non-Euclidean vector spaces by extending their edge pruning rules to other similarities in
an ad hoc fashion, resulting in a lack of understanding of their practical behavior.

2.1 From graph search to multiclass classification

We now adopt an alternative viewpoint that will ultimately lead to new developments. For this, we think
of a greedy search in DG, the original monotonic search network, using Algorithm 1 as finding an ascending
path in a multiclass classification problem.

The Voronoi diagram is a tessellation of the space, where each node i of the DG corresponds to a distinct
convex cell Ci (see Figure 14 in the appendix). Two nodes are connected in the DG if the corresponding
Voronoi cells share a facet. We associate with each cell Ci a decision function fi : Rd ↑ R such that: x ↗ Ci

if fi(x) ⇒ 0, x ⇑↗ Ci if fi(x) < 0, and fi(x) decreases as the distance between x and Ci, minx↑↗Ci ↔x ↓ x
→↔2,
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Algorithm 2: Graph index construction
Input : Dataset

{
xi ↗ Rd

}n

i=1.
Output: Graph G = ([1 . . . n], E).

1 E ⇐ ⇓;
2 for i ↗ [1 . . . n] do

3 Selection: choose a candidate pool
Ci ⇔ [1 . . . n] \ {i};

4 Pruning: create set Ni ⇔ Ci

containing the out neighbors of node
i by applying a pruning algorithm;

5 E ⇐ E ↖
{

#»
ij

∣∣ j ↗ Ni

}
;

i

j

l

k

Figure 1: Conceptual depiction of the pruning strategy in
Euclidean space to find the out-edges of node i in the graph
index G = ([1 . . . n], E). Attractive (inward arrowheads)
and repulsive (outward arrowheads) forces promote simi-
larity with i or diversity between candidates, respectively.
Blue and red arrows depict favorable and less favorable
forces, respectively. Here, { #»

ij,
#»
ik} ↘ E but #»

il ⇑↗ E as one
can move from i to k and then from k to l using the greedy
search in Algorithm 1.

increases. Each fi is determined by the intersection of the half-spaces of the boundaries of Ci. Finding the
nearest neighbor of a query q is equivalent to finding i such that fi(q) ⇒ 0. This corresponds to a multiclass
classification problem with n = |X |.1 Of course, this is not computationally very useful, as we are evaluating
n classifiers (i.e., scanning the entire set X ). Seeking fewer evaluations, we conceptualize Algorithm 1 as
follows: if fi→(q) ⇒ 0, the vector xi→ is the nearest neighbor of q; if fi→(q) < 0, move to the adjacent cell i so
that fi(q) is maximum. That is, instead of directly solving the multiclass classification problem, we use the
decision functions of adjacent cells (i.e., given by the Delaunay edges) to find an ascending path [v1, · · · , vl]
such that fvi < fvi+1 . Through this ascent algorithm, we only evaluate a small subset of the n classifiers.

This qualitative viewpoint raises several questions. Can we use machine learning (ML) to build graph
indices? And in non-Euclidean spaces? Can we leverage ML to build parsimonious graphs? Is there a
connection between the ML approach and “traditional” graph indices? In the remainder of this paper, we
answer these questions in the a!rmative, using other classifiers, i.e., support vector machines, to develop
new graph indices in Euclidean and non-Euclidean spaces, with the properties and contributions discussed
in the introduction.

3 The Support Vector Graph

We now define a new type of graph inspired by the ideas outlined in the previous section. Instead of relying
on principles from computational geometry, we directly leverage the result of an optimization algorithm,
the nonnegative least squares problem in kernel space. The positive semidefinite kernel matrix K with
entries K[ij] = K(xi, xj) = ε(xi)↑

ε(xj) can be written as K = !
↑

! where ! = [ε(x1), · · · , ε(xn)], with
the vectors horizontally stacked. From now on, and unless otherwise specified, the similarity between two
vectors xi and xj will only be determined by the value of K(xi, xj). With these elements, we present the
proposed graph index.
Definition 3. We define the Support Vector Graph (SVG) as the result of connecting node i to the non-zero
elements of the minimizer s

(i) of

min
s

1
2 ↔ε(xi) ↓ !s↔2

2 s.t. s ⇒ 0, si = 0, (4)

where ! = [ε(x1), · · · , ε(xn)].

When K(xi, xj) = ε(xi)↑
ε(xj)→ ⇒ 0 for any i, j (a common choice), the angle between any pair of vectors is

less than ϖ/2 and we can find a rotation such that all the feature vectors lie in the positive orthant. Then,
the columns of ! satisfy the conditions that ensure a unique solution (e.g., Wang & Tang, 2009; Slawski &
Hein, 2011; 2014) (i.e., preventing the nonnegative least squares from overfitting). Moreover, in this setting,

1Inverted indices use a similar computational motif derived from Voronoi diagrams (Jégou et al., 2011).
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Figure 2: (Left) Conceptual representation of the SVM hyperplane and margins involved in SVG. Here, the
vector xi is connected to its support vectors x1 and x2 for which fi(x1) = fi(x2) = ↓1, see Equation (7).
(Right) Example of the SVM decision function values (the level sets fi(x) = 1, 0, ↓1 are marked in dotted
red, black and blue lines, respectively). We observe that the function fi adjusts its shape to the topology of
its surrounding points (i.e., the area where fi(x) > 0 adapts to its surroundings).

Problem (4) is self-regularizing, in the sense that its minimizer is naturally sparse (Slawski & Hein, 2011)
without including any explicit constraints promoting sparsity (in contrast to the DG whose sparsity depends
on the input dimensionality, i.e., less sparse at higher dimensions).

The use of sparsity-regularized regression problems to build graphs is not new in machine learning. Some
notable applications include the estimation of sparse inverse covariance matrices (Meinshausen & Bühlmann,
2006), subspace learning and clustering (Cheng et al., 2010; Hosseini & Hammer, 2018), spectral clustering
(Xiao et al., 2012), and nonnegative matrix factorization (for bipartite graphs) (Kumar et al., 2013). In
particular, a variant of Problem (4), which relies on the selection of a candidate pool as in Algorithm 2,
was used for manifold learning (Shekkizhar & Ortega, 2023). However, our analysis of graphs built with
nonnegative sparse regression for vector search is new.

Furthermore, SVG establishes an interesting link between graph indices and parsimonious vector coding.
That is, with a linear kernel, the loss in Problem (4) becomes 1

2 ↔xi ↓ Xs↔2
2, where X = [x1, · · · , xn]. This

formulation is commonly used to represent (e.g., Elhamifar et al., 2012) and quantize vectors (in additive
quantization (Martinez et al., 2016), for example). There is a conceptual parallelism with inverted indices
(Jégou et al., 2011), which are derived from vector quantizers (k-means).

As we show next, the connection between Problem (4) and navigable graphs starts emerging as we dig deeper
into the problem’s properties. By analyzing the expanded form of Problem (4),

min
{sj}n

j=1

1
2K(xi, xi) + 1

2
∑

j,k ↘=i

sjskK(xj , xk)

︸ ︷︷ ︸
term A

↓
∑

j ↘=i

sjK(xi, xj)

︸ ︷︷ ︸
term B

s.t. (≃j) sj ⇒ 0, si = 0,

∑

j ↘=i

sj = 1, (5)

it becomes clear that its solution balances diversity (repulsion) and similarity (attraction) forces using similar
principles as those shown in Figure 1 and analyzed in detail in Section 4 for other popular graph indices.
The minimization of term A promotes the selection of a diverse set of edges, i.e., indices j, k such that
K(xj , xk) is small. When using the RBF kernel, it favors out-neighbors that are far away from each other.
The minimization of term B promotes the selection of edges that are similar to xi, i.e., indices j such that
K(xi, xj) is high. When using the RBF kernel, it favors out-neighbors that are close to xi.

In the previous section, we qualitatively connected graph indices with a multi-class classification problem.
It turns out that Problem (4) is a classification problem disguised as a regression problem.
Theorem 1. Problem (4) is equivalent to a hard-margin support vector machine classifier using the labels

yj =
{

1 if j = i,

↓1 otherwise.
(6)
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Figure 3: The SVM decision boundaries (left), i.e., fi(x) = 0, for each point in a regular 2D grid; see
Equation (7). The function f(x) = maxi fi(x) (center) induces a tessellation. As expected, the tessellation,
found by running a watershed algorithm on f(x), forms a regular grid (right).

The nonzero elements of the minimizer s
(i) of Problem (4) are the support vectors.

We refer the reader to Appendix A for a quick primer on SVMs. For the i-th vector, after computing the
minimizer s

↔ to Problem (4) we obtain the SVM decision function

fi(x) = wi
↑

ε(x) + bi

wi
↑ε(xi) + bi

where wi = ε(xi) ↓
∑

j ↘=i

s
↔
j ε(xj), bi = ↓1

2wi
↑ (ε(xi) + ε(xj↑)) , (7)

for any j
→ such that s

↔
j↑ > 0. By construction, fi(xi) = 1 and fi(xj) = ↓1 for every j ↗ Ni, and fi(xj) < ↓1

for every j ↗ [1..n] \ Ni. In Figure 2 (left), we present a conceptual representation of these level sets as
hyperplanes in feature space. Figure 2 (right) illustrates that these level sets materialize in the original space
as nonlinear boundaries that adapt their shape to the topology of the vectors surrounding xi.

This alternative formulation of Problem (4) makes it easy to see why |Ni| ↙ n: The support vector set
Ni is sparse in separable and non-degenerate settings. More importantly, the decision functions fi induce a
tessellation of the space, as observed in Figure 3. We can find such a tessellation by considering the function
F (x) = ↓ maxi fi(x) as a topographic map and separating adjacent catchment basins (following its gradient)
using a watershed algorithm (Couprie & Bertrand, 1997). The link between the SVG and this tessellation
is analogous to that of the Delaunay graph and the Voronoi diagram.

SVG also shares a deep connection with the DG. Other graph indices are subgraphs of the DG by applying
pruning rules to its edges. As shown next, when using a kernel based on the Euclidean distance (e.g., the
RBF kernel), SVG sparsifies the DG by solving optimization problems (see Figures 4 and 5).
Theorem 2. Let G be the Delaunay graph computed from the original vectors {xi}n

i=1. When using a kernel
based on the Euclidean distance (e.g., RBF), the support of the solution to Problem (4) is a subset of the
neighbors of node i in G.

3.1 Navigability

So far, we have described how to build an SVG and how it shares some key properties with the DG and other
graph indices. We now turn our attention to the analysis of its navigability. However, before proceeding, we
provide new definitions of graph navigation that conform to the kernelized setup of the problem.

In our setup, the Euclidean Algorithm 1 is transformed into Algorithm 3 by switching the minimization of
the distance with the maximization of the kernel values. In the following, we provide definitions that are
analogous to Definitions 1 and 2 but are adapted to the use of kernels. It is important to note that, with
non-metric similarities, the terminal node may be di"erent from the query. That is, whereas we always have
simeuc(xk, xk) = maxi=1,...n simeuc(xi, xk), it is possible that simdp(xk, xk) < maxi=1,...n simdp(xi, xk) (see
Equations (2) and (3)).

Navigable graphs enable retrieving the 1-NN exactly. However, these graphs are commonly used for approx-
imate retrieval and, although the strict definition of navigability may be compromised when building these
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Figure 4: With the RBF kernel, Problem (4) connects the
central node i to a subset of its Delaunay neighbors Di. For
most configurations, the SVG neighbors Ni ↘ Di (left/right
plots). However, Ni = Di in odd configurations, e.g., when
the vectors in Di are equi-spread and equidistant to i (center).

2 4 6 8 10
0

10

20

30

40
Delaunay
SVG

Dimensions

A
ve

ra
ge

 d
eg

re
e

Figure 5: The average cardinality of the
SVG neighbors grows slower than that of
the Delaunay neighbors for (ten realiza-
tions of) 100 randomly distributed vectors
as their dimension grows.

Algorithm 3: Greedy graph search in kernel space
Input : Query q ↗ Rd, dataset

{
xi ↗ Rd

}n

i=1, graph G = ([1 . . . n], E), entry point iep.
Output: Approximate nearest neighbor i

↔.
1 i

↔ ⇐ iep;
2 Repeat

3 i ⇐ argmax
j↗Ni→

K(xj , q); // Ni→ is the neighborhood of i
↔

4 if K(xi, q) > K(xi→ , q) then i
↔ ⇐ i; // progress, continue

5 else return i
↔; // no progress, exit

graph indices in practice (e.g., the fast preprocessing in Indyk & Xu, 2023), they still perform very well. In
this sense, a relaxed definition of navigability may help fill the gap between the theoretical goals and the
practical performance of graph indices. As such, we define the concept of quasi-navigable networks allowing
for slack in the monotonicity of the paths. Later on, we provide empirical results showing that these networks
can o"er better retrieval than heuristically modified navigable networks. Note that this slack is analogous
to the one used to formally define the ANN problem (e.g., Andoni & Indyk, 2008), where (1 + ϱ)-NNs are
considered for some ϱ > 0. Understanding the guarantees o"ered by quasi-navigable graphs in the ANN
setting is an interesting problem for future research.
Definition 4 (Generalized ϱ-Monotonic Path). Given ϱ > 0, a set of n vectors

{
xi ↗ Rd

}n

i=1 and the kernel
K, let G = ([1 . . . n], E) denote a directed graph, s, k ↗ [1 . . . n] be two nodes of G, and t = argmax

i=1,...n
K(xi, xk).

A path [v1, · · · , vl] from s = v1 to t = vl in G is a generalized ϱ-monotonic path if and only if (≃i =
1, · · · , l ↓ 1) K(xvi , xt) < (1 + ϱ)K(xvi+1 , xt).
Definition 5 (Generalized ϱ-Monotonic Search Network). Given a set of n vectors

{
xi ↗ Rd

}n

i=1 and the
kernel K, a graph G = ([1 . . . n], E) is a generalized ϱ-monotonic search network if and only if there exists at
least one generalized ϱ-monotonic path from s to t = argmax

i=1,··· ,n
K(xi, xk) for any two nodes s, k ↗ [1 . . . n].

When using a kernel based on the Euclidean distance, k = argmaxi=1,...n K(xi, xk). In this setting, taking
ϱ = 0 recovers Definitions 1 and 2. To finalize the setup, we show that generalized 0-monotonic search
networks are navigable using Algorithm 3.
Lemma 2. Let G = ([1 . . . n], E) be a generalized 0-monotonic search network. Let s, k ↗ [1 . . . n], then
Algorithm 3 with xk as the query and s as the entry point finds a generalized monotonic path from s to
t = argmax

i=1,··· ,n
K(xi, xk) in G.

We now show that SVGs are quasi-navigable for general kernels and navigable for exponential kernels with
a small width. As our kernel-based definitions subsume arbitrary distance functions and even non-metric
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Figure 6: The width of the RBF kernel acts as a regularizer of the SVG connectivity (i.e., it smooths the
SVM boundaries). For ϑ = 10, the top center point is not included among the neighbors of the red point,
while for ϑ = 3, it is. We observe that the curvature of the boundary grows as ϑ decreases.

similarities (like the inner product), this is the first theoretical result for graph navigability in non-Euclidean
spaces.
Theorem 3. A SVG is a generalized ϱ-monotonic search network with

ϱ = max
i↗[1..n]

ϱi where ϱi = max
{

1
↑

s
(i)

, 1
}

↓ 1, (8)

where s
(i) is the minimizer of Problem (4) for node i.

Theorem 4. When using an exponential kernel with width ϑ
2, the SVG is a generalized ϱ-monotonic search

network with
ϱ = max

i↗[1..n]
ϱi s.t. ϱi = max

{
exp

(
log

∥∥∥s
(i)

∥∥∥
0

+ log s
(i)
j


, 1

}
↓ 1, (9)

where s
(i) is the minimizer of Problem (4) for node i.

It is well known in kernel methods that the kernel width acts as a regularizer, i.e., a larger width smooths
out the class boundary. It is only natural that selecting a large width may have such an e"ect on the SVG
connectivity, which may create issues for its navigability. An example is observed in Figure 6. However,
selecting a suitably small width fixes these issues, as shown next for exponential kernels.
Corollary 1. When using an exponential kernel with width ϑ

2, the SVG is a generalized 0-monotonic search
network for ϑ ↑ 0.

The following corollary follows immediately from Lemma 2 and Corollary 1.
Corollary 2. When using an exponential kernel with width ϑ

2, the SVG is navigable using Algorithm 3 for
ϑ ↑ 0.

These results show that SVG, derived using completely di"erent tools (i.e., kernel methods from machine
learning) than existing graph indices, is a suitable graph index for vector search.

4 Connecting SVG to other graph indices

We now study the link between SVG and other popular graph indices. Algorithm 4 provides a blueprint
for most pruning techniques (Malkov & Yashunin, 2020; Subramanya et al., 2019; Fu et al., 2022) used
in Algorithm 2. Given a candidate pool Ci, Algorithm 4 considers triplets of nodes i, j, k, as depicted in
Figure 7. Throughout this section, we use the standard assumption Ci = [1 . . . n] \ {i} (we discuss this choice
in the next section).

Next, we show that Problem (4), when applied to the analysis of these triplets, leads to a traditional graph
sparsification algorithm with navigability guarantees for general kernels.
Lemma 3 (Kernel connectivity rule). In Line 6 of Algorithm 4, the connectivity rule derived from Prob-
lem (4) is: keep k in Ci if

K(xi, xj)K(xj , xk) < K(xi, xk). (10)
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Algorithm 4: Pruning meta-algorithm to determine the outgoing edges for node i

Input : Dataset X =
{

xj ↗ Rd
}n

j=1, node i ↗ [1 . . . n], candidate pool Ci, maximum out-degree
M ↗ N+.

Output: Set Ni of outgoing neighbors for node i

1 Ei ⇐ ⇓;
2 while Ci ⇑= ⇓ do

3 j ⇐ argmax
j↑↗C

K(xi, xj↑);

4 Ni ⇐ Ei ↖ {j};
5 Ci ⇐ C \ {j};
6 Ci ⇐ {k ↗ Ci | connectivity rule between i, j, and k is met};

Figure 7: We show that, when using an RBF kernel, the graph pruning rules of most popular graph con-
struction algorithms, inluding the popular HNSW (Malkov & Yashunin, 2020) and DiskANN (Subramanya
et al., 2019), can be written as applications of the law of cosines and the inequality a

2 + b
2

> c
2.

Theorem 5. Let s, k be two distinct nodes of a graph built using Algorithm 4 with Ci = [1 . . . n] \ {i} and
the connectivity rule in Lemma 3 and let t = argmax

i↗V
K(xi, xk). There is a generalized 0-monotonic path

between s and t.

The following corollary follows immediately from Definition 2 and Theorem 5.
Corollary 3. A graph built using Algorithm 4 with (≃i) Ci = [1 . . . n] and the connectivity rule in Proposi-
tion 1 is a generalized 0-monotonic search network.

To the best of our knowledge, this is the first graph construction algorithm with full navigability guarantees
regardless of the similarity function underlying the kernel. In this sense, it applies to any metric space and
even non-metric vector spaces, e.g., spaces only equipped with an inner product.

For the RBF kernel, the connectivity rule in Lemma 3 amounts to the familiar inequality a
2 + b

2
> c

2, as
depicted in Figure 7 and shown next.
Corollary 4. When using the RBF kernel in the same setting as Proposition 1, we have

K(xi, xj)K(xj , xk) < K(xi, xk) ∝ ↔xi ↓ xj↔2
2 + ↔xj ↓ xk↔2

2 > ↔xi ↓ xk↔2
2 . (11)

From Corollary 4, we can derive many graph construction rules by combining a
2 + b

2
> c

2 with di"erent
formulas from the law of cosines. Corollaries 5 and 6 provide two specific examples (in the following, we
connect them with existing graph indices).
Corollary 5 (Shekkizhar & Ortega, 2023). When using an RBF kernel in the same setting as Lemma 3,
the necessary condition to connect node i with node k is

(cos ς) ↔xi ↓ xk↔2 < ↔xj ↓ xk↔2 , (12)

where ς is the angle between the vectors xi ↓ xk and xj ↓ xk.

9
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Corollary 6. When using an RBF kernel in the same setting as Lemma 3, the necessary condition to connect
node i with node k is

(cos φ) ↔xi ↓ xk↔2 < ↔xi ↓ xj↔2 , (13)

where φ is the angle between the vectors xk ↓ xi and xj ↓ xi.

4.1 Graph indices under the lens

In the following, we show that the most popular graph indices can be interpreted as thresholded applications
of di"erent formulas from the law of cosines combined with a

2 + b
2

> c
2 (see Figure 7). In particular, our

results cover the popular HNSW (Malkov & Yashunin, 2020) and DiskANN (Subramanya et al., 2019).

We start with the connectivity rule shared by MRNG (Fu et al., 2019) and HNSW (Malkov & Yashunin,
2020). For i, j ↗ [1 . . . n], let

luneij =
{

x ↗ Rd | ↔xi ↓ x↔2 ′ ↔xi ↓ xj↔2 ∞ ↔xj ↓ x↔2 ′ ↔xi ↓ xj↔2
}

(14)

An MRNG is a directed graph G = (V, E) with V = [1 . . . n] and the edge set E satisfying the following
property: For any pair i, k ↗ [1 . . . n], #»

ik ↗ E if and only if luneik ∈ S = ⇓ or (≃r) xr ↗ luneik ∈ S =∋ #»
ir /↗ E .

MRNG and HNSW use the following connectivity rule in Algorithm 4: Keep k in Ci if

↔xi ↓ xk↔2 ′ ↔xj ↓ xk↔2 . (15)

HNSW applies this rule within a hierarchical structure. A direct application of Corollary 5 yields the
following result.
Corollary 7. Running Algorithm 4 with the RBF kernel and the MRNG connectivity rule in Equation (15) is
equivalent to applying the necessary condition in Corollary 5 with the additional simplification that cos ς = 1.

Vamana, the algorithm behind DiskANN (Subramanya et al., 2019), is an extension of MRNG (Fu et al.,
2019) that seeks to accelerate the graph traversal speed. Recently, this acceleration has been formally proven
in the worst case (Indyk & Xu, 2023). Vamana uses the following connectivity rule in Algorithm 4: keep k

in Ci if
↔xi ↓ xk↔2 ′ ↼ ↔xj ↓ xk↔2 . (16)

A direct application of Corollary 5 yields the following result.
Corollary 8. Running Algorithm 4 with the RBF kernel and the Vamana connectivity rule in Equation (16)
is equivalent to applying the necessary condition in Corollary 5 with the additional simplification that ς =
arccos ↼

≃1.

We also extend these results to the recently introduced SSG (Fu et al., 2022). For this, we use the following
definitions

angle(x , y) = arccos △x , y▽
↔x↔2 ↔y↔2

, (17)

ball(i, ↽) =
{

x ↗ Rd
∣∣ ↔x ↓ xi↔2 ′ ↽

}
, (18)

coneω
ij =

{
x ↗ Rd | angle(x ↓ xi , xj ↓ xi) ′ ⇀

}
. (19)

An SSG is a directed graph G = (V, E) with V = [1 . . . n] and the edge set E satisfying the following
property: For any pair i, k ↗ [1 . . . n], #»

ik ↗ E if and only if coneω
ik ∈ ball(i, ↔xi ↓ xk↔2) ∈ S = ⇓ or (≃r, xr ↗

coneω
ik ∈ ball(i, ↔xi ↓ xk↔2) ∈ S) #»

ir /↗ E , where 0 ′ ⇀ ′ 60⇐ is a hyperparameter. SSG uses the following
connectivity rule in Algorithm 4: for 0 ′ ⇀ ′ 60⇐, keep k in Ci if

angle(xj ↓ xi , xk ↓ xi) ⇒ ⇀ ̸ ↔xj ↓ xi↔2 ⇒ ↔xi ↓ xk↔2 . (20)

A direct application of Corollary 6 yields the following result.

10
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Algorithm 5: Subspace pursuit for SVG construction
Input : Dataset X =

{
xj ↗ Rd

}n

j=1, element i ↗ [1 . . . n], maximum out-degree M ↗ N+.
Output: Set Ni of outgoing neighbors for node i.

1 Select the kernel width ϑ used for node i;
2 N (0) ⇐ ⇓;
3 for t ↗ [1 . . . T ] do

4 Let C be the set of the M largest entries in



K(xi, xk) ↓
∑

j↗N (t↓1)

s
(t≃1)
j K(xj , xk)

∣∣∣ k ↗ [1 . . . n]




 (21)

5 C ⇐ C ↖ N (t≃1);
6 Find the solution s to Problem (22), restricted to vectors in C;
7 Let N (t) be the set of indices corresponding to the M largest entries of s;
8 N (t) ⇐

{
j | s

(t)
j > 0

}
;

9 if N (t) = N (t≃1)
then break;

10 Ni ⇐ N (t);

Corollary 9. Running Algorithm 4 with the RBF kernel and the SSG connectivity rule in Equation (20)
rule is equivalent to applying the necessary condition in Corollary 6 with the additional simplification that
⇀ = arccos

(
↔xi ↓ xj↔2 / ↔xi ↓ xk↔2

)
.

In summary, the edge pruning rules used in Algorithm 4 by some of the most popular graph indices can be
regarded as specializations of the SVG optimization. These specializations, described in Figure 7, emerge
from applying the optimization to triplets of points.

5 Fast SVG construction with bounded out-degree

Graph construction algorithms based on Algorithm 4, such as those described in Section 4, have two main
practical issues that require careful tuning.

First, Algorithm 4 requires a candidate pool Ci. Setting Ci = [1 . . . n] \ {i} provides theoretical guarantees,
as described in Section 4, but becomes untenable as n grows. In practice, Ci is heuristically determined by
finding the (approximate) nearest neighbors of xi. However, this may be problematic if, for example, xi lies
on the outskirts of a tight cluster (Indyk & Xu, 2023) as the graph may become disconnected. Take the
example of the red point in Figure 9. We would need to create a candidate pool larger than the number of
points in the left cluster for Algorithm 4 to ensure navigability between both clusters.2 Finding a prudent
size for Ci becomes a dataset-specific tuning problem.

Second, although Algorithm 4 produces sparse graphs when paired with a suitable edge selection rule (such
as those in Section 4), the graphs are generally not sparse enough. The sparsity of these graphs is critical as it
directly determines the footprint and the search runtime of the index. Let M be the maximum out-degree we
want in a graph. Because Algorithm 4 neither produces a total order nor handles the cardinality constraint
intrinsically, the list of neighbors is truncated in an ad-hoc fashion by stopping Algorithm 4 once |Ni| = M .
This heuristic may cause navigability problems, as described in Figure 8. In essence, the diversity of the
selected edges becomes suboptimal, and possibly non-navigable, if the process is terminated early.

In this section, we show that the SVG framework overcomes these di!culties. Although the solution to
Problem (4) is naturally sparse, we would like to impose a more stringent and specific level of sparsity to

2The graph construction by Shekkizhar & Ortega (2023) that uses Problem (4) for manifold learning shares these issues.
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bound the out-degree of the graph. Moreover, we show that once this restriction is added, precomputing a
candidate pool becomes unnecessary.

We address both problems simultaneously by altering the SVG optimization. We bound the sparsity level
by solving the related problem

min
s

1
2 ↔ε(xi) ↓ !s↔2

2 s.t. s ⇒ 0, ↔s↔0 ′ M, (22)

where the so-called ω0 norm measures the number of non-zero entries of a vector. We use Problem (22) to
build a graph with a maximum out-degree, since the minimizer s

↔
i will have at most M nonzero entries. In

contrast with the typical truncation heuristic, Problem (22) selects the subset of M elements that provides
the best tradeo" between diversity and similarity (see the analysis of Problem (5)). This approach has
connections with sparse SVMs (Smola et al., 1999), which use parsimony-inducing ω1 (e.g., Bi et al., 2003)
or ω0 (e.g., Zhang et al., 2023) constraints to sparsify the support vector set.

The astute reader will notice that solving problems (4) and (22) quickly becomes impractical as n grows:
The size of the kernel matrix K is quadratic in n and we solve an optimization with n variables. It seems
like our computational requirements are still very high. Additionally, problems involving ω0 constraints have
always been considered challenging because of their non-convexity and NP-hardness. The dominant paradigm
replaces these constraints by convex ω1 constraints (e.g., Candès & Plan, 2009).3 However, Problem (22)
belongs to a particular family of problems, known as subspace pursuit, for which there are very e!cient
algorithms (Dai & Milenkovic, 2009; Needell & Tropp, 2010). Algorithm 5 presents an algorithm that solves
this problem. Additional details on subspace pursuit can be found in Section B.

Algorithm 4 does not depend on precomputing an appropriate candidate pool, in contrast to Algorithm 2.
This superpower comes from Line 4, which performs a neighbor search with a modified similarity. By finding
the vectors that maximize

K(xi, xk) ↓
∑

j↗N (t↓1)

s
(t≃1)
j K(xj , xk), (23)

it becomes clear that the similarity in this neighbor search selects vectors that are close to xi and far away
from the vectors in N (t≃1). This search focuses its attention on portions of the space not considered in
previous iterations (see Figure 9).

As a side note, by writing Equation (23) as

v
↑

ε(xk), where v = ε(xi) ↓
∑

j↗N (t↓1)

s
(t≃1)
j ε(xj), (24)

the computation can be carried out using random features (RF) (Rahimi & Recht, 2007; Reid et al., 2023; Liu
et al., 2022; Sernau et al., 2024). However, the literature has understandably concentrated on approximating
the central portion of kernels instead of their tails (e.g., for exponential kernels, where Kexp(x, x

→) ≈ 0+).
Since Equation (24) is concerned with the tails (notice the small values in the attention area in Figure 9),
new RF techniques would be needed. This is an interesting future line of work.

Computational complexity. Algorithm 5 involves solving a least squares problems on the simplex in
Line 6 with 2M variables. Since this problem is convex and M ↙ n, the computational complexity is
drastically reduced from O(n3) to O(M3). Implementing Line 4 in Algorithm 5 using a vector search index
(e.g., by searching the SVG-L0 graph as we incrementally build it), the complexity of Algorithm 5 becomes
sublinear in the number of indexed vectors. All in all, SVG-L0 has complexity similar to other existing graph
indices (Malkov & Yashunin, 2020; Fu et al., 2019; Subramanya et al., 2019).

3Direct ω0 solvers have gained significant attention in the last few years (Bertsimas et al., 2016; Hastie et al., 2020) due to
improvements in mixed integer optimization.
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Figure 8: Although the MRNG is sparse, it is not sparse enough in practical situations and its list of
neighbors is truncated by stopping Algorithm 4 early after Ni attains a prescribed size. With the resulting
edge set (represented by dotted blue lines on the left plot), navigating downwards from xi is not possible. In
contrast, by using Problem (22) to build the degree-constrained SVG, we obtain an edge set (represented by
dotted green lines on the right plot) with improved diversity and thus navigability. Note that the SVG-L0
edges are not necessarily a subset of the SVG edges.

Figure 9: The attention of the search driven by Equation (23) after connecting the red point to its three
neighbors (green edges). We show the values of Equation (23) in a logarithmic colorscale in the area where
it is positive. The attention will focus on finding the next M points to the right of the red point, seeking to
find another support vector for the SVM classifier.

6 Experimental results

We present a few experimental results to highlight the practical value of SVG and SVG-L0. We use the
standard recall@1 measure of search accuracy, which counts how many times we find the ground truth NN
of every vector xi ↗ X when using it as the query.

In addition to purely greedy graph search algorithms, we also experimented with backtracking since it is
widely used in practice. Here, we are interested in observing how quasi-navigable networks behave when
combined with this common “trick.” We use a small queue with a length of 2.

Our results in Section 3.1 predict that a small kernel width is needed to guarantee navigability when using
an exponential. This is empirically verified by the experiment in Figure 10, where the empirical navigability
(recall) increases as ϑ decreases. In this small-ϑ setting, the SVG becomes very navigable (recall close to 1).
The use of backtracking allows us to extend similar accuracies with suboptimal selections of ϑ.

We also compared SVG-L0 (Section 5) with the degree-constrained MRNG and the truncated MRNG. As
discussed in Section 4, the MRNG is a fully navigable network with no degree constraints. This feature comes
at a steep price: the complexity of building with MRNG is O(n3). Here, we use a (still computationally
costly) variant that uses a maximum out-degree M and an unlimited candidate pool size, resulting in a
complexity of O(n2). The truncated MRNG has the additional constraint of working with a fixed candidate
pool size (see Algorithm 2). Note that the truncated MRNG is the algorithm that is used in practice today to
build graph indices. We set the size of the candidate pool as a multiplicative factor of M , that is, |C| = rM

for r > 1. SVG-L0 uses a maximum out-degree but does not need a candidate pool.
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As shown in Figure 11, SVG-L0 is competitive with the degree-constrained MRNG when working with
randomly distributed vectors. Its accuracy is slightly lower in the greedy setting, but slightly higher in the
backtracking setting. Both indices are clearly superior to the truncated MRNG.

Lastly, we experimented with a few small real-world datasets using Python implementations of SVG and
SVG-L0 that were not optimized to scale. We took 104 vectors from the datasets colbert-1M, cohere-english-
v3-100k, and openai-v3-small-100k with d = 128, 1024, 1536 dimensions, respectively (https://github.com/
datastax/jvector). We show in Figure 12 that the navigability slack ϱ in SVG, given in Theorem 3, is
relatively small and that Algorithm 3 often succeeds. In addition, we built indices with SVG-L0 and with the
truncated MRNG described previously. We observe in Figure 13 that SVG-L0 outperforms the truncated
MRNG, even when using a large candidate size (|C| = rM with r = 8). The e"ect is more pronounced
in higher dimensions, where the value of ϑ in SVG-L0 has little e"ect on its accuracy. Interestingly and
unsurprisingly according to our theoretical results, the accuracy of SVG-L0 has a link with the distribution
of ϱi (the smaller the mean in Theorem 3, the better the accuracy in Figure 13).

7 Conclusions and future work

We introduced a new type of graph index, the Support Vector Graph (SVG). We derive SVG from a novel
perspective that uses machine learning instead of computational geometry to build the index. Concretely,
we have formulated the graph construction as a kernelized nonnegative least squares problem. This problem
is in turn equivalent to a support vector machine, whose support vectors yield the connectivity of the graph.

We extended the notion of graph navigability to allow for approximate navigation, which is more in line with
the practical use of graphs as ANN indices. We provide formal quasi-navigability and, under some conditions,
navigability results for SVG that are valid in any metric and non-metric vector spaces (e.g., for inner product
similarity). To the best of our knowledge, these are the first navigability results in non-Euclidean spaces.

We formally interpreted the most popular graph indices, including HNSW (Malkov & Yashunin, 2020) and
DiskANN (Subramanya et al., 2019), as SVG specilizations. We also showed that new traditional (i.e.,
triangle-pruning) algorithms can be derived from the principles behind this specialization.

Finally, we showed that we can build graphs with a bounded out-degree by adding a sparsity (ω0) constraint to
the SVG optimization, a combination that we name SVG-L0. SVG-L0 yields a principled way of handling the
bound, in contrast to the traditional heuristic of simply truncating the out edges of each node. Additionally,
SVG-L0 has a self-tuning property, which avoids selecting a candidate set of edges for each graph node and
makes its computational complexity sublinear in the number of indexed vectors.

In future work, we plan to address the following issues to further improve SVG and SVG-L0. First, tuning
the kernel width, although not hard and standard in SVMs (e.g., Chapelle et al., 2002), can be challenging
in large-scale scenarios. We will address this problem, seeking an automated selection that does not require
cross-validation. Second, we will further accelerate the optimization of Problem (4) with more specific
algorithms (our current implementation uses an o"-the-shelf solver). Additionally, and as aforementioned,
we posit that the formal study of quasi-navigable graphs is perhaps of greater practical relevance for ANN
than that of exactly navigable graphs. This is an exciting future line of work. Lastly, it remains to be seen
whether other machine learning techniques, beyond kernel methods, can be utilized to build graph indices.
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Figure 10: As Corollary 1 predicts, SVG’s empirical navigability improves as ϑ decreases. We compute the
recall@1 over ten realizations of 100 random vectors with di"erent numbers of dimensions. As typical in
practical deployments, we include the results of using a backtracking queue (of length 2). In low dimensions,
the SVG navigability is more impacted by the width; in higher dimensions this e"ect is significantly milder
(probably due to the growing average out-degree, see Figure 5).

Figure 11: The low-complexity SVG-L0, defined in Problem (22), o"ers better empirical navigability than
that of the truncated MRNG (with similar complexity) and competitive with the degree-constrained MRNG
(with a quadratic complexity in the number of vectors). We compute the recall@1 over ten realizations of 100
random vectors with di"erent numbers of dimensions. As typical in practical deployments, we include the
results of using a backtracking queue (of length 2). For each dimension, we selected the maximum out-degree
M that yields reasonable performance (around 85%) for the MRNG. For the truncated MRNG, we define
the truncation ratio r = |C|/M , where C is the candidate pool.

Figure 12: Theorem 3 predicts that SVG is a generalized ϱ-navigable network with ϱ = maxi↗[1..n] ϱi. Using
the RBF kernel with width ϑ = 1, the distribution of the values ϱi is relatively tight and has small mean for
103 vectors from di"erent datasets. In practice, Algorithm 3 often succeeds and any errors are fixed with a
small amount of backtracking.
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(a) No backtracking.

(b) Backtracking with a queue of length 2.

Figure 13: The SVG-L0, defined in Problem (22), o"ers better empirical navigability than that of the
truncated MRNG. We compute the recall@1 for di"erent datasets (columns) and maximum out-degrees M =
8, 16, 32 (top, center, and bottom rows, respectively). For the truncated MRNG, we define the truncation
ratio r = |C|/M , where C is the candidate pool. In practice, finding a suitable ϑ for SVG-L0 is not di!cult
(automating the selection is left for future work).
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