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Abstract

Hierarchical Bayesian methods enable information sharing across regression prob-
lems on multiple groups of data. While standard practice is to model regression
parameters (effects) as (1) exchangeable across the groups and (2) correlated to
differing degrees across covariates, we show that this approach exhibits poor statis-
tical performance when the number of covariates exceeds the number of groups.
For instance, in statistical genetics, we might regress dozens of traits (defining
groups) for thousands of individuals (responses) on up to millions of genetic vari-
ants (covariates). When an analyst has more covariates than groups, we argue that
it is often preferable to instead model effects as (1) exchangeable across covariates
and (2) correlated to differing degrees across groups. To this end, we propose a
hierarchical model expressing our alternative perspective. We devise an empirical
Bayes estimator for learning the degree of correlation between groups. We develop
theory that demonstrates that our method outperforms the classic approach when
the number of covariates dominates the number of groups, and corroborate this re-
sult empirically on several high-dimensional multiple regression and classification
problems.

1 Introduction

Hierarchical modeling is a mainstay of Bayesian inference. For instance, in (generalized) linear
models, the unknown parameters are effects, each of which describes the association of a particular
covariate with a response of interest. Often covariates are shared across multiple related groups, but
the effects are typically allowed to vary both by group and by covariate. A classic methodology, dating
back to Lindley and Smith (1972) [44], models the effects as conditionally independent across groups,
with a latent (and learnable) degree of relatedness across covariates. From a practical standpoint,
the model is motivated by the understanding that it “borrows strength” across different groups
[24, Chapter 5.6]. Mathematically, the model is motivated by assuming effects are exchangeable
across groups and applying a de Finetti theorem [44, 35]. The methodology of Lindley and Smith
is ubiquitous when the number of groups is larger than the number of covariates. It is a standard
component of Bayesian pedagogy [[23, Chapter 13.3]; [24, Chapter 15.4]] and software; e.g. it is
used in the mixed modeling package lme4 [5], which has over 16 million downloads at the time of
writing.
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Despite its resounding success when there are more groups than covariates, we show in the present
work that this standard methodology performs poorly when there are more covariates than groups.
To address the many-covariates case, we turn for inspiration to statistical genetics, where scientists
commonly learn linear models relating genetic variants (covariates) to traits (corresponding to
different groups) across individuals (which each exhibit a response). These applications may exhibit
millions of covariates, thousands of responses, and just a handful of groups. In these cases, [39,
12, 56, 69, 46, 53] use a multivariate Gaussian prior akin to that of Lindley and Smith, but assume
conditional independence across covariates and prior parameters that encode correlations across
groups, rather than than the other way around.

As we will see, this alternative modeling approach may be motivated from a Bayesian perspective
when one begins from an assumption of a priori exchangeability of the effects across covariates
(rather than across groups). This exchangeability assumption is reasonable in statistical genetics,
where we have little knowledge to distinguish our expectations about the effects of different genetic
variants; we argue this modeling approach can be effective other modern high-dimensional analyses
of multiple groups of data (beyond statistical genetics) in which large collections of covariates are
frequently treated monolithically, e.g. by applying ridge regression. Namely, when there are more
covariates than groups, we propose to model the effects as exchangeable across covariates (rather
than groups) and learn the degree of relatedness of effects across groups (rather than covariates). In
what follows, we refer to this framework as ECov, for exchangeable effects across covariates, and
distinguish it from exchangeable effects across groups or EGroup.

While the existing methods in statistical genetics for modeling multiple traits obtain as a special case
of ECov, to the best of our knowledge this approach is absent from existing literature on hierarchical
Bayesian regression. Brown and Zidek (1980) [10] and Haitovsky (1987) [28] form two exceptions,
but these two papers (1) consider only the situation in which a single covariate matrix is shared
across all groups (or equivalently, for each data point all responses are observed) and (2) include only
theory and no empirics. While Lindley and Smith (and others) discuss a priori exchangeability across
covariates in the context of analysis of a single group, to our knowledge no other work has pushed
this idea forward to share strength across multiple groups.

We suspect that the historical origins of the methodology in statistical genetics may have hindered
earlier expansion of this class of models to a wider audience. In particular, this literature traces back to
mixed effects modeling for cattle breeding [57]; here, an even-earlier notion of the genetic contribution
of trait correlation (i.e. “genetic correlation;” see Hazel (1943) [29]) informs the covariance structure
of random effects. Although genetic correlation is now commonly understood to describe the
correlation of effects of DNA sequence changes on different traits [12], its provenance predates even
the first identification of DNA as the genetic material in 1944 [3]. As such, this older motivation
obviated the need for a more general justification grounded in exchangeability. See Appendix A for
further discussion of related work, including more recent works from within the machine learning
community on sharing strength across multiple groups of data.

In the present work, we propose ECov as a general framework for hierarchical regression when the
number of covariates exceeds the number of groups. We show that the classic model structure from
statistical genetics can be seen as an instance of this framework, much as Lindley and Smith give a
(complementary) instance of an EGroup framework. To make the ECov approach generally practical,
we devise an accurate and efficient algorithm for learning the matrix of correlations between groups.
We demonstrate with theory and empirics that ECov is preferred when the number of covariates
exceeds the number of groups, while EGroup is preferred when the number of groups exceeds
the number of covariates. Our experiments analyze three real, non-genetic groups in regression
and classification, including an application to transfer learning with pre-trained neural network
embeddings. We provide proofs of theoretical results in the appendix.

2 Exchangeability and its applications to hierarchical linear modeling

We start by establishing the data and model, motivating exchangeability among covariate effects
(ECov), and motivating our Bayesian generative model.

Setup and notation. Consider Q groups with D covariates. Let Nq be the number of data points
in group q. For the qth group, the Nq ⇥D real design matrix Xq collects the covariates, and Y q is
the Nq-vector of responses. The nth datapoint in group q consists of covariate D-vector Xq

n and
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scalar response Y q
n . We let D := {(Xq, Y q)}Qq=1 denote the collection of data from all Q groups.

We consider the generalized linear model Y q
n |Xq

n,�
q indep⇠ p(·|Xq>

n �q) with unknown D-vector of
real effects �q . We collect all effects in a D⇥Q matrix � with (d, q) entry �q

d . The linear form of the
likelihood allows interpretation of �q

d as the association between the dth covariate and the response
in group q. In linear regression, the responses are real-valued and the conditional distribution is
Gaussian. In logistic regression, the responses are binary, and we use the logit link. The independence
assumption conflicts with some models that one might use, for example in some cases when the
different groups partially overlap.

Example. As a motivating non-genetics example, consider a study of the efficacy of microcredit.
There are seven famous randomized controlled trials of microcredit, each in a different country [48].
We might be interested in the association between various aspects of small businesses (covariates),
including whether or not they received microcredit, and their business profit (response). In this case,
the dth element of Xq

n would be the dth characteristic of the nth small business in the qth country,
and Y q

n is the profit of this business. See the experiments for additional examples in rates of policing,
web analytics, and transfer learning.

Exchangeable effects across groups (EGroup). To fully specify a Bayesian model, we need
to choose a prior over the parameters �. Lindley and Smith assume the effects are exchangeable
across groups. Namely, for every Q-permutation �, p(�1,�2, . . . ,�Q) = p(��(1),��(2), . . . ,��(Q)).
Assuming exchangeability holds for an imagined growing Q and applying de Finetti’s theorem
motivates a conditionally independent prior. Concretely, Lindley and Smith take �q i.i.d.⇠ N (⇠,�), for
D-vector ⇠ and D⇥D covariance matrix �. The (d, d0) entry of � captures the degree of relatedness
between the effects for covariates d and d0. Both ⇠ and � may be learned in an empirical Bayes
procedure. However, when D is large relative to Q, learning these parameters can present both
computational and inferential challenges, as the O(D2) degrees of freedom in � outnumber the
O(DQ) effects.

Exchangeable effects across covariates (ECov). We here argue for a complementary approach
in settings where D > Q. In the microcredit example, notice that D > Q will arise whenever
the experimenter records more characteristics of a small business than there are locations with
microcredit experiments; that is, D > 7 in this particular case. Concretely, let �d be the Q-vector
of effects for covariate d across groups. Then, in the ECov approach, we will assume that effects
are exchangeable across covariates instead of across groups. Namely, for every D-permutation �,
p(�1,�2, . . . ,�D) = p(��(1),��(2), . . . ,��(D)). We will see theoretical and empirical benefits to
ECov in later sections, but note that the ECov assumption is often consistent with prior beliefs in
high dimensional settings. For instance, regarding microcredit, we may have no prior knowledge
about how effects differ for distinct small-business characteristics. And we may a priori believe that
different countries could exhibit more similar effects – and wish to learn the degree of relatedness
across those countries.

We may apply a similar rationale as Lindley and Smith to motivate a conditionally independent
model. Analogous to Lindley and Smith, we propose a Gaussian prior: �d

i.i.d.⇠ N (0,⌃). ⌃ is now
a Q⇥Q covariance matrix whose (q, q0) entry captures the similarity between the effects in the q
and q0 groups. For simplicity, we restrict to E[�d] = 0; see Appendix E.3 for discussion. Another
potential benefit to ECov relative to EGroup is that we might expect a statistically easier problem,
with O(Q2) rather than O(D2) values to learn in the relatedness matrix. We provide a rigorous
theoretical analysis in Sections 4 and 5.

3 Our method

We next describe our inference method for specific instances of the exchangeable covariate effects
model of Section 2. We compute the � posterior and take an empirical Bayes approach to estimate ⌃.
We find that an expectation maximization (EM) algorithm estimates ⌃ effectively; Appendix A.2
compares our approach to existing methods for the related problem of estimating � for EGroup.

Notation. We identify estimates of � and ⌃ with hats. For instance, �̂LS is the least squares
estimate, with �̂q

LS := (Xq>Xq)�1Xq>Y q. We will sometimes find it useful to stack the columns
of � or its estimates into a length DQ vector; we denote such vectors with an arrow; for example,
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Algorithm 1 Expectation Maximization for Ex-
changeability Among Covariate Effects

1: // Initialize covariance
2: ⌃(0)  IQ
3: // Run EM algorithm
4: for t = 0, 1, . . . do
5: // Expectation step
6: µ1, . . ., µD, V1, . . ., VD  E_Step(⌃(t))
7:
8: // Maximization step
9: ⌃(t+1)  D�1

PD
d=1(µdµ>

d + Vd)

10:
11: Return ⌃(t+1)

Algorithm 2 E-Step: Linear Regression

1: ~µ, V  E[~�|D,⌃],Var[~�|D,⌃]
2: for d = 1, . . ., D do
3: µd  (ed ⌦ IQ)>~µ
4: Vd  (ed ⌦ IQ)>V (ed ⌦ IQ)

5: Return µ1, . . ., µD, V1, . . ., VD

Algorithm 3 E-Step: Logistic Regression

1: ~µ⇤  argmax~� log p(
~�|D,⌃)

2: V  �[r2
� log p(

~�|D,⌃)
��
~�=~µ⇤ ]

�1

3: for d = 1, . . ., D do
4: µd  (ed ⌦ IQ)>~µ⇤

5: Vd  (ed ⌦ IQ)>V (ed ⌦ IQ)

6: Return µ1, . . ., µD, V1, . . ., VD

~� := [�1>,�2>, . . . ,�Q>]>. For a natural number N, we use IN ,1N , and eN to denote the N ⇥N
identity matrix, N -vector of ones, and N th basis vector, respectively. We use ⌦ to denote the
Kronecker product.

3.1 Posterior inference with a Gaussian likelihood

We first consider a Gaussian likelihood: for each group q and observation n, we take Y q
n |Xq

n,�
q indep⇠

N (Xq>
n �q,�2

q ) where �2
q is a group-specific variance. When the relatedness matrix ⌃ is known, a

natural estimate of � is its posterior mean. We obtain the full posterior, including its mean, via a
standard conjugacy argument; see Appendix B.1:

Proposition 3.1. For each covariate d, let �d
i.i.d.⇠ N (0,⌃) a priori. For each group q

and data point n, let Y q
n |Xq

n,�
q indep⇠ N (Xq>

n �q,�2
q ). Then ~�|D,⌃ ⇠ N (~µ, V ) for ~µ =

V [��2
1 Y 1>X1, . . . ,��2

Q Y Q>XQ]> and V �1 = ⌃�1⌦ID+diag(��2
1 X1>X1, . . . ,��2

Q XQ>XQ),

where diag(��2
1 X1>X1, . . . ,��2

Q XQ>XQ) denotes a DQ⇥DQ block-diagonal matrix.

At first glance, the posterior mean ~µ for this model might seem to introduce a computational challenge
because exact computation of V involves an O(D3Q3)-time matrix inversion. Our experiments
(Section 6), however, involve on the order of DQ ⇡ 1,000 parameters, so direct inversion of V
demands less than a single second. Moreover, in much larger problems ~µ may still be computed
very efficiently using the conjugate gradient algorithm [49, Chapter 5], with convergence in a small
number of O(D2Q) time iterations; see Appendix B.2.

3.2 Empirical Bayes estimation of ⌃ by expectation maximization

The posterior mean of � in Proposition 3.1 requires ⌃, which is typically unknown. Accordingly, we
propose an empirical Bayes approach of estimating ⌃ by maximum marginal likelihood:

�̂ECov := E[� | D, ⌃̂] where ⌃̂ := argmax
⌃⌫0

p(D | ⌃). (1)

Equation (1) defines a two step procedure. In the first step, we learn the similarity between groups
via estimation of ⌃. In the second step, we use this similarity to compute an estimate, �̂ECov, that
correspondingly shares strength. Though we have been unable to identify a general analytic form
for ⌃̂, we can compute it with an expectation maximization (EM) algorithm [47, Chapter 1.5].
Algorithm 1 summarizes this procedure; see Appendix B.3 for details.
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3.3 Classification with logistic regression

We can extend the approach above to inference for multiple related classification problems. We
assume a logistic likelihood; for each q and n, Y q

n |Xq
n,�

q indep⇠ Bern[(1 + exp{�Xq>
n �q})�1]. In

the classification case, we cannot use Gaussian conjugacy directly, so we apply an approximation.
Specifically, we adapt the original E-step in Algorithm 3 by using a Laplace approximation to the
posterior [7, Chapter 4.4]. We approximate the posterior mean of � by the maximum a posteriori
value. We leave extensions to other generalized linear models to future work.

4 Theoretical comparison of frequentist risk

In this section, we prove theory that suggests ECov has better frequentist risk than EGroup when
D is large relative to Q. Analyzing �̂ECov directly is challenging due to its non-differentiability
as a function of the data, so we take a multipart approach. First, in Theorem 4.3, we show that an
ECov estimate based on moment-matching (MM), �̂MM

ECov, dominates least squares, �̂LS, when D

is large relative to Q; �̂LS in turn dominates �̂MM
EGroup (a similar estimator for EGroup). Second, in

Theorem 4.5, we show that �̂ECov uniformly improves on �̂MM
ECov.

Setup. Take a fixed value of � and an estimator �̂. We use squared error risk, R(�, �̂) :=

E
h
k�̂ � �k2F | �

i
, as our measure of performance. k · kF is the Frobenius norm of a matrix,

and the expectation is over all observations Y 1, . . . , Y Q jointly. We require the following orthogonal
design condition.
Condition 4.1. For each group q, ��2

q Xq>Xq = ��2ID for some shared variance �2.

Though restrictive, this condition is useful for theory, as other authors have found; see Appendix C.1.
We empirically demonstrate that our theoretical conclusions apply more broadly in Section 6.

ECov vs. EGroup when using moment matching in high dimensions. For ECov, the fol-
lowing estimate for ⌃ is unbiased under correct prior specification: ⌃̂MM := D�1�̂>

LS�̂LS �
D�1diag(�2

1kX1†k2F , . . . ,�2
QkXQ†k2F ), where † denotes the Moore-Penrose pseudoinverse of a

matrix and �̂LS is the least squares estimate. We define �̂MM
ECov := E[�|D, ⌃̂MM] to be the resulting

parameter estimate, and define �̂MM
EGroup analogously for EGroup; see Appendix C.2 for details. While

�̂MM
ECov and �̂MM

EGroup are naturally defined only when D � Q and D  Q, respectively, we find it
informative to compare how their performances depend on D and Q nonetheless.

Before our theorem, a lemma provides concise expressions for the risks of �̂MM
ECov and �̂MM

EGroup.

Lemma 4.2. Under Condition 4.1 and when D � Q, R(�, �̂MM
ECov) = �2DQ � �4D(D � 2 �

2Q)E[k�̂†
LSk2F | �]. Additionally, when D  Q, R(�, �̂MM

EGroup) = �2DQ � �4Q(Q � 2 �
2D)E[k�̂†

LSk2F | �].

Lemma 4.2 reveals forms for the risks of �̂MM
ECov and �̂MM

EGroup that are surprisingly simple. The
symmetry between the forms and risks of these estimators, however, is intuitive; under Condition 4.1,
�̂MM
ECov and �̂MM

EGroup can be seen as respectively arising from the same procedure applied to �̂LS and
its transpose.

With Lemma 4.2 in hand, we can now compare the risk of �̂MM
ECov, �̂LS, and �̂MM

EGroup.

Theorem 4.3. Let Condition 4.1 hold. Then (1) if D > 2Q+ 2, �̂MM
ECov dominates �̂LS with respect

to squared error risk. In particular, for any �, R(�, �̂MM
ECov) < R(�, �̂LS). Additionally, (2) if

D > Q/2� 1, �̂MM
EGroup is dominated by �̂LS.

Since �̂LS is minimax [41, Chapter 5], Theorem 4.3 implies that �̂MM
ECov has minimax risk in the

high-dimensional setting. It follows that, regardless of how well the ECov prior assumptions hold,
�̂MM
ECov will not perform very poorly.
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Further improvement with maximum marginal likelihood. The moment based approach analyzed
above has a limitation: with positive probability, ⌃̂MM is not positive semi-definite (PSD). Though
our expression for �̂MM

ECov remains well-defined in this case, this non-positive definiteness obscures
the interpretation of �̂MM

ECov as a Bayes estimate. We next show that performance further improves if
⌃ is instead estimated by maximum marginal likelihood (Equation (1)) and is thereby constrained to
be PSD.

Our next lemma characterizes the form of the resulting estimator, �̂ECov, and establishes a connection
to the positive part James-Stein estimator [4].

Lemma 4.4. Assume D > Q and consider the singular value decomposition �̂LS = V diag(�
1
2 )U>

where V and U satisfy V >V = U>U = IQ, and � is a Q-vector of non-negative reals. Un-
der Condition 4.1, Equation (1) reduces to ⌃̂ = Udiag

⇥
(D�1�� �21Q)+

⇤
U> and �̂ECov =

V diag
h
�

1
2 � (1Q � �2D��1)+

i
U>, where (·)+ is shorthand for max(·, 0) element-wise, � is the

Hadamard (i.e. element-wise) product, and the powers in �
1
2 and ��1 are applied element-wise.

Lemma 4.4 allows us to see �̂ECov as shrinking �̂LS toward 0 in the direction of each singular vector
to an extent proportional to the inverse of the associated singular value. The transition from �̂MM

ECov

to �̂ECov is then analogous to the taking the “positive part” of the James-Stein estimator in vector
estimation, which provides a uniform improvement in risk [4]. Though R(�, �̂ECov) is not easily
available analytically, we nevertheless find that it dominates its moment-based counterpart.

Theorem 4.5. Assume D > Q + 1. Under Condition 4.1 �̂ECov dominates �̂MM
ECov with respect to

squared error loss, achieving strictly lower risk for every value of �.

We establish Theorem 4.5 using a proof technique adapted from Baranchik [4]; see also Lehmann
and Casella [41][Thm. 5.5.4]. The standard approach we build upon is complicated by the fact that
the directions in which we apply shrinkage are themselves random.

Theorem 4.5 provides a strong line of support for using �̂ECov over �̂MM
ECov that does not rely on any

assumption of “correct” prior specification; in particular the risk improves without any subjective
assumptions on �. We discuss related earlier work in Appendix A.4.

5 Gains from ECov in the high-dimensional limit

The results of Section 4 give a promising endorsement of ECov but face two important limitations.
First, the domination results relative to least squares do not directly demonstrate that �̂ECov attains
improvements by leveraging similarities across groups in a meaningful way; indeed for a single group
(i.e. Q = 1) �̂ECov can be understood as a ridge regression estimate [31], and Theorems 4.3 and 4.5
provide that �̂ECov dominates �̂LS for D > 3. Second, domination results reveal nothing about the
size of the improvement or how it depends on any structure of �; intuitively, we should expect better
performance when � is in some way representative of the assumed prior. To address these limitations,
we analyze the size of the gap between the risk of (1) �̂ECov and (2) our method applied to each group
independently (ID), which we denote by �̂ID.1 We will characterize the dependence of this gap on �.

Reasoning quantitatively about the dependence of the risk on the unknown parameter poses significant
analytical challenges. In particular, Lemma 4.2 shows that R(�, �̂MM

ECov) depends on � through
E[k�̂†

LSk2F |�]; however, k�̂†
LSk2F is the sum of the eigenvalues of a non-central inverse Wishart matrix,

a notoriously challenging quantity to work with; see e.g. [42, 30]. To regain tractability, we (1)
develop an analysis asymptotic in the number of covariates D and (2) shift to a Bayesian analysis
in order to sensibly consider a growing collection of covariate effects. In particular, we consider
a sequence of regression problems, with parameters {�d}1d=1 distributed as �d

i.i.d.⇠ ⇡ for some
distribution ⇡. Accordingly, instead of using the frequentist risk as in Section 4, we now use the
Bayes risk to measure performance. Specifically, for a group with D covariates and an estimator �̂,

1 Our approach �̂ECov is well defined in the Q = 1 single group case; for each group q, we obtain �̂q
ID by

computing �̂ECov on the group D = {(Xq, Y q)}.
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the Bayes risk is RD
⇡ (�̂) := E⇡[R(�, �̂)] where R(�, �̂) is the usual frequentist risk. In the following,

we describe the results of this analysis with proofs and additional details left to Appendix D.

For a single metric characterizing the benefits of joint modeling, we will define the asymptotic gain
as the relative performance between our two estimators of interest here, �̂ECov and �̂ID.
Definition 5.1. Consider a sequence of datasets of Q regression problems with an increasing
number of covariates D, {DD}1D=1. Assume that for each group Condition 4.1 is satisfied with
variance �2 and that each �d

i.i.d.⇠ ⇡. The asymptotic gain of joint modeling is Gain(⇡,�2) :=
limD!1(�2DQ)�1[RD

⇡ (�̂ID)� RD
⇡ (�̂ECov)].

The factor of �2DQ in Definition 5.1 puts Gain(⇡,�2) on a scale that is roughly invariant to the
size and noise level of the problem; for example, (�2DQ)�1RD

⇡ (�̂LS) = 1 for any ⇡, D, and Q. In
Appendix D.5 we discuss how this asymptotic formulation may allow relaxation of Condition 4.1
if one considers certain random design matrices; for simplicity, the present analysis considers only
fixed designs.

Our next lemma gives an analytic expression for Gain(⇡,�2) that provides a starting point for
understanding its problem dependence.

Lemma 5.2. Assume ⌃̃ := Var⇡[�1] is finite and has eigenvalues �1, . . . ,�Q. If Condition 4.1
satisfied asymptotically, Gain(⇡,�2) = �2Q�1[

PQ
q=1(�q + �2)�1 �

PQ
q=1(⌃̃q,q + �2)�1].

Lemma 5.2 reveals that the diagonals and eigenvalues and ⌃̃ are key determinants of Gain(⇡,�2),
but does not directly provide an interpretation of when �̂ECov offers benefits over �̂ID. Our next
theorem demonstrates when an improvement can be achieved from joint modeling.

Theorem 5.3. Gain(⇡,�2) � 0, with equality only when ⌃̃ = Var⇡[�1] is diagonal.

Proof. From Lemma 5.2 we see Gain(⇡,�2) is the difference between a strictly Schur-convex
function applied to the eigenvalues of ⌃̃ and to its diagonals (since (x+ �2)�1 is convex on R+). By
the Schur-Horn theorem, the eigenvalues of ⌃̃ majorize its diagonals, providing the result.

Theorem 5.3 tells us that �̂ECov succeeds at adaptively learning and leveraging similarities among
groups in the high-dimensional limit. In particular, Gain(⇡,�2) reduces to zero only when the
eigenvalues of ⌃̃ are arbitrarily close to the entries of its diagonal, which occurs only when the
covariate effects are uncorrelated across groups. However, when covariate effects are correlated, we
obtain an improvement.

Our next theorem quantifies this relationship through upper and lower bounds.

Theorem 5.4. Let �# and `# denote the eigenvalues and diagonals of ⌃̃, respectively, sorted in
descending order. Then Gain(⇡,�2)  2�2Q�1k�k2k`# � �#k2/(�min + �2)3 and Gain(⇡,�2) �
�2Q�1k`# � �#k22/(�max + �2)3, where �max and �min are the largest and smallest, respectively,
eigenvalues of ⌃̃.

Theorem 5.4 allows us to see several aspects of when our method will and will not perform well.
First, the presence of k`# � �#k22 in both the upper and lower bounds demonstrates that Gain(⇡,�2)
will be small when the eigenvalues are close to the diagonal entries, with Euclidean distance as an
informative metric.

As we find in our next corollary, Theorem 5.4 additionally allows us to see that nontrivial gains
may be obtained only in an intermediate signal-to-noise regime, where signal is given by the size
of the covariate effects and noise is the variance level �2. Notably, under Condition 4.1, �2 relates
directly to the variance of �̂LS, and is influenced by both the residual variances and the group sizes;
see Appendix C.1. In particular we interpret �min as a proxy for signal strength since it captures the
magnitude of typical �d’s along their direction of least variation.
Corollary 5.5. Gain(⇡,�2)  42�min/�2 and Gain(⇡,�2)  42(�min/�2)�1, where  :=
�max/�min is the condition number of ⌃̃.
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Figure 1: Dimension dependence of parameter estimation error in simulation. Covariate effects are
either [Left] correlated or [Right] independent across the Q = 10 groups. Each point is the mean
±1SEM across 20 replicates.

Corollary 5.5 formalizes the intuitive result that with enough noise, the little recoverable signal is
insufficient to effectively share strength. And furthermore, in the low-noise and high-signal regime
�̂ID is very accurate on its own and there is little need for joint modeling. However, when there is a
large gap between the largest and smallest eigenvalues of ⌃̃, leading  to be large, the gain could be
larger.  will be large, for example, when the covariate effects are very correlated across groups.

6 Experiments

6.1 Simulated data

We first conduct simulations, where we can directly control the relatedness among groups and where
we know the ground truth values of the parameters. We show that ECov is more accurate than EGroup
when covariates outnumber groups, whether effects are correlated across groups or not.

In particular, we simulated covariates, parameters, and responses for Q = 10 groups across a range
of covariate dimensions. We generated covariate effects as �d

i.i.d.⇠ N (0,⌃). We chose ⌃ so that
effects were either correlated (Figure 1 Left) or independent (Figure 1 Right) across groups; see
Appendix E for details. We compare performance of six estimates on these groups. These are
estimates assuming EGroup/ECov using moment matching and maximum marginal likelihood to
choose ⌃/� (�̂MM

EGroup/�̂MM
ECov and �̂EGroup/�̂ECov, respectively), as well as least squares (�̂LS), and

ECov applied to each group independently (�̂ID).

Figure 1 reinforces our theoretical conclusions that (1) �̂ECov is more accurate when covariates
outnumber groups and (2) �̂EGroup is more accurate when groups outnumber covariates. Our
simulated X matrices are somewhat relaxed from a strict orthogonal design (Appendix E), so these
experiments suggest that our conclusions hold beyond Condition 4.1. Additionally, �̂ECov and
�̂EGroup both outperform their moment based counterparts, �̂MM

ECov and �̂MM
EGroup.

Even for the simulations with independent effects, Theorem 4.3 suggests �̂ECov should still outper-
form �̂LS and �̂EGroup in the higher dimensional regime, and we see this behavior in the right panel
of Figure 1. Additionally, in agreement with Theorem 5.3, �̂ECov does not improve over �̂ID in the
presence of independent effects, and the performances of these two estimators converge as D grows.

6.2 Real data

We find that ECov beats EGroup, as well as least squares and independent estimation, across three
real groups. We describe the datasets (with additional details in Appendix E.4) and then our results.
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Community level law enforcement in the United States. Policing rates vary dramatically across
different communities, mediating disparate impacts of criminal law enforcement across racial and
socioeconomic groups [64, 54]. Understanding how demographic and socioeconomic attributes of
communities relate to variation in rates of law enforcement is crucial to understanding these impacts.
Linear models provide the desired interpretability. We use a dataset [51] consisting of D = 117
community characteristics and their rates of law enforcement (per capita) for different crimes. We
consider Q = 4 group subsets corresponding to distinct (region, crime) pairs: (Midwest, Robbery),
(South, Assault), (Northeast, Larceny), and (West, Auto-theft). This data setup illustrates a small Q
and accords with the independent residuals assumption in the likelihood shared by ECov and EGroup
(Section 2). Across q, Nq represents between 400 and 600 communities.

Blog post popularity. We regress reader engagement (responses) on D = 279 characteristics of
blog posts (covariates) [13]. We divided the corpus based on an included length attribute into Q = 3
groups, corresponding to (1) long posts, (2) short posts, and (3) posts from an earlier corpus with
missing length attribute. We hypothesized that the relationships between the characteristics of posts
and engagement would differ across these three groups. We randomly downsampled to Nq = 500
posts in each group to mimic a low sample-size regime, in which sharing strength is crucial.

Figure 2: Prediction performance on held out data in three applications (mean ±1SEM across 5-fold
cross-validation splits).

Multiple binary classifications using pre-trained neural network embeddings on CIFAR10.
Modern machine learning methods have proved very successful on large datasets. Translating
this success to smaller datasets is one of the most actively pursued algorithmic challenges in machine
learning. It has spurred the development of frameworks from transfer learning [65] to one-shot learn-
ing [62] to meta-learning [21]. One common and simple strategy starts with a learned representation
(or “embedding”) from an expressive neural network fit to a large group. Then one can use this
embedding as a covariate vector for classification tasks with few labeled data points.

We take a D = 128 dimensional embedding of the CIFAR10 image group [37, 60]. We create Q = 8
different binary classification tasks using the classes in CIFAR10 (Appendix E.4). We downsampled
to Nq varying from 100 to 1000 to mimic a setting in which we hope to share strength from large
groups to improve performance on smaller datasets.

Discussion of evaluation and results. In previous sections we have focused on parameter estimation.
Here we instead evaluate with prediction error on held-out data since the true parameters are not
observed. Specifically we perform 5-fold cross-validation and report the mean squared errors and
classification errors on test splits. To reduce variance of out-of-sample error estimates on the
applications in which we downsampled, we also evaluate on the additional held-out data. Because
the residual variances were unknown, we estimated these for each application and group as �̂2

q :=

kP?
XqY qk2/(Nq �D), where P?

Xq := INq �Xq(Xq>Xq)�1Xq> (see e.g. [23, Chapter 18.1]). All
methods ran quickly on a 36 CPU machine; computation of �̂ECov, including the EM algorithm,
required 2.04 ± 0.64, 6.89 ± 3.19 and 37.14 ± 3.39 seconds (mean ± st-dev across splits) on the
law enforcement, blog, and CIFAR10 tasks, respectively.

Our results further reinforce the main aspects of our theory. �̂ECov outperformed �̂EGroup, indepen-
dent Bayes estimates (�̂ID), and least squares (�̂LS) in all applications (at > 95% nominal confidence
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with a paired t-test).2 Additionally, �̂ECov outperformed the baseline of ignoring heterogeneity,
pooling groups together, and using the same effect estimates for every group (“Least Sqrs./MLE
Pool”).

Appendix E includes additional results and comparisons. In particular, we provide the performance
of the estimators on each component group for each application. Additionally, we report the
performances of (1) stable and computationally efficient moment based alternatives to �̂ECov and
�̂EGroup and (2) variants of �̂ECov and �̂EGroup that include a learned (rather than zero) prior mean.
Appendix E.5 reports the licenses of software we used.

7 Discussion

The Bayesian community has long used hierarchical modeling with priors encoding exchangeability
of effects across groups of data (EGroup). In the present work, we have made a case for instead using
priors that encode exchangeability across covariates (ECov) – in particular, when the number of
covariates exceeds the number of groups. We have presented a corresponding concrete model and
inference method. We have shown that ECov outperforms EGroup in theory and practice when the
number of covariates exceeds the number of groups.

Our approach is, of course, not a panacea. In some settings, a priori exchangeability among covariate
effects will be inconsistent with prior beliefs. For example, imagine in the CIFAR10 application if
meta-data covariates (such as geo-location and date) were available, in addition to embeddings. Then
we might achieve better performance by treating meta-data covariates as distinct from embedding
covariates. Additionally, we focused on a Gaussian prior for convenience. In cases where practitioners
have more specific prior beliefs about effects, alternative priors and likelihoods may be warranted,
though they may be more computationally challenging. Moreover, while relatively interpretable, linear
models have their downsides. The linear assumption can be overly simplistic in many applications. It
is common to misinterpret effects as causal rather than associative. Both the linear model and squared
error loss lend themselves naturally to reporting means, but in many applications a median or other
summary is more appropriate; so using a mean for convenience can be misleading.

Many exciting directions for further investigation remain. For example, the covariance ⌃ may
provide an informative measure of task similarity; this similarity measure can be useful in, e.g., meta
learning [34] and statistical genetics [12]. Additionally, we here explored two approaches to choosing
the covariance matrices in the empirical Bayes step; more sophisticated approaches to covariance
estimation may provided improved performance. It also remains to extend our methodology to other
generalized linear models.

Acknowledgments and Disclosure of Funding

The authors thank Sameer K. Deshpande, Ryan Giordano, Alex Bloemendal, Lorenzo Masoero,
and Diana Cai for insightful discussions on the manuscript, and the anonymous reviewers for their
constructive suggestions. This work was supported in part by ONR Award N00014-18-S-F006 and
an NSF CAREER Award. BLT is supported by NSF GRFP.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Matthieu Dean, Jeffrey an Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16), pages 265–283, 2016.

[2] Tomohiro Ando and Arnold Zellner. Hierarchical Bayesian analysis of the seemingly unrelated regression
and simultaneous equations models using a combination of direct Monte Carlo and importance sampling
techniques. Bayesian Analysis, 5(1):65–95, 2010.

2 We did not develop an extension akin to Algorithm 3 for EGroup, and so do not report �̂EGroup for
CIFAR10. Additionally, we report a maximum likelihood estimate (MLE) instead of �̂LS for CIFAR10.

10



[3] Oswald T Avery, Colin M MacLeod, and Maclyn McCarty. Studies on the chemical nature of the substance
inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid
fraction isolated from pneumococcus type III. The Journal of Experimental Medicine, 79(2):137–158,
1944.

[4] Alvin J Baranchik. Multiple regression and estimation of the mean of a multivariate normal distribution.
Technical report, Stanford University, 1964.

[5] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-effects models using
lme4. Journal of Statistical Software, 67(1):1–48, 2015.

[6] Anindya Bhadra and Bani K Mallick. Joint high-dimensional Bayesian variable and covariance selection
with an application to eQTL analysis. Biometrics, 69(2):447–457, 2013.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[8] Robert C Blattberg and Edward I George. Shrinkage estimation of price and promotional elasticities:
Seemingly unrelated equations. Journal of the American Statistical Association, 86(414):304–315, 1991.

[9] Leo Breiman and Jerome H Friedman. Predicting multivariate responses in multiple linear regression.
Journal of the Royal Statistical Society: Series B, 59(1):3–54, 1997.

[10] Philip J Brown and James V Zidek. Adaptive multivariate ridge regression. The Annals of Statistics, 8(1):
64–74, 1980.

[11] Philip J Brown, Marina Vannucci, and Tom Fearn. Multivariate Bayesian variable selection and prediction.
Journal of the Royal Statistical Society: Series B, 60(3):627–641, 1998.

[12] Brendan Bulik-Sullivan, Hilary K Finucane, Verneri Anttila, Alexander Gusev, Felix R Day, Po-Ru Loh,
Laramie Duncan, John RB Perry, Nick Patterson, Elise B Robinson, Mark J Daly, Alkes L Price, and
Benjamin M Neal. An atlas of genetic correlations across human diseases and traits. Nature Genetics, 47
(11):1236, 2015.

[13] Krisztian Buza. Feedback prediction for blogs. In Data Analysis, Machine Learning and Knowledge
Discovery, pages 145–152. Springer, 2014.

[14] Diana Cai, Rishit Sheth, Lester Mackey, and Nicolo Fusi. Weighted meta-learning. arXiv preprint
arXiv:2003.09465, 2020.

[15] Siddhartha Chib and Edward Greenberg. Hierarchical analysis of SUR models with extensions to correlated
serial errors and time-varying parameter models. Journal of Econometrics, 68(2):339–360, 1995.

[16] A Philip Dawid. Some matrix-variate distribution theory: notational considerations and a Bayesian
application. Biometrika, 68(1):265–274, 1981.
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