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Abstract

Deriving from image matching and understanding, semantic keypoint matching
aims at establishing correspondence between keypoint sets in images. As graphs
are powerful tools to represent points and their complex relationships, graph match-
ing provides an effective way to find desired semantic keypoint correspondences.
Recent deep graph matching methods have shown excellent performance, but there
is still a lack of exploration and utilization of spatial information of keypoints as
nodes in graphs. More specifically, existing methods are insufficient to capture
the relative spatial relations through current graph construction approaches from
the locations of semantic keypoints. To address these issues, we introduce a posi-
tional reconstruction encoder-decoder (PR-EnDec) to model intrinsic graph spatial
structure, and present an end-to-end graph matching network PREGM based on PR-
EnDec. Our PR-EnDec consists of a positional encoder that learns effective node
spatial embedding with the affine transformation invariance, and a spatial relation
decoder that further utilizes the high-order spatial information by reconstructing
the locational structure of graphs contained in the node coordinates. Extensive
experimental results on four public keypoint matching datasets demonstrate the
effectiveness of our proposed PREGM.

1 Introduction

Image matching is a common and basic matching problem in multimedia and visual applications. The
goal of image matching is to find a dense semantic content correspondence between two images, while
feature-based matching is a typical strategy to solve the above problems, and in feature matching,
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the semantic keypoints in images are the most commonly used matching targets. Semantic keypoint
matching aims at establishing correspondence between keypoint sets in images, and it has been
applied to a wide range of applications, such as object tracking [35, 24], image retrieval [40, 11],
and pose estimation [39, 3], etc.

The semantic keypoint data has the properties of non-Euclidean and unstructured for its disorder and
discreteness, and graphs are powerful tools to represent some complex objects and their interactions.
Specifically, we take each semantic keypoint as a node, and build edges by heuristic methods
according to the positions of nodes to construct a corresponding graph. Graph matching is an
effective method to solve the correspondence between the semantic keypoints in two images.

As deep learning models are scalable and time-efficient, Graph Neural Networks (GNNs) are in-
creasingly utilized in graph matching tasks, such as GMN [44], PCA [32], and BBGM [29],
etc.

However, most graph matching approaches rely on the matching of basic items of graphs, i.e.
computing affinities of nodes and edges, lack the mining and utilization of spatial context information
hidden in the locations of keypoints as nodes of graphs. Recently, in task scenarios such as point cloud
and knowledge graph, which the nodes in graphs have locational information, there are methods such
as [21, 18] utilizing positional encoder to add the spatial information as additional features. However,
current methods in graph matching domain lack such spatial positional information supplementation.
As the positional information is closer to the intrinsic characteristic of the graph, it is important to
integrate spatial descriptions into graph feature embeddings in graph matching.

But utilizing underlying spatial information faces the following challenges: 1) Through taking key
points as graph nodes and edges are associated with pairwise distance, such as delaunay triangulation,
it is not sufficient to mine hidden relative positional relationship. 2) The description of spatial
information from coordinates of keypoints is relatively simple compared with conventional visual
features, so it needs more refined network structure to learn location information, in order to facilitate
subsequent feature fusion.

To address the two challenges mentioned above, we propose a positional reconstruction encoder-
decoder network (PR-EnDec) in our PREGM by integrating more spatial information into semantic
features and learning more distinguishable node features. The positional encoder in PR-EnDec aims
to learn the encoding of node positional information with spatial invariance, specifically, the affine
transformation invariance of node coordinates. The spatial relation decoder in PR-EnDec is designed
to recover the locational structure from the learned features of the encoder, and it reconstructs the
relative distances and areas among the sampled nodes. To implement the joint learning of PR-EnDec
about the intrinsic positional features in graphs, we, consequently, propose a corresponding contrastive
loss function and a reconstruction loss function in the encoder and the decoder respectively.

Our main contributions are summarized as follows:

• We propose an end-to-end graph matching network, PREGM, which learns more distin-
guishable node features, not only captures visual information in images but also models
intrinsic spatial structure of keypoints by our designed PR-EnDec.

• Our PR-EnDec consists of a positional encoder that learns effective graph positional encod-
ing with affine transformation invariance, and a spatial relation decoder used to enhance
such learning by reconstructing the graph locational information such as relative distances
and areas from learned positional encoding. We also design a corresponding contrastive loss
function and a reconstruction loss function in the encoder and decoder respectively to help
learn effective node positional characteristics.

• We evaluate our PREGM on four public keypoint matching datasets. Our experimental
results demonstrate that PREGM outperforms state-of-the-art methods. We also present an
ablation study, which shows the effectiveness of each component of PREGM.
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2 Related Work

2.1 Graph Matching

Graph matching is always an effective strategy to find correspondence between semantic keypoints as
graphs have sufficient representation ability for points and their complex relationships, and it can
then be applied to downstream tasks such as image matching and understanding. As it is famous for
being one of the practically most difficult NP-complete problems, researchers often use optimization
algorithms to find an acceptable suboptimal solution for the graph matching problem. Traditional
graph matching methods [17, 5, 7, 20, 36] generally use heuristic search algorithms to find suboptimal
solutions.

Recent graph matching methods begin to combine combinatorial optimization with deep learning
models. GMN [44] proposes an end-to-end graph matching framework, calculates the unary and
pairwise affinities of nodes through CNN features, and also uses spectral matching as a differentiable
solver to combine deep learning with graph matching. PCA [32] uses graph neural network
(GNN) to learn and aggregate graph structure information into node feature representation, and
introduces Sinkhorn network [1] as the combinatorial solver for finding node correspondence. BBGM
[29] presents an end-to-end trainable architecture that incorporates a state-of-the-art differentiable
combinatorial graph matching solver, and introduces a global attention mechanism to improve the
matching performance.

Although the research on graph matching has made the above progress, the existing methods lack
the distinguishing and informative graph spatial feature descriptions, and adaptive adjustment of
node correspondence on graph matching. In this paper, we overcome these limitations by proposing
a positional reconstruction encoder-decoder (PR-EnDec) and designing a contrastive learning and
positional feature reconstruction procedure to guide the learning of graph matching.

2.2 Positional Encoding on Graphs

Positional Encoding was first proposed in the Transformer [31] model. In general, positional
encoding refers to the process of encoding spatial relationships or topological information of elements
as supplementary information in order to augment the representational capacity of a model. The
categorization of positional encoding can be further elaborated as follows: spatial positional encoding
utilizes point location as input, while topological positional encoding employs the graph structure as
input.

For spatial positional encoding, the point location is used as input to obtain a high-dimensional
embedding that contains effective locational information. Space2Vec [21] introduces theory and
grid as a 2D multi-scale spatial positional encoder by using sinusoidal functions with different
frequencies. PointCNN [18] designs a point set spatial positional encoder with Point Conv layers
consisting of sampling layer, grouping layer, and aggregation layer. DGCNN [38] considers both
global shape structure and local neighborhood information, and proposes spatial positional encoder
layers containing dynamic graph neighborhood and edge convolution module. This paper proposes a
spatial position encoding on graphs by leveraging the characteristic of node representation containing
coordinate information in image keypoint matching.

Topological positional encoding is specific to graph matching, where the graph structure is used as
input to obtain the topological embedding of the nodes. Maskey et al. [22] generalizes Laplacian-
based positional encoding by defining the Laplace embedding to more general dissimilarity functions
such as p-norm rather than the 2-norm used in the original formulation. INFMCS [16] designs
a permutation-invariant node ordering based on closeness centrality, and effectively enhances the
representation of graph structural features.

In recent years, there has also been research on spatial positional encoding in the field of graph
matching. GCAN [13] utilizes SplineCNN [10] to encode positional information in 2D spatial space,
and successfully capture structural information of the graph.

However, there remains the open question of how to further mine intrinsic spatial node information in
graphs. In this paper, we propose a positional reconstruction encoder-decoder architecture to obtain
effective node spatial positional encoding using 2D point location.
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Figure 1: The framework of our PREGM. The visual features are extracted by vgg16_bn from
images, and the positional encoding is obtained by our pretrained positional encoder from graphs.
The visual features and positional encoding of nodes are further fused to be fed into the following
modules. Next, the fused features are updated and refined by the message passing module SplineCNN.
Finally, we compute node affinity from updated features and adopt a differentiable graph matching
solver LPMP to find the correspondence matrix X.

3 Problem Formulation of Graph Matching

Given the keypoints in the images, each node is generally associated with a keypoint, and edges are
built according to the spatial position relationship between nodes when building an undirected graph.
The graph is represented by G = (V,E,V, E):

• V = {v1, ..., vn} denotes the node set.

• E ⊆ V× V denotes the edge.

• V = {vi|vi ∈ Rdv , i = 1, 2, ..., |V|} denotes the node feature set.

• E = {ei|ei ∈ Rde , i = 1, 2, ..., |E|} denotes the edge feature set.

We use the adjacency matrix A to represent the connections of nodes in an undirected graph G, that
is, Aij = 1 iff there is an edge eij = (vi, vj) ∈ E.

Given two graphs G1 = (V1,E1,V1, E1) and G2 = (V2,E2,V2, E2), where |V1| = |V2| = n, the
goal of graph matching is to find the correspondence matrix X ∈ {0, 1}n×n between nodes V1 and
V2 of the two graphs G1 and G2, wherein Xij = 1 iff vi ∈ V1 corresponds to vj ∈ V2.

The ultimate goal of the graph matching problem is to find the optimal node correspondence between
two graphs G1 and G1, so the graph matching problem is often considered as a quadratic assignment
programming problem (QAP problem):

x∗ = argmaxxx
TKx, (1)

where x = vec(X) ∈ {0, 1}n2

, X1n = 1n, and XT1n = 1n. x∗ denotes the desired node
correspondence, and 1n denotes a vector of n ones. K ∈ Rn2×n2

is the corresponding affinity matrix:

Kia,jb =


svia, if i = j& a = b,

seia,jb, else if A1
ijA2

ab > 0,

0, otherwise.

(2)

where svia represents the affinity between node features vi ∈ V1 and va ∈ V2, seia,jb represents the
affinity between edge features eij ∈ E1 and eab ∈ E2.

4 Methodology

The framework of our PREGM Network is illustrated in Figure 1. The positional encoder module of
pretrained PR-EnDec takes the coordinates of keypoints as input. It extracts a positional encoding
vector for each keypoint in the images. Next, the positional encoding and the visual features extracted
by vgg16_bn are further fused. Then, the fused features are fed into the message-passing module to
obtain the refined node feature. Finally, the node affinity is computed and processed by the LPMP
solver, generating the node correspondence matrix X introduced in the problem formulation.
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Figure 2: The framework of our PR-EnDec network and the detailed structure of its positional encoder
and spatial relation decoder.

As an independent stage, we pretrain the abovementioned positional encoder along with the spatial
relation decoder module of PR-EnDec (as shown in Figure 2). The pretraining stage enables the
positional encoder to learn the high-order spatial information. The PR-EnDec consisting two modules,

Positional Encoder. This module takes the coordinates of keypoints as input and learns positional
encoding. We first obtain the high-dimensional coordinate embedding vectors by an MLP. The vectors
are then fed into self-attention blocks and a normalization layer to learn positional encoding. The
attention mechanism provides sequence independence and relative information of nodes. Besides, we
propose a contrastive loss for the encoder module. The loss function ensures the affine transformation
invariance and learns the relative position information.

Spatial Relation Decoder. To reconstruct the spatial structure of graphs, this module generates
triangle assignments by distance-based random sampling. In each triangle assignment, the module
takes positional encoding corresponding to the three keypoints as the input of self-attention blocks.
Next, the processed features are fed into MLPs, and the relative spatial relations of the three points
are reconstructed. We adopt a Mean Squared Error (MSE) loss to compare the ground truth relative
spatial relations and the decoder’s predictions.

4.1 Positional Encoder

The Positional Encoder only takes geometric features of keypoints as inputs,

Vg = {vgi |v
g
i ∈ Rdg

v , i = 1, ..., n} denotes the node geometric feature set.

Specifically, we utilize the 2D Cartesian coordinates of each node vi as its geometric feature
vgi = [xi, yi]. The coordinate embedding sub-module embeds the geometric feature Vg into latent
representations by a two-layer MLP, denoted as ρv . The updated geometric graph Gg = (V, ρv(Vg))
is then fed into the following attention sub-module.

The attention sub-module consists of lm attention blocks (denoted as Attne
i ) and a normalization layer

(denoted as Norm), which updates latent representations of Gg . An attention block is composed of a
multi-head self-attention layer and a feed-forward layer, which captures the spatial feature of Gg by
aggregating the latent representations of each node.

Vg
0 = ρv(Vg), (3)

Vg
i = Attne

i (V
g
i−1), i = 1, 2, ..., lm. (4)

The self-attention mechanism is sequence-independent, which is well suited for extracting high-order
relative position information between nodes. There is a normalization layer after attention blocks
to allow the positional encoding of nodes to be better fused with visual features nodes on the graph
matching task. The final positional encoding obtained by the encoder module is denoted as Fpos.

Fpos = Norm(Vg
lm
). (5)

Encoder Loss. For two given graphs G1 = (V1,E1,V1, E1) and G1 = (V1,E1,V1, E1), the
positional encoder generates the positional encoding denoted as F 1

pos = {f1
i |i = 1, 2, ..., |V|} and

F 2
pos = {f2

i |i = 1, 2, ..., |V|} respectively. We expect that for all matched node i in graph G1 and
node j in graph G2, the corresponding node positional encoding f1

i and f2
j should be similar. To let

the encoder learn the relative position information of the nodes, we perform contrastive learning that

5



perseves the affine invariance of the positional encoding. Specifically, we adopt negative samples to
conduct contrastive learning to avoid the encoder module outputs trivial node features that are all
similar.

Therefore, we classify (G1,G2) as a positive graph pair if Vg
2 is affine transformed by Vg

1 or the
keypoints in Vg

1 and Vg
2 are one-by-one matched. On the contrary, (G1,G2) is a negative graph pair

if the keypoints are not matched.

For each training batch, the positive graph pair set GSp and negative graph pair set GSn are generated
by node permuting or affine transformation. Let FSp and FSn denote the corresponding positional
encoding pair set of GSp and GSn respectively, we propose a contrastive loss Lcon,

Sp =
∑

(F 1
pos,F

2
pos)∈FSp

exp(τ ∗ sim(F 1
pos, F

2
pos)), (6)

Sn =
∑

(F 1
pos,F

2
pos)∈FSn

exp(τ ∗ sim(F 1
pos, F

2
pos)), (7)

Lcon = −Log(
Sp

Sp + Sn
), (8)

where Sp and Sn denote the sum of the exponential of positive/negative pairs’ similarity, respectively.
Additionally, τ denotes the temperature constant, and sim() denotes the cosine similarity.

4.2 Spatial Relation Decoder

To learn the high-order spatial information, we propose k-th-order geometric reconstruction assign-
ments. Sampling k points from the node set as an assignment, the corresponding geometric feature set
is denoted as Vg

s and positional encoding set as Fsub ⊆ Fpos. If a decoder Dec takes Fsub as input,
we claim the decoder provides k-th-order relative position information if there exists a non-degenerate
geometric function F , F(Vg

s ) ≈ Dec(Fsub). Specifically, we choose k = 3 and function F with
Euclidean distance and triangle area to learn the third-order relative position information.

The decoder module first samples three keypoints and obtains the corresponding geometric feature set
Vg
s = {vga, v

g
b , v

g
c} and positional encoding set Fsub = {fa, fb, fc}. The random sampling method is

related to the Euclidean distance from the previous sampled node to learn the relative information
better, for the sampling method guarantees that the distances between the sampled nodes are not too
far. Next, the sampled feature set Fsub is fed into ln attention blocks. The intermediate feature is
denoted as F̂sub = {f̂a, f̂b, f̂c}. We utilize 2 MLPs, denoted as ρd and ρa, to approximate Euclidean
distance and triangle area function, respectively. The reconstructed relative position information of
the decoder is represented as:

RC = [ρd(f̂a, f̂b), ρd(f̂b, f̂c), ρd(f̂a, f̂c), ρa(f̂a, f̂b, f̂c)]. (9)

Let Dis denotes Euclidean distance and Area denotes triangle area function,RC’s corresponding
geometric function F is obviously

F(Vg
s ) = [dis1, dis2, dis3, area], (10)

where dis1 = Dis(vga, v
g
b ), dis2 = Dis(vgb , v

g
c ), dis3 = Dis(vga, v

g
c ), area = Area(vga, v

g
b , v

g
c )

denote ground-truth third-order relative position information for the decoder to reconstruct.

Decoder Loss. Since we calculate the approximated relative position information RC and the
ground-truth RCgt = F(Vg

s ), we propose the reconstruction loss Lrec:

Lrec = MSE(RC,RCgt). (11)

PR-EnDec Loss. Finally, we combine the two losses to guide the training of our PR-EnDec jointly,

LPR−EnDec = Lcon + λ · Lrec, (12)

where λ controls the relative importance of Lrec.

Through pretraining of PR-EnDec, we obtain an effective encoder for extracting spatial positional
encoding for utilization in subsequent PREGM.
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4.3 Graph Matching with PR-EnDec

Our training procedure is divided into two stages: In the first stage, we pretrain our PR-EnDec, and
in the second stage of graph matching, our positional encoder module of PR-EnDec serves as a
sub-module of the base graph matching model, providing learned positional encoding in the first
stage.

After the training of PR-EnDec, we freeze all parameters of the encoder module and put it in the
training of graph matching tasks. The positional encoding Fpos generated by the positional encoder
module is fused with visual features Fvis extracted by a standard CNN:

Ffused = Linear(Fpos) + Fvis. (13)
where Linear denotes a linear layer.

Next, we feed the fused features into a message-passing module to produce the refined node features,
and the message-passing module is implemented by a two-layer SplineCNN [10]. After the message-
passing module, node and edge affinities are computed and passed to the differentiable graph matching
solver LPMP in [25]. The resulting correspondence matrix X is compared to the ground truth Xgt

and the loss function is their Hamming distance:
LGM = X · (1−Xgt) + Xgt · (1−X). (14)

So far, the graph matching problem formulated previously is solved by our PREGM with the two
sequential training phases: the PR-EnDec pretrain and the graph matching task.

5 Experiments

We conduct experiments on four public keypoint matching datasets and verify the effectiveness of each
component of our PREGM by ablation study. We introduce the datasets, baselines, implementation
details, and then report the results. The results demonstrate that our PREGM consistently outperforms
all other approaches.

5.1 Datasets

We evaluate our PREGM on four public keypoint matching datasets: PascalVOC [8], Willow
ObjectClass [4], SPair-71k [23], and IMC-PT-SparseGM [14].

The PascalVOC dataset includes 20 classes of keypoints with Berkeley annotations [2] and images
with bounding boxes. The PascalVOC dataset is relatively challenging, since the scale, pose and
illumination of instances in images are rich and diverse, and the number of annotated keypoints in
each image also varies from 6 to 23. When conducting experiments on the PascalVOC dataset, we
follow the standard protocol [32, 37]: First, each object is cropped according to its corresponding
bounding box and scaled to 256 × 256 px. Second, we use 7,020 images for training and 1,682 for
testing.

The Willow ObjectClass dataset contains images of five categories: face, duck, winebottle, car, and
motorbike, the first three categories are from the Caltech-256 dataset [12], and the last two categories
are from the PascalVOC 2007 dataset [8]. Each category contains at least 40 different images, and
each image is labeled with 10 distinctive keypoints on the target object to be matched. Following the
default setting in [4, 32], we crop the images to the bounding boxes of the objects and rescale to 256
× 256 px, 20 images of each class are selected during training, and the rest are for testing.

The SPair-71k dataset is a relatively novel dataset, which was recently published in the paper [23]
about dense image matching. Spair-71k contains 70958 image pairs of 18 categories from PascalVOC
2012 dataset [8] and Pascal 3D+ dataset [41]. Compared with the other two datasets, SPair71-k
has the advantages of higher image quality and richer annotations which includes detailed semantic
keypoints, object bounding boxes, viewpoints, scales, truncation, and occlusion differences of image
pairs. In addition, compared with PascalVOC dataset, SPair-71k removes two classes with ambiguous
and poor annotations: sofa and dining table. Following [29], we use 53,340 image pairs for training,
5,384 for validation, and 12,234 for testing, and we also scale each image to 256× 256 px.

The IMC-PT-SparseGM dataset contains 16 object categories and 25061 images [14], which gather
from 16 tourist attractions around the world. The IMC-PT-SparseGM benchmark involves matching
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Table 1: Matching accuracy (%) on PascalVOC dataset.
Method aero bike bird boat bottle bus car cat chair cow dtable dog horse mbike person plant sheep sofa train tv Avg
GNCCP 28.9 37.1 46.2 53.1 48.0 36.3 45.5 34.7 36.3 34.2 25.2 35.3 39.8 39.6 40.7 61.9 37.4 50.5 67.0 34.8 41.6
ABPF 30.9 40.4 47.3 54.5 50.8 35.1 46.7 36.3 40.9 38.9 16.3 34.8 39.8 39.6 39.3 63.2 37.9 50.2 70.5 41.3 42.7
GMN 31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48.6 72.3 47.7 54.8 51.0 38.6 75.1 49.5 45.0 83.0 86.3 55.3
PCA 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8
CIE 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9
NGM 50.8 64.5 59.5 57.6 79.4 76.9 74.4 69.9 41.5 62.3 68.5 62.2 62.4 64.7 47.8 78.7 66.0 63.3 81.4 89.6 66.1
DGMC 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2
EAGM 49.4 62.1 64.6 75.3 90.9 80.9 71.1 61.3 48.7 65.9 87.5 58.4 66.3 60.1 56.3 97.1 64.7 60.6 96.0 93.0 70.5
BBGM 61.5 75.0 78.1 80.0 87.4 93.0 89.1 80.2 58.1 77.6 76.5 79.3 78.6 78.8 66.7 97.4 76.4 77.5 97.7 94.4 80.1
DIP-GM 58.5 74.9 76.2 76.0 87.1 94.7 89.8 79.8 60.4 77.5 79.8 78.0 76.2 78.2 64.3 97.1 76.4 76.4 96.5 93.2 79.6
IA-NGM-v2 61.5 73.8 74.0 79.4 89.1 94.6 89.7 77.5 67.1 77.3 92.4 76.8 77.1 77.4 65.8 98.5 77.5 79.5 96.6 92.3 80.9
ASAR 62.9 74.3 79.5 80.1 89.2 94.0 88.9 78.9 58.8 79.8 88.2 78.9 79.5 77.9 64.9 98.2 77.5 77.1 98.6 93.7 81.1
COMMON 65.6 75.2 80.8 79.5 89.3 92.3 90.1 81.8 61.6 80.7 95.0 82.0 81.6 79.5 66.6 98.9 78.9 80.9 99.3 93.8 82.7
Ours 62.6 76.4 79.3 78.7 90.3 94.1 92.3 83.4 71.9 82.3 92.4 82.4 82.0 85.0 69.2 98.7 78.4 90.7 96.7 95.1 84.1

Table 2: Matching accuracy (%) on Willow dataset.

Method PT WT car duck face mbike wbottle Avg
GNCCP × × 86.4 77.4 100.0 95.6 95.7 91.0
ABPF × × 88.4 80.1 100.0 96.2 96.7 92.3
GMN × × 74.3 82.8 99.3 71.4 76.7 80.9
PCA × × 84.0 93.5 100.0 76.7 96.9 90.2
CIE × × 82.2 81.2 100.0 90.0 97.6 90.2
NGM × ✓ 84.1 77.4 99.2 82.1 93.5 87.3

DGMC × ✓ 98.3 90.2 100.0 98.5 98.1 97.0
✓ ✓ 96.5 93.2 100.0 98.8 99.9 97.7

EAGM × ✓ 94.4 89.7 100.0 99.3 99.2 96.5

BBGM × ✓ 96.9 89.0 100.0 99.2 98.8 96.8
✓ ✓ 95.7 93.1 100.0 98.9 99.1 97.4

Ours × ✓ 97.4 96.8 100.0 99.8 96.8 98.2
✓ ✓ 97.8 99.0 100.0 99.6 100.0 99.3

larger scenes and take a step closer to the real-world downstream tasks. We take 13 classes as the
training set and the other 3 classes as the test set. Experiments are conducted on the benchmark with
50 anchors.

5.2 Baselines and Metrics

We compare our PREGM with the state-of-the-art methods, including two types of baselines: (1) 2
non-learning methods GNCCP [20], ABPF [36]; (2) 11 learning-based methods GMN [44], PCA
[32], CIE [43], NGM [33], DGMC [9], EAGM [27], BBGM [29], DIP-GM [42], IA-NGM-v2
[26], ASAR [28], COMMON [19]. For a fair comparison, we follow previous work [32] and extract
node visual initial features from relu4_2 and relu5_1 of vgg16_bn [30] via feature alignment. For
the input image pairs, we construct the edges of graphs by Delaunay triangulation [6]. We adopt
a common metric matching accuracy to evaluate the experimental results, which is computed as
the number of correctly matched keypoint pairs averaged by the total number of all true matched
keypoint pairs.

5.3 Experimental Settings

In our implementation, we build up our PREGM based on the state-of-the-art method [29], which
presents an end-to-end trainable architecture that incorporates a state-of-the-art differentiable combi-
natorial graph matching solver. Our codes will be available in the future. In all experiments, we use
the same set of hyperparameters. We employ Adam [15] optimizer with an initial learning rate of
1× 10−4 for PR-EnDec, and 9× 10−4 for other models, and the learning rate is halved every three
epochs. We empirically set lm = 3 and ln = 2 in the encoder and decoder, and choose temperature
constant τ = 2 in Lcon, and balance factor λ = 1/32 in LPR−EnDec. We also set batch size = 8
for PascalVOC, Willow ObjectClass, and Spair-71k datasets. Our learning procedure is divided into
two stages: The pre-training of the PR-EnDec is uniformly conducted on the PascalVOC dataset.
Then the graph matching framework is trained on each dataset, while the parameters of the positional
encoder are fixed. All experiments are run on a single GTX-1080Ti GPU.
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Table 3: Matching accuracy (%) on Spair-71k dataset.
Method aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv Avg
GMN 50.1 40.4 62.7 46.8 60.8 66.8 57.2 62.0 40.5 61.5 49.5 46.5 56.5 43.9 76.1 44.7 61.2 75.7 55.7
PCA 58.9 42.3 72.1 54.1 61.2 77.3 66.1 65.2 50.4 64.9 56.8 55.5 64.3 53.4 86.2 49.1 75.5 91.4 63.6
DGMC 54.8 44.8 80.3 70.9 65.5 90.1 78.5 66.7 66.4 73.2 66.2 66.5 65.7 59.1 98.7 68.5 84.9 98.0 72.2
BBGM 66.9 57.7 85.8 78.5 66.9 95.4 86.1 74.6 68.3 78.9 73.0 67.5 79.3 73.0 99.1 74.8 95.0 98.6 78.9
DIP-GM 63.7 54.5 89.0 80.9 64.2 95.0 87.3 73.5 71.0 79.7 73.4 68.1 75.1 71.2 98.8 76.9 96.0 99.2 78.7
Ours 71.3 61.0 89.6 82.0 68.4 98.4 91.5 75.1 77.6 84.1 77.3 74.9 83.4 74.8 99.5 77.6 97.5 99.8 82.4

Table 4: Matching accuracy (%) on the IMC-PT-SparseGM.
Method Reichstag Sacre_coeur St_peters_square Avg
GANN-GM 76.0 44.2 50.5 56.9
BBGM 99.1 79.5 86.8 88.4
Ours 99.8 84.8 87.6 90.7

5.4 Performance Evaluation

We conduct experiments on four public datasets: PascalVOC, WillowObject Class, Spair-71k and
IMC-PT-SparseGM for the keypoint matching problem, and follow the most common experimental
setting, where intersection filtering is applied to generate graphs with the equal size.

Firstly, we report the matching accuracy of the 20 classes and average accuracy on PascalVOC
dataset in Table 1, where the best results are shown in bold. The results demonstrate that our model
PREGM performs much better than all traditional graph matching methods, and also achieves better
performance against state-of-the-art deep graph matching models with matching accuracy 84.1%.
And in the 20 classes of PasalVOC dataset, our PREGM has achieved the best results in the other 17
classes except for the boat, bottle and train class. As there are large differences in the scale, pose
and illumination of matching objects, PascalVOC is a complex matching dataset, thus the matching
accuracy of traditional graph matching methods is not more than 50%, and the performance of deep
graph matching methods is relatively better. Our PREGM learns effective node spatial characteristics
by PR-EnDec, so as to further improve the graph matching performance.

For the relatively simple WillowObject Class dataset, as shown in Table 2, there are two different
training strategies: PT and WT, which PT means matching frameworks are pre-trained on PascalVOC,
and WT means learning models are then fine-tuned on WillowObject Class Dataset. In this paper, we
adopt two strategies: PT only, both PT and WT, and in both situations, our model achieves the best
performance among other state-of-the-art methods with matching accuracy 98.2% and 99.3%. The
results again demonstrate the effectiveness of learning positional node features hidden in graphs in
our PREGM.

We also conduct experiments on Spair-71k dataset, as shown in Table 3, we compare our PREGM
with deep learning methods GMN, PCA, DGMC, BBGM, and DIP-GM. Our PREGM performs best
with matching accuracy 81.9%, and shows superiority in total 18 classes, which demonstrates the
generalization ability of our model on different objects. SPair-71k dataset, as a relatively new dataset,
has the advantages of high image quality, rich annotation, and fixed image pairs for matching, which
is a more convincing dataset. Thus our PREGM achieves the best results on the SPair-71k dataset,
which further proves the effectiveness of our PREGM.

Additionally, we evaluate our model on the IMC-PT-SparseGM dataset, as shown in Table 4, our
model demonstrates outstanding performance on this demanding benchmark. The results outshine the
performance of the other methods, GANN-GM [34] and BBGM, by a significant margin. In terms of
the average accuracy across these landmarks, our model excels with an impressive mean accuracy of
90.7%. The IMC-PT-SparseGM dataset is characterized by its substantial number of images, nodes,
and high partial rate, making it one of the most comprehensive benchmarks for visual graph matching.
Our approach, showcased in these results, demonstrates its ability to handle larger scenes and move
closer to real-world applications, such as structure from motion.

Table 5: Ablation Study on PascalVOC dataset.

Method baseline w/o positional encoder w/o spatial relation decoder w/o recon_area w/o recon_dis w/o visual features
Accuracy 84.1% 83.4% 81.7% 83.8% 82.7% 76.8%
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Table 6: Parameter analysis of learning rate on PascalVOC.

lr (×10−4) 6 7 8 9 10 11 12
Accuracy 83.2% 83.7% 83.8% 84.1% 83.9% 83.7% 83.7%

5.5 Ablation Study and Parameter Analysis

To evaluate the effect of each component in our framework, we conduct comprehensive ablation
studies with/without positional encoder, spatial relation decoder, and we also consider the two
separate cases of no reconstruction of areas and relative distances in the loss function of spatial
relation decoder. Furthermore, we conducted additional ablation experiments by removing visual
features to evaluate the effectiveness of the spatial features extracted by our model. The experiments
are performed on PascalVOC dataset. As shown in Table 5, compared with the baseline, the results
demonstrate that all modules bring substantial performance gains, the reconstruction of relative
distance is more important in the decoder, and the spatial relation decoder contributes most to the
overall performance. Moreover, with the fact that only taking spatial features as node features can
achieve relatively good performance, it further proves the effectiveness of the spatial features learned
from our PR-EnDec.

We also conduct parameter analysis to select hyperparameters. As shown in Table 6, PREGM achieves
the best performance when learning rate = 9× 10−4, which is our default setting, and it also shows
that adjusting the learning rate causes an accuracy fluctuation of about 1%. For the balance factor λ
in the loss function, when λ = 1/128, 1/32, and 1/8, the matching accuracy is 83.7%, 84.1%, and
83.3% respectively. Thus we select λ = 1/32 as our default setting, and the results show that our
method is rather sensitive to the choice of λ, and our designed loss function in positional encoder and
spatial relation decoder indeed improves the performance.

6 Conclusion

In this paper, we present an end-to-end novel deep graph matching network PREGM that learns more
distinguishable node features by modeling spatial positional information in graphs. Our PREGM
designs a common encoder-decoder architecture consisting of a positional encoder that learns effective
node positional encoding and a spatial relation decoder that reconstructs the positional structure of
graphs. Our experiments and ablation studies on four public keypoint matching datasets demonstrate
the state-of-the-art performance of our method. The exploration direction of future work includes
optimizing the loss function of the positional encoder to extract purer spatial structural information
and improve the feature fusion method to obtain better fused feature representation.
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[25] Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek.
Differentiation of blackbox combinatorial solvers. In International Conference on Learning
Representations, 2019.

[26] Tianxiang Qin, Shikui Tu, and Lei Xu. Ia-ngm: A bidirectional learning method for neural
graph matching with feature fusion. Machine Learning, pages 1–27, 2022.

[27] Jingwei Qu, Haibin Ling, Chenrui Zhang, Xiaoqing Lyu, and Zhi Tang. Adaptive edge attention
for graph matching with outliers. In IJCAI, pages 966–972, 2021.

[28] Qibing Ren, Qingquan Bao, Runzhong Wang, and Junchi Yan. Appearance and structure
aware robust deep visual graph matching: Attack, defense and beyond. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15263–15272,
2022.

[29] Michal Rolínek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vít Musil, and Georg
Martius. Deep graph matching via blackbox differentiation of combinatorial solvers. In
European Conference on Computer Vision, pages 407–424. Springer, 2020.

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[32] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
for deep graph matching. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 3056–3065, 2019.

[33] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learn-
ing lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[34] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Unsupervised learning of graph matching
with mixture of modes via discrepancy minimization. IEEE Transactions of Pattern Analysis
and Machine Intelligence, 2023.

[35] Tao Wang and Haibin Ling. Gracker: A graph-based planar object tracker. IEEE transactions
on pattern analysis and machine intelligence, 40(6):1494–1501, 2017.

[36] Tao Wang, Haibin Ling, Congyan Lang, and Songhe Feng. Graph matching with adaptive and
branching path following. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(12):2853–2867, 2018.

[37] Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and Haibin Ling. Learning combinatorial
solver for graph matching. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7568–7577, 2020.

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics
(tog), 38(5):1–12, 2019.

[39] Paul Wohlhart and Vincent Lepetit. Learning descriptors for object recognition and 3d pose
estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3109–3118, 2015.

[40] Jun Wu, Hong Shen, Yi-Dong Li, Zhi-Bo Xiao, Ming-Yu Lu, and Chun-Li Wang. Learning a
hybrid similarity measure for image retrieval. Pattern Recognition, 46(11):2927–2939, 2013.

[41] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark for 3d object
detection in the wild. In IEEE winter conference on applications of computer vision, pages
75–82. IEEE, 2014.

12



[42] Zhoubo Xu, Puqing Chen, Romain Raveaux, Xin Yang, and Huadong Liu. Deep graph
matching meets mixed-integer linear programming: Relax at your own risk? arXiv preprint
arXiv:2108.00394, 2021.

[43] Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching
with channel-independent embedding and hungarian attention. In International conference on
learning representations, 2019.

[44] Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2684–2693, 2018.

13


	Introduction
	Related Work
	Graph Matching
	Positional Encoding on Graphs

	Problem Formulation of Graph Matching
	Methodology
	Positional Encoder
	Spatial Relation Decoder
	Graph Matching with PR-EnDec

	Experiments
	Datasets
	Baselines and Metrics
	Experimental Settings
	Performance Evaluation
	Ablation Study and Parameter Analysis

	Conclusion

