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ABSTRACT

We apply a state-of-the-art membership inference attack (MIA) to systematically
test the practical privacy vulnerability of fine-tuning large image classification
models. We focus on understanding the properties of data sets and samples that
make them vulnerable to membership inference. In terms of data set properties, we
find a strong power law dependence between the number of examples per class in
the data and the MIA vulnerability, as measured by true positive rate of the attack
at a low false positive rate. For an individual sample, large gradients at the end of
training are strongly correlated with MIA vulnerability.

1 INTRODUCTION

Machine learning models are prone to memorising their training data, which makes them vulnerable
to privacy attacks such as membership inference attacks (MIAs; Shokri et al., 2017; Carlini et al.,
2022) and reconstruction attacks (e.g. Balle et al., 2022; Nasr et al., 2023). Differential privacy (DP;
Dwork et al., 2006b) provides protection against these attacks, but strong formal protection often
comes at the cost of significant loss of model utility.

Finding the correct balance between making models resistant to attacks while maintaining a high
utility is important for many applications. In health, for example, many European countries and soon
also the EU within the European Health Data Space have requirements that models trained on health
data that are made publicly available must be anonymous, i.e. they must not contain information
that can be linked to an identifiable individual. On the other hand, loss of utility of the model may
compromise the health benefits that might be gained from it.

In this paper, our aim is to apply a state-of-the-art MIA systematically to help understand practical
privacy risks training deep-learning-based classifiers without DP protections. Our case study focuses
on understanding and quantifying factors that influence the vulnerability of non-DP deep learning
models to MIA. Since the earliest MIA methods, there has been evidence that classification models
with more classes are more vulnerable to MIA (Shokri et al., 2017). Similarly, there is evidence that
models trained on fewer samples can be more vulnerable (Chen et al., 2020; Németh et al., 2023).
Based on extensive experimental data over many data sets with varying sizes, we uncover a power
law describing the vulnerability remarkably well.

∗Work done while at University of Helsinki.
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Previously Tobaben et al. (2023) and Yu et al. (2023) have presented limited studies of how data set
properties affect the MIA vulnerability. Tobaben et al. (2023) reported how the MIA vulnerability
of few-shot image classification is affected by the number of shots (i.e. the number of examples
available per class). Yu et al. (2023) studied how the MIA vulnerability of a class in an image
classifier trained from scratch depends on the average individual privacy parameters of that class.
Our work significantly expands on both of these by more systematic study and modelling of data set
properties and by providing a more detailed look at individual samples, not just classes.

List of contributions

In this work we perform an extensive empirical study on the MIA vulnerability of deep learning
models. We will focus on transfer learning setting on computer vision tasks, where a large pre-
trained neural network is fine-tuned on a sensitive data set, and the MIA is performed on the final
classifier. We find that the MIA vulnerability has a strong correlation with certain data set properties
(Section 5) and make the following contributions:

1. Power law: We uncover a power law between the number of examples per class and the vulner-
ability to MIA (TPR at fixed low FPR) based on extensive experimental data over many data sets
with varying sizes (See Figure 2a).

2. Regression model: We utilize the observations to train a regression model to predict MIA vul-
nerability (TPR at fixed low FPR) based on examples per class (S) and number of classes (C) and
show both very good fit on the training data as well as good prediction quality on unseen data
from a different feature extractor (See Figure 3).

Additionally, in Section 6 we extend the analysis to individual samples and discover a correlation
between vulnerability of individual samples and the gradient norms during training. We further
study the correlation between sample’s vulnerability and the similarity to the other samples in the
feature space.

2 BACKGROUND

Notation for the properties of the training data set D:

• C for the number of classes
• S for shots (examples per class)
• |D| for training data set size (|D| = CS)

We denote the number of MIA shadow models with M .

Membership inference attacks (MIAs) aim to infer whether a particular sample was part of the
training set of the targeted model Shokri et al. (2017). Thus, they can be used to determine lower
bounds on the privacy leakage of models to complement the theoretical upper bounds obtained
through differential privacy.

Likelihood Ratio attack (LiRA; Carlini et al., 2022) While many different MIAs have been pro-
posed Hu et al. (2022), in this work we consider the SOTA: the Likelihood Ratio Attack (LiRA).
LiRA assumes an attacker that has black-box access to the attacked model, knows the training data
distribution, the training set size, the model architecture, hyperparameters and training algorithm.
Based on this information, the attacker can train so-called shadow models (Shokri et al., 2017) which
imitate the model under attack but for which the attacker knows the training data set.

LiRA exploits the observation that the value of the loss function used to train a model is often lower
for examples that have been part of the training set than for examples that have not been. For a target
sample x, LiRA trains the shadow models: (i) with x as a part of the training set (x ∈ D) (ii) and
without x in the training set (x /∈ D). After training the shadow models, x is passed through the
shadow models, and based on the losses (or predictions) two Gaussian distributions are formed, one
for the losses of x ∈ D shadow models and one for the x /∈ D. Finally the attacker computes the
loss for the point x using the model under attack and determines using a likelihood ratio test on the
distributions built from the shadow models whether it is more likely that x ∈ D or x /∈ D. Carlini
et al. (2022) proposed an optimization for performing LiRA for multiple models and points without
training a computationally infeasible amount of shadow models. We utilize this optimization in our
experiments.
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In Appendix A we provide background on Differential privacy (DP; Dwork et al., 2006b) and DP
stochastic gradient descent (DP-SGD) that we use for training DP models.

3 METHODS

In this Section, we introduce the preliminaries for evaluating MIA vulnerability.

3.1 MEASURING MIA VULNERABILITY

Using the likelihood-ratios from LiRA Carlini et al. (2022) as a score, we can build a binary classifier
to predict whether sample belongs to the training data or not. The operational characteristics of such
classifier can be used to measure the success of the MIA. More specifically, throughout the rest of
the paper, we will use the true positive rate (TPR) at a specific false positive rate (FPR) as a measure
for the vulnerability. Identifying even a small number of samples with high confidence is considered
harmful (Carlini et al., 2022) and thus we focus on the regions of small FPR.

The TPR and FPR can be also connected to DP. Kairouz et al. (2015) have shown in Theorem 1
that any classifier distinguishing the training samples based on the results of a DP algorithm has an
upper bound for the TPR that depends on the privacy parameters (ϵ, δ). Since MIA is trying to build
exactly these types of classifiers, we can use the upper bounds by Kairouz et al. (2015) to validate
the privacy claims, and also to better understand the gap between the theoretical privacy guarantees
and the realistic attacks.

Theorem 1 (Kairouz et al. (2015)) A mechanism M : X → Y is (ϵ, δ)-DP if and only if for all
adjacent D ∼ D′

TPR ≤ min{eϵFPR + δ, 1− e−ϵ(1− δ − FPR)} . (1)

3.2 MEASURING THE UNCERTAINTY FOR TPR

The TPR values from the LiRA based classifier can be seen as maximum likelihood-estimators for
the probability of producing true positives among the positive samples. Since we have a finite
number of samples for our estimation, it is important to estimate the uncertainty in these estimator.
Therefore, when we report the TPR values for single repeat of the learning algorithm, we estimate
the stochasticity of the TPR estimate by using Clopper-Pearson intervals Clopper & Pearson (1934).
Given TP true positives among P positives, the 1 − α confidence Clopper-Pearson interval for the
TPR is given as

B(α/2; TP, P − TP + 1) < TPR

TPR < B(1− α/2; TP + 1, P − TP),
(2)

where B(q; a, b) is the qth-quantile of Beta(a, b) distribution.

4 EXPERIMENT OVERVIEW

Throughout the experiments, we utilize LiRA to understand the vulnerability of the trained models.

We fine-tune pre-trained models on sensitive downstream data sets and assess the vulnerability using
LiRA. We use the following setup for all experiments:

• Pre-trained models. BiT-M-R50x1 (R-50; Kolesnikov et al., 2020) with 23.5M parameters and
Vision Transformer ViT-Base-16 (ViT-B; Dosovitskiy et al., 2021) with 85.8M parameters, both
pre-trained on the ImageNet-21K data set (Russakovsky et al., 2015)

• Parameterization. Due to computational cost we only consider fine-tuning subsets of the model
parameters. We consider the following configurations: (i) Head: training a linear last layer classi-
fier on top of the pre-trained model (ii) FiLM: Head and additionally training parameter-efficient
FiLM (Perez et al., 2018) adapters scattered throughout the network (see Appendix B.1)

• Fine-tuning data sets. We utilize different fine-tuning data sets (see Appendix B.3 for details)
with different S, C and |D| as specified in the experiments.
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• Hyperparameter optimization (HPO). We utilize the library Optuna Akiba et al. (2019) with the
Tree-structured Parzen Estimator (TPE; Bergstra et al., 2011) sampler with 20 iterations. We op-
timize the batch size, learning rate and number of epochs. Additionally for DP-SGD we optimize
the clipping norm. Details in Appendix B.2.

• DP-SGD. We are using Opacus Yousefpour et al. (2021) and compute the noise multiplier based
on the target (ϵ, δ).

• DP Accounting. We use numerical privacy accounting for accurate evaluation of the cumulative
privacy loss of the optimisation (Koskela et al., 2020; 2021) using the PRV accountant (Gopi et al.,
2021).

• LiRA. We base our experiments on the publically available source code of Carlini et al. (2022).
We utilize M = 256 shadow models unless specified otherwise.

We illustrate the effectiveness of LiRA and the effect of different levels of DP on the MIA vulner-
ability (TPR at FPR = 0.001) in Figure 1. It shows the MIA vulnerability as a function of privacy
budget (additional versions for different FPRs in Figure A.1) and two upper bounds on the TPR at
FPR emerging from the theoretical guarantees of DP-SGD.
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Figure 1: MIA vulnerability (TPR at FPR = 0.001) as a function of privacy budget (ϵ at δ = 10−5)
when attacking different backbones fine-tuned on CIFAR10 and CIFAR100 at S ∈ {25, 50}. The
solid line displays the median and the error bars the minimum of the lower bounds and the maximum
of the upper bounds for the Clopper-Pearson CIs over 15 seeds. The upper bound is the theoretical
DP bound based on Kairouz et al. (2015). We present the bound computed with δ = 10−5 as well
as the optimal bound based on multiple δ.

We compute the upper bounds using the method of Kairouz et al. (2015) in Theorem 1. Simply using
δ = 10−5 and the associated ϵ gives a relatively weak bound, that can be sharpened considerably by
finding an optimal δ and corresponding ϵ(δ), which is made possible by the particular mechanism
deployed, that gives the tightest possible bound. For the attacked few-shot models the bounds are
quite tight for the medium privacy budget of ϵ = 1 but very loose at low privacy budgets of ϵ = 8
and thus meaningless for low privacy levels.

5 PREDICTING MIA VULNERABILITY FOR DATA SETS

In this Section, we investigate how different properties of data sets affect the MIA vulnerability in
the non-DP setting. Based on our observations, we propose a method to predict the vulnerability to
MIA using these properties of the data set.

We base our experiments on a subset of the few-shot benchmark VTAB (Zhai et al., 2019) that
achieves a classification accuracy > 80% and thus would considered to be used by practitioners.
For more detailed descriptions of the data sets, see Table A2. In this Section, we will focus on a
fine-tuned last layer classifier (Head) trained on top of a ViT-B, pre-trained on ImageNet-21k Rus-
sakovsky et al. (2015). The results for using R-50 as a backbone can be found in Appendix C.1.

5.1 CORRELATIONS WITH DATA SET PROPERTIES

Using the setting described above, we study how the number of classes and the number of shots affect
the vulnerability (TPR at FPR as described in Section 3.1). We make the following observations:
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• A larger number of S (shots) decrease the vulnerability in a power law relation as demonstrated
in Figure 2a. We provide further evidence of this in Figure A.2 and Tables A3 and A4 in the
Appendix.

• Contrary, a larger number of C (classes) increases the vulnerability as demonstrated in Figure 2b
with further evidence in Figure A.3 and Tables A5 and A6 in the Appendix. However, the trend
w.r.t. C is not as clear as with S.
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Figure 2: MIA vulnerability (TPR at FPR = 0.001) as a function of dataset properities when attacking
a ViT-B Head fine-tuned without DP on different data sets. The solid line displays the median and
the error bars the minimum of the lower bounds and maximum of the upper bounds for the Clopper-
Pearson CIs over multiple seeds (6 for Figure 2a and 12 for Figure 2b)

5.2 MODEL TO PREDICT DATA SET VULNERABILITY

Based on the trends seen in Figures 2a and 2b, we fit a linear regression model using the logarithmic
transform of C, S to predict the TPR (also logarithmically transformed) with statsmodels Seabold &
Perktold (2010). The general form of the model can be found in Equation (3) where βS , βC and β0

are the learnable regression parameters.

log10(TPR) = βS log10(S) + βC log10(C) + β0 (3)

We utilize MIA results of ViT-B (see Table A3) as the training data and use R-50 (see Table A4) as
the test data to investigate if the vulnerability prediction model generalizes to a completely different
backbone.

The parameters of the prediction model fitted to the training data (note that the parameters are
specific to FPR = 0.001) are βS = −0.492, βC = 0.357 and β0 = −0.486. Based on the R2 score
(R2 = 0.917), our model fits the data extremely well. Furthermore, Figure 3 shows that the model is
robust to a change of feature extractor, as it is able to predict the TPR for R-50 despite being trained
on ViT-B (test R2 = 0.740). See Appendix C.1.3 for further supporting results at FPR ∈ {0.1, 0.01}.

6 MIA VULNERABILITY FOR DATA SAMPLES

This Section extends our investigation from the data set level properties studied in Section 5 to in-
dividual data sample level properties. Previously Yu et al. (2023) have studied correlations between
classes and privacy risk before, but in comparison to their study, we look at data samples independent
from classes.

We will focus on a fine-tuned last layer classifier (Head) trained on top of a ViT-B, pre-trained on
ImageNet-21k Russakovsky et al. (2015). We investigate two data sample properties that could
potentially influence the vulnerability (TPR at FPR) of data points:

• Per-sample gradients: Per-sample gradients form the basis for DP individual accounting Feld-
man & Zrnic (2021); Koskela et al. (2023). In individual accounting a larger sum of gradient
norms results in a higher individual privacy loss. Our hypothesis is that this holds also for MIA
vulnerability in non-DP settings.
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Figure 3: Predicted MIA vulnerability (TPR at FPR = 0.001) as a function of S (shots) using a
model based on Equation (3) fitted Table A3 (ViT-B). The dots show the median TPR for the train
set (ViT-B; Table A3) and the test set (R-50; Table A4) over six seeds (datasets: Patch Camelyon,
EuroSAT and CIFAR100).

• Vector space distances: The pre-trained feature extractors project images into a vector space in
which one can compute distances between individual data samples. Our hypothesis is that data
samples that are further away from other data samples are easier to distinguish.

We study individual samples, but aggregate the results over multiple data samples by binning the
samples based on their data sample properties to reduce the noise. For each data sample we compute
its property and assign the sample to a bin based on its percentile in relation to other samples. We
then compute the TPR at FPR for each bin. We finally report for each data property bin the percentile
of the TPR at FPR.
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Figure 4: MIA vulnerability (TPR at FPR; percentiles among a seed) as a function of data sample
properties (binned among a seed). The results have been obtained over 6 seeds with S = 256 (Patch
Camelyon) and S = 64 (CIFAR10).

Figure 4 shows the observed relationships between the MIA vulnerability and the average individual
gradient norms and the vector space distance. We find that:

• Per-sample gradients: The average gradient norms are correlated with the vulnerability in all our
experiments, but the strength of the correlation depends how many steps are taken into account.
Generally, we observe that the correlation is stronger when we only consider the gradients at the
end of the training (either the last 20 or 5 steps). This is different from the individual accounting
methods that rely on the whole gradient trace for DP accounting.
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• Vector space distances: The distance of data samples to their nearest neighbor correlates with the
vulnerability for CIFAR10, but not for Patch Camelyon. We leave a more comprehensive study of
this correlation and its limitations for future work.

7 DISCUSSION

As DP reduces the utility of models, it is important to understand also when it is necessary. Our
results on MIA vulnerability as a function of data set properties display a strong power law depen-
dence on the number of examples per class. This leads to an unfortunate dilemma: DP seems most
important in the small data regime where it likely reduces the model utility the most.

Limitations Due to computational constraints, we only report results on transfer learning with
fine-tuning only a part of the model.
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A BACKGROUND

Differential privacy (DP; Dwork et al., 2006b) is the gold standard for formalizing privacy guaran-
tees. (ϵ, δ)-DP (Dwork et al., 2006a) has a privacy budget consisting of ϵ ≥ 0 and δ ∈ [0, 1], where
smaller values correspond to a stronger privacy guarantee. We refer to Dwork & Roth (2014) for a
comprehensive intro to DP.

DP deep learning utilizes DP-SGD (Rajkumar & Agarwal, 2012; Song et al., 2013; Abadi et al.,
2016), which is the DP adaptation of stochastic gradient descent. DP-SGD clips per-sample gradi-
ents to a pre-determined norm to limit the influence of each sample and adds Gaussian noise the sum
of the clipped gradients.

Clipping the gradients and adding Gaussian noise in DP-SGD typically comes with a cost in ac-
curacy. This decrease in accuracy can be alleviated through transfer-learning. Publically available
pre-trained models are fine-tuned with DP-SGD on sensitive downstream data sets. Both in NLP (Li
et al., 2022; Yu et al., 2022) and computer vision (Kurakin et al., 2022; De et al., 2022; Mehta et al.,
2022; Cattan et al., 2022; Tobaben et al., 2023) transfer-learning significantly closes the gap be-
tween non-private and private training. Tramèr et al. (2022) critically discuss this line of work and
the implication of relying on pre-trained models.

B TRAINING DETAILS

B.1 PARAMETERIZATION

We utilize pre-trained feature extractors BiT-M-R50x1 (R-50) (Kolesnikov et al., 2020) with 23.5M
parameters and Vision Transformer ViT-Base-16 (ViT-B) (Dosovitskiy et al., 2021) with 85.8M
parameters, both pretrained on the ImageNet-21K data set (Russakovsky et al., 2015). We download
the feature extractor checkpoints from the respective repositories.

Following Tobaben et al. (2023) that show the favorable trade-off of parameter-efficient fine-tuning
between computational cost, utility and privacy even for small data sets, we only consider fine-tuning
subsets of all feature extractor parameters. We consider the following configurations:

• Head: We train a linear layer on top of the pre-trained feature extractor.
• FiLM: In addition to the linear layer from Head, we fine-tune parameter-efficient FiLM (Perez

et al., 2018) adapters scattered throughout the network. While a diverse set of adapters has been
proposed, we utilize FiLM as it has been shown to be competitive in prior work (Shysheya et al.,
2023; Tobaben et al., 2023).

B.2 HYPERPARAMETER TUNING

Our hyperparameter tuning is heavily inspired by the comprehensive few-shot experiments by To-
baben et al. (2023). We utilize their hyperparameter tuning protocol as it has been proven to yield
SOTA results for (DP) few-shot models.

Given the input D data set we perform hyperparameter tuning by splitting the D into 70% train
and 30% validation. We then perform the specified iterations of hyperparameter tuning using the
tree-structured Parzen estimator (Bergstra et al., 2011) strategy as implemented in Optuna (Akiba
et al., 2019) to derive a set of hyperparameters that yield the highest accuracy on the validation split.
This set of hyperparameters is subsequently used to train all shadow models. Details on the set of
hyperparameters that are tuned and their ranges can be found in Table A1. For DP training, we
compute the required noise multiplier depending on the target (ϵ, δ)-DP privacy budget.

B.3 DATASETS

Table A2 shows the used data sets in the paper. We base our experiments on a subset of the the
few-shot benchmark VTAB (Zhai et al., 2019) that achieves a classification accuracy > 80% and
thus would considered to be used by a practitioner. Additionally, we add CIFAR10 that is not part
of the original VTAB benchmark.

11



Published at Privacy Regulation and Protection in Machine Learning Workshop at ICLR 2024

Table A1: Hyperparameter ranges used for the Bayesian optimization with Optuna.

lower bound upper bound

batch size 10 |D|
clipping norm 0.2 10
epochs 1 200
learning rate 1e-7 1e-2
noise multiplier Based on target ϵ

Table A2: Used datasets in the paper, their minimum and maximum shots S and maximum number
of classes C and their test accuracy when fine-tuning a non-DP ViT-B Head. The test accuracy for
EuroSAT and Resics45 is computed on the part of the training split that is not used for training the
particular model due to both datasets missing an official test split. Note that LiRA requires 2S for
training the shadow models and thus S is smaller than when only performing fine-tuning.

dataset (max.) min. max. test accuracy test accuracy
C S S (min. S) (max. S)

Patch Camelyon (Veeling et al., 2018) 2 256 65536 82.8% 85.6%
CIFAR10 (Krizhevsky, 2009) 10 8 2048 92.7% 97.7%
EuroSAT (Helber et al., 2019) 10 8 512 80.2% 96.7%
Pets (Parkhi et al., 2012) 37 8 32 82.3% 90.7%
Resics45 (Cheng et al., 2017) 45 32 256 83.5% 91.6%
CIFAR100 (Krizhevsky, 2009) 100 16 128 82.2% 87.6%
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C ADDITIONAL RESULTS

In this section, we provide tabular results for our experiments and additional figures that did not fit
into the main paper.
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Figure A.1: MIA vulnerability as a function of privacy budget (ϵ at δ = 10−5) when attacking
different backbones fine-tuned on CIFAR10 and CIFAR100 at S ∈ {25, 50}. The solid line displays
the median and the error bars the minimum of the lower bounds and the maximum of the upper
bounds for the Clopper-Pearson CIs over 15 seeds. The DP bounds are the theoretical DP bounds
based on Kairouz et al. (2015) where the naive DP bound is computed with δ = 10−5 and the tight
DP bound over an interval of deltas and their respective ϵ.

C.1 ADDITIONAL RESULTS FOR SECTION 5

This section contains additional results for Section 5.

C.1.1 VULNERABILITY AS A FUNCTION OF SHOTS

This section displays additional results to Figure 2a for FPR ∈ {0.1, 0.01, 0.001} for ViT-B and R-50
in in Figure A.2 and Tables A3 and A4.
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(e) ViT-B Head TPR at FPR = 0.001
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Figure A.2: MIA vulnerability as a function of shots (examples per class) when attacking a pre-
trained ViT-B and R-50 Head trained without DP on different downstream data sets. The errorbars
display the min and max Clopper-Pearson CIs over 6 seeds and the solid line the median.
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Table A3: Median MIA vulnerability over six seeds as a function of S (shots) when attacking a
Head trained without DP on-top of a ViT-B. The ViT-B is pre-trained on ImageNet-21k.

dataset classes (C) shots (S) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 2 256 0.266 0.086 0.032

512 0.223 0.059 0.018
1024 0.191 0.050 0.015
2048 0.164 0.037 0.009
4096 0.144 0.028 0.007
8192 0.128 0.021 0.005

16384 0.118 0.017 0.003
32768 0.109 0.014 0.002
65536 0.105 0.012 0.002

CIFAR10 (Krizhevsky, 2009) 10 8 0.910 0.660 0.460
16 0.717 0.367 0.201
32 0.619 0.306 0.137
64 0.345 0.132 0.067

128 0.322 0.151 0.082
256 0.227 0.096 0.054
512 0.190 0.068 0.032

1024 0.168 0.056 0.025
2048 0.148 0.039 0.013

EuroSAT (Helber et al., 2019) 10 8 0.921 0.609 0.408
16 0.738 0.420 0.234
32 0.475 0.222 0.113
64 0.400 0.159 0.074

128 0.331 0.155 0.084
256 0.259 0.104 0.049
512 0.213 0.080 0.037

Pets (Parkhi et al., 2012) 37 8 0.648 0.343 0.160
16 0.745 0.439 0.259
32 0.599 0.311 0.150

Resics45 (Cheng et al., 2017) 45 32 0.672 0.425 0.267
64 0.531 0.295 0.168

128 0.419 0.212 0.115
256 0.323 0.146 0.072

CIFAR100 (Krizhevsky, 2009) 100 16 0.814 0.508 0.324
32 0.683 0.445 0.290
64 0.538 0.302 0.193

128 0.433 0.208 0.114
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Table A4: Median MIA vulnerability over six seeds as a function of S (shots) when attacking a
Head trained without DP on-top of a R-50. The R-50 is pre-trained on ImageNet-21k.

dataset classes (C) shots (S) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 2 256 0.272 0.076 0.022

512 0.195 0.045 0.011
1024 0.201 0.048 0.011
2048 0.178 0.041 0.010
4096 0.163 0.033 0.008
8192 0.143 0.026 0.006

16384 0.124 0.019 0.004
32768 0.118 0.016 0.003
65536 0.106 0.012 0.002

CIFAR10 (Krizhevsky, 2009) 10 8 0.911 0.574 0.324
16 0.844 0.526 0.312
32 0.617 0.334 0.183
64 0.444 0.208 0.106

128 0.334 0.159 0.084
256 0.313 0.154 0.086
512 0.251 0.103 0.051

1024 0.214 0.082 0.038
EuroSAT (Helber et al., 2019) 10 8 0.846 0.517 0.275

16 0.699 0.408 0.250
32 0.490 0.236 0.121
64 0.410 0.198 0.105

128 0.332 0.151 0.075
256 0.269 0.111 0.056
512 0.208 0.077 0.036

Pets (Parkhi et al., 2012) 37 8 0.937 0.631 0.366
16 0.745 0.427 0.227
32 0.588 0.321 0.173

Resics45 (Cheng et al., 2017) 45 32 0.671 0.405 0.235
64 0.534 0.289 0.155

128 0.445 0.231 0.121
256 0.367 0.177 0.088

CIFAR100 (Krizhevsky, 2009) 100 16 0.897 0.638 0.429
32 0.763 0.549 0.384
64 0.634 0.414 0.269
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C.1.2 VULNERABILITY AS A FUNCTION OF THE NUMBER OF CLASSES

This section displays additional results to Figure 2b for FPR ∈ {0.1, 0.01, 0.001} for ViT-B and R-50
in in Figure A.3 and Tables A5 and A6.
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(c) ViT-B Head TPR at FPR = 0.01
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(d) R-50 Head TPR at FPR = 0.01
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(e) ViT-B Head TPR at FPR = 0.001
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Figure A.3: MIA vulnerability as a function of C (classes) when attacking a ViT-B and R-50 Head
fine-tuned without DP on different data sets where the classes are randomly sub-sampled and S =
32. The solid line displays the median and the errorbars the min and max clopper-pearson CIs over
12 seeds.
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Table A5: Median MIA vulnerability over 12 seeds as a function of C (classes) when attacking a
Head trained without DP on-top of a ViT-B. The Vit-B is pre-trained on ImageNet-21k.

dataset shots (S) classes (C) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 32 2 0.467 0.192 0.080
CIFAR10 (Krizhevsky, 2009) 32 2 0.494 0.167 0.071

4 0.527 0.217 0.115
8 0.574 0.262 0.123

EuroSAT (Helber et al., 2019) 32 2 0.306 0.100 0.039
4 0.298 0.111 0.047
8 0.468 0.211 0.103

Pets (Parkhi et al., 2012) 32 2 0.232 0.045 0.007
4 0.324 0.092 0.035
8 0.296 0.094 0.035

16 0.406 0.158 0.069
32 0.553 0.269 0.136

Resics45 (Cheng et al., 2017) 32 2 0.272 0.084 0.043
4 0.322 0.119 0.056
8 0.496 0.253 0.148

16 0.456 0.204 0.108
32 0.580 0.332 0.195

CIFAR100 (Krizhevsky, 2009) 32 2 0.334 0.088 0.035
4 0.445 0.150 0.061
8 0.491 0.223 0.121

16 0.525 0.256 0.118
32 0.553 0.276 0.153
64 0.612 0.350 0.211

Table A6: Median MIA vulnerability over 12 seeds as a function of C (classes) when attacking a
Head trained without DP on-top of a R-50. The R-50 is pre-trained on ImageNet-21k.

dataset shots (S) classes (C) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 32 2 0.452 0.151 0.041
CIFAR10 (Krizhevsky, 2009) 32 2 0.404 0.146 0.060

4 0.560 0.266 0.123
8 0.591 0.318 0.187

EuroSAT (Helber et al., 2019) 32 2 0.309 0.111 0.050
4 0.356 0.144 0.064
8 0.480 0.233 0.123

Pets (Parkhi et al., 2012) 32 2 0.249 0.068 0.029
4 0.326 0.115 0.056
8 0.419 0.173 0.075

16 0.493 0.245 0.127
32 0.559 0.294 0.166

Resics45 (Cheng et al., 2017) 32 2 0.310 0.103 0.059
4 0.415 0.170 0.083
8 0.510 0.236 0.119

16 0.585 0.311 0.174
32 0.644 0.382 0.218

CIFAR100 (Krizhevsky, 2009) 32 2 0.356 0.132 0.054
4 0.423 0.176 0.087
8 0.545 0.288 0.163

16 0.580 0.338 0.196
32 0.648 0.402 0.244
64 0.711 0.476 0.320
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C.1.3 PREDICTING DATA SET VULNERABILITY AS FUNCTION OF S AND C

Table A7: Results for fitting Equation (3) with statsmodels Seabold & Perktold (2010) to ViT Head
data at FPR ∈ {0.1, 0.01, 0.001}. We utilize an ordinary least squares. The test R2 assesses the fit to
the data of R-50 Head.

coeff. FPR R2 test R2 coeff. value std. error t p > |z| coeff. [0.025 coeff. 0.975]
βS (for S) 0.1 0.924 0.898 -0.237 0.008 -30.994 0.000 -0.252 -0.222

0.01 0.937 0.839 -0.380 0.012 -31.818 0.000 -0.403 -0.356
0.001 0.917 0.740 -0.492 0.019 -26.143 0.000 -0.530 -0.455

βC (for C) 0.1 0.924 0.898 0.095 0.014 6.992 0.000 0.068 0.121
0.01 0.937 0.839 0.226 0.021 10.680 0.000 0.184 0.268

0.001 0.917 0.740 0.357 0.033 10.677 0.000 0.291 0.423
β0 (intercept) 0.1 0.924 0.898 -0.008 0.029 -0.274 0.785 -0.064 0.049

0.01 0.937 0.839 -0.224 0.045 -5.006 0.000 -0.312 -0.136
0.001 0.917 0.740 -0.486 0.071 -6.879 0.000 -0.626 -0.347
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(b) TPR at FPR = 0.01
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(c) TPR at FPR = 0.001

Figure A.4: Predicted MIA vulnerability as a function of S (shots) using a model based on Equa-
tion (3) fitted Table A3 (ViT-B). The dots show the median TPR for the train set (ViT-B; Table A3)
and the test set (R-50; Table A4) over six seeds. Note that the dots for C = 10 are for EuroSAT.
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