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Abstract

Large Language Models (LLMs) have demon-
strated an impressive level of general knowl-
edge. However, they often struggle in highly
specialized and sensitive domains such as drug
discovery and rare disease research due to the
lack of expert knowledge, which is often costly
to obtain. In this paper, we propose a novel
framework (PU-ADKA) designed to efficiently
enhance domain-specific LLMs by actively en-
gaging domain experts within a fixed budget.
Unlike traditional fine-tuning approaches, PU-
ADKA proactively identifies and queries the
most appropriate expert from a team, taking
into account each expert’s availability, com-
petency, knowledge boundaries, and consul-
tation cost. We train PU-ADKA using simu-
lations on PubMed publication data and val-
idate it through domain expert interactions,
showing promising improvements in LLM do-
main knowledge acquisition. Furthermore, our
experiments with a real-world drug develop-
ment team validate that PU-ADKA can signif-
icantly enhance LLM performance in special-
ized domains while adhering to strict budget
constraints. In addition to outlining our method-
ological innovations and experimental results,
we release a new benchmark dataset, CKAD,
for cost-effective LLM domain knowledge ac-
quisition to foster further research in this chal-
lenging area.

1 Introduction

Recent advancements in large language models
(LLMs) have led to impressive performance gains
across a wide range of tasks (Naveed et al., 2023;
Thirunavukarasu et al., 2023; Wu et al., 2024a).
However, these gains are not uniformly observed
across all domains. In highly specialized, private
and sensitive fields, such as drug discovery and
rare disease exploration, the acquisition of domain
knowledge remains a challenge. Traditional ap-
proaches like Reinforcement Learning from Hu-
man Feedback (RLHF) (Kaufmann et al., 2023)
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Figure 1: Domain LLM Knowledge Acquisition via
Cost-Efficient, Expert-Involved Interaction

have demonstrated value in general settings, yet
they struggle in contexts where expert knowledge
is extremely expensive and sparse. This scenario is
particularly pronounced in domains where domain
expertise is fragmented among professionals with
diverse competencies and availability constraints
(Cheetham and Chivers, 2005). Consequently,
there is a pressing need for novel approaches that
can efficiently integrate domain expert feedback
into LL.Ms while operating under tight budgetary
and expert availability restrictions.

To respond to this demand, we propose the Posi-
tive Unlabeled Active Domain Knowledge Acqui-
sition (PU-ADKA), which is designed to proac-
tively engage with domain experts and selectively
acquire targeted feedback that can significantly en-
hance the performance of LLMs in specialized
fields. Unlike conventional fine-tuning methods
that passively incorporate affordable human feed-
back (Zhang et al., 2023), PU-ADKA actively
queries the most appropriate expert from a team
given each member’s computational profile. The
model can elaborately consider factors such as the
candidate expert’s knowledge boundary, cost of
consultation, and expert availability, thereby opti-
mizing the knowledge acquisition process within a
fixed budget (e.g., total $100). The model training
process leveraged newly released domain knowl-
edge (e.g., recent PubMed data (White, 2020)),



legacy architectures of LLLMs and innovative sim-
ulations of expert-domain knowledge interactions.
Through an intelligent knowledge selection process
and cost-aware querying mechanism, PU-ADKA
bridges the gap between the limited availability
of expert input and the high demand for domain-
specific information.

Figure 1 illustrates the concept behind the pro-
posed PU-ADKA. In this case, a domain LLM
acknowledges gaps in its knowledge related to top-
ics like mRNA vaccines, CAT-T, and adenocarci-
noma (to support a cancer drug development team)
(Kalyuga, 2007). Instead of relying on static, pre-
existing datasets, PU-ADKA proactively engages
with domain experts to acquire precise knowledge
within a limited budget. The model evaluates the
expertise, cost, and availability of different special-
ists, including PI, lead, senior, and junior scholars,
to optimize knowledge acquisition. For example, in
the image, the LLM selectively queries Dr. Jean for
insights on mRNA vaccines at a cost of $7, while
consulting Mary, a different expert, about CAT-T
for $4, ensuring cost-effective expert engagement.
This dynamic querying mechanism allows the LLM
to refine its domain knowledge efficiently, making
it particularly useful in critical domains like drug
discovery and rare disease research, where expert
knowledge is both sparse and expensive.

The contribution of this paper is fourfold:

* Methodology: We introduce PU-ADKA, a
proactive, cost-efficient model that strategi-
cally queries domain experts to enhance LLM
performance in highly specialized fields with
very limited expert availability.

* Cost-Aware Expert Selection: We develop a
mechanism that considers expert competency,
knowledge boundaries, availability, and con-
sultation cost, ensuring that each query yields
maximum value under a fixed budget.

* Experiment: We validate the efficacy of PU-
ADKA using both simulation evaluation and
real-world cancer drug development study.
The latter experiment used a real drug devel-
opment team where five experts with diverse
background participate in the experiment. The
result shows that PU-ADKA is promising to
enhance domain LLMs with a fixed budgetary
restriction.

¢ Benchmark Dataset: To foster further re-

search in the area of domain-specific LLM
enhancement, we provide a new benchmark
dataset, Cost-Aware Knowledge Acquisition
Dataset (CKAD), for LLM domain knowledge
acquisition, which is available for open ac-
cess.

2 Related Work

2.1 Human Feedback Integration in
Domain-Specific LLMs

Domain-specific adaptation of LLMs has been
advanced significantly by techniques such as
domain-adaptive pretraining (DAPT) (Gururangan
et al., 2020) and various biomedical LLMs like
BioMedLM (Bolton et al., 2024), Clinical BLIP (Ji
et al., 2024), and BioGPT (Luo et al., 2022). These
methods effectively utilize large domain-specific
corpora (e.g., PubMed) to incorporate static knowl-
edge. However, they often fall short in capturing
the dynamic insights from domain experts, cru-
cial for rapidly evolving areas like drug discovery.
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) aims to align gen-
eral LLMs with human preferences but typically
depends on more homogeneous and less costly an-
notators, limiting its effectiveness in specialized
domains where expert feedback is sparse and ex-
pensive. Attempts like ExpertQA (Malaviya et al.,
2023) simulate multi-expert interactions but over-
look practical constraints like budget limitations
and asynchronous availability of experts. Our ap-
proach, ADKAM, overcomes these shortcomings
by redefining expert knowledge acquisition as a
budget-constrained optimization task, selectively
engaging experts based on their competence, cost,
and availability, thereby transitioning from static
data-driven adaptation to proactive, expert-guided
learning.

2.2 Budget-Constrained Active Learning with
Multi-Expert Collaboration

Traditional active learning models primarily focus
on maximizing sample information through uncer-
tainty (Gal et al., 2017; Kim et al., 2021) or diver-
sity (Chakraborty et al., 2015; Parvaneh et al., 2022;
Citovsky et al., 2021), often neglecting the varying
costs associated with expert annotations, partic-
ularly in complex fields like biomedicine. Cost-
sensitive approaches (Huang et al., 2017; Henkel
et al., 2023) attempt to address this by optimizing
for lower-cost annotators but fail to differentiate



between the varied expertise levels necessary for
accurately labeling complex cases. Unlike these
methods, ADKAM integrates active learning with
strategic expert collaboration, emphasizing both
data sample selection based on potential to update
the model and efficient engagement of experts, bal-
ancing cost against their competency and availabil-

1ty.

2.3 Sampling Strategy in LLM Active
Learning

The importance of data instances in modern LLMs
is often evaluated through gradient-based (Xia
et al., 2024; Wu et al., 2024b), similarity-based
(Xie et al., 2023; Li et al., 2023a), or in-context
learning (Li et al., 2023a) methods. These tech-
niques typically assume samples are independent
and identically distributed, a premise that does not
hold in complex fields with interdependent data
such as biomedical texts. Despite progress in sam-
pling strategies that account for diversity (Liu et al.,
2023), many approaches do not consider the costs
associated with expert annotations or the specific
expertise required for accurate data labeling. Our
proposed method, PU-ADKA, addresses these chal-
lenges by prioritizing high-impact samples through
a refined uncertainty estimation specific to the do-
main and strategically assigning these samples to
the most cost-effective experts capable of provid-
ing high-quality annotations. This method ensures
that knowledge acquisition is not only efficient but
also economically feasible in constrained environ-
ments.

3 Methodology

In this section, we begin by formalizing the cost-
aware LLM knowledge acquisition problem (Sec-
tion 3.1). We then present PU-ADKA framework
for efficient domain-specific LLM knowledge ac-
quisition in Figure 2. PU-ADKA addresses two key
challenges: (1) How to leverage LLMs to simulate
active learning in high-cost domains? (Section 3.2)
and (2) How to simultaneously optimize data selec-
tion and cost-aware expert assignment for maximal
knowledge acquisition under fixed budgets? (Sec-
tion 3.3 and Section 3.4)

3.1 Problem Definition

Given a fixed annotation budget B, an unlabeled
[Dre|
i=1>

our goal is to select an opti-

question pool Dy, = {¢;} and a team of domain
€]

experts € = {e; }, 7,

mal set of (g;, e;) pairs to finetune a large language
model ¢, maximizing finetuning performance on a
target test set Dy = {pm}f‘;‘l.

Formally, we define an allocation function f :
Dy — £ that assigns each selected question g; to
an expert e;, ensuring that the total annotation cost
remains within the budget B. The optimization

objective is:

§* = argmax F(0s, D)
SQD"XS
s.t., Z c(qgi,ej) < B,

(q’L €5 ) €S

where, §* denotes the optimal set of (g;, ;) pairs
that maximizes the performance metric F (s, Dye)
of the fine-tuned model fs on the target test set.
The term c(g;, ej) represents the annotation cost
incurred when expert e; annotates question g;.

3.2 Simulation Environment Construction

To support our investigation, we pioneered a new
benchmark data, Cost-Effective Knowledge Acqui-
sition Dataset (CKAD), for simulating biomedi-
cal expert consultations and LLLM knowledge ac-
quisition process by strategically leveraging the
comprehensive knowledge within the PubMed dig-
ital library. This approach harnesses previously
untapped domain expertise and research findings,
predating the knowledge cutoff of selected LLMs,
to construct robust datasets for consultation sim-
ulation and model training/evaluation. To sim-
ulate the knowledge acquisition process, we in-
troduce a temporal knowledge separation method
based on PubMed data, which ensures strict chrono-
logical isolation between the base model’s pre-
existing knowledge and newly acquired target do-
main knowledge through three core components.

Predated Base Model Selection: We employ
Llama2-7B (Touvron et al., 2023) as our predated
base model, chosen for its knowledge limitations
to information available up to early 2023, prior
to our target corpus. This temporal separation en-
sures a controlled setting for evaluating knowledge
acquisition.

Temporal Corpus Construction: We construct
CKAD from 2024 PubMed Central (PMC) (Fiorini
et al., 2017), extracting question-answer (QA) pairs
using GPT-40 (OpenAl, 2024). For each paper, five
mechanism-focused QA pairs are generated using
prompting and manually validated. To maintain a
clean environment for assessing knowledge acquisi-
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Figure 2: Illustration of our proposed PU-ADKA framework.

tion, we filter out QA pairs that can be answered by
the base model, using GPT-4o as the judge model'.
This process results in a final dataset of 48,219
QA pairs (the base model cannot correctly answer)
representing post-2023 knowledge.

Expert Simulation: We model real-world anno-
tation constraints by assigning expert roles to the
top 20 authors ranked by publication count, using
them as proxy experts. GPT-4o is deployed to esti-
mate a binary expert capability matrix A € RE*N
where each entry Aj; is set to 1 if expert e; is ca-
pable of labeling question ¢;, and 0 otherwise. The
matrix is constructed by leveraging relevant sec-
tions of experts’ papers to assess their expertise. To
determine a reasonable unit labeling price, we rank
experts based on the sum of their papers’ impact
factors (Clarivate, 2025) and assign higher rates to
those with higher ranks in a principled manner.

This approach maintains chronological separa-
tion by integrating a constrained base model, a cu-
rated QA dataset, and expertise-driven annotation,
preventing knowledge leakage while maintaining a
controlled knowledge acquisition setting.

3.3 Expert Profiling with PU Learning

We formalize the question-expert matching task as
a Positive-Unlabeled (PU) learning problem, which
helps to characterize each expert’s knowledge
boundary. Given a question-expert pair (g;, e;),
we label it as positive if g; originates from a pub-
lication authored by e;. However, if g; does not
come from e;’s paper, we do not automatically treat
(gi, ;) as a negative pair. Instead, it remains unla-
beled because the expert may be qualified to label
the question. For instance, a scholar specializing in

'The details of question-answer extraction and the evalua-
tion prompt are provided in the Appendix A.

cancer NK cells could potentially annotate a sepsis-
related question if they possess relevant medical
expertise (e.g., extracellular vesicles), even without
publications on sepsis.

We use LLLM-based text representations, lever-
aging a pretrained Llama2-7B model to encode
questions Eé and experts 7, with embeddings
taken from the last hidden layer. Particularly, an ex-
pert’s embedding is obtained by averaging the rep-
resentations of their publications (Wu et al., 2023).
To train our PU model to estimate expert knowl-
edge boundary, we employ an expert-wise attention
mechanism 2 and training with the non-negative PU
risk estimator (Kiryo et al., 2017), which is defined
as follows:

np
. T
Riskpu(g) :n—pz:l(g(:cZ)7 +1)+
Pi=1

1 & u
maz(0, =3 Ug(@k), =)= (1)

i=1
2N U(g(h), 1)),
Np i=1

where 7 denotes positive class prior (7 = 0.1
in our dataset), I(-, -) is the surrogate loss of zero-
one loss (Du Plessis et al., 2015), n,, represents the
number of labeled positive instances, n,, represents
the number of unlabeled instances, =, and z}' de-
note question-annotator pair in the labeled positive
set and the unlabeled set, respectively.

3.4 Efficient Domain Knowledge Acquisition
via Multi-Agent Reinforcement Learning

Given the budgetary constraints, we proposed a
novel model that aligns question selection with
available expert knowledge while maximizing the
LLM’s domain knowledge acquisition competency.

“The attention network is detailed in Appendix ??



To ensure that the selected question set captures
both informativeness and diversity, we formulate
the selection process as a multi-agent reinforce-
ment learning (RL) problem, where each agent is
tasked with selecting a (question-expert) pair. The
number of agents, n, determines the size of the
question-set at each iteration. Unlike traditional RL
models, the proposed interactive multi-agent RL
can estimate the sampled question-expert pair im-
portance by leveraging inter-agent competition and
cooperation, ensuring both informational density
and diversity in selected pairs with a fixed budget.

3.4.1 Multi-Agent RL State

The environment state is represented by a combina-
tion of features that capture both task-related and
budgetary aspects: (1). The question—expert match-
ing score g(g;, €;) is derived from the trained PU
learning model and measures the suitability of as-
signing question g; to expert €;. (2). The remaining
budget B; indicates the available annotation budget
at time step t. (3). The expert sampling probability
quantifies the likelihood of selecting each expert
ej, defined as:

¢ By

__t — ol
C(Qi,ej) X (1 OZFJ), (2)

where « is a decay factor, and F; denotes the num-
ber of times expert e; has been selected up to time
step ¢. This formulation encourages diversity in ex-
pert selection to enhance overall information gain
while ensuring balanced workload distribution.

3.4.2 Multi-Agent Communication

Competition. Different from previous studies,
our framework allows multiple agents within the
same model to simultaneously seek (g;, €;) pairs,
enabling different experts to compete for answer-
ing the same question. Leveraging our PU-based
question-expert matching model, each question g;
is associated with a ranked list of potential experts.
As a result, multiple experts ej, ea, . . ., e, may se-
lect the same question ¢;. In such cases, g; should
be assigned to the expert with the highest match-
ing score based on our PU matching network. To
enforce this competitive selection, we introduce a
competition function:

Compete(q; | e1,e2,...,ep) = ez,

S.t. ezzargmaxg(qz'aej), @)

€j

where ¢(g;, e;) represents the PU-based matching
score between question ¢; and expert e;, ensuring
that the most suitable expert is selected. For experts
who lose the competition for a given question in the
current iteration, the corresponding agents will then
select alternative pairs and re-enter the competition
process. This recursive procedure continues until
all agents in the current state have been assigned
unique questions.

Cooperation. To effectively encourage collabo-
rative decision-making among agents and optimize
knowledge acquisition under a fixed annotation
budget, we define the reward function as:

A.Ft X Zqiest QSZ
D (aisey)es: \dires)’

Ty = 4)
where AF; denotes the improvement in model per-
formance on the validation set after incorporating
newly labeled data at step t, and the denominator
represents the total annotation cost (Gao and Saar-
Tsechansky, 2020; Huang et al., 2017; Golazizian
et al., 2024). The diversity term ¢; measures the
distinctiveness of each selected question and is de-
fined as:

6i= min d(E}, By). ®)
where S; denotes the cureent labeled question set,
and d(-,-) is the Euclidean distance function. A
larger ¢; value indicates that the selected question
is more diverse relative to past selections, thereby
enhancing knowledge coverage and reducing re-
dundancy.

3.4.3 Model Training

To stabilize learning, we employ a Double DQN
architecture (Wang et al., 2020). The temporal-
difference (TD) target is computed as:

Yy = ri+yQ(s141, arg {2%@(8&17 Uuty1;6:);61),

(6)
where s;41 denotes the next state, -y is the discount
factor, 6; and 6 represent to the parameters of the
policy and target network, respectively. To enhance
generalization, we employ bootstrap sampling by
selecting a random subset of experts (e.g. five per
iteration) during training stage. This strategy pre-
vents overfitting to a specific set of experts, ensur-
ing that the learned policy remains robust across
diverse labeling scenarios.



4 [Experiments

4.1 Experimental Settings

Model Architecture and Training Settings. As
described in Section 3.2, we use the PubMed
dataset for sepsis and cancer NK research from
2024 and adopt Llama2-7B as the base architec-
ture. The experimental setup for our PU-ADKA
model utilizes Llama2-7B with a sampling tem-
perature of 1.0, a nucleus sampling top_p value of
0.9, and a maximum token length of 4,096. The
question and expert document encoders use the last
hidden layer of Llama2-7B. For fine-tuning, we

Table 1: Statistics of CKAD dataset.

Disease Type Cancer_NK and Sepsis
#Train 38,575
#Dev 4,722
#Test 4,722

apply LoRA (Hu et al., 2021) to improve training
efficiency for large-scale models. The LoRA con-
figuration includes a rank of 16, an alpha of 128,
and a dropout rate of 0.1. Training involves learn-
ing LoRA matrices for all attention mechanisms
in each configuration. The models are optimized
using the AdamW optimizer with a learning rate
of 2 x 107°. Each configuration undergoes three
trials with different random seeds.

In the multi-agent reinforcement learning frame-
work, we employ the Double DQN (Wang et al.,
2020) architecture. The default number of agents
is 10, with five experts selected per iteration. In
each iteration, experts are ranked based on the sum
of their papers’ impact factors (Clarivate, 2025),
and their unit prices are assigned accordingly as
[$0.5,$0.4, $0.3, $0.2, $0.1] per labeled question.
The total annotation budget is set to 100.

Evaluation Benchmarks and Metrics. To en-
sure a clean evaluation of knowledge acquisition,
our experimental dataset consists of general dis-
ease mechanism question-answer pairs that cannot
be answered initially (i.e., the initial answerable
rate is 0). Details of the dataset are provided in
Table 1. During the simulation training stage, we
employ two advanced models, GPT-40-2024-08-06
and GPT-4-Turbo, as judge models. The evaluation
metrics include win rate and length-controlled win
rate.

Additionally, we conduct human-involved exper-
iments to validate the effectiveness of our method.
Our expert team consists of three sepsis specialists

and two cancer specialists, representing different
levels of expertise. Among them, one is a princi-
pal investigator (PI), while the remaining members
include one medical doctor and three PhD students.

Baselines. To ensure a comprehensive evalua-
tion, our experiment includes a variety of baseline
methodologies that encompass both question selec-
tion and expert allocation strategies. The compari-
son provides insights into the effectiveness of dif-
ferent active learning frameworks applied to LLMs.
Below we detail the baselines used:

* Random: Questions are selected randomly,
providing a baseline for minimal strategic in-
tervention in data selection.

 DEITA: (Liu et al., 2023) Evaluates data
across complexity, quality, and diversity us-
ing pretrained complexity scorer® and quality
scorer * to score each unlabeled questoions.

* CHERRY:(Li et al., 2023a) Applies the
Instruction-Following Difficulty (IFD) metric
to assess question quality autonomously.

* NUGGETS:(Li et al., 2023b) Assesses the
relevance of questions by considering each as
a single instance in one-shot learning contexts.

* LESS: (Xia et al., 2024) Calculates the in-
fluence of questions on the validation set to
prioritize data that may yield the most signifi-
cant insights during finetuning.

* ROSE:(Wu et al., 2024b) Utilizes gradient
similarity to evaluate the potential contribu-
tion of each question to the model’s perfor-
mance, aligning with active learning princi-
ples of uncertainty and diversity.

For expert allocation, we implement the follow-
ing methods:

* Random: Experts are assigned randomly to
questions.

* Cost-Greedy: This method always selects the
least expensive expert available, optimizing
for cost efficiency.

3https://huggingface.co/hkust-nlp/deita-complexity-
scorer

*https://huggingface.co/hkust-nlp/deita-complexity-
scorer



Table 2: Overall Performance Comparison on CKAD dataset (%).

Category | Model | GPT-40-2024-08-06 | GPT-4-Turbo | GPT-40-2024-08-06 | GPT-4-Turbo | Avg.Length
\ \ WR \ WR \ LC_WR | LC_WR | -
Random RAND 4.7 (0.4 6.7 ©08) 20.3 0.9 20.4 .8 2220
DEITA 9.6 ©03) 7.9 0.1 21.0 0.9 22.1 ©8) 2212
CHERRY 7.8 0.1 8.3 (02 20.4 0.9 21.5 0.9 2221
NUGGETS 10.4 0.1 10.7 0.4 21.0 0.8 20.4 0.8 2204
LESS 7.9 02) 7.9 (02 22.0 (1.0 24.0 (.1 2212
ROSE 8.1 (0.4 10.0 (0.2) 21.5 a0 22.7 1.0 2194
Cost-Greedy RAND 6.2 0.4) 6.7 08 20.4 0.9 20.5 0.9 2207
DEITA 14.2 ©08) 11.7 02 20.9 (1.0 20.9 0.9 2246
CHERRY 11.7 ©03) 10.0 (04 23.4 09 22.1 a.ny 2236
NUGGETS 7.9 04 8.7 04 21.5 09 20.4 0.9 2182
LESS 12.1 04 9.6 (0.4 22.1 0.8) 21.2 a0 2218
ROSE 8.3 (0.8) 9.7 02 20.4 0.9 22.7 (1.0 2174
Match-Greedy | RAND 6.7 0.8 7.9 04 20.9 1oy 19.9 ©8 2204
DEITA 10.0 ©0.3) 9.2 0.8 21.2 (10 22.3 0.9 2214
CHERRY 7.5 0.0) 9.2 02 21.0 09 23.3 a. 2173
NUGGETS 9.5 03 11.6 02 22.1 1.0 21.6 0.9 2182
LESS 12.1 0.4 10.4 02 23.5 1.0 22.5 1.0 2252
ROSE 9.2 (0.1 10.9 0.4 22.5 0.9 21.9 a0 2229
Ours ‘ PU-ADKA ‘ 18.2 (0.6 ‘ 16.7 0.4) ‘ 25.6 1.0 ‘ 26.5 ©0.9) ‘ 1781

* Match-Greedy: Matches questions to experts
based on the highest embedding similarity be-
tween them, facilitating a more informed allo-
cation.

These baselines are integral to understanding the
landscape of active learning strategies within LLM
contexts, providing a benchmark against which our
proposed methods can be evaluated.

4.2 Experimental Results

Experimental Results Our experimental results are
detailed in Table 2, where we compare the perfor-
mance of our method, PU-ADKA, against various
baseline strategies. PU-ADKA consistently out-
performs all baselines in terms of knowledge ac-
quisition across different judging models. Specifi-
cally, with the GPT-40-2024-08-06 model as judge,
PU-ADKA achieves a win rate of 18.2% and an
LC-WR of 25.65%. When evaluated by the GPT-
4-Turbo model, it records a win rate of 16.7%
and an LC-WR of 26.57%. These results exceed
those of the next best baseline, DEITA under the
Cost-Greedy strategy, by margins of 4% and 5%
in win rate, and 2.1% and 3.2% in LC-WR, re-
spectively, under the two judging conditions. Note-
ably, LESS performs stable when under both Cost-
Greedy and Match-Greedy settings, the GPT-4o-
2024-08-06 and GPT-4-Turbo judge the win rate
at 12.1% and 10% in both settings. Furthermore,
the minimal baseline performance under fully ran-

dom conditions, with win rates of 4.7% and 6.7%,
highlights the baseline challenge and emphasizes
the robustness of our method against less strategic
approaches.

Table 3: Human-involved results judged by GPT-4-
Turbo.

WR LC_WR
Random (Random) 7.507n 20.3 08
LESS (Random) 9.2 05  20.509)
LESS (Cost-Greedy) 114 06 21.0 a0
LESS (Match-Greedy) 12.507n 21.2 ©3)
PU-ADKA 15.2 08y 24.3 (0.9

4.3 Human Involved Validation

To further substantiate the robustness of our
method, PU-ADKA, we implemented it within a
professional biomedical team of experts under a
simulated budget constraint of $100 per game. The
cost of annotator expertise was varied, reflecting
their respective professional knowledge in the do-
main, with unit prices set at ($0.5, $0.2, $0.1, $0.1,
$0.1 per labeling question. We assessed the perfor-
mance in terms of win rate and LC win rate using
GPT-4-Turbo as the judge under various settings:
fully random, and LESS for question selection com-
bined with each of the three expert allocation strate-
gies (Random, Cost-Greedy, and Match-Greedy).



The detailed results are presented in Table 3.

The data reveal that PU-ADKA notably sur-
passes the most competitive baseline, LESS
(Match-Greedy), by margins of 2.7% and 3.1%
in win rate and LC win rate, respectively. This
enhancement in performance in a practical setting
underscores the effectiveness of our method, par-
ticularly in scenarios constrained by budget. This
real-world application not only validates the utility
of PU-ADKA but also establishes it as a formidable
approach in the domain of budget-limited active
learning.

=—+— RAND (Random)
16} == LESS (Random)
=—e— LESS (Cost-Greedy)
LESS (Match-Greedy)
| =e= PU-ADKA

14

12

Win Rate (%)
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Figure 3: Performance under Different Budgets
Table 4: Ablation results on CKAD dataset with v

indicating the enabling of the corresponding module.
(Judged by GPT-4-Turbo)
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4.4 Ablation Study
4.4.1 Validating the Utility of Each Module

To thoroughly assess the contributions of each com-
ponent within PU-ADKA, specifically the multi-
agent (MA) framework and the positive-unlabeled
(PU) learning approach, we performed a series of
ablation studies. These studies were conducted on
the QA dataset, with GPT-4-Turbo serving as the
judge. We explored two key variants:

* Variant I: Utilizes unsupervised embedding-
based similarity measures in place of the PU
learning model to understand the impact of
the PU approach on the overall performance.

* Variant II: Operates under a single-agent

setup to evaluate the effectiveness of our multi-
agent configuration.

The results, detailed in Table 4, highlight the
integral role each module plays in the success of
PU-ADKA. The comparison with Variant I under-
scores the superiority of our PU-based question-
expert matching technique. Similarly, when con-
trasted with the single-agent model of Variant II,
our multi-agent method demonstrates its enhanced
capability in expert allocation strategy, confirming
the benefits of our comprehensive framework in
active learning scenarios.

4.4.2 Performance under Different Budgets

We evaluated the performance of our model, PU-
ADKA, against various baseline methods under
differing budget scenarios, as depicted in Figure 3.
The results indicate that our method achieves con-
sistently robust outcomes across all tested budget
levels compared to the baselines. Notably, at a bud-
get of $100, PU-ADKA significantly outperforms
the next best approach, LESS (Match-Greedy). Be-
yond this budget point, the rate of knowledge acqui-
sition stabilizes, showing no substantial further in-
creases (Han et al.). This plateau suggests that our
method is particularly effective at rapidly acquir-
ing knowledge within constrained budget settings,
demonstrating a distinct advantage over competing
methods in efficiently utilizing available resources.

5 Conclusion and Future Work

This study introduces PU-ADKA, a novel approach
designed to enhance LLMs through active learning
in domains where expert feedback is prohibitively
costly. Distinct from general active learning mod-
els that treat expert input uniformly, PU-ADKA
strategically engages experts based on their special-
ized knowledge, availability, and cost-effectiveness.
This targeted approach not only optimizes budget
utilization but also significantly improves LLM per-
formance. Validated through rigorous simulations
and real-world applications in high-cost domains,
PU-ADKA demonstrates a superior method for in-
tegrating scarce and valuable expert feedback into
LLMs. The release of the CKAD dataset further
supports ongoing research into domain-specific
LLM enhancements

Limitations

Scalability with Increasing Data and Experts
As the number of unlabeled data points and avail-



able experts grows, the scale of PU-ADKA changes
significantly. Larger datasets require more efficient
selection strategies, while an increasing pool of
experts introduces greater complexity in allocation
and coordination. Future research should explore
more scalable solutions to maintain efficiency as
the system scales to real-world, large-scale applica-
tions.

Impact of Number of Agents and Computa-
tional Constraints The number of agents di-
rectly affects the system’s performance and com-
putational demands. While PU-ADKA operates
within a multi-agent framework, we did not ex-
tensively experiment with varying agent numbers
due to the high computational cost associated with
training and coordination. Additionally, we did
not explore different batch sizes or report com-
putational efficiency under varying agent settings.
Future work should investigate the trade-offs be-
tween agent scalability, computational efficiency,
and performance optimization.

Generalizability to Other Domains While this
study primarily focuses on biomedical expert in-
teractions, other high-cost domains such as law
and finance face similar challenges. Expanding
PU-ADKA to these fields and evaluating its adapt-
ability to different datasets and model architectures
will be essential for broader applicability.

References

Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga,
David Hall, Betty Xiong, Tony Lee, Roxana
Daneshjou, Jonathan Frankle, Percy Liang, Michael
Carbin, et al. 2024. Biomedlm: A 2.7 b parameter
language model trained on biomedical text. arXiv
preprint arXiv:2403.18421.

Shayok Chakraborty, Vineeth Balasubramanian, Qian
Sun, Sethuraman Panchanathan, and Jieping Ye.
2015. Active batch selection via convex relaxations
with guaranteed solution bounds. [EEE transac-

tions on pattern analysis and machine intelligence,
37(10):1945-1958.

Graham Cheetham and Geoffrey E Chivers. 2005. Pro-
fessions, competence and informal learning. Edward
Elgar Publishing.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros
Karydas, Anand Rajagopalan, Afshin Rostamizadeh,
and Sanjiv Kumar. 2021. Batch active learning at
scale. Advances in Neural Information Processing
Systems, 34:11933-11944.

Clarivate. 2025. Master journal list. Accessed: 2025-
01-02.

Marthinus Du Plessis, Gang Niu, and Masashi
Sugiyama. 2015. Convex formulation for learning
from positive and unlabeled data. In International
conference on machine learning, pages 1386—1394.
PMLR.

Nicolas Fiorini, David J Lipman, and Zhiyong Lu. 2017.
Towards pubmed 2.0. Elife, 6:¢28801.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep bayesian active learning with image data. In
International conference on machine learning, pages
1183-1192. PMLR.

Ruijiang Gao and Maytal Saar-Tsechansky. 2020. Cost-
accuracy aware adaptive labeling for active learning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 2569-2576.

Preni Golazizian, Alireza S Ziabari, Ali Omrani, and
Morteza Dehghani. 2024. Cost-efficient subjective
task annotation and modeling through few-shot anno-
tator adaptation. arXiv preprint arXiv:2402.14101.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Jindong Han, Hao Liu, Jun Fang, Naiqiang Tan, and
Hui Xiong. Automatic instruction data selection for
large language models via uncertainty-aware influ-
ence maximization. In THE WEB CONFERENCE
2025.

Julia Henkel, Genc Hoxha, Gencer Sumbul, Lars Mol-
lenbrok, and Begiim Demir. 2023. Annotation cost
efficient active learning for content based image re-
trieval. In IGARSS 2023-2023 IEEE International
Geoscience and Remote Sensing Symposium, pages
4994-4997. IEEE.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Sheng-Jun Huang, Jia-Lve Chen, Xin Mu, and Zhi-
Hua Zhou. 2017. Cost-effective active learning from
diverse labelers. In IJCAI, pages 1879—1885.

Jia Ji, Yongshuai Hou, Xinyu Chen, Youcheng Pan,
and Yang Xiang. 2024. Vision-language model for
generating textual descriptions from clinical images:
model development and validation study. JMIR For-
mative Research, 8:€32690.

Slava Kalyuga. 2007. Expertise reversal effect and its
implications for learner-tailored instruction. Educa-
tional psychology review, 19:509-539.


https://mjl.clarivate.com/home

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke
Hiillermeier. 2023. A survey of reinforcement
learning from human feedback. arXiv preprint
arXiv:2312.14925.

Yoon-Yeong Kim, Kyungwoo Song, JoonHo Jang, and
II-Chul Moon. 2021. Lada: Look-ahead data ac-
quisition via augmentation for deep active learning.
Advances in Neural Information Processing Systems,
34:22919-22930.

Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and
Masashi Sugiyama. 2017. Positive-unlabeled learn-
ing with non-negative risk estimator. Advances in
neural information processing systems, 30.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023a. From quantity to quality: Boosting
IIm performance with self-guided data selection for
instruction tuning. arXiv preprint arXiv:2308.12032.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang,
Min Yang, Lei Zhang, Shuzheng Si, Junhao Liu,
Tongliang Liu, Fei Huang, et al. 2023b. One shot
learning as instruction data prospector for large lan-
guage models. arXiv preprint arXiv:2312.10302.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for
alignment? a comprehensive study of automatic
data selection in instruction tuning. arXiv preprint
arXiv:2312.15685.

Rengian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
Biogpt: generative pre-trained transformer for
biomedical text generation and mining. Briefings
in bioinformatics, 23(6):bbac409.

Chaitanya Malaviya, Subin Lee, Sihao Chen, Elizabeth
Sieber, Mark Yatskar, and Dan Roth. 2023. Ex-
pertqa: Expert-curated questions and attributed an-
swers. arXiv preprint arXiv:2309.07852.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

OpenAl. 2024. Gpt-40 model card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Amin Parvaneh, Ehsan Abbasnejad, Damien Teney,
Gholamreza Reza Haffari, Anton Van Den Hengel,
and Javen Qinfeng Shi. 2022. Active learning by
feature mixing. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 12237-12246.

10

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930—
1940.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and
Chongjie Zhang. 2020. Qplex: Duplex dueling multi-
agent g-learning. arXiv preprint arXiv:2008.01062.

Jacob White. 2020. Pubmed 2.0. Medical reference
services quarterly, 39(4):382-387.

Yang Wu, Xurui Li, Xuhong Zhang, Yangyang
Kang, Changlong Sun, and Xiaozhong Liu. 2023.
Community-based hierarchical positive-unlabeled
(pu) model fusion for chronic disease prediction. In
Proceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management,
pages 2747-2756.

Yang Wu, Chenghao Wang, Ece Gumusel, and Xi-
aozhong Liu. 2024a. Knowledge-infused legal wis-
dom: Navigating 1lm consultation through the lens
of diagnostics and positive-unlabeled reinforcement
learning. arXiv preprint arXiv:2406.03600.

Yang Wu, Huayi Zhang, Yizheng Jiao, Lin Ma, Xi-
aozhong Liu, Jinhong Yu, Dongyu Zhang, Dezhi Yu,
and Wei Xu. 2024b. Rose: A reward-oriented data
selection framework for 1lm task-specific instruction
tuning. arXiv preprint arXiv:2412.00631.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqgi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
arXiv preprint arXiv:2402.04333.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy S Liang. 2023. Data selection for language
models via importance resampling. Advances in
Neural Information Processing Systems, 36:34201—
34227.

Ruoyu Zhang, Yanzeng Li, Yongliang Ma, Ming Zhou,
and Lei Zou. 2023. Llmaaa: Making large lan-
guage models as active annotators. arXiv preprint
arXiv:2310.19596.


https://openai.com/index/hello-gpt-4o/

A Prompts

In this section, we present the detailed prompts
used for generating Question-Answer data based
on PubMed 2024 Sepsis and Cancer NK cell papers,
as well as the specific prompts employed for model
evaluation across all experiments.

A.1 QA Extraction

PubMed Paper Question-Answer Generation

<|im_ start|>system

You are an expert in extracting specific and
relevant question-answer pairs from scientific
papers. Your task is to generate five QA pairs
based on the unique mechanisms or processes
described in the provided paper. Focus on
extracting detailed mechanisms or processes,
avoiding generic or summarization-style ques-
tions.

Guidelines:

1. The questions must specifically target
mechanisms, processes, or detailed explanations
provided in the paper. Focus on "how" or "why"
certain processes or mechanisms work according
to the paper.

2. Avoid generic or summarization-style
questions, such as broad overviews or general
statements about findings.

3. Each question should be clear, concise, and
specific, addressing a mechanism, interaction,
or process described in the paper.

4. The answers must directly explain the mech-
anism or process, based on specific information
from the paper, and be precise and to the point.

Examples:

- Question 1: How does cytokine IL-15 regulate
the activation of natural killer cells in the
study?

Answer:  Cytokine IL-15 regulates natural
killer cell activation by binding to its receptor,
triggering a signaling cascade that enhances
proliferation and cytotoxic activity.

- Question 2: What mechanism underlies the
feedback loop described for natural killer cell
regulation?

Answer: The feedback loop involves cytokine
signaling that stimulates metabolic reprogram-
ming in natural Killer cells, which in turn
amplifies cytokine production.

<|im_ end|>
<|im__start|>user

Below is the content of the paper:

<Insert the paper’s abstract, introduction, and
methodology here.>

Your task is to generate five QA pairs based on
the unique mechanisms or processes described
in the provided paper. Focus on extracting
detailed mechanisms or processes, avoiding
generic or summarization-style questions. The
response format should be:

<Question: The generated question>

<Answer: The generated answer>

The generated five QA pairs are:

<|im_ end|>
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A.2 GPT4 Judge Prompt

Evaluation Prompt

<|im__ start|>system

You are a teacher assessing whether a Output
(b) correctly covers the core meaning of a
Output (a) for a given Question. The Output
(b) must fully address the question, just as the
Output (a) does. Follow these rules strictly:
#+# Scoring Criteria

1. **Semantic Match**: - The Output
(b) must **precisely match** the meaning of
the Output (a) without significant divergence. -
Output (b) must address the Question in the
same way as the Output (a).

2. **Supplementary Information®™*: - Addi-
tional details are allowed **only if they do not
conflict** with the Output (a). - Output (b)
must not contain any contradictions, factual
errors, or misleading information.

## Evaluation Process

1. **Key Point Extraction**: - Extract
core facts, entities, and logical relationships
from the Output (b). - Compare these with
the Output (a). - Identify missing points,
contradictory statements, or factual errors. -
Output (b) must address the Question in the
same way as the Output (a).

<|im_ end|>

<|im__start|>user

I require an assessment of whether Output (b)
correctly conveys the core meaning of Output
(a). Tl provide you with a question and two
model outputs. Your task is to evaluate and
return either Output (a) or Output (b), based
on the scoring criteria.

## Question
{

}
## Model Outputs

“question”: ““{Question}””

Here are the unordered outputs from the
models. Each output is associated with a
specific model, identified by a unique model
identifier.

{

“model_identifier”: “m”,

“output”: ““{Output (a)}””

e

“model__identifier”: “M?”,
“output”: ““{Output (b)}””

#7# What’s
or Output (b)?

your evaluation, Output

<|im__end|>




B Generated Question-Answer Pair
Example from PubMed Publications

QA Example from PubMed

Question:

What role do anti-iNKT TCR antibodies
play in activating iNKT cells?

Answer:

Anti-INKT TCR antibodies can activate
iNKT cells by binding to their TCR, which
leads to crosslinking and activation.  This
process can enhance the cytotoxic activity of
iNKT cells against target cells, particularly
those expressing Fc gamma receptors.

\. J

C Expert-Wise Attention

Given a question embedding Eé and expert em-

beddings E?, we define the expert-wise attention
mechanism as follows:

eij =0 (W [E;,Eg} + b) @)

__ exp (o (W [B Bl +1))
- Yen, o0 (0 (W [Ej, BE] +1))

(®)

(2%

Zi= > aiEl ©)
JEE.
where o denotes the ReLU activation function,
and [., .] represents embedding concatenation. Fur-
thermore, we concatenate Z; with each expert em-
bedding EJ and pass it through an MLP to obtain
the output probability:

P (B, EL) = o ([2.52]) (10)
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