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Abstract

Large Language Models (LLMs) have demon-001
strated an impressive level of general knowl-002
edge. However, they often struggle in highly003
specialized and sensitive domains such as drug004
discovery and rare disease research due to the005
lack of expert knowledge, which is often costly006
to obtain. In this paper, we propose a novel007
framework (PU-ADKA) designed to efficiently008
enhance domain-specific LLMs by actively en-009
gaging domain experts within a fixed budget.010
Unlike traditional fine-tuning approaches, PU-011
ADKA proactively identifies and queries the012
most appropriate expert from a team, taking013
into account each expert’s availability, com-014
petency, knowledge boundaries, and consul-015
tation cost. We train PU-ADKA using simu-016
lations on PubMed publication data and val-017
idate it through domain expert interactions,018
showing promising improvements in LLM do-019
main knowledge acquisition. Furthermore, our020
experiments with a real-world drug develop-021
ment team validate that PU-ADKA can signif-022
icantly enhance LLM performance in special-023
ized domains while adhering to strict budget024
constraints. In addition to outlining our method-025
ological innovations and experimental results,026
we release a new benchmark dataset, CKAD,027
for cost-effective LLM domain knowledge ac-028
quisition to foster further research in this chal-029
lenging area.030

1 Introduction031

Recent advancements in large language models032

(LLMs) have led to impressive performance gains033

across a wide range of tasks (Naveed et al., 2023;034

Thirunavukarasu et al., 2023; Wu et al., 2024a).035

However, these gains are not uniformly observed036

across all domains. In highly specialized, private037

and sensitive fields, such as drug discovery and038

rare disease exploration, the acquisition of domain039

knowledge remains a challenge. Traditional ap-040

proaches like Reinforcement Learning from Hu-041

man Feedback (RLHF) (Kaufmann et al., 2023)042

Figure 1: Domain LLM Knowledge Acquisition via
Cost-Efficient, Expert-Involved Interaction

have demonstrated value in general settings, yet 043

they struggle in contexts where expert knowledge 044

is extremely expensive and sparse. This scenario is 045

particularly pronounced in domains where domain 046

expertise is fragmented among professionals with 047

diverse competencies and availability constraints 048

(Cheetham and Chivers, 2005). Consequently, 049

there is a pressing need for novel approaches that 050

can efficiently integrate domain expert feedback 051

into LLMs while operating under tight budgetary 052

and expert availability restrictions. 053

To respond to this demand, we propose the Posi- 054

tive Unlabeled Active Domain Knowledge Acqui- 055

sition (PU-ADKA), which is designed to proac- 056

tively engage with domain experts and selectively 057

acquire targeted feedback that can significantly en- 058

hance the performance of LLMs in specialized 059

fields. Unlike conventional fine-tuning methods 060

that passively incorporate affordable human feed- 061

back (Zhang et al., 2023), PU-ADKA actively 062

queries the most appropriate expert from a team 063

given each member’s computational profile. The 064

model can elaborately consider factors such as the 065

candidate expert’s knowledge boundary, cost of 066

consultation, and expert availability, thereby opti- 067

mizing the knowledge acquisition process within a 068

fixed budget (e.g., total $100). The model training 069

process leveraged newly released domain knowl- 070

edge (e.g., recent PubMed data (White, 2020)), 071
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legacy architectures of LLMs and innovative sim-072

ulations of expert-domain knowledge interactions.073

Through an intelligent knowledge selection process074

and cost-aware querying mechanism, PU-ADKA075

bridges the gap between the limited availability076

of expert input and the high demand for domain-077

specific information.078

Figure 1 illustrates the concept behind the pro-079

posed PU-ADKA. In this case, a domain LLM080

acknowledges gaps in its knowledge related to top-081

ics like mRNA vaccines, CAT-T, and adenocarci-082

noma (to support a cancer drug development team)083

(Kalyuga, 2007). Instead of relying on static, pre-084

existing datasets, PU-ADKA proactively engages085

with domain experts to acquire precise knowledge086

within a limited budget. The model evaluates the087

expertise, cost, and availability of different special-088

ists, including PI, lead, senior, and junior scholars,089

to optimize knowledge acquisition. For example, in090

the image, the LLM selectively queries Dr. Jean for091

insights on mRNA vaccines at a cost of $7, while092

consulting Mary, a different expert, about CAT-T093

for $4, ensuring cost-effective expert engagement.094

This dynamic querying mechanism allows the LLM095

to refine its domain knowledge efficiently, making096

it particularly useful in critical domains like drug097

discovery and rare disease research, where expert098

knowledge is both sparse and expensive.099

The contribution of this paper is fourfold:100

• Methodology: We introduce PU-ADKA, a101

proactive, cost-efficient model that strategi-102

cally queries domain experts to enhance LLM103

performance in highly specialized fields with104

very limited expert availability.105

• Cost-Aware Expert Selection: We develop a106

mechanism that considers expert competency,107

knowledge boundaries, availability, and con-108

sultation cost, ensuring that each query yields109

maximum value under a fixed budget.110

• Experiment: We validate the efficacy of PU-111

ADKA using both simulation evaluation and112

real-world cancer drug development study.113

The latter experiment used a real drug devel-114

opment team where five experts with diverse115

background participate in the experiment. The116

result shows that PU-ADKA is promising to117

enhance domain LLMs with a fixed budgetary118

restriction.119

• Benchmark Dataset: To foster further re-120

search in the area of domain-specific LLM 121

enhancement, we provide a new benchmark 122

dataset, Cost-Aware Knowledge Acquisition 123

Dataset (CKAD), for LLM domain knowledge 124

acquisition, which is available for open ac- 125

cess. 126

2 Related Work 127

2.1 Human Feedback Integration in 128

Domain-Specific LLMs 129

Domain-specific adaptation of LLMs has been 130

advanced significantly by techniques such as 131

domain-adaptive pretraining (DAPT) (Gururangan 132

et al., 2020) and various biomedical LLMs like 133

BioMedLM (Bolton et al., 2024), ClinicalBLIP (Ji 134

et al., 2024), and BioGPT (Luo et al., 2022). These 135

methods effectively utilize large domain-specific 136

corpora (e.g., PubMed) to incorporate static knowl- 137

edge. However, they often fall short in capturing 138

the dynamic insights from domain experts, cru- 139

cial for rapidly evolving areas like drug discovery. 140

Reinforcement Learning from Human Feedback 141

(RLHF) (Ouyang et al., 2022) aims to align gen- 142

eral LLMs with human preferences but typically 143

depends on more homogeneous and less costly an- 144

notators, limiting its effectiveness in specialized 145

domains where expert feedback is sparse and ex- 146

pensive. Attempts like ExpertQA (Malaviya et al., 147

2023) simulate multi-expert interactions but over- 148

look practical constraints like budget limitations 149

and asynchronous availability of experts. Our ap- 150

proach, ADKAM, overcomes these shortcomings 151

by redefining expert knowledge acquisition as a 152

budget-constrained optimization task, selectively 153

engaging experts based on their competence, cost, 154

and availability, thereby transitioning from static 155

data-driven adaptation to proactive, expert-guided 156

learning. 157

2.2 Budget-Constrained Active Learning with 158

Multi-Expert Collaboration 159

Traditional active learning models primarily focus 160

on maximizing sample information through uncer- 161

tainty (Gal et al., 2017; Kim et al., 2021) or diver- 162

sity (Chakraborty et al., 2015; Parvaneh et al., 2022; 163

Citovsky et al., 2021), often neglecting the varying 164

costs associated with expert annotations, partic- 165

ularly in complex fields like biomedicine. Cost- 166

sensitive approaches (Huang et al., 2017; Henkel 167

et al., 2023) attempt to address this by optimizing 168

for lower-cost annotators but fail to differentiate 169
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between the varied expertise levels necessary for170

accurately labeling complex cases. Unlike these171

methods, ADKAM integrates active learning with172

strategic expert collaboration, emphasizing both173

data sample selection based on potential to update174

the model and efficient engagement of experts, bal-175

ancing cost against their competency and availabil-176

ity.177

2.3 Sampling Strategy in LLM Active178

Learning179

The importance of data instances in modern LLMs180

is often evaluated through gradient-based (Xia181

et al., 2024; Wu et al., 2024b), similarity-based182

(Xie et al., 2023; Li et al., 2023a), or in-context183

learning (Li et al., 2023a) methods. These tech-184

niques typically assume samples are independent185

and identically distributed, a premise that does not186

hold in complex fields with interdependent data187

such as biomedical texts. Despite progress in sam-188

pling strategies that account for diversity (Liu et al.,189

2023), many approaches do not consider the costs190

associated with expert annotations or the specific191

expertise required for accurate data labeling. Our192

proposed method, PU-ADKA, addresses these chal-193

lenges by prioritizing high-impact samples through194

a refined uncertainty estimation specific to the do-195

main and strategically assigning these samples to196

the most cost-effective experts capable of provid-197

ing high-quality annotations. This method ensures198

that knowledge acquisition is not only efficient but199

also economically feasible in constrained environ-200

ments.201

3 Methodology202

In this section, we begin by formalizing the cost-203

aware LLM knowledge acquisition problem (Sec-204

tion 3.1). We then present PU-ADKA framework205

for efficient domain-specific LLM knowledge ac-206

quisition in Figure 2. PU-ADKA addresses two key207

challenges: (1) How to leverage LLMs to simulate208

active learning in high-cost domains? (Section 3.2)209

and (2) How to simultaneously optimize data selec-210

tion and cost-aware expert assignment for maximal211

knowledge acquisition under fixed budgets? (Sec-212

tion 3.3 and Section 3.4)213

3.1 Problem Definition214

Given a fixed annotation budget B, an unlabeled215

question pool Dtr = {qi}|Dtr|
i=1 , and a team of domain216

experts E = {ej}|E|j=1, our goal is to select an opti-217

mal set of (qi, ej) pairs to finetune a large language 218

model θ, maximizing finetuning performance on a 219

target test set Dte = {pm}|Dte|
m=1. 220

Formally, we define an allocation function f : 221

Dtr → E that assigns each selected question qi to 222

an expert ej , ensuring that the total annotation cost 223

remains within the budget B. The optimization 224

objective is: 225

S∗ = argmax
S⊆Dtr×E

F(θS ,Dte)

s.t.,
∑

(qi,ej)∈S

c(qi, ej) ≤ B,
226

where, S∗ denotes the optimal set of (qi, ej) pairs 227

that maximizes the performance metric F(θS ,Dte) 228

of the fine-tuned model θS on the target test set. 229

The term c(qi, ej) represents the annotation cost 230

incurred when expert ej annotates question qi. 231

3.2 Simulation Environment Construction 232

To support our investigation, we pioneered a new 233

benchmark data, Cost-Effective Knowledge Acqui- 234

sition Dataset (CKAD), for simulating biomedi- 235

cal expert consultations and LLM knowledge ac- 236

quisition process by strategically leveraging the 237

comprehensive knowledge within the PubMed dig- 238

ital library. This approach harnesses previously 239

untapped domain expertise and research findings, 240

predating the knowledge cutoff of selected LLMs, 241

to construct robust datasets for consultation sim- 242

ulation and model training/evaluation. To sim- 243

ulate the knowledge acquisition process, we in- 244

troduce a temporal knowledge separation method 245

based on PubMed data, which ensures strict chrono- 246

logical isolation between the base model’s pre- 247

existing knowledge and newly acquired target do- 248

main knowledge through three core components. 249

Predated Base Model Selection: We employ 250

Llama2-7B (Touvron et al., 2023) as our predated 251

base model, chosen for its knowledge limitations 252

to information available up to early 2023, prior 253

to our target corpus. This temporal separation en- 254

sures a controlled setting for evaluating knowledge 255

acquisition. 256

Temporal Corpus Construction: We construct 257

CKAD from 2024 PubMed Central (PMC) (Fiorini 258

et al., 2017), extracting question-answer (QA) pairs 259

using GPT-4o (OpenAI, 2024). For each paper, five 260

mechanism-focused QA pairs are generated using 261

prompting and manually validated. To maintain a 262

clean environment for assessing knowledge acquisi- 263
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Figure 2: Illustration of our proposed PU-ADKA framework.

tion, we filter out QA pairs that can be answered by264

the base model, using GPT-4o as the judge model1.265

This process results in a final dataset of 48,219266

QA pairs (the base model cannot correctly answer)267

representing post-2023 knowledge.268

Expert Simulation: We model real-world anno-269

tation constraints by assigning expert roles to the270

top 20 authors ranked by publication count, using271

them as proxy experts. GPT-4o is deployed to esti-272

mate a binary expert capability matrix A ∈ RQ×N273

where each entry Aji is set to 1 if expert ej is ca-274

pable of labeling question qi, and 0 otherwise. The275

matrix is constructed by leveraging relevant sec-276

tions of experts’ papers to assess their expertise. To277

determine a reasonable unit labeling price, we rank278

experts based on the sum of their papers’ impact279

factors (Clarivate, 2025) and assign higher rates to280

those with higher ranks in a principled manner.281

This approach maintains chronological separa-282

tion by integrating a constrained base model, a cu-283

rated QA dataset, and expertise-driven annotation,284

preventing knowledge leakage while maintaining a285

controlled knowledge acquisition setting.286

3.3 Expert Profiling with PU Learning287

We formalize the question-expert matching task as288

a Positive-Unlabeled (PU) learning problem, which289

helps to characterize each expert’s knowledge290

boundary. Given a question-expert pair (qi, ej),291

we label it as positive if qi originates from a pub-292

lication authored by ej . However, if qi does not293

come from ej’s paper, we do not automatically treat294

(qi, ej) as a negative pair. Instead, it remains unla-295

beled because the expert may be qualified to label296

the question. For instance, a scholar specializing in297

1The details of question-answer extraction and the evalua-
tion prompt are provided in the Appendix A.

cancer NK cells could potentially annotate a sepsis- 298

related question if they possess relevant medical 299

expertise (e.g., extracellular vesicles), even without 300

publications on sepsis. 301

We use LLM-based text representations, lever- 302

aging a pretrained Llama2-7B model to encode 303

questions Ei
q and experts Ej

e , with embeddings 304

taken from the last hidden layer. Particularly, an ex- 305

pert’s embedding is obtained by averaging the rep- 306

resentations of their publications (Wu et al., 2023). 307

To train our PU model to estimate expert knowl- 308

edge boundary, we employ an expert-wise attention 309

mechanism 2 and training with the non-negative PU 310

risk estimator (Kiryo et al., 2017), which is defined 311

as follows: 312

Riskpu(g) =
πp

np

np∑
i=1

l(g(xp
k),+1)+

max(0,
1

nu

nu∑
i=1

l(g(xu
k),−1)−

πp

np

np∑
i=1

l(g(xp
k),−1)),

(1) 313

where π denotes positive class prior (π = 0.1 314

in our dataset), l(·, ·) is the surrogate loss of zero- 315

one loss (Du Plessis et al., 2015), np represents the 316

number of labeled positive instances, nu represents 317

the number of unlabeled instances, xpk and xuk de- 318

note question-annotator pair in the labeled positive 319

set and the unlabeled set, respectively. 320

3.4 Efficient Domain Knowledge Acquisition 321

via Multi-Agent Reinforcement Learning 322

Given the budgetary constraints, we proposed a 323

novel model that aligns question selection with 324

available expert knowledge while maximizing the 325

LLM’s domain knowledge acquisition competency. 326

2The attention network is detailed in Appendix ??
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To ensure that the selected question set captures327

both informativeness and diversity, we formulate328

the selection process as a multi-agent reinforce-329

ment learning (RL) problem, where each agent is330

tasked with selecting a (question-expert) pair. The331

number of agents, n, determines the size of the332

question-set at each iteration. Unlike traditional RL333

models, the proposed interactive multi-agent RL334

can estimate the sampled question-expert pair im-335

portance by leveraging inter-agent competition and336

cooperation, ensuring both informational density337

and diversity in selected pairs with a fixed budget.338

3.4.1 Multi-Agent RL State339

The environment state is represented by a combina-340

tion of features that capture both task-related and341

budgetary aspects: (1). The question–expert match-342

ing score g(qi, ej) is derived from the trained PU343

learning model and measures the suitability of as-344

signing question qi to expert ej . (2). The remaining345

budget Bt indicates the available annotation budget346

at time step t. (3). The expert sampling probability347

quantifies the likelihood of selecting each expert348

ej , defined as:349

wt
j =

Bt

c(qi, ej)
× (1− αΓt

j), (2)350

where α is a decay factor, and Γt
j denotes the num-351

ber of times expert ej has been selected up to time352

step t. This formulation encourages diversity in ex-353

pert selection to enhance overall information gain354

while ensuring balanced workload distribution.355

3.4.2 Multi-Agent Communication356

Competition. Different from previous studies,357

our framework allows multiple agents within the358

same model to simultaneously seek (qi, ej) pairs,359

enabling different experts to compete for answer-360

ing the same question. Leveraging our PU-based361

question-expert matching model, each question qi362

is associated with a ranked list of potential experts.363

As a result, multiple experts e1, e2, . . . , eh may se-364

lect the same question qi. In such cases, qi should365

be assigned to the expert with the highest match-366

ing score based on our PU matching network. To367

enforce this competitive selection, we introduce a368

competition function:369

Compete(qi | e1, e2, . . . , eh) = ez,

s.t. ez = argmax
ej

g(qi, ej),
(3)370

where g(qi, ej) represents the PU-based matching 371

score between question qi and expert ej , ensuring 372

that the most suitable expert is selected. For experts 373

who lose the competition for a given question in the 374

current iteration, the corresponding agents will then 375

select alternative pairs and re-enter the competition 376

process. This recursive procedure continues until 377

all agents in the current state have been assigned 378

unique questions. 379

Cooperation. To effectively encourage collabo- 380

rative decision-making among agents and optimize 381

knowledge acquisition under a fixed annotation 382

budget, we define the reward function as: 383

rt =
∆Ft ×

∑
qi∈St

ϕi∑
(qi,ej)∈St

c(qi, ej)
, (4) 384

where ∆Ft denotes the improvement in model per- 385

formance on the validation set after incorporating 386

newly labeled data at step t, and the denominator 387

represents the total annotation cost (Gao and Saar- 388

Tsechansky, 2020; Huang et al., 2017; Golazizian 389

et al., 2024). The diversity term ϕi measures the 390

distinctiveness of each selected question and is de- 391

fined as: 392

ϕi = min
qz∈St

d(Ei
q, E

z
q ), (5) 393

where St denotes the cureent labeled question set, 394

and d(·, ·) is the Euclidean distance function. A 395

larger ϕi value indicates that the selected question 396

is more diverse relative to past selections, thereby 397

enhancing knowledge coverage and reducing re- 398

dundancy. 399

3.4.3 Model Training 400

To stabilize learning, we employ a Double DQN 401

architecture (Wang et al., 2020). The temporal- 402

difference (TD) target is computed as: 403

Yt = rt+γQ(st+1, argmax
ut+1

Q(st+1, ut+1; θt); θ
′
t),

(6) 404

where st+1 denotes the next state, γ is the discount 405

factor, θt and θ′t represent to the parameters of the 406

policy and target network, respectively. To enhance 407

generalization, we employ bootstrap sampling by 408

selecting a random subset of experts (e.g. five per 409

iteration) during training stage. This strategy pre- 410

vents overfitting to a specific set of experts, ensur- 411

ing that the learned policy remains robust across 412

diverse labeling scenarios. 413
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4 Experiments414

4.1 Experimental Settings415

Model Architecture and Training Settings. As416

described in Section 3.2, we use the PubMed417

dataset for sepsis and cancer NK research from418

2024 and adopt Llama2-7B as the base architec-419

ture. The experimental setup for our PU-ADKA420

model utilizes Llama2-7B with a sampling tem-421

perature of 1.0, a nucleus sampling top_p value of422

0.9, and a maximum token length of 4,096. The423

question and expert document encoders use the last424

hidden layer of Llama2-7B. For fine-tuning, we

Table 1: Statistics of CKAD dataset.

Disease Type Cancer_NK and Sepsis
#Train 38,575
#Dev 4,722
#Test 4,722

425
apply LoRA (Hu et al., 2021) to improve training426

efficiency for large-scale models. The LoRA con-427

figuration includes a rank of 16, an alpha of 128,428

and a dropout rate of 0.1. Training involves learn-429

ing LoRA matrices for all attention mechanisms430

in each configuration. The models are optimized431

using the AdamW optimizer with a learning rate432

of 2 × 10−5. Each configuration undergoes three433

trials with different random seeds.434

In the multi-agent reinforcement learning frame-435

work, we employ the Double DQN (Wang et al.,436

2020) architecture. The default number of agents437

is 10, with five experts selected per iteration. In438

each iteration, experts are ranked based on the sum439

of their papers’ impact factors (Clarivate, 2025),440

and their unit prices are assigned accordingly as441

[$0.5, $0.4, $0.3, $0.2, $0.1] per labeled question.442

The total annotation budget is set to 100.443

Evaluation Benchmarks and Metrics. To en-444

sure a clean evaluation of knowledge acquisition,445

our experimental dataset consists of general dis-446

ease mechanism question-answer pairs that cannot447

be answered initially (i.e., the initial answerable448

rate is 0). Details of the dataset are provided in449

Table 1. During the simulation training stage, we450

employ two advanced models, GPT-4o-2024-08-06451

and GPT-4-Turbo, as judge models. The evaluation452

metrics include win rate and length-controlled win453

rate.454

Additionally, we conduct human-involved exper-455

iments to validate the effectiveness of our method.456

Our expert team consists of three sepsis specialists457

and two cancer specialists, representing different 458

levels of expertise. Among them, one is a princi- 459

pal investigator (PI), while the remaining members 460

include one medical doctor and three PhD students. 461

Baselines. To ensure a comprehensive evalua- 462

tion, our experiment includes a variety of baseline 463

methodologies that encompass both question selec- 464

tion and expert allocation strategies. The compari- 465

son provides insights into the effectiveness of dif- 466

ferent active learning frameworks applied to LLMs. 467

Below we detail the baselines used: 468

• Random: Questions are selected randomly, 469

providing a baseline for minimal strategic in- 470

tervention in data selection. 471

• DEITA: (Liu et al., 2023) Evaluates data 472

across complexity, quality, and diversity us- 473

ing pretrained complexity scorer3 and quality 474

scorer 4 to score each unlabeled questoions. 475

• CHERRY:(Li et al., 2023a) Applies the 476

Instruction-Following Difficulty (IFD) metric 477

to assess question quality autonomously. 478

• NUGGETS:(Li et al., 2023b) Assesses the 479

relevance of questions by considering each as 480

a single instance in one-shot learning contexts. 481

• LESS: (Xia et al., 2024) Calculates the in- 482

fluence of questions on the validation set to 483

prioritize data that may yield the most signifi- 484

cant insights during finetuning. 485

• ROSE:(Wu et al., 2024b) Utilizes gradient 486

similarity to evaluate the potential contribu- 487

tion of each question to the model’s perfor- 488

mance, aligning with active learning princi- 489

ples of uncertainty and diversity. 490

For expert allocation, we implement the follow- 491

ing methods: 492

• Random: Experts are assigned randomly to 493

questions. 494

• Cost-Greedy: This method always selects the 495

least expensive expert available, optimizing 496

for cost efficiency. 497

3https://huggingface.co/hkust-nlp/deita-complexity-
scorer

4https://huggingface.co/hkust-nlp/deita-complexity-
scorer
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Table 2: Overall Performance Comparison on CKAD dataset (%).

Category Model GPT-4o-2024-08-06 GPT-4-Turbo GPT-4o-2024-08-06 GPT-4-Turbo Avg.Length

WR WR LC_WR LC_WR -

Random RAND 4.7 (0.4) 6.7 (0.8) 20.3 (0.9) 20.4 (0.8) 2220
DEITA 9.6 (0.3) 7.9 (0.1) 21.0 (0.9) 22.1 (0.8) 2212
CHERRY 7.8 (0.1) 8.3 (0.2) 20.4 (0.9) 21.5 (0.9) 2221
NUGGETS 10.4 (0.1) 10.7 (0.4) 21.0 (0.8) 20.4 (0.8) 2204
LESS 7.9 (0.2) 7.9 (0.2) 22.0 (1.0) 24.0 (1.1) 2212
ROSE 8.1 (0.4) 10.0 (0.2) 21.5 (1.0) 22.7 (1.0) 2194

Cost-Greedy RAND 6.2 (0.4) 6.7 (0.8) 20.4 (0.9) 20.5 (0.9) 2207
DEITA 14.2 (0.8) 11.7 (0.2) 20.9 (1.0) 20.9 (0.9) 2246
CHERRY 11.7 (0.3) 10.0 (0.4) 23.4 (0.9) 22.1 (1.1) 2236
NUGGETS 7.9 (0.4) 8.7 (0.4) 21.5 (0.9) 20.4 (0.9) 2182
LESS 12.1 (0.4) 9.6 (0.4) 22.1 (0.8) 21.2 (1.0) 2218
ROSE 8.3 (0.8) 9.7 (0.2) 20.4 (0.9) 22.7 (1.0) 2174

Match-Greedy RAND 6.7 (0.8) 7.9 (0.4) 20.9 (1.0) 19.9 (0.8) 2204
DEITA 10.0 (0.3) 9.2 (0.8) 21.2 (1.0) 22.3 (0.9) 2214
CHERRY 7.5 (0.0) 9.2 (0.2) 21.0 (0.9) 23.3 (1.1) 2173
NUGGETS 9.5 (0.3) 11.6 (0.2) 22.1 (1.0) 21.6 (0.9) 2182
LESS 12.1 (0.4) 10.4 (0.2) 23.5 (1.0) 22.5 (1.0) 2252
ROSE 9.2 (0.1) 10.9 (0.4) 22.5 (0.9) 21.9 (1.0) 2229

Ours PU-ADKA 18.2 (0.6) 16.7 (0.4) 25.6 (1.0) 26.5 (0.9) 1781

• Match-Greedy: Matches questions to experts498

based on the highest embedding similarity be-499

tween them, facilitating a more informed allo-500

cation.501

These baselines are integral to understanding the502

landscape of active learning strategies within LLM503

contexts, providing a benchmark against which our504

proposed methods can be evaluated.505

4.2 Experimental Results506

Experimental Results Our experimental results are507

detailed in Table 2, where we compare the perfor-508

mance of our method, PU-ADKA, against various509

baseline strategies. PU-ADKA consistently out-510

performs all baselines in terms of knowledge ac-511

quisition across different judging models. Specifi-512

cally, with the GPT-40-2024-08-06 model as judge,513

PU-ADKA achieves a win rate of 18.2% and an514

LC-WR of 25.65%. When evaluated by the GPT-515

4-Turbo model, it records a win rate of 16.7%516

and an LC-WR of 26.57%. These results exceed517

those of the next best baseline, DEITA under the518

Cost-Greedy strategy, by margins of 4% and 5%519

in win rate, and 2.1% and 3.2% in LC-WR, re-520

spectively, under the two judging conditions. Note-521

ably, LESS performs stable when under both Cost-522

Greedy and Match-Greedy settings, the GPT-4o-523

2024-08-06 and GPT-4-Turbo judge the win rate524

at 12.1% and 10% in both settings. Furthermore,525

the minimal baseline performance under fully ran-526

dom conditions, with win rates of 4.7% and 6.7%, 527

highlights the baseline challenge and emphasizes 528

the robustness of our method against less strategic 529

approaches.

Table 3: Human-involved results judged by GPT-4-
Turbo.

WR LC_WR

Random (Random) 7.5 (0.7) 20.3 (0.8)

LESS (Random) 9.2 (0.5) 20.5(0.9)

LESS (Cost-Greedy) 11.4 (0.6) 21.0 (1.0)

LESS (Match-Greedy) 12.5 (0.7) 21.2 (0.8)

PU-ADKA 15.2 (0.8) 24.3 (0.9)

530

4.3 Human Involved Validation 531

To further substantiate the robustness of our 532

method, PU-ADKA, we implemented it within a 533

professional biomedical team of experts under a 534

simulated budget constraint of $100 per game. The 535

cost of annotator expertise was varied, reflecting 536

their respective professional knowledge in the do- 537

main, with unit prices set at ($0.5, $0.2, $0.1, $0.1, 538

$0.1 per labeling question. We assessed the perfor- 539

mance in terms of win rate and LC win rate using 540

GPT-4-Turbo as the judge under various settings: 541

fully random, and LESS for question selection com- 542

bined with each of the three expert allocation strate- 543

gies (Random, Cost-Greedy, and Match-Greedy). 544
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The detailed results are presented in Table 3.545

The data reveal that PU-ADKA notably sur-546

passes the most competitive baseline, LESS547

(Match-Greedy), by margins of 2.7% and 3.1%548

in win rate and LC win rate, respectively. This549

enhancement in performance in a practical setting550

underscores the effectiveness of our method, par-551

ticularly in scenarios constrained by budget. This552

real-world application not only validates the utility553

of PU-ADKA but also establishes it as a formidable554

approach in the domain of budget-limited active555

learning.556
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Figure 3: Performance under Different Budgets

Table 4: Ablation results on CKAD dataset with ✓
indicating the enabling of the corresponding module.
(Judged by GPT-4-Turbo)

Variant PU MA WR LC_WR
I ✓ 13.3 (0.7) 23.2 (1.1)

II ✓ 14.2 (0.6) 23.0 (1.0)

PU-ADKA ✓ ✓ 16.7 (0.4) 26.5 (0.9)

4.4 Ablation Study557

4.4.1 Validating the Utility of Each Module558

To thoroughly assess the contributions of each com-559

ponent within PU-ADKA, specifically the multi-560

agent (MA) framework and the positive-unlabeled561

(PU) learning approach, we performed a series of562

ablation studies. These studies were conducted on563

the QA dataset, with GPT-4-Turbo serving as the564

judge. We explored two key variants:565

• Variant I: Utilizes unsupervised embedding-566

based similarity measures in place of the PU567

learning model to understand the impact of568

the PU approach on the overall performance.569

• Variant II: Operates under a single-agent570

setup to evaluate the effectiveness of our multi- 571

agent configuration. 572

The results, detailed in Table 4, highlight the 573

integral role each module plays in the success of 574

PU-ADKA. The comparison with Variant I under- 575

scores the superiority of our PU-based question- 576

expert matching technique. Similarly, when con- 577

trasted with the single-agent model of Variant II, 578

our multi-agent method demonstrates its enhanced 579

capability in expert allocation strategy, confirming 580

the benefits of our comprehensive framework in 581

active learning scenarios. 582

4.4.2 Performance under Different Budgets 583

We evaluated the performance of our model, PU- 584

ADKA, against various baseline methods under 585

differing budget scenarios, as depicted in Figure 3. 586

The results indicate that our method achieves con- 587

sistently robust outcomes across all tested budget 588

levels compared to the baselines. Notably, at a bud- 589

get of $100, PU-ADKA significantly outperforms 590

the next best approach, LESS (Match-Greedy). Be- 591

yond this budget point, the rate of knowledge acqui- 592

sition stabilizes, showing no substantial further in- 593

creases (Han et al.). This plateau suggests that our 594

method is particularly effective at rapidly acquir- 595

ing knowledge within constrained budget settings, 596

demonstrating a distinct advantage over competing 597

methods in efficiently utilizing available resources. 598

5 Conclusion and Future Work 599

This study introduces PU-ADKA, a novel approach 600

designed to enhance LLMs through active learning 601

in domains where expert feedback is prohibitively 602

costly. Distinct from general active learning mod- 603

els that treat expert input uniformly, PU-ADKA 604

strategically engages experts based on their special- 605

ized knowledge, availability, and cost-effectiveness. 606

This targeted approach not only optimizes budget 607

utilization but also significantly improves LLM per- 608

formance. Validated through rigorous simulations 609

and real-world applications in high-cost domains, 610

PU-ADKA demonstrates a superior method for in- 611

tegrating scarce and valuable expert feedback into 612

LLMs. The release of the CKAD dataset further 613

supports ongoing research into domain-specific 614

LLM enhancements 615

Limitations 616

Scalability with Increasing Data and Experts 617

As the number of unlabeled data points and avail- 618
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able experts grows, the scale of PU-ADKA changes619

significantly. Larger datasets require more efficient620

selection strategies, while an increasing pool of621

experts introduces greater complexity in allocation622

and coordination. Future research should explore623

more scalable solutions to maintain efficiency as624

the system scales to real-world, large-scale applica-625

tions.626

Impact of Number of Agents and Computa-627

tional Constraints The number of agents di-628

rectly affects the system’s performance and com-629

putational demands. While PU-ADKA operates630

within a multi-agent framework, we did not ex-631

tensively experiment with varying agent numbers632

due to the high computational cost associated with633

training and coordination. Additionally, we did634

not explore different batch sizes or report com-635

putational efficiency under varying agent settings.636

Future work should investigate the trade-offs be-637

tween agent scalability, computational efficiency,638

and performance optimization.639

Generalizability to Other Domains While this640

study primarily focuses on biomedical expert in-641

teractions, other high-cost domains such as law642

and finance face similar challenges. Expanding643

PU-ADKA to these fields and evaluating its adapt-644

ability to different datasets and model architectures645

will be essential for broader applicability.646
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A Prompts822

In this section, we present the detailed prompts823

used for generating Question-Answer data based824

on PubMed 2024 Sepsis and Cancer NK cell papers,825

as well as the specific prompts employed for model826

evaluation across all experiments.827

A.1 QA Extraction828

PubMed Paper Question-Answer Generation
<|im_start|>system
You are an expert in extracting specific and
relevant question-answer pairs from scientific
papers. Your task is to generate five QA pairs
based on the unique mechanisms or processes
described in the provided paper. Focus on
extracting detailed mechanisms or processes,
avoiding generic or summarization-style ques-
tions.

Guidelines:
1. The questions must specifically target
mechanisms, processes, or detailed explanations
provided in the paper. Focus on "how" or "why"
certain processes or mechanisms work according
to the paper.
2. Avoid generic or summarization-style
questions, such as broad overviews or general
statements about findings.
3. Each question should be clear, concise, and
specific, addressing a mechanism, interaction,
or process described in the paper.
4. The answers must directly explain the mech-
anism or process, based on specific information
from the paper, and be precise and to the point.

Examples:
- Question 1: How does cytokine IL-15 regulate
the activation of natural killer cells in the
study?
Answer: Cytokine IL-15 regulates natural
killer cell activation by binding to its receptor,
triggering a signaling cascade that enhances
proliferation and cytotoxic activity.
- Question 2: What mechanism underlies the
feedback loop described for natural killer cell
regulation?
Answer: The feedback loop involves cytokine
signaling that stimulates metabolic reprogram-
ming in natural killer cells, which in turn
amplifies cytokine production.

<|im_end|>
<|im_start|>user

Below is the content of the paper:
<Insert the paper’s abstract, introduction, and
methodology here.>
Your task is to generate five QA pairs based on
the unique mechanisms or processes described
in the provided paper. Focus on extracting
detailed mechanisms or processes, avoiding
generic or summarization-style questions. The
response format should be:
<Question: The generated question>
<Answer: The generated answer>
The generated five QA pairs are:

<|im_end|>

829

A.2 GPT4 Judge Prompt 830

Evaluation Prompt
<|im_start|>system
You are a teacher assessing whether a Output
(b) correctly covers the core meaning of a
Output (a) for a given Question. The Output
(b) must fully address the question, just as the
Output (a) does. Follow these rules strictly:
## Scoring Criteria

1. **Semantic Match**: - The Output
(b) must **precisely match** the meaning of
the Output (a) without significant divergence. -
Output (b) must address the Question in the
same way as the Output (a).
2. **Supplementary Information**: - Addi-
tional details are allowed **only if they do not
conflict** with the Output (a). - Output (b)
must not contain any contradictions, factual
errors, or misleading information.

## Evaluation Process

1. **Key Point Extraction**: - Extract
core facts, entities, and logical relationships
from the Output (b). - Compare these with
the Output (a). - Identify missing points,
contradictory statements, or factual errors. -
Output (b) must address the Question in the
same way as the Output (a).
<|im_end|>
<|im_start|>user
I require an assessment of whether Output (b)
correctly conveys the core meaning of Output
(a). I’ll provide you with a question and two
model outputs. Your task is to evaluate and
return either Output (a) or Output (b), based
on the scoring criteria.

## Question

{
“question”: ““{Question}””

}

## Model Outputs

Here are the unordered outputs from the
models. Each output is associated with a
specific model, identified by a unique model
identifier.

{
{

“model_identifier”: “m”,
“output”: ““{Output (a)}””

},
{

“model_identifier”: “M”,
“output”: ““{Output (b)}””

}
}

## What’s your evaluation, Output (a)
or Output (b)?

<|im_end|>

831
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B Generated Question-Answer Pair832

Example from PubMed Publications833

QA Example from PubMed
Question:

What role do anti-iNKT TCR antibodies
play in activating iNKT cells?

Answer:

Anti-iNKT TCR antibodies can activate
iNKT cells by binding to their TCR, which
leads to crosslinking and activation. This
process can enhance the cytotoxic activity of
iNKT cells against target cells, particularly
those expressing Fc gamma receptors.

834

C Expert-Wise Attention835

Given a question embedding Ei
q and expert em-836

beddings Ej
e , we define the expert-wise attention837

mechanism as follows:838

eij = σ
(
W ·

[
Ei

q, E
j
e

]
+ b

)
(7)839

αij =
exp

(
σ
(
W ·

[
Ei

q, E
j
e

]
+ b

))∑
k∈Ee

exp
(
σ
(
W ·

[
Ei

q, Ek
e

]
+ b

)) (8)840

Zi =
∑
j∈Ee

αijE
j
e (9)841

where σ denotes the ReLU activation function,842

and [., .] represents embedding concatenation. Fur-843

thermore, we concatenate Zi with each expert em-844

bedding Ej
e and pass it through an MLP to obtain845

the output probability:846

P
(
Ei

q, E
j
e

)
= ϕ

([
Zi, E

j
e

])
(10)847
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