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ABSTRACT

Model ensemble adversarial attack has become a powerful method for generating
transferable adversarial examples that can target even unknown models, but its
theoretical foundation remains underexplored. To address this gap, we provide
early theoretical insights that serve as a roadmap for advancing model ensemble
adversarial attack. We first define transferability error to measure the error in
adversarial transferability, alongside concepts of diversity and empirical model
ensemble Rademacher complexity. We then decompose the transferability error
into vulnerability, diversity, and a constant, which rigidly explains the origin of
transferability error in model ensemble attack: the vulnerability of an adversarial
example to ensemble components, and the diversity of ensemble components.
Furthermore, we apply the latest mathematical tools in information theory to bound
the transferability error using complexity and generalization terms, contributing to
three practical guidelines for reducing transferability error: (1) incorporating more
surrogate models, (2) increasing their diversity, and (3) reducing their complexity
in cases of overfitting. Finally, extensive experiments with 54 models validate our
theoretical framework, representing a significant step forward in understanding
transferable model ensemble adversarial attacks.

1 INTRODUCTION

Neural networks are highly vulnerable to adversarial examples (Szegedy et al., 2013; Goodfellow
et al., 2014)—perturbations that closely resemble the original data but can severely compromise
safety-critical applications (Zhang & Li, 2019; Kong et al., 2020; Bortsova et al., 2021). Even more
concerning is the phenomenon of adversarial transferability (Papernot et al., 2016; Liu et al., 2017):
adversarial examples crafted to deceive one model often succeed in attacking others. This property
enables attacks without requiring any knowledge of the target model, significantly complicating
efforts to ensure the robustness of neural networks (Dong et al., 2019; Silva & Najafirad, 2020).

To enhance adversarial transferability, researchers have proposed a range of algorithms that fall into
three main categories: input transformation (Xie et al., 2019; Wang et al., 2021), gradient-based
optimization (Gao et al., 2020; Xiong et al., 2022), and model ensemble attacks (Li et al., 2020;
Chen et al., 2024b). Among these, model ensemble attacks have proven especially powerful, as they
leverage multiple models to simultaneously generate adversarial examples that exploit the strengths
of each individual model (Dong et al., 2018). Moreover, these attacks can be combined with input
transformation and gradient-based optimization methods to further improve their effectiveness (Tang
et al., 2024). However, despite the success of such attacks, their theoretical foundation remains
poorly understood. This prompts an important question: Can we establish a theoretical framework
for transferable model ensemble adversarial attacks to shape the evolution of future algorithms?

To conduct a preliminary exploration of this profound question, we propose three novel definitions
as a prerequisite of our theoretical framework. Firstly, we define transferability error as the gap in
expected loss between an adversarial example and the one with the highest loss within a feasible
region of the input space. It captures the ability of an adversarial example to generalize across
unseen models, representing its transferability. Secondly, we introduce prediction variance across the
ensemble classifiers. It address an open problem in model ensemble attack about how to to quantify
diversity and assists in selecting ensemble components. Finally, we also introduce the empirical
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Figure 1: Vulnerability-diversity decomposition of transferability error. (a) The transferability error of
a given adversarial example is defined as the difference in expected loss value between that example
and the most transferable one. (b) Vulnerability is the loss value of the expected ensemble classifier
on the adversarial example. (c) Diversity represents the variance in model ensemble predictions that
correspond to the correct class.

model ensemble Rademacher complexity, inspired by Rademacher complexity (Bartlett & Mendelson,
2002), as a measure of the flexibility of ensemble components in an attack.

With these three definitions, we offer two key theoretical insights. First, we show the vulnerability-
diversity decomposition of transferability error (Figure 1), highlighting the preference for ensemble
components that are powerful attackers and induce greater prediction variance among themselves.
However, this also uncovers a fundamental trade-off between vulnerability and diversity, making
it challenging to maximize both simultaneously. To mitigate this issue and provide more practical
guidelines, we present an upper bound for transferability error, incorporating empirical model
ensemble Rademacher complexity and a generalization term. The primary challenge in proof lies in
the application of cutting-edge mathematical tools from information theory (Esposito & Mondelli,
2024), which are crucial for addressing the complex issue of relaxing the independence assumption
among surrogate classifiers. Our theoretical analysis leads to a crucial takeaway for practitioners:
Including more and diverse surrogate models with reduced model complexity in cases of overfitting
helps tighten the transferability error bound, thereby improving adversarial transferability. Finally,
the experimental results support the soundness of our theoretical framework, highlighting a key step
forward in the deeper understanding of transferable model ensemble adversarial attacks.

2 RELATED WORK

2.1 TRANSFERABLE ADVERSARIAL ATTACK

Researchers have developed various algorithms to enhance adversial transferability. Most of them
fall into three categories: input transformation, gradient-based optimization, and model ensemble
attack. Input transformation techniques apply data augmentation strategies to prevent overfitting to
the surrogate model. For instance, random resizing and padding (Xie et al., 2019), downscaling (Lin
et al., 2019), and mixing (Wang et al., 2021). Gradient-based optimization optimizes the generation
of adversarial examples to achieve better transferability. Some popular ideas include applying
momentum (Dong et al., 2018), Nesterov accelerated gradient (Lin et al., 2019), scheduled step
size (Gao et al., 2020) and gradient variance reduction (Xiong et al., 2022). Model ensemble attack
combine outputs from surrogate models to create an ensemble loss, increasing the likelihood to
deceive various models simultaneously. It can be applied collectively with both input transformation
and gradient-based optimization algorithms (Tang et al., 2024). Some popular ensemble paradigms
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include loss-based ensemble (Dong et al., 2018), prediction-based (Liu et al., 2017), logit-based
ensemble (Dong et al., 2018), and longitudinal strategy (Li et al., 2020). Moreover, advanced
ensemble algorithms have been created to ensure better adversarial transferability (Li et al., 2023; Wu
et al., 2024; Chen et al., 2024b). An extended and detailed summary of related work is in Appendix C.

Within the extensive body of research on model ensemble attacks, two notable observations stand
out. First, increasing the number of models in an ensemble improves adversarial transferability (Liu
et al., 2017; Dong et al., 2018; Lin et al., 2019; Gubri et al., 2022b). Second, using more diverse
surrogate models with varying architectures and back-propagated gradients (Tang et al., 2024) further
enhances transferability. However, to our best knowledge, these intriguing phenomena have yet to be
fully understood from a theoretical perspective. In this paper, we are the first to provide a theoretical
explanation for them, offering insights that can guide future algorithm design.

2.2 THEORETICAL UNDERSTANDING OF ADVERSARIAL TRANSFERABILITY

In contrast to the wealth of empirical and intuitive studies, research on the theoretical understanding
of adversarial transferability remains limited. Recent efforts have primarily focused on aspects such
as data (Tramèr et al., 2017), surrogate model (Wang & Farnia, 2023), optimization (Yang et al.,
2021; Zhang et al., 2024a; Chen et al., 2024b) and target model (Zhao et al., 2023). Tramèr et al.
(2017) investigates the space of transferable adversarial examples and establishes conditions on
the data distribution that suggest transferability for some basic models. In terms of the surrogate
model generalization, Wang & Farnia (2023) builds the generalization gap to show that a surrogate
model with a smaller generalization error leads to more transferable adversarial examples. From an
optimization perspective, Yang et al. (2021); Zhang et al. (2024a) establish upper and lower bounds
on adversarial transferability, linking it to model smoothness and gradient similarity, while Chen
et al. (2024b) provides theoretical evidence connecting transferability to loss landscape flatness and
closeness to local optima. Regarding the target model, Zhao et al. (2023) theoretically reveals that
reducing the discrepancy between the surrogate and target models can limit adversarial transferability.

Despite these theoretical advances, to the best of our knowledge, transferable model ensemble
adversarial attacks remain unexplored. To address this gap, we take a pioneering step by presenting
the first theoretical analysis of such attacks. Our work not only offers theoretical insights into these
attacks but also incorporates recent advancements in learning theory, laying the groundwork for
future theoretical investigations into adversarial transferability.

3 KEY DEFINITIONS: TRANSFERABILITY ERROR, DIVERSITY, AND
ENSEMBLE COMPLEXITY

In this section, we first highlight the fundamental goal of model ensemble adversarial attack (Sec-
tion 3.1). Then we define the transferability error (Section 3.2), diversity in transferable model
ensemble attack (Section 3.3) and empirical model ensemble Rademacher complexity (Section 3.4).

3.1 MODEL ENSEMBLE ADVERSARIAL ATTACK

Given the input space X ⊂ Rd and the output space Y ⊂ R, we have a joint distribution PZ over
the input space Z = X × Y . The training set Ztrain = {zi|zi = (xi, yi) ∈ Z, yi ∈ {−1, 1}, i =
1, · · · ,K}, which consists of K examples drawn independently from PZ . We denote the hypothesis
space by H : X 7→ Y and the parameter space by Θ. Let f(θ; ·) ∈ H be a classifier parameterized
by θ ∈ Θ, trained for a classification task using a loss function ℓ : Y × Y 7→ R+

0 . Let PΘ represent
the distribution over the parameter space Θ. Define PΘN as the joint distribution over the product
space ΘN , which denotes the space of N such sets of parameters. We use Ztrain to train N surrogate
models f(θ1; ·), · · · , f(θN ; ·) for model ensemble. The training process of these N classifiers can
be viewed as sampling the parameter sets (θ1, . . . , θN ) from the distribution PΘN . For a clean data
ẑ = (x̂, y) ∈ Z , an adversarial example z = (x, y) ∈ Z , and N classifiers for model ensemble
attack, define the population risk LP (z) and the empirical risk LE(z) of the adversarial example z as

LP (z) = Eθ∼PΘ [ℓ(f(θ;x), y)], (1)
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and LE(z) =
1

N

N∑
i=1

ℓ(f(θi;x), y). (2)

Intuitively, a transferable adversarial example leads to a large LP (z) because it can attack many
classifiers with parameter θ ∈ Θ. Therefore, the most transferable adversarial example z∗ = (x∗, y)
around z is defined as

x∗ = arg max
x∈Bϵ(x̂)

LP (z), (3)

where Bϵ(x̂) = {x : ∥x− x̂∥2 ≤ ϵ} is an adversarial region centered at x̂ with radius ϵ > 0. However,
the expectation in LP (z) cannot be computed directly. Thus, when generating adversarial examples,
the empirical version Eq. (2) is used in practice, such as loss-based ensemble attack (Dong et al.,
2018). So the adversarial example z = (x, y) is obtained from

x = arg max
x∈Bϵ(x)

LE(z). (4)

There is a gap between the adversarial example z we find and the most transferable one z∗. It is
due to the fact that the ensemble classifiers cannot cover the whole parameter space of the classifier,
i.e., there is a difference between LP (z) and LE(z). Accordingly, the core objective of transferable
model ensemble attack is to design approaches that approximate LE(z) to LP (z), thereby increasing
the transferability of adversarial examples.

3.2 TRANSFERABILITY ERROR

Considering the difference between z and z∗, the transferability of an adversarial example z can be
characterized as the difference in population risk between it and the optimal one.

Definition 1 (Transferability Error). The transferability error of z with radius ϵ is defined as:

TE(z, ϵ) = LP (z
∗)− LP (z). (5)

There always holds TE(z, ϵ) ≥ 0 as LP (z
∗) ≥ LP (z). The closer TE(z, ϵ) is to 0, the better the

transferability of z. Therefore, in principle, the essential goal of various model ensemble attack
algorithms is to make transferability error TE(z, ϵ) as small as possible. Moreover, if the distribution
over the parameter space PΘ, adversarial region Bϵ(x) and loss function ℓ are fixed, then LP (z

∗)
becomes a constant, which means that the goal of minimizing TE(z, ϵ) becomes maximizing LP (z).

In the following lemma, we will show how the difference between empirical risk and population risk
affects the transferability error of z. The proof is in Appendix B.1.

Lemma 1. The transferability error defined by Eq. (5) is bounded by the largest absolute difference
between LP (z) and LE(z), i.e.,

TE(z, ϵ) ≤ 2 sup
z∈Z

|LP (z)− LE(z)| . (6)

The lemma strictly states that if we can bound the difference between LP (z) and LE(z), the
transferability error can be constrained to a small value, thereby enhancing adversarial transferability.
This indicates that we can develop strategies to make LE(z) closely approximate LP (z), ultimately
improving the transferability of adversarial examples.

3.3 QUANTIFYING DIVERSITY IN MODEL ENSEMBLE ATTACK

Before the advent of model ensemble attacks, the formal definition of diversity in ensemble learning
had remained a long-standing challenge for decades (Wood et al., 2023). Unfortunately, this challenge
continues to persist in the context of transferable model ensemble attacks. Despite various intuitive
approaches (Li et al., 2020; Tang et al., 2024), there is still no widely accepted method for rigorously
quantifying diversity. In the following definition, we propose measuring diversity among ensemble
attack classifiers through prediction variance, building on recent advances in ensemble learning
theory (Ortega et al., 2022; Wood et al., 2023).
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Definition 2 (Diversity of Model Ensemble Attack). The diversity of model ensemble attack across
θ ∼ PΘ for a specific adversarial example z = (x, y) is defined as the variance of model prediction:

Varθ∼PΘ
(f(θ;x)) = Eθ∼PΘ

[f(θ;x)− Eθ∼PΘ
f(θ;x)]

2
. (7)

It indicates the degree of dispersion in the predictions of different ensemble classifiers for the same
adversarial example. The diversity of model ensemble attack is a measure of ensemble member
disagreement, independent of the label. From an intuitive perspective, the disagreement among the
ensemble components helps prevent the adversarial example from overfitting to the classifiers in the
ensemble, thereby enhancing adversarial transferability to some extent.

To calculate the diversity explicitly as a metric, we consider a dataset of adversarial examples
Zattack = {zi|zi = (xi, yi), i = 1, · · · ,M} and N classifiers in the ensemble. The diversity is
computed as the average sample variance of predictions for all adversarial examples in the dataset:

Diversity =
1

M

M∑
i=1

[
1

N

N∑
j=1

(
f(θj ;xi)−

1

N

N∑
j=1

f(θj ;xi)

)2
]
. (8)

Remark. For multi-class classification problems, f(θ;x) is replaced with the logit corresponding to
the correct class prediction made by the classifier.

3.4 EMPIRICAL MODEL ENSEMBLE RADEMACHER COMPLEXITY

We define the empirical Rademacher complexity for model ensemble by analogy to the original
empirical Rademacher complexity (Koltchinskii & Panchenko, 2000; Bartlett & Mendelson, 2002).
Definition 3 (Empirical Model Ensemble Rademacher Complexity). Given the input space Z =
X × Y and N classifiers f(θ1; ·), · · · , f(θN ; ·). Let σ = {σi}i∈[N ] be a collection of independent
Rademacher variables, which are random variables taking values uniformly in {+1,−1}. We define
the empirical model ensemble Rademacher complexity RN (Z) as follows:

RN (Z) = E
σ

[
sup
z∈Z

1

N

N∑
i=1

σiℓ(f(θi;x), y)

]
. (9)

In conventional settings of machine learning, the empirical Rademacher complexity captures how
well models from a function class can fit a dataset with random noisy labels (Shalev-Shwartz &
Ben-David, 2014). A sufficiently complex function class includes functions that can effectively fit
arbitrary label assignments, thereby maximizing the complexity term (Mohri et al., 2018). Likewise,
in model ensemble attack, Eq. (9) is expected to measure the complexity of the input space Z relative
to the N classifiers. Some extreme cases are analyzed in Appendix D.1.

4 THEORETICALLY REDUCE TRANSFERABILITY ERROR

4.1 VULNERABILITY-DIVERSITY DECOMPOSITION OF TRANSFERABILITY ERROR

Inspired by the bias-variance decomposition (Geman et al., 1992; Domingos, 2000) in learning
theory, we provide the corresponding theoretical support for prediction variance by decomposing the
transferability error into vulnerability, diversity and constants.
Theorem 1 (Vulnerability-diversity Decomposition). Consider the squared error loss l(f(θ;x), y) =
[f(θ;x)− y]

2 for a data point z = (x, y). Let f̃(θ;x) = Eθ∼PΘ
f(θ;x) be the expectation of

prediction over the distribution on the parameter space. Then there holds

TE(z, ϵ) = LP (z
∗)− l(f̃(θ;x), y)︸ ︷︷ ︸

Vulnerability

−Varθ∼PΘ
f(θ;x)︸ ︷︷ ︸

Diversity

. (10)

The proof and the empirical version of it is in Appendix B.2. The “Vulnerability” term measures
the risk of a data point z being compromised by the model ensemble. If the model ensemble is
sufficiently strong to fit the direction opposite to the target label, the resulting high loss theoretically
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reduces the transferability error. This insight suggests that selecting strong attackers as ensemble
components leads to lower transferability error. The “Diversity” term implies that selecting diverse
attackers in a model ensemble attack theoretically contributing to a reduction in transferability error.
In conclusion, Theorem 1 provides the following guideline for reducing transferability error in model
ensemble attack: we are supposed to choose ensemble components that are both strong and diverse.

Remark 1. Theorem 1 connects the existing body of work and clarifies how each algorithm
strengthens adversarial transferability. For instance, some approaches tend to optimizing the attack
process (Xiong et al., 2022; Chen et al., 2023) to improve “Vulnerability”, while others aim to diversify
surrogate models (Li et al., 2020; 2023; Wang et al., 2024) to enhance “Diversity”. Also, there are
other definitions of diversity based on gradient in previous literature (Yang et al., 2021; Kariyappa &
Qureshi, 2019). A more detailed discussion of prior insights is presented in Appendix D.2.

Remark 2. Theorem 1 and Lemma 5 in Yang et al. (2021) offer complementary perspectives in the
analysis of transferable adversarial attack. And the detailed discussion is in Appendix D.3.

However, due to the mathematical nature of Eq. (10), there remains a vulnerability-diversity trade-off
in model ensemble attacks, similar to the well-known bias-variance trade-off (Geman et al., 1992).
This means that, in practice, it is not feasible to maximize both “Vulnerability” and “Diversity”
simultaneously. Recognizing this limitation, we proceed with further theoretical analysis to propose
more guidelines for practitioners in the following section.

4.2 UPPER BOUND OF TRANSFERABILITY ERROR

We develop an upper bound of transferability error in this section. We begin by taking Multi-Layer
Perceptron (MLP) as an example of deep neural network and derive the upper bound of RN (Z). The
proof is in Appendix A.4.

Lemma 2 (Ensemble Complexity of MLP). Let H = {x 7→ Wlϕl−1 (Wl−1ϕl−2 (. . . ϕ1 (W1x)))}
be the class of real-valued networks of depth l, where x ∈ Rd1 , Wi ∈ Rdi+1×di . Given N
classifiers from H, where the parameter matrix is Wij , i ∈ {1, · · · , n}, j ∈ {1, · · · , l} and
T =

∏l
j=1 supi∈[n] ∥Wi,j∥F . Let ∥x∥F ≤ B. With 1-Lipschitz activation functions ϕ1, · · · , ϕl−1

and 1-Lipschitz loss function ℓ(yf(x)), there holds:

RN (Z) ≤

(√
(2 log 2)l + 1

)
BT

√
N

. (11)

Remark. We also derive the upper bound of RN (Z) for the cases of linear model (Appendix A.2)
and two-layer neural network (Appendix A.3). These results are special cases of the above theorem.

In particular, a larger N and smaller T will give RN (Z) a tighter bound. Notice that T contains the
norm of weight matrices, which is related to model complexity (Bartlett et al., 2017; Neyshabur et al.,
2018). And a smaller model complexity corresponds to a smaller T (Loshchilov & Hutter, 2019).
In summary, Lemma 2 mathematically shows that increasing the number of surrogate models and
reducing the model complexity of them can limit the value of RN (Z).

We now provide the upper bound of transferability error, and the proof is in Appendix B.3.

Theorem 2 (Upper bound of Transferability Error). Given the transferability error defined by Eq. (5)
and general rademacher complexity defined by Eq. (9). Let P⊗N

i=1 Θ be the joint measure induced
by the product of the marginals. If the loss function ℓ is bounded by β ∈ R+ and PΘN is absolutely
continuous with respect to P⊗N

i=1 Θ for any function fi, then for α > 1 and γ = α
α−1 , with probability

at least 1− δ, there holds

TE(z, ϵ) ≤ 4RN (Z) +

√√√√18γβ2

N
ln

22+
1
γ H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
δ

, (12)

where Hα

(
PΘN ∥P⊗N

i=1 Θ

)
is the Hellinger integrals (Hellinger, 1909) with parameter α, which

measures the divergence between two probability distributions if α > 1 (Liese & Vajda, 2006).
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Remark 1. Theorem 2 can be naturally extended to scenarios where the distributions of the surrogate
model and the target model differ. This extension is discussed in Appendix D.4 from two perspectives:
domain adaptation theory (Blitzer et al., 2007) and a redefinition of the model space.

Remark 2. Theorem 2 is grounded in the empirical model ensemble Rademacher complexity defined
in Eq. (9). However, it can be further extended to information-theoretic analysis (Xu & Raginsky,
2017), as demonstrated in Appendix D.5.

The first term in Eq. (12) suggests that incorporating more surrogate models with less model com-
plexity in ensemble attack will constrain RN (Z) and enhances adversarial transferability. Intuitively,
incorporating more models helps prevent any single model from overfitting to a specific adversarial
example. Such theoretical heuristic is also supported by experimental results (Liu et al., 2017; Dong
et al., 2018; Lin et al., 2019; Li et al., 2020; Gubri et al., 2022b; Chen et al., 2023), which also stress
the advantage of more surrogate models to obtain transferable attack. Additionally, when there is an
overfitting issue, models with reduced complexity will mitigate it.

The second term also suggests that a large N (using more models) can lead to a tighter bound.
Furthermore, it motivates the idea that reducing the interdependence among the parameters in
ensemble components (i.e., increasing their diversity) results in a tighter upper bound for TE(z, ϵ).
Recall that Hα(PΘN ∥P⊗N

i=1 Θ) represents the divergence between the joint distribution PΘN and
the product of marginals P⊗N

i=1 Θ. The joint distribution captures dependencies, while the product
of marginals does not. Therefore, Hα(PΘN ∥P⊗N

i=1 Θ) measures the degree of dependency among
the parameters from N classifiers. As a result, increasing the diversity of parameters in surrogate
models and reducing their interdependence enhances adversarial transferability. This theoretical
conclusion is also supported by empirical algorithms (Li et al., 2020; Tang et al., 2024), which also
advocate for generating adversarial examples from diverse models.

The trade-off between complexity and diversity. Reducing model complexity may conflict with
increasing diversity. We discuss this issue from two angles. On one hand, when generating adversarial
examples from simpler models to attack more complex ones, the overall model complexity is lower,
but diversity may also be limited due to the simpler structure of the ensemble attackers. On the other
hand, attacking simpler models with a stronger, more diverse ensemble may increase diversity but
also raise model complexity. In this scenario, reducing complexity can help prevent overfitting and
lead to a tighter transferability error bound, albeit with a slight reduction in ensemble diversity. In
summary, striking a balance between model complexity and diversity is crucial in practice.

From generalization error to transferability error. The mathematical form of Eq. (12) is in
line with the generalization error bound (Bartlett & Mendelson, 2002). However, we note that a key
distinction between transferability error and generalization error lies in the independence assumption.
Conventional generalization error analysis relies on an assumption: each data point from the dataset
is independently sampled (Zou & Liu, 2023; Hu et al., 2023). By contrast, the surrogate models for
ensemble attack are usually trained on the datasets with similar tasks, e.g., image classification. In this
case, we cannot assume these surrogate models behave independently for a solid theoretical analysis,
which increases the difficulty of proof in our paper. To build the gap between generalization error
and transferability error, our proof introduces the latest techniques in information theory (Esposito &
Mondelli, 2024). And Refer to Appendix D.6 for a detailed discussion.

4.3 GENERALIZATION AND ADVERSARIAL TRANSFERABILITY

We offer new insights into a foundational and popular analogy in the literature: The transferability
of an adversarial example is an analogue to the generalizability of the model (Dong et al., 2018;
Lin et al., 2019; Wang et al., 2021; Wang & He, 2021; Xiong et al., 2022; Chen et al., 2024b).
Interestingly, our theory also sheds light on this insight in several ways.

First, the mathematical formulations in Lemma 1 is similar to generalization error (Vapnik, 1998;
Bousquet & Elisseeff, 2002). Also, Lemma 2 is similar to the bound of the original Rademacher
complexity (Golowich et al., 2018). More importantly, recall that in the conventional framework
of learning theory: (1) increasing the size of training set typically leads to a better generalization
of the model (Bousquet & Elisseeff, 2002); (2) improving the diversity among ensemble classifiers
makes it more advantageous for better generalization (Ortega et al., 2022); and (3) reducing the
model complexity (Cherkassky, 2002) may mitigate overfitting and benefit the generalization ability.
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Figure 2: Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs
on the MNIST dataset.
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Figure 3: Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs
on the Fashion-MNIST dataset.

These ideas correspond to each of our theoretical understanding in Section 4. Overall, we support the
analogy from a theoretical perspective. And further detailed discussion is in Appendix D.7.

5 EXPERIMENTS

We conduct our experiments on four datasets, including the MNIST (LeCun, 1998), Fashion-
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), and ImageNet-1K (Russakovsky
et al., 2015) datasets. We use the first three datasets to empirically validate our theoretical contribution,
and leave the experiments on ImageNet to build a powerful ensemble adversarial attack in practice.

We build six deep neural networks for image classification, including three MLPs with one to three
hidden layers followed by a linear classification layer, and three convolutional neural networks (CNNs)
with one to three convolutional layers followed by a linear classification layer. To ensure diversity
among the models, we apply three different types of transformations during training. Additionally,
we set the weight decay under the L2 norm to 10−4, 10−3, 10−2, respectively. This results in a total
of 6 × 3 × 3 = 54 models. To establish a gold standard for adversarial transferability evaluation,
we additionally train a ResNet-18 (He et al., 2016) from scratch on three datasets (MNIST, Fashion-
MNIST, and CIFAR-10), respectively. We will leverage the models at hand to attack this ResNet-18
for a reliable evaluation. For models trained on MNIST, Fashion-MNIST, we set the number of
epochs as 10. For models trained on CIFAR-10, we set the number of epochs as 30. We use the
Adam optimizer with setting the learning rate as 10−3. We set the batch size as 64.

5.1 EVALUATION ON THE ATTACK DYNAMICS

For each dataset (MNIST & Fashion-MNIST & CIFAR-10), we record the attack success rate (ASR),
loss value, and the variance of model predictions with increasing the number of steps for attack.
We use MI-FGSM (Dong et al., 2018) to craft the adversarial example and use the cross-entropy
as the loss function to optimize the adversarial perturbation. Generally, the number of steps for the
transferable adversarial attack is set as 10 (Zhang et al., 2024b), but to study the attack dynamics more
comprehensively, we perform 20-step attack. In our plots, we use the mean-squared-error to validate
our theory, which indicates the vulnerability from the theory perspective better. The first metric
exhibits an inverse relationship with transferability error. And the latter two metrics correspond to the
vulnerability and diversity components in the decomposition in Section 4.1. The number of steps for
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Figure 4: Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs
on the CIFAR-10 dataset.
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Figure 5: Evaluation of ensemble attacks with increasing the number of models using MLPs and
CNNs on the three datasets.

attack is indicated by the x-axis. And we denote λ as the weight decay. We respectively report the
results on three datasets in fig. 2, fig. 3, and fig. 4.

Validation of vulnerability-diversity decomposition. Across all three datasets, we observe a
consistent pattern: as the number of steps increases, both ASR and loss values improve steadily,
meaning that transferability error decreases while vulnerability increases. Notably, the magnitude of
variance is approximately ten times smaller than that of the loss value, indicating a much smaller
impact on transferability error. Thus, “vulnerability” predominantly drives the vulnerability-diversity
decomposition, and the upward trend in vulnerability aligns with the reduction in transferability error.

The trend of variance. On the MNIST and Fashion-MNIST datasets, diversity initially increases
but later declines. In contrast, on the CIFAR dataset, the variance for MLP consistently increases,
whereas for CNNs, it decreases with a small regularization term but increases with a larger one. This
intriguing phenomenon is tied not only to the trade-off between complexity and diversity discussed
in Section 4.2, but also to the complex behavior of variance. In the bias-variance trade-off literature,
different trends in variance have been observed. For example, Yang et al. (2020) suggests that variance
follows a bell-shaped curve, rising initially and then falling as network width expands. Similarly, Lin
& Dobriban (2021) provides a detailed decomposition of variance, illustrating the influence of factors
like initialization, label noise, and training data. While a full investigation of variance behavior is
beyond the scope of this work, we provide additional discussion in Appendix D.8.

The potential trade-off between diversity and complexity. Our experimental results (specifi-
cally the “variance” sub-figure), indicate the potential trade-off between diversity and complexity.
Consider two distinct phases in the attack dynamics: 1) Initial phase of the attack (first few steps):
During this phase, the adversarial example struggles to attack the model ensemble effectively (a low
loss). Consequently, both the loss and variance increase, aligning with the vulnerability-diversity
decomposition. 2) Potential “over-fitting” phase of the attack (subsequent steps): In this phase, the
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adversarial example can effectively attack the model ensemble, achieving a high loss. Here, the
trade-off between diversity and complexity becomes evident, particularly at the final step of the
attack. As the regularization term λ increases (i.e., lower model complexity), the variance of the
model ensemble may increase. For instance, in the variance sub-figure, the red curve may exceed one
of the other curves, indicating this potential trade-off.

5.2 EVALUATION ON THE ENSEMBLE FRAMEWORK

We further validate the effectiveness of the vulnerability-diversity decomposition within the ensemble
framework. Specifically, instead of focusing solely on the training dynamics, we progressively
increase the number of models in the ensemble attack to evaluate the decomposition’s impact. We
begin by incorporating MLPs with different architectures and regularization terms, followed by CNNs.
In total, up to 18 models are included in a single attack. We depicted the results in fig. 5.

We can consistently observe that increasing the number of ensemble models improves the attack
success rate, i.e., reduces the transferability error. On the MNIST and Fashion-MNIST datasets,
both vulnerability and diversity also increase as the number of models grows. Although the diversity
sometimes shows a decreasing trend on the CIFAR-10 dataset, its magnitude is approximately 100
times smaller than vulnerability, thus having a minimal impact on the attack success rate.

6 CONCLUSION

In this paper, we address the underdeveloped theoretical foundation of transferable model ensemble
adversarial attacks. We introduce three key definitions: transferability error, prediction variance, and
empirical model ensemble Rademacher complexity. Through the vulnerability-diversity decompo-
sition of transferability error, we identify a crucial trade-off between vulnerability and diversity in
ensemble components, presenting the challenge of optimizing both simultaneously. To overcome
this, we introduce recent mathematical tools and derive an upper bound on transferability error,
offering practical guidelines for improving adversarial transferability. Our extensive experiments
validate these insights, marking a significant advancement in the understanding and development of
transferable model ensemble adversarial attacks.
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APPENDIX

A PROOF OF GENERALIZED RADEMACHER COMPLEXITY

A.1 PRELIMINARY

For simplicity, denote f(θi;x) as fi(x). For 1-Lipschitz loss function ℓ(yf(x)) (for example, hinge
loss ℓ(f(x), y) = max (0, 1− yf(x)), there holds:

RN (Z) = E
σ

[
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

]

≤ E
σ

[
sup
z∈Z

1

N

N∑
i=1

σiyfi(x)

]

= E
σ

[
sup
z∈Z

1

N

N∑
i=1

σifi(x)

]
:= ℜN (Z).

So we can bound ℜN (Z) instead of RN (Z).

A.2 LINEAR MODEL

Given Section A.1, we provide the bound below.
Lemma 3 (Linear Model). Let H =

{
x 7→ wTx

}
, where x,w ∈ Rd. Given N classifiers from H,

assume that ∥x∥2 ≤ B and ∥w∥2 ≤ C. Then

ℜN (Z) ≤ BC√
N

.

Proof. We have

ℜN (Z) = E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σifi(x)

]

= E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σiw
T
i x

]
(fi(x) = wT

i x)

= E
σ

[
sup

∥x∥2≤B

xT

(
1

N

N∑
i=1

σiwi

)]
(aT b = bTa)

=
B

N
E
σ

∥∥∥∥∥
N∑
i=1

σiwi

∥∥∥∥∥
2

(aT b ≤ ∥a∥2∥b∥2)

≤ B

N

E
σ

∥∥∥∥∥
N∑
i=1

σiwi

∥∥∥∥∥
2

2

 1
2

(Jensen inequality: Ex ≤
√
Ex2)

=
B

N

{
E
σ

[(
N∑
i=1

σiw
T
i

)(
N∑
i=1

σiwi

)]} 1
2

=
B

N

Eσ


N∑
i=1

σ2
i︸︷︷︸
1

wT
i wi +

N∑
i=1

N∑
j=1,j ̸=i

σiσjw
T
i wj︸ ︷︷ ︸

0




1
2
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=
B

N

(
N∑
i=1

wT
i wi

) 1
2

≤ B

N

(
N max ∥w∥22

) 1
2

≤ BC√
N

. (∥w∥2 ≤ C)

The proof is complete.

A.3 TWO-LAYER NEURAL NETWORK

Given Section A.1, we provide the bound below.
Lemma 4 (Two-layer Neural Network). Let H = {x 7→ wTϕ(Ux)}, where x ∈ Rd, U ∈ Rm×d,
w ∈ Rm, m is the number of the hidden layer, and ϕ(x) = max (0, x) is the element-wise ReLU
function. Given N classifiers from H, assume that ∥x∥2 ≤ B, ∥w∥2 ≤ B′, and ∥Ui∥2 ≤ C, where
Uj is the j-th row of U . Then

ℜN (Z) ≤
√
mBB′C√

N
.

Proof. We have

ℜN (Z) = E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σifi(x)

]

= E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σiw
T
i ϕ(Uix)

]
(fi(x) = wT

i ϕ(Uix))

=
B′

N
E
σ

[
sup

∥x∥2≤B

∥∥∥∥∥
N∑
i=1

σiϕ(Uix)

∥∥∥∥∥
2

]
(∥w∥2 ≤ B′)

=
B′

N
E
σ

[
sup

∥x∥2≤B

∥∥∥∥∥
N∑
i=1

σiVi

∥∥∥∥∥
2

]
(Denote Vi =

ϕ(U1ix)
...

ϕ(Umix)

 ∈ Rm)

=
B′

N
E
σ

 sup
∥x∥2≤B

√√√√( N∑
i=1

σiV T
i

)(
N∑
i=1

σiVi

)

=
B′

N
E
σ

 sup
∥x∥2≤B


N∑
i=1

σ2
i︸︷︷︸
1

V T
i Vi +

N∑
i=1

N∑
j=1,j ̸=i

σiσjV
T
i Vj︸ ︷︷ ︸

0


1
2


=

B′

N
sup

∥x∥2≤B

(
N∑
i=1

V T
i Vi

) 1
2

≤ B′

N
sup

∥x∥2≤B

(
N max

i
∥Vi∥22

) 1
2

≤ B′
√
N

sup
∥x∥2≤B

(
max

i
∥Vi∥2

)
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For Vi =

ϕ(U1ix)
...

ϕ(Umix)

 ∈ Rm, we have

sup
∥x∥2≤B

(
max

i
∥Vi∥2

)
= sup

∥x∥2≤B

max
i

∥∥∥∥∥∥∥
ϕ(U1ix)

...
ϕ(Umix)


∥∥∥∥∥∥∥
2


≤ sup

∥x∥2≤B

max
i

∥∥∥∥∥∥∥
U1ix

...
Umix


∥∥∥∥∥∥∥
2

 (|ϕ(x)| ≤ |x|)

≤
√
m sup

∥x∥2≤B

(
max

i
max

j
∥Ujix∥2

)
≤

√
m sup

∥x∥2≤B

(
max

i
max

j
∥Uji∥2 ∥x∥2

)
=

√
mBC (∥x∥2 ≤ B and ∥Uji∥2 ≤ C)

Finally,

ℜN (Z) ≤ B′
√
N

sup
∥x∥2≤B

(
max

i
∥Vi∥2

)
≤

√
mBB′C√

N

The proof is complete.

A.4 PROOF OF LEMMA 2

For simplicity, denote f(θi;x) as fi(x) and i ∈ {1, · · · , N} as i ∈ [N ].

First, we begin with a lemma, which is a similar version of Lemma 1 from (Golowich et al., 2018).
Lemma 5. Let ϕ be a 1-Lipschitz, positive-homogeneous activation function which is applied
element-wise (such as the ReLU). Then for any class of vector-valued functions F , any convex and
monotonically increasing function g : R → [0,∞) and R ∈ R+, there holds:

Eσ sup
f∈F,W :∥W∥F≤R

g

(∥∥∥∥∥
N∑
i=1

σiϕ (Wfi (x))

∥∥∥∥∥
)

≤ 2 · Eσ sup
f∈F

g

(
R ·

∥∥∥∥∥
N∑
i=1

σifi (x)

∥∥∥∥∥
)

(13)

Proof. Let w1, · · · , wh be the rows of W , we have

∥∥∥∥∥
N∑
i=1

σiϕ (Wfi (x))

∥∥∥∥∥
2

=

h∑
j=1

[
N∑
i=1

σiϕ(wjfi(x))

]2

=

h∑
j=1

∥wj∥2
[

N∑
i=1

σiϕ

(
w⊤

j

∥wj∥
fi (x)

)]2
(ϕ(ax) = aϕ(x))

Therefore, the supremum of this over all w1, · · · , wh such that ∥W∥2F =
∑h

j=1 ∥wj∥2 ≤ R2 must
be attained when ∥wj∥ = R for some j and ∥wi∥ = 0 for all i ̸= j. So we have

Eσ sup
f∈F,W :∥W∥F≤R

g

(∥∥∥∥∥
N∑
i=1

σiϕ (Wfi (x))

∥∥∥∥∥
)

= Eσ sup
f∈F,w:∥w∥=R

g

(∣∣∣∣∣
N∑
i=1

σiϕ
(
w⊤fi (x)

)∣∣∣∣∣
)
.

Since g(|z|) ≤ g(z) + g(−z), this can be upper bounded by
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Eσ sup g

(
N∑
i=1

σiϕ
(
w⊤fi (x)

))
+ Eσ sup g

(
−

N∑
i=1

σiϕ
(
w⊤fi (x)

))

= 2 · Eσ sup g

(
N∑
i=1

σiϕ
(
w⊤fi (x)

))
,

where the equality follows from the symmetry in the distribution of the σi random variables. The
right hand side in turn can be upper bounded by

2 · Eσ sup
f∈F,w:∥w∥=R

g

(
N∑
i=1

σiw
⊤fi (x)

)
≤ 2 · Eσ sup

f∈F,w:∥w∥=R

g

(
∥w∥

∥∥∥∥∥
N∑
i=1

σifi (x)

∥∥∥∥∥
)

= 2 · Eσ sup
f∈F

g

(
R ·

∥∥∥∥∥
N∑
i=1

σifi (x)

∥∥∥∥∥
)
.

With this lemma in hand, we can prove lemma 2:

Proof. For λ > 0, the rademacher complexity can be upper bounded as

NℜN (Z) = Eσ sup
f1,··· ,fn

N∑
i=1

σifi(x)

≤ 1

λ
logEσ sup exp

(
λ

N∑
i=1

σifi(x)

)
(Jensen’s inequality)

≤ 1

λ
logEσ sup exp

 sup
i∈[n]

∥Wi,l∥F︸ ︷︷ ︸
Tl

∥∥∥∥∥∥∥λ
N∑
i=1

σiϕl−1 (Wi,l−1ϕl−2 (. . . ϕ1 (Wi,1x)))︸ ︷︷ ︸
fi,l−1(x)

∥∥∥∥∥∥∥


We write this last expression as

1

λ
logEσ sup exp

(
Tl · λ

∥∥∥∥∥
N∑
i=1

σiϕl−1 (fi,l−1(x))

∥∥∥∥∥
)

≤ 1

λ
log

(
2 · Eσ sup exp

(
Tl · Tl−1 · λ

∥∥∥∥∥
N∑
i=1

σifi,l−2 (x)

∥∥∥∥∥
))

(Lemma 5)

≤ · · · (Repeatedly apply Lemma 5)

≤ 1

λ
log

(
2l−2 · Eσ sup exp

(
λ ·

l−1∏
i=1

Ti ·

∥∥∥∥∥
N∑
i=1

σiϕ1(Wi,1x)

∥∥∥∥∥
))

≤ 1

λ
log

(
2l−1 · Eσ sup exp

(
λ ·

l−1∏
i=1

Ti ·

∥∥∥∥∥
N∑
i=1

σiWi,1x

∥∥∥∥∥
))

Assume that W ∗
i,1, i ∈ [N ] maximizes

sup exp

(
λ ·

l−1∏
i=1

Ti ·

∥∥∥∥∥
N∑
i=1

σiWi,1x

∥∥∥∥∥
)
.

Therefore,

1

λ
log

(
2l−1 · Eσ sup exp

(
λ ·

l−1∏
i=1

Ti ·

∥∥∥∥∥
N∑
i=1

σiWi,1x

∥∥∥∥∥
))
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=
1

λ
log

2l−1 · Eσ exp

λ ·
l−1∏
i=1

Ti ·

∥∥∥∥∥
N∑
i=1

σiW
∗
i,1x

∥∥∥∥∥︸ ︷︷ ︸
Z




=
1

λ
log
(
2l−1 · Eσ exp (λZ)

)
=
(l − 1) log(2)

λ
+

1

λ
log {Eσ exp (λZ)}

=
(l − 1) log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ

For EZ, we have

EZ =

l−1∏
i=1

Ti

√√√√√Eσ

∥∥∥∥∥
N∑
i=1

σiW ∗
i,1x

∥∥∥∥∥
2


=

l−1∏
i=1

Ti

√√√√√Eσ

 N∑
i=j

σiσj

(
W ∗

i,1x
)T (

W ∗
j,1x

)
≤

l−1∏
i=1

Ti

(
T1B

√
N
)

=B
√
N

l∏
i=1

Ti

Note that Z is a deterministic function of the i.i.d. random variables σ1, · · · , σN , and satisfies

Z(σ1, · · · , σi, · · · , σN )− Z(σ1, · · · ,−σi, · · · , σN ) ≤ 2B

l∏
i=1

Ti︸ ︷︷ ︸
T

.

This means that Z satisfies a bounded-difference condition. According to Theorem 6.2 in Boucheron
et al. (2013), Z is sub-Gaussian with variance factor

1

4

N∑
i=1

(2BT )2 = NB2T 2,

and satisfies
1

λ
log{E expλ(Z − EZ)} ≤ 1

λ
· λ

2

2
NB2T 2 =

λ

2
NB2T 2.

Choosing λ =

√
2 log(2)l

BT
√
N

and using the above, we get that

(l − 1) log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ ≤

(√
(2 log 2)l + 1

)
BT

√
N

Finally, we get

ℜN (Z) ≤

(√
(2 log 2)l + 1

)
BT

√
N

The proof is complete.
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B PROOF OF TRANSFERABILITY ERROR

B.1 TRANSFERABILITY ERROR AND GENERALIZATION ERROR

For z = (x, y), there holds

TE(z) = LP (z
∗)− LP (z) ≤ LP (z

∗)− LP (z) + (LE(z)− LE(z
∗))

= (LP (z
∗)− LE(z

∗)) + (LE(z)− LP (z))

≤ sup
x∈Bϵ(x)

(LP (z)− LE(z)) + sup
x∈Bϵ(x)

(LE(z)− LP (z))

≤ sup
z∈Z

(LP (z)− LE(z)) + sup
z∈Z

(LE(z)− LP (z)).

≤ 2 sup
z∈Z

|LP (z)− LE(z)| .

B.2 PROOF OF THEOREM 1

We prove a general version of the theorem as follows:

Theorem 3. Consider the squared error loss l(θ, x, y) = [f(θ;x)− y]
2 for a data point z = (x, y).

Assume that the data is generated by a function g(x) such that y = g(x) + ρ, where the zero-mean
noise ρ has a variance of η2 and is independent of x. Then there holds

TE(z, ϵ) = LP (z
∗)− η2 − Varθ∼PΘ

f(θ;x)︸ ︷︷ ︸
Diversity

− [g(x)− Eθ∼PΘ
f(θ;x)]

2︸ ︷︷ ︸
Attack

. (14)

Remark. The irreducible error η2 is constant because it arises from inherent noise and randomness
in the data (Geman et al., 1992).

Now we start our proof of it.

Proof. Given Eq. (5), it is equivalent to prove

LP (z) = Varθf(θ;x) + [g(x)− Eθ∼PΘf(θ;x)]
2
+ η2. (15)

Note that

LP (z) = Eθ∼PΘ [f(θ;x)− y]
2

= Eθ∼PΘ [f(θ;x)− g(x) + g(x)− y]
2

= Eθ∼PΘ

[
(f(θ;x)− g(x))2 + (g(x)− y)2 + 2(g(x)− y)(f(θ;x)− g(x))

]
.

Recall that y = g(x) + ρ with E(ρ) = 0 and Var(ρ) = η2, we have

Eθ∼PΘ
(g(x)− y)2 = η2,

and
Eθ∼PΘ

[2(g(x)− y)(f(θ;x)− g(x))] = −2E(ρ)Eθ∼PΘ
[f(θ;x)− g(x)] = 0.

Therefore,
LP (z) = Eθ∼PΘ

[f(θ;x)− g(x)]
2
+ η2. (16)

Likewise, we decompose the first term as

Eθ [f(θ;x)− g(x)]
2

=Eθ [f(θ;x)− Eθf(θ;x) + Eθf(θ;x)− g(x)]
2

=Eθ

[
(f(θ;x)− Eθf(θ;x))

2 + (Eθf(θ;x)− g(x))2

− 2(f(θ;x)− Eθf(θ;x))(Eθf(θ;x)− g(x))]

=Eθ(f(θ;x)− Eθf(θ;x))
2︸ ︷︷ ︸

Varθf(θ;x)

+Eθ(Eθf(θ;x)− g(x))2︸ ︷︷ ︸
(g(x)−Eθ(f(θ;x))

2
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− 2Eθ [f(θ;x)− Eθf(θ;x))(Eθf(θ;x)− g(x)]︸ ︷︷ ︸
0

,

with the derivations for the second and third term:

Eθ(f(θ;x)− Eθf(θ;x))
2 = (Eθf(θ;x))

2 − 2g(x)Eθf(θ;x) + g2(x)

= (g(x)− Eθ(f(θ;x))
2
,

and

Eθ [f(θ;x)− Eθf(θ;x))(Eθf(θ;x)− g(x)]

=(Eθf(θ;x))
2 − g(x)Eθf(θ;x)− (Eθf(θ;x))

2 + g(x)Eθf(θ;x)

=0.

As a result,
Eθ [f(θ;x)− g(x)]

2
= Varθf(θ;x) + [g(x)− Eθ∼PΘ

f(θ;x)]
2
. (17)

Combining the above results and we complete the proof.

To prove Theorem 1, we just set ρ = 0 in the above general version of theorem.

Similarly, consider the empirical version of Theorem 1, we decompose LE(z) as follows:

Theorem 4 (Vulnerability-diversity Decomposition (empirical version)). Consider the squared error
loss l(f(θ;x), y) = [f(θ;x)− y]

2 for a data point z = (x, y). Let f̂(θ;x) = 1
N

∑N
i=1 f(θi;x) be

the expectation of prediction over the distribution on the parameter space. Then there holds

LE(z) =
1

N

N∑
i=1

ℓ(f(θi;x), y)

= l(f̂(θ;x), y)︸ ︷︷ ︸
Vulnerability

+
1

N

N∑
j=1

(
f(θi;x)−

1

N

N∑
j=1

f(θi;x)

)2

︸ ︷︷ ︸
Diversity

.

The proof is similar to the above:

LE(z) =
1

N

N∑
i=1

(f(θi;x)− y)
2

=
1

N

1

N

N∑
i=1

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x) +
1

N

N∑
i=1

f(θi;x)− y

)2

=
1

N

N∑
i=1

[(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)2

+

(
1

N

N∑
i=1

f(θi;x)− y

)2

+

2

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)(
1

N

N∑
i=1

f(θi;x)− y

)]

= l(f̂(θ;x), y)︸ ︷︷ ︸
Vulnerability

+
1

N

N∑
j=1

(
f(θi;x)−

1

N

N∑
j=1

f(θi;x)

)2

︸ ︷︷ ︸
Diversity

+

2

N

N∑
i=1

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)(
1

N

N∑
i=1

f(θi;x)− y

)
.
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The last terms equals to 0 because
N∑
i=1

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)(
1

N

N∑
i=1

f(θi;x)− y

)

=
1

N

(
N∑
i=1

f(θi;x)

)2

− y

N∑
i=1

f(θi;x)−
1

N

(
N∑
i=1

f(θi;x)

)2

+ y

N∑
i=1

f(θi;x)

=0.

The proof is complete.

B.3 PROOF OF THEOREM 2

We first define a divergence measure taken into account. Given a measurable space and two measures
µ, ν which render it a measure space, we denote ν ≪ µ if ν is absolutely continuous with respect to
µ. Hellinger integrals are defined below:
Definition 4 (Hellinger integrals (Hellinger, 1909)). Let ν, µ be two probability measures on (Ω,F)
and satisfy ν ≪ µ, and φα : R+ → R be defined as φα(x) = xα. Then the Hellinger integral of
order α is given by

Hα(ν∥µ) =
∫ (

dν

dµ

)α

dµ.

It can be seen as a ϕ-Divergence with a specific parametrised choice of ϕ (Liese & Vajda, 2006). For
α > 1, the Hellinger integral measures the divergence between two probability distributions (Liese
& Vajda, 2006). There holds Hα(ν∥µ) ∈ [1,+∞), α > 1, and it equals to 1 if the two measures
coincide (Shiryaev, 2016). Given such a divergence measure, we now provide the proof.

Proof. From Section B.1, we know that

TE(z) = LP (z
∗)− LP (z) ≤ LP (z

∗)− LP (z) + (LE(z)− LE(z
∗))

= (LP (z
∗)− LE(z

∗)) + (LE(z)− LP (z))

≤ sup
x∈Bϵ(x)

(LP (z)− LE(z)) + sup
x∈Bϵ(x)

(LE(z)− LP (z))

≤ sup
z∈Z

(LP (z)− LE(z)) + sup
z∈Z

(LE(z)− LP (z)).

Let θN = (θ1, . . . , θN ), θ′N = (θ′1, . . . , θ
′
N ) that satisfy θN , θ′N ∼ PΘN , and the m-th member is

different, i.e., θ′m ̸= θm.

We define

LE′(z) =
1

N

N∑
i=1

ℓ(f(θ′i;x), y),

and

Φ1(E) = sup
z∈Z

{LP (z)− LE(z)} ,

Φ1(E
′) = sup

z∈Z
{LP (z)− LE′(z)} .

We have

Φ1(E)− Φ1(E
′) = sup

z∈Z
{LP (z)− LE(z)} − sup

z∈Z
{LP (z)− LE′(z)}

≤ sup
z∈Z

{LP (z)− LE(z)− (LP (z)− LE′(z))}

= sup
z∈Z

{LE′(z)− LE(z)}
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=
1

N
sup
z∈Z

[
N∑
i=1

ℓ(f(θ′i;x), y)−
N∑
i=1

ℓ(f(θi;x), y)

]
.

By assuming that loss function ℓ is bounded by β, we have

|Φ1(E)− Φ1(E
′)| ≤ β

N
.

According to Theorem 1 in Esposito & Mondelli (2024), for all δ ∈ (0, 1) and α > 1, with probability
at least 1− 1

4δ, we have

Φ1(E) ≤ EθN [Φ1(E)] +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
1
4δ

. (18)

Denote f(θi;x) as fi(x) and f(θ′i;x) as f ′
i(x). Then we estimate the upper bound of

EθN∼PΘN
[Φ1(E)] as follows:

EθN [Φ1(E)] = EθN

[
sup
z∈Z

(LP (z)− LE(z))

]
= EθN

[
sup
z∈Z

E(θ′
1,··· ,θ′

N )∼P′
ΘN

(LE′(z)− LE(z))

]
≤ EθN ,θ′N

[
sup
z∈Z

(LE′(z)− LE(z))

]
(Jensen inequality)

= EθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

ℓ(f(θ′i;x), y)−
N∑
i=1

ℓ(f(θi;x), y)

]}

= EσEθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σi [ℓ(f
′
i(x), y)− ℓ(fi(x), y)]

]}

≤ EσEθ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(f
′
i(x), y)

]}
+ EσEθN

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(fi(x), y)

]}

= 2 · EσEθN

{
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

}
= 2EθN [RN (F)] . (19)

Since changing one element in θN changes RN (F) by at most β
N , we again apply Theorem 1

in Esposito & Mondelli (2024) and obtain that for all δ ∈ (0, 1), with probability at least 1− 1
4δ, we

have

EθN [RN (F)] ≤ RN (F) +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
1
4δ

. (20)

Likewise, if we define

Φ2(E) = sup
z∈Z

{LE(z)− LP (z)} ,

Φ2(E
′) = sup

z∈Z
{LE′(z)− LP (z)} ,

then we have

Φ2(E)− Φ2(E
′) = sup

z∈Z
{LE(z)− LP (z)} − sup

z∈Z
{LE′(z)− LP (z)}
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≤ sup
z∈Z

{LE(z)− LP (z)− (LE′(z)− LP (z))}

= sup
z∈Z

{LE(z)− LE′(z)}

=
1

N
sup
z∈Z

[
N∑
i=1

ℓ(f(θi;x), y)−
N∑
i=1

ℓ(f(θ′i;x), y)

]
.

According to the assumption that loss function ℓ is bounded by β, we have

|Φ2(E)− Φ2(E
′)| ≤ β

N
.

According to Theorem 1 in Esposito & Mondelli (2024), for all δ ∈ (0, 1) and α > 1, with probability
at least 1− 1

4δ, we have

Φ2(E) ≤ EθN [Φ2(E)] +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θi

)
1
4δ

. (21)

We estimate the upper bound of EθN [Φ2(E)] as follows:

EθN [Φ2(E)] = EθN

[
sup
z∈Z

(LE(z)− LP (z))

]
= EθN

[
sup
z∈Z

E(θ′
1,··· ,θ′

N )∼P′
ΘN

(LE(z)− LE′(z))

]
≤ EθN ,θ′N

[
sup
z∈Z

(LE(z)− LE′(z))

]
(Jensen inequality)

= EθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

ℓ(f(θi;x), y)−
N∑
i=1

ℓ(f(θ′i;x), y)

]}

= EσEθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σi [ℓ(fi(x), y)− ℓ(f ′
i(x), y)]

]}

≤ EσEθ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(f
′
i(x), y)

]}
+ EσEθN

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(fi(x), y)

]}

= 2 · EσEθN

{
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

}
= 2EθN [RN (F)] . (22)

Likewise, we again apply Theorem 1 in Esposito & Mondelli (2024) and obtain that for all δ ∈ (0, 1),
with probability at least 1− 1

4δ, we have

EθN [RN (F)] ≤ RN (F) +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
1
4δ

. (23)

Therefore, combining Eq. (18), Eq. (19), Eq. (20), Eq. (21), Eq. (22) and Eq. (23) with union bound,
we obtain that, with probability at least 1− δ, there holds

TE(z, ϵ) = Φ1(E) + Φ2(E) ≤ 4RN (F) +

√√√√ 18αβ2

(α− 1)N
ln

22+
α−1
α H

1
α
α

(
PXn∥P⊗n

i=1 Xi

)
δ

.
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The proof is complete.

C MORE RELATED WORK

C.1 TRANSFERABLE ADVERSARIAL ATTACK

Input transformation. Input transformation-based attacks have shown great effectiveness in
improving transferability and can be combined with gradient-based attacks. Most input transformation
techniques rely on the fundamental idea of applying data augmentation strategies to prevent overfitting
to the surrogate model (Gu et al., 2024). Such methods adopt various input transformations to further
improve the transferability of adversarial examples (Wang et al., 2023b;a). For instance, random
resizing and padding (Xie et al., 2019), downscaling (Lin et al., 2019), mixing (Wang et al., 2021),
automated data augmentation (Yan et al., 2023), block shuffle and rotation (Wang et al., 2024), and
dynamical transformation (Zhu et al., 2024).

Gradient-based optimization. The central concept of these methods is to develop optimization
techniques in the generation of adversarial examples to achieve better transferability. Dong et al.
(2018); Lin et al. (2019); Wang & He (2021) draw an analogy between generating adversarial
examples and the model training process. Therefore, conventional optimization methods that improve
model generalization can also benefit adversarial transferability. In gradient-based optimization
methods, adversarial perturbations are directly optimized based on one or more surrogate models
during inference. Some popular ideas include applying momentum (Dong et al., 2018), Nesterov
accelerated gradient (Lin et al., 2019), scheduled step size (Gao et al., 2020) and gradient variance
reduction (Wang & He, 2021; Xiong et al., 2022). There are also other elegantly designed techniques
in recent years (Gubri et al., 2022b; Wang et al., 2022; Xiaosen et al., 2023; Li et al., 2024; Wu
et al., 2024; Zhang et al., 2024b), such as collecting weights (Gubri et al., 2022b), modifying gradient
calculation (Xiaosen et al., 2023) and applying integrated gradients (Ma et al., 2023).

Model ensemble attack. Motivated by the use of model ensembles in machine learning, researchers
have developed diverse ensemble attack strategies to obtain transferable adversarial examples (Gu
et al., 2024). It is a powerful attack that employs an ensemble of models to simultaneously generate
adversarial samples. It can not only integrate with advanced gradient-based optimization methods,
but also harness the unique strengths of each individual model (Tang et al., 2024). Some popular
ensemble paradigms include loss-based ensemble (Dong et al., 2018), prediction-based (Liu et al.,
2017), logit-based ensemble (Dong et al., 2018), and longitudinal strategy (Li et al., 2020). There
is also some deep analysis to compare these ensemble paradigms (Zhang et al., 2024b). Moreover,
advanced ensemble algorithms have been created to ensure better adversarial transferability (Zou
et al., 2020; Gubri et al., 2022a; Xiong et al., 2022; Chen et al., 2023; Li et al., 2023; Wu et al., 2024;
Chen et al., 2024b).

C.2 STATISTICAL LEARNING THEORY

Statistical learning theory forms the theoretical backbone of modern machine learning by providing
rigorous frameworks for understanding model generalization (Vapnik, 1999). It introduces founda-
tional concepts such as Rademacher complexity (Bartlett & Mendelson, 2002), VC dimension (Vapnik
& Chervonenkis, 1971), structural risk minimization (Vapnik, 1998) . It has also been instrumental in
the development of Support Vector Machines (Cortes & Vapnik, 1995) and kernel methods (Shawe-
Taylor & Cristianini, 2004), which remain pivotal in supervised learning tasks. Recent advances
extend statistical learning theory to deep learning, addressing challenges of high-dimensional data
and model complexity (Bartlett et al., 2021). These contributions have significantly enhanced the
capability to design robust learning algorithms that generalize well across diverse applications (Du
& Swamy, 2013). In addition, there are also some other novel theoretical frameworks, such as
information-theoretic analysis (Xu & Raginsky, 2017), PAC-Bayes bounds (Parrado-Hernández et al.,
2012), transductive learning (Vapnik, 2006), and stability analysis (Bousquet & Elisseeff, 2002;
Shalev-Shwartz et al., 2010). Most of them derive a bound of the order O( 1√

M
), while some others

derive sharper bound of generalization (Li & Liu, 2021) of the order O( 1
M ). Such theoretical analysis

suggests that with the increase of the dataset volume, the model generalization will become better.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

D FURTHER DISCUSSION

D.1 ANALYZE EMPIRICAL MODEL ENSEMBLE RADEMACHER COMPLEXITY

In particular, we present detailed analysis for the simple and complex cases below, within the context
of transferable model ensemble attack.

The simple input space. Firstly, consider the trivial case where the input space contains too simple
examples so that all classifiers correctly classify (x, y) ∈ Z . Then there holds

RN (Z) = ℓ(y, y)E
σ

[
1

N

N∑
i=1

σi

]
= 0.

In this case, Z is simple enough for f1, · · · , fN . Such Z corresponds to a RN (Z) close to 0.
However, it is important to note that an overly simplistic space Z may be impractical for model
ensemble attack: the adversarial examples in such a space may not successfully attack the models
from D, leading to a small value of LP (z

∗). In other words, the existence of transferable adversarial
examples implicitly imposes constraints on the minimum complexity of Z .

The complex input space. Secondly, we consider the complex case. In particular, given arbitrarily
N models in H and any assignment of σ, a sufficiently complex Z contains all kinds of examples
that make RN (Z) large: (1) If σi = +1, there are adversarial examples that can successfully attack
fi and leads to a large σiℓ(fi(x), y); (2) If σi = −1, there exists some examples that can be correctly
classified by fi, leading to σiℓ(fi(x), y) = 0. However, such a large RN (Z) is also not appropriate
for transferable model ensemble attack. It may include adversarial examples that perform well against
f1, · · · , fN but are merely overfitted to the current N surrogate models (Rice et al., 2020; Yu et al.,
2022). In other words, these examples might not effectively attack other models in H, thereby limiting
their adversarial transferability.

The above analysis suggests that an excessively large or small RN (Z) is not suitable for adversarial
transferability. So we are curious to investigate the correlation between RN (Z) and adversarial
transferability, which comes to the analysis about the general case in Section 3.4.

Explain robust overfitting. After a certain point in adversarial training, continued training
significantly reduces the robust training loss of the classifier while increasing the robust test loss, a
phenomenon known as robust overfitting (Rice et al., 2020; Yu et al., 2022) (also linked to robust
generalization (Schmidt et al., 2018; Yin et al., 2019)). From the perspective in Section 3.4, the
cause of this overfitting is the limited complexity of the input space relative to the classifier used
to generate adversarial examples during training. The adversarial examples become too simple for
the model, leading to overfitting. To mitigate this, we could consider generating more “hard” and
“generalizable” adversarial examples to improve the model’s generalization in adversarial training.
For a less transferable adversarial example (x, y), it is associated with a small LP (z), which in turn
makes TE(z, ϵ) large.

D.2 OTHER OPINIONS ON “DIVERSITY”

D.2.1 OTHER DEFINITIONS

In Yang et al. (2021), gradient diversity is defined using the cosine similarity of gradients between
different models, and instance-level transferability is introduced, along with a bound for transferability.
This work cleverly uses Taylor expansion to establish a theoretical connection between the success
probability of attacking a single sample and the gradients of the models. In Kariyappa & Qureshi
(2019), inspired by the concept of adversarial subspace (Tramèr et al., 2017), diversity is defined
based on the cosine similarity of gradients across different models. The authors aim to encourage
models to become more diverse, thereby achieving “no overlap in the adversarial subspaces,” and
provide intuitive insights to readers. Both papers define gradient diversity and explain its impact.

In contrast, our definition of diversity stems from the unified theoretical framework proposed in this
paper. Specifically:

• We draw inspiration from statistical learning theory (Shalev-Shwartz et al., 2010; Bartlett &
Mendelson, 2002) on generalization, defining transferability error accordingly.
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• Additionally, we are motivated by ensemble learning (Abe et al., 2023; Wood et al., 2023),
where we define diversity as the variation in outputs among different ensemble models.

• Intuitively, when different models exhibit significant differences in their outputs for the
same sample, their gradient differences during training are likely substantial as well. This
suggests a potential connection between our output-based definition of diversity and the
gradient-based definitions in (Shalev-Shwartz et al., 2010; Bartlett & Mendelson, 2002),
which is worth exploring in future research.

Overall, our perspective differs from that of Shalev-Shwartz et al. (2010); Bartlett & Mendelson
(2002). However, despite the differences in definitions, both our work and Shalev-Shwartz et al.
(2010); Bartlett & Mendelson (2002) provide valuable explanations for phenomena in the field of
adversarial transferability. Our work introduces a novel theoretical toolset to the field, offering
researchers an alternative lens through which to understand adversarial transferability. We aim to
inspire more theoretical insights and foster further advancements in this domain.

D.2.2 CONFLICTING OPINIONS

We observe a significant and intriguing disagreement within the academic community concerning the
role of “diversity” in transferable model ensemble attacks:

• Some studies advocate for enhancing model diversity to produce more transferable ad-
versarial examples. For instance, Li et al. (2020) applies feature-level perturbations to
an existing model to potentially create a huge set of diverse “Ghost Networks”. Li et al.
(2023) emphasizes the importance of diversity in surrogate models and promotes attacking a
Bayesian model to achieve desirable transferability. Tang et al. (2024) supports the notion of
improved diversity, suggesting the generation of adversarial examples independently from
individual models.

• In contrast, other researchers adopt a diversity-reduction strategy to enhance adversarial
transferability. For example, Xiong et al. (2022) focuses on minimizing gradient variance
among ensemble models to improve transferability. Meanwhile, Chen et al. (2023) intro-
duces a disparity-reduced filter designed to decrease gradient variances among surrogate
models in ensemble attacks.

Although all these studies reference “diversity,” their perspectives appear to diverge. In this paper,
we advocate for increasing the diversity of surrogate models. However, we also recognize that
diversity-reduction approaches have their merits.

Consider the vulnerability-diversity decomposition of transferability error presented in Theorem 1. It
suggests the presence of a vulnerability-diversity trade-off in transferable model ensemble attacks.
In other words, we may need to prioritize either vulnerability or diversity to effectively reduce
transferability error. Diversity-reduction approaches aim to stabilize the training process, thereby
increasing the “bias.” In contrast, diversity-promoting methods directly enhance “diversity.” This
analysis, framed within our unified theoretical framework, provides insight into the differing opinions
regarding adversarial transferability in the academic community.

D.3 COMPARE WITH A PREVIOUS BOUND

We compare Theorem 1 with Lemma 5 in Yang et al. (2021). We first restate Lemma 5 in Yang et al.
(2021) and our Theorem 1. Our theoretical results and theirs offer complementary perspectives in the
analysis of transferable adversarial attack.

Lemma 5 (Yang et al. (2021)). Let f, g : X → Y be classifiers, δ, ρ, ϵ ∈ (0, 1) be constants, and
A(·) be an attack strategy. Suppose that f, g have risk at most ϵ. Then

Pr(F(A(x)) ̸= G(A(x))) ≤ 2ϵ+ ρ,

for a given random instance x and A(·) is ρ-conservative (TV distance between the adversarial
example distribution and clean data distribution is less than ρ, which is defined as Definition 7 and 8
in Yang et al. (2021)).
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Lemma 5 states an intriguing conclusion: if two models exhibit low risk on the original data
distribution and the distributional discrepancy between adversarial examples and the original data
is small, the predictions of the two models on the same input will be close. In other words, for two
well-performing models, if an attack strategy successfully targets one model, it is highly likely to
succeed on the other. Lemma 5 thus describes the success rate of transferring an attack from one
model to another. In contrast, Theorem 1 demonstrates that if the ensemble models exhibit significant
output differences on the same input, the resulting diverse ensemble is more effective at generating
adversarial examples with reduced transferability.

To better clarify, let A denote the ensemble models generating adversarial examples and B the model
being attacked. Comparing Lemma 5 and our work leads to the following reasoning:

• Assumptions: Suppose A and B both fit the original data distribution well (i.e., the risk of A
and B is bounded by ϵ, as in Lemma 5).

• Vulnerability-diversity trade-off: As shown in our work, increasing ensemble diversity while
keeping vulnerability constant reduces the transferability error of adversarial examples
generated by the ensemble.

• Distributional gap: Many models in parameter space, such as A and B, are vulnerable to
these adversarial examples. However, fitting both the original data distribution and the
adversarial example distribution simultaneously becomes challenging, leading to a large
distributional discrepancy.

• Impact on Lemma 5: This discrepancy enlarges ρ in Lemma 5, thereby loosening its
“conservative condition” and weakening its theoretical guarantee of successful transferability.
Consequently, adversarial transferability decreases, which could be interpreted as a potential
contradiction.

We argue that no actual contradiction exists between Lemma 5 and our work. Instead, they provide
complementary analyses:

• Upper bound interpretation: Lemma 5 provides an upper bound rather than an equality or
lower bound. While an increase in ρ loosens this upper bound, it does not necessarily imply
that the left-hand side (i.e., transferability success) will increase. The significance of an
upper bound lies in the fact that a tighter right-hand side suggests the potential for a smaller
left-hand side. However, a looser upper bound does not necessarily imply that the left-hand
side will increase. Therefore, while increasing ensemble diversity may loosen the upper
bound in Lemma 5, it does not contradict the fundamental interpretation of it.

• Complementary perspectives: While Lemma 5 analyzes the trade-off between ϵ (model fit
to the original data) and ρ (distributional discrepancy), our work focuses on the trade-off
between vulnerability and ensemble diversity. Together, they provide a comprehensive
understanding of the factors influencing adversarial transferability.

We now further elucidate the relationship between our results and Lemma 5:

• Reducing Transferability Error: To minimize transferability error (as in our work), the
adversarial transferability described by Lemma 5 may have stronger theoretical guarantees,
requiring its upper bound to be tighter.

• Trade-off Between ϵ and ρ: To tighten the bound in Lemma 5, either ϵ or ρ must decrease.
However, the two exhibit a trade-off:

– If ϵ decreases, A and B fit the original data distribution better. However, beyond a
certain point, the adversarial examples generated by A diverge significantly from the
original data distribution, increasing ρ.

– If ρ decreases, the adversarial example distribution becomes closer to the original
data distribution. However, beyond a certain point, A exhibits similar losses on both
distributions, resulting in a higher ϵ.

Therefore, Lemma 5 indicates the potential trade-off between ϵ and ρ in adversarial transferability,
while our Theorem 1 emphasizes the trade-off between vulnerability and diversity. By integrating
the perspectives from both Lemma 5 and our findings, these results illuminate different facets of
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adversarial transferability, offering complementary theoretical insights. This combined understanding
deepens our knowledge of the factors influencing adversarial transferability and lays a solid foundation
for future research in the field.

D.4 EXTENSION OF THEOREM 2

Firstly, our proposed setting aligns with many realistic scenarios, as demonstrated in (Wu et al., 2024;
Tang et al., 2024; Li et al., 2023; Xiong et al., 2022; Lin et al., 2019). Specifically, they encompass
cases where both the surrogate model and the target model adopt the same architectures. It reflects
the fact that the settings in this paper are commonly considered in prior studies.

Furthermore, our theoretical framework is not only rigorous but also highly adaptable, making it
straightforward to effectively extend and be more general. For example, this can be achieved by
redefining the model space, as shown in Appendix D.4.1, or by drawing insights from domain
adaptation theory, as discussed in Appendix D.4.2. The simplicity and flexibility of our framework
allow researchers to follow and build upon it seamlessly, fostering further innovation in addressing
adversarial transferability challenges.

D.4.1 DEFINING THE MODEL SPACE

The two issues raised above can be circumvented by redefining the model space. In particular, we
consider N surrogate classifiers f1, · · · , fN trained to generate adversarial examples. Let D be the
distribution over the surrogate models (for instance, the distribution of all the low-risk models),
and fi ∈ D, i ∈ [N ]. The low-risk claim is in line with Lemma 5 in Yang et al. (2021), which
assumes that the risk of surrogate model and target model is low (have risk at most ϵ). Therefore,
the surrogate model and target model can be seen as drawing from the same distribution (such
as a distribution of all the low-risk models). For a data point z = (x, y) ∈ Z and N classifiers for
model ensemble attack, define the population risk LP (z) and the empirical risk LD(z) as

LP (z) = Ef∼D[ℓ(f(x), y)].

LD(z) =
1

N

∑
i∈[N ],fi∈D

ℓ(fi(x), y).

Now here is an extension of Theorem 2 based on the above definition. The proof is almost the same
as Appendix B.3, but the definition of distribution is different.
Theorem 5 (Extension of Theorem 2). Let PDN be the joint distribution of f1, · · · , fN , and P⊗N

i=1 D

be the joint measure induced by the product of the marginals. If the loss function ℓ is bounded by
β ∈ R+ and PDN ≪ P⊗N

i=1 D for any function fi, then for α > 1 and γ = α
α−1 , with probability at

least 1− δ, there holds

TE(z, ϵ) ≤ 4RN (Z) +

√√√√2γβ2

N
ln

2
1
γ H

1
α
α

(
PDN ∥P⊗N

i=1 D

)
δ

. (24)

The first term answers the question that more surrogate models and smaller complexity will lead
to a smaller RN (Z) and contributes to a tighter bound of TE(z, ϵ). The second term motivates us
that if we reduce the interdependency among the ensemble components, then the upper bound of
TE(z, ϵ) will be tighter. Recall that Hα(PDN ∥P⊗N

i=1 D) quantifies the divergence between the joint
distribution PDN and product of marginals P⊗N

i=1 D. The joint distribution captures dependencies
while the product of marginals does not. So the divergence between them measures the degree of
dependency among the N classifiers f1, · · · , fN . As a result, improving the diversity of f1, · · · , fN
and reduce the interdependence among them is beneficial to adversarial transferability.

Proof. We know that

TE(z) = LP (z
∗)− LP (z) ≤ LP (z

∗)− LP (z) + (LD(z)− LD(z∗))

= (LP (z
∗)− LD(z∗)) + (LD(z)− LP (z))
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≤ sup
x∈Bϵ(x)

(LP (z)− LD(z)) + sup
x∈Bϵ(x)

(LD(z)− LP (z))

≤ sup
z∈Z

(LP (z)− LD(z)) + sup
z∈Z

(LD(z)− LP (z)).

We define

Φ1(D) = sup
z∈Z

{LP (z)− LD(z)} ,

Φ1(D
′) = sup

z∈Z
{LP (z)− LD′(z)} ,

where D′ is also a distribution over the classifiers, and only one classifier in D and D′ is different.
And

LD′(z) =
1

N

∑
i = 1, · · · , N

fi ∼ D′

ℓ(fi(x), y).

From the definition of D and D′, we have

Φ1(D)− Φ1(D
′) = sup

z∈Z
{LP (z)− LD(z)} − sup

z∈Z
{LP (z)− LD′(z)}

≤ sup
z∈Z

{LP (z)− LD(z)− (LP (z)− LD′(z))}

= sup
z∈Z

{LD′(z)− LD(z)}

=
1

N
sup
z∈Z


∑

i = 1, · · · , N
fi ∼ D′

ℓ(fi(x), y)−
∑

i = 1, · · · , N
fi ∼ D

ℓ(fi(x), y)

 .

By assuming that loss function ℓ is bounded by β, we have

|Φ1(D)− Φ1(D
′)| ≤ β

N
.

According to Theorem 1 in Esposito & Mondelli (2024), for all δ ∈ (0, 1) and α > 1, with probability
at least 1− δ, we have

Φ1(D) ≤ ED[Φ1(D)] +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PDN ∥P⊗N

i=1 D

)
δ

. (25)

Let f ∼ D and f ′ ∼ D′ be different classifiers. Then we estimate the upper bound of ED[Φ1(D)] as
follows:

ED[Φ1(D)] = ED

[
sup
z∈Z

(LP (z)− LD(z))

]
= ED

[
sup
z∈Z

Ef∼D′ (LD′(z)− LD(z))

]
≤ ED,D′

[
sup
z∈Z

(LD′(z)− LD(z))

]
(Jensen inequality)
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= ED,D′


sup
z∈Z

1

N


∑

i = 1, · · · , N
f ′
i ∼ D′

ℓ(fi(x), y)−
∑

i = 1, · · · , N
fi ∼ D

ℓ(fi(x), y)




= ED,D′

{
sup
z∈Z

1

N

[
N∑
i=1

[ℓ(f ′
i(x), y)− ℓ(fi(x), y)]

]}

= Eσ,D,D′

{
sup
z∈Z

1

N

[
N∑
i=1

σi [ℓ(f
′
i(x), y)− ℓ(fi(x), y)]

]}

≤ Eσ,D′

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(f
′
i(x), y)

]}
+ Eσ,D

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(fi(x), y)

]}

= 2 · Eσ,D

{
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

}
= 2RN (F).

Likewise, if we define

Φ2(D) = sup
z∈Z

{LD(z)− LP (z)} ,

Φ2(D
′) = sup

z∈Z
{LD′(z)− LP (z)} ,

then we have

Φ2(D)− Φ2(D
′) = sup

z∈Z
{LD(z)− LP (z)} − sup

z∈Z
{LD′(z)− LP (z)}

≤ sup
z∈Z

{LD(z)− LP (z)− (LD′(z)− LP (z))}

= sup
z∈Z

{LD(z)− LD′(z)}

=
1

N
sup
z∈Z


∑

i = 1, · · · , N
fi ∼ D

ℓ(fi(x), y)−
∑

i = 1, · · · , N
fi ∼ D′

ℓ(fi(x), y)

 .

According to the assumption that loss function ℓ is bounded by β, we have

|Φ2(D)− Φ2(D
′)| ≤ β

N
.

According to Theorem 1 in Esposito & Mondelli (2024), for all δ ∈ (0, 1) and α > 1, with probability
at least 1− δ, we have

Φ2(D) ≤ ED[Φ2(D)] +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PDN ∥P⊗N

i=1 Di

)
δ

. (26)

We estimate the upper bound of ED[Φ2(D)] as follows:

ED[Φ2(D)] = ED

[
sup
z∈Z

(LD(z)− LP (z))

]
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= ED

[
sup
z∈Z

Ef∼D′ (LD(z)− LD′(z))

]
≤ ED,D′

[
sup
z∈Z

(LD(z)− LD′(z))

]
(Jensen inequality)

= ED,D′


sup
z∈Z

−1

N


∑

i = 1, · · · , N
f ′
i ∼ D′

ℓ(fi(x), y)−
∑

i = 1, · · · , N
fi ∼ D

ℓ(fi(x), y)




= ED,D′

{
sup
z∈Z

−1

N

[
N∑
i=1

[ℓ(f ′
i(x), y)− ℓ(fi(x), y)]

]}

= Eσ,D,D′

{
sup
z∈Z

1

N

[
N∑
i=1

σi [ℓ(f
′
i(x), y)− ℓ(fi(x), y)]

]}

≤ Eσ,D′

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(f
′
i(x), y)

]}
+ Eσ,D

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(fi(x), y)

]}

= 2 · Eσ,D

{
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

}
= 2RN (F).

Therefore, with probability at least 1− δ, there holds

TE(z, ϵ) = Φ1(D) + Φ2(D) ≤ 4RN (F) +

√√√√ 2αβ2

(α− 1)N
ln

2
α−1
α H

1
α
α

(
PDn∥P⊗n

i=1 Di

)
δ

.

The proof is complete.

D.4.2 EXTENSION TO DIFFERENT PARAMETER DISTRIBUTIONS

In fact, the two issues mentioned at the beginning of Appendix D.4 can also be properly addressed
using domain adaptation theory (Blitzer et al., 2007). Intuitively, there is a need for domain adaptation
between the surrogate model and the target model. Mathematically, a feasible and straightforward
approach is to define a divergence metric and apply domain adaptation theory. For instance,

Definition 5 (X divergence for transferable attack). Given a feature space X and a label space Y ,
We denote the hypothesis space by H : X 7→ Y . Denote the parameter space of surrogate model and
target model by Θ and Θ′, respectively. Let f(θ; ·) ∈ H be a classifier parameterized by θ, where
θ ∈ Θ or θ ∈ Θ′. Consider a metric loss function ℓ : Y × Y 7→ R+

0 . Then the X divergence between
the surrogate model domain and the target model domain can be defined as:

dX (PΘ,PΘ′) = 2 sup
x∈X

∣∣Eθ∼PΘℓ [f(θ;x), y]− Eθ∼PΘ′ ℓ [f(θ;x), y]
∣∣ .

It is a natural extension from H divergence in domain adaptation theory (Blitzer et al., 2007) to
transferable adversarial attack. We consider such divergence and redefine the population risk LP (z)
in Eq. (3) as

LP (z,Θ) = Eθ∼PΘ
[ℓ(f(θ;x), y)].

Therefore, there is a connection between the surrogate model domain and target model domain:

|LP (z,Θ
′)− LP (z,Θ)| ≤ 1

2
dX (PΘ,PΘ′) .
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Substituting Eq. (12) into this inequality, we will obtain a general upper bound with an additional
divergence term on the right-hand side:

TE(z, ϵ) ≤ 4RN (Z) +

√√√√2γβ2

N
ln

2
1
γ H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
δ

+ dX (PΘ,PΘ′) .

According to this theory, the smaller the dX , the tighter the theoretical bound. Therefore, we need to
let surrogate model domain be as close to the target model domain as possible. Such insight is in line
with (Zhao et al., 2023), which shows that reducing model discrepancy (which corresponds to the
divergence defined above) can make adversarial examples highly transferable.

Moreover, to further advance the field, leveraging advanced domain adaptation theories (e.g., Wang &
Mao (2022); Zhang et al. (2019b)) could yield deeper theoretical insights and inspire new algorithm
designs. In the revision, we provide a more detailed analysis, including:

• Extending our analysis to scenarios with different parameter spaces and distributions.
• Future work can be done by identifying suitable mathematical tools from the extensive

domain adaptation literature (Redko et al., 2020) to analyze adversarial transferability more
deeply and inform algorithm development.

These enhancements will significantly expand the impact of our work by:

• Being the first to draw an analogy between statistical learning theory and adversarial
transferability, thereby introducing a new perspective to the field.

• Being the first to encourage researchers to consider domain adaptation for deeper analysis
and algorithmic innovations in transferable adversarial attack.

D.5 INFORMATION-THEORETIC ANALYSIS

Firstly, we formally define the Kullback-Leibler divergence (KL divergence), mutual information and
total variation distance (TV distance).
Definition 6 (Kullback-Leibler Divergence). Given two probability distributions P and Q, the
Kullback-Leibler (KL) divergence between P and Q is

DKL(P∥Q) =

∫
x∈X

P (x) log
P (x)

Q(x)
dx.

We know that DKL(P∥Q) ∈ [0,+∞], and DKL(P∥Q) = 0 if and only if P = Q.
Definition 7 (Mutual Information). For continuous random variables X and Y with joint probability
density function p(x, y) and marginal probability density functions p(x) and p(y), the mutual
information is defined as:

I(X;Y ) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy.

We know that I(X;Y ) ∈ [0,+∞], and I(X;Y ) = 0 if and only if X and Y are independent to each
other.
Definition 8 (Total Variation Distance). Given two probability distributions P and Q, the Total
Variation (TV) distance between P and Q is

DTV(P∥Q) =
1

2

∫
x∈X

|P (x)−Q(x)| dx.

We know that DTV(P∥Q) ∈ [0, 1]. Also, DTV(P∥Q) = 0 if and only if P and Q coincides, and
DTV(P∥Q) = 1 if and only if P and Q are disjoint.
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Note that the training process of N classifiers can be viewed as sampling the parameter sets θ
N

=

(θ1, . . . , θN ) from the distribution PΘN , i.e., θ
N ∼ PΘN . We generate a transferable adversarial

example using these N models and evaluate its performance on another N models θN = (θ1, . . . , θN ),
which is an independent copy of θ

N
. For a data z = (x, y) ∈ Z and the parameter set θN , our aim is

to bound the difference of attack performance between the given N models θN and N unknown
models θN . In other words, if

• An adversarial example z can effectively attack the given model ensemble.
• There is guarantee for the aforementioned difference of attack performance between known

and unknown models.

Then there is adversarial transferability guarantee for z.

Here we provide further analysis from the perspective of information in deep learning. It is supported
by both empirical observations (Alemi et al., 2016; Shwartz-Ziv & Tishby, 2017; Wu et al., 2020;
Lorenzen et al., 2021; Hu et al., 2024) and theoretical insights (Tishby & Zaslavsky, 2015; Xu &
Raginsky, 2017; Jeon & Van Roy, 2022; Kawaguchi et al., 2023; Wang & Mao, 2024).

Theorem 6. Given N surrogate models θ
N

= (θ1, . . . , θN ) ∼ PΘN as the ensemble components.
Let θN = (θ1, . . . , θN ) ∼ PΘN be the target models, which is an independent copy of θ

N
. Assume

the loss function ℓ is bounded by β ∈ R+ and PΘN is absolutely continuous with respect to P⊗N
i=1 Θ.

For α > 1 and adversarial example z = (x, y) ∼ PZ , Let

∆N (θ, z) = E
θ
N∼PΘN

[
1

N

N∑
i=1

ℓ(f(θi;x), y)

]
− 1

N

N∑
i=1

ℓ(f(θi;x), y).

Then there holds∣∣∣Ez,θN∼PZ,ΘN
∆N (θ, z)

∣∣∣ ≤ 2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+√

αβ2

2(α− 1)N

(
I
(
θ
N
; z
)
+

1

α
logHα

(
PΘN ∥P⊗N

i=1 Θ

))
,

where DTV(·∥·), I(·∥·) and Hα(·∥·) denotes TV distance, mutual information and Hellinger integrals,
respectively.

In Theorem 6:

• ∆N (θ, z) quantifies how effectively the surrogate models represent all possible target models.
Taking the expectation of ∆N (θ, z) over z and θN accounts for the inherent randomness in
both adversarial examples and surrogate models.

• The mutual information I
(
θ
N
; z
)

quantifies how much information about the surrogate
models is retained in the adversarial example. Intuitively, higher mutual information
indicates that the adversarial example is overly tailored to the surrogate models, capturing
specific features of these models. This overfitting reduces its ability to generalize and transfer
effectively to other target models. By controlling the complexity of the surrogate models,
the specific information captured by the adversarial example can be limited, encouraging
it to rely on broader, more transferable patterns rather than model-specific details. This
reduction in overfitting enhances the adversarial example’s transferability to diverse target
models.

• The total variation (TV) distance, DTV

(
PΘN ∥P⊗N

i=1 Θ

)
, and the Hellinger integral,

Hα

(
PΘN ∥P⊗N

i=1 Θ

)
, capture the interdependence among the surrogate models.

Theorem 6 reveals that the following strategies contribute to a tighter bound:

• Increasing the number of surrogate models, i.e., increasing N ;
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• Reducing the model complexity of surrogate models, i.e., reducing I
(
θ
N
; z
)

;

• Making the surrogate models more diverse, i.e., reducing DTV

(
PΘN ∥P⊗N

i=1 Θ

)
and

Hα

(
PΘN ∥P⊗N

i=1 Θ

)
.

A tighter bound ensures that an adversarial example maximizing the loss function on the surrogate
models will also lead to a high loss on the target models, thereby enhancing transferability.

Proof. According to Donsker and Varadhan’s variational formula, for any λ ∈ R, there holds:

DKL(PZ,ΘN ∥PZ ⊗PΘN ) ≥ λEz,θN∼PZ,ΘN
∆N (θ, z)− logEz∼PZEθN∼PΘN

[
eλ∆N (θ,z)

]
. (27)

Fix z ∈ Z ,

EθN∼PΘN

[
eλ∆N (θ,z)

]
=

∫
eλ∆N (θ,z)dPΘN

=

∫
eλ∆N (θ,z) dPΘN

dP⊗N
i=1 Θ

dP⊗N
i=1 Θ

≤
(∫

e
α

α−1λ∆N (θ,z)dP⊗N
i=1 Θ

)α−1
α

(∫ (
dPΘN

dP⊗N
i=1 Θ

)α

dP⊗N
i=1 Θ

) 1
α

=

(∫
e

α
α−1λ∆N (θ,z)dP⊗N

i=1 Θ

)α−1
α

H
1
α
α (PΘN ∥P⊗N

i=1 Θ). (28)

The third line uses Hölder’s inequality, while the last line follows Definition 4. Now we deal with the
first term. Denote

∆1 = E
θ
N∼PΘN

[
1

N

N∑
i=1

ℓ(f(θi;x), y)

]
− E

θ
N∼P⊗N

i=1
Θ

[
1

N

N∑
i=1

ℓ(f(θi;x), y)

]
,

∆2 = E
θ
N∼P⊗N

i=1
Θ

[
1

N

N∑
i=1

ℓ(f(θi;x), y)

]
− 1

N

N∑
i=1

ℓ(f(θi;x), y).

Notice that

|∆1| =

∣∣∣∣∣
∫∫

· · ·
∫ [

1

N

N∑
i=1

ℓ(f(θi;x), y)

] [
PΘN (θ1, · · · , θN )− P⊗N

i=1 Θ(θ1, · · · , θN )
]
dθ1 · · · dθN

∣∣∣∣∣
≤ β

∫∫
· · ·
∫ ∣∣∣PΘN (θ1, · · · , θN )− P⊗N

i=1 Θ(θ1, · · · , θN )
∣∣∣ dθ1 · · · dθN

= β

∫ ∣∣∣PΘN (θ
N
)− P⊗N

i=1 Θ(θ
N
)
∣∣∣ dθN

≤ 2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
. (29)

Also,∫ (
e

α
α−1λ∆2

)
dP⊗N

i=1 Θ =EθN∼P⊗N
i=1

Θ

[
e

α
α−1λ∆2

]
=

N∏
i=1

Eθi∼PΘ

[
exp

(
αλ

α− 1

(
Eθi∼PΘ

[
1

N
ℓ(f(θi;x), y)

]
− 1

N
ℓ(f(θi;x), y)

))]

≤
N∏
i=1

exp

(
α2

8(α− 1)2N2
λ2β2

)
.
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≤ exp

(
α2

8(α− 1)2N
λ2β2

)
. (30)

The third line is due to Hoeffding’s Lemma (using it for each θi). Therefore, recall the fact that
∆N (θ, z) = ∆1 +∆2, we have∫

e
α

α−1λ∆N (θ,z)dP⊗N
i=1 Θ =

∫ (
e

α
α−1λ∆1 · e

α
α−1λ∆2

)
dP⊗N

i=1 Θ

≤ exp

(
2λαβ

α− 1
DTV

(
PΘN ∥P⊗N

i=1 Θ

))∫
e

α
α−1λ∆2dP⊗N

i=1 Θ

(Using (29))

≤ exp

(
2λαβ

α− 1
DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+

α2

8(α− 1)2N
λ2β2

)
(Using (30))

With the above results, we obtain the following:

logEz∼PZEθN∼PΘN

[
eλ∆N (θ,z)

]
≤

2λβ ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+

α

8(α− 1)N
λ2β2 + logH

1
α
α (PΘN ∥P⊗N

i=1 Θ).

Substitute the above into Eq. (27), we have

α

8(α− 1)N
β2λ2 +

(
2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
− Ez,θN∼PZ,ΘN

∆N (θ, z)
)
λ+

DKL(PZ,ΘN ∥PZ ⊗ PΘN ) + logH
1
α
α (PΘN ∥P⊗N

i=1 Θ) ≥ 0.

Let the discriminant of the quadratic function with respect to λ be less than or equal to 0, leading to:∣∣∣2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
− Ez,θN∼PZ,ΘN

∆N (θ, z)
∣∣∣ ≤√

αβ2

2(α− 1)N

(
DKL

(
PZ,ΘN ∥PZ ⊗ PΘN

)
+

1

α
logHα

(
PΘN ∥P⊗N

i=1 Θ

))
. (31)

In other words,∣∣∣Ez,θN∼PZ,ΘN
∆N (θ, z)

∣∣∣ ≤ 2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+√

αβ2

2(α− 1)N

(
DKL

(
PZ,ΘN ∥PZ ⊗ PΘN

)
+

1

α
logHα

(
PΘN ∥P⊗N

i=1 Θ

))
.

Finally, substitute I
(
θ
N
; z
)
= DKL

(
PZ,ΘN ∥PZ ⊗ PΘN

)
into above and we can get the desired

result.

D.6 COMPARE WITH GENERALIZATION ERROR BOUND

We note that a key distinction between transferability error and generalization error lies in the
independence assumption. Conventional generalization error analysis relies on an assumption: each
data point from the dataset is independently sampled (Zou & Liu, 2023; Hu et al., 2023). By
contrast, the surrogate models f1, · · · , fN for ensemble attack are usually trained on the datasets
with similar tasks, e.g., image classification. In this case, such models tend to correctly classify easy
examples while misclassify difficult examples (Bengio et al., 2009). Consequently, such correlation
indicates dependency (Lancaster, 1963), suggesting that we cannot assume these surrogate models
behave independently for a solid theoretical analysis. Additionally, there are alternative methods for
analyzing concentration inequality in generalization error analysis that do not rely on the independence
assumption (Kontorovich & Ramanan, 2008; Mohri & Rostamizadeh, 2008; Lei et al., 2019; Zhang
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et al., 2019a). However, such data-dependent analysis is either too loose (Lampert et al., 2018)
(because it includes an additional additive factor that grows with the number of samples (Esposito &
Mondelli, 2024)) or requires specific independence structure of data (Zhang & Amini, 2024) that may
not align well with model ensemble attacks. Therefore, we uses the latest techniques of information
theory (Esposito & Mondelli, 2024) about concentration inequality regarding dependency. To our
best knowledge, it is the first mathematical tool in concentration inequality that fits our needs.

D.7 THE ANALOGY BETWEEN GENERALIZATION AND ADVERSARIAL TRANSFERABILITY

Besides providing inspiration for model ensemble attacks, the theoretical evidence in this paper
also offers new insights into another fascinating idea. Within the extensive body of research on
transferable adversarial attack algorithms accumulated over the years (Gu et al., 2024), we revisit a
foundational analogy that is universally applicable in the adversarial transferability literature: The
transferability of an adversarial example is an analogue to the generalizability of the model (Dong
et al., 2018). In other words, the ideas that enhance model generalization in deep learning may
also improve adversarial transferability (Lin et al., 2019). Over the past few years, this analogy has
significantly inspired the development of numerous effective algorithms, which directly reference it
in their papers (Lin et al., 2019; Wang et al., 2021; Wang & He, 2021; Xiong et al., 2022; Chen et al.,
2024b). And some recent papers are also inspired by it (Chen et al., 2023; Wu et al., 2024; Wang
et al., 2024; Tang et al., 2024). Thus, validating this influential analogy is indispensable for defining
the future landscape of research in adversarial transferability. Interestingly, our paper sheds light on
this insight in several ways.

First, the mathematical formulations in Lemma 1 is similar to generalization error (Vapnik, 1998;
Bousquet & Elisseeff, 2002) , which also derives an objective as a difference between the population
risk and the empirical risk. Such similarity between transferability error and generalization error
suggests the possible validity of the analogy. Also, Lemma 2 is similar to the bound of the original
Rademacher complexity (Golowich et al., 2018), which also suggests that obtaining a larger training
set as well as a less complex model contribute a tighter bound of Rademacher complexity. Such
similarities between transferability error and generalization error suggests the possible validity of the
analogy. More importantly, if the analogy is correct, then recall that in the conventional framework
of learning theory: (1) increasing the size of training set typically leads to a better generalization
of the model (Bousquet & Elisseeff, 2002); (2) improving the diversity among ensemble classifiers
makes it more advantageous for better generalization (Ortega et al., 2022); and (3) reducing the
model complexity (Cherkassky, 2002) benefits the generalization ability. It is natural to ask: In model
ensemble attack, do (1) incorporating more surrogate models, (2) making them more diverse, and (3)
reducing their model complexity theoretically result in better adversarial transferability?

In Section 4, our theoretical framework provides consistently affirmative responses to the above
question as well as the analogy. Considering a higher perspective, the theory is also instructive in two
ways. On the one hand, from the perspective of a theoretical researcher, the extensive and advanced
generalization theory may yield enlightening insights in the field of adversarial transferability. On
the other hand, from an practitioner’s point of view, ideas from deep learning algorithms can also be
leveraged to develop more effective transferable attack algorithms.

D.8 VULNERABILITY-DIVERSITY TRADE-OFF CURVE

The relationship between vulnerability and diversity, as discussed in Section 5, merits deeper explo-
ration. Drawing on the parallels between the vulnerability-diversity trade-off and the bias-variance
trade-off (Geman et al., 1992), we find that insights from the latter may prove valuable for under-
standing the former, and warrant further investigation.

The classical bias-variance trade-off suggests that as model complexity increases, bias decreases
while variance rises, resulting in a U-shaped test error curve. However, recent studies have revealed
additional phenomena and provided deeper analysis (Neal et al., 2018; Neal, 2019; Derumigny &
Schmidt-Hieber, 2023), such as the double descent (Belkin et al., 2019; Nakkiran et al., 2021).

Our experiments indicate that diversity does not follow the same pattern as variance in classical bias-
variance trade-off. Nonetheless, there are indications within the bias-variance trade-off literature that
suggest similar behavior might occur. For instance, Yang et al. (2020) proposes that variance exhibits
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a bell-shaped curve, initially increasing and then decreasing as network width grows. Additionally,
Lin & Dobriban (2021) offers a meticulous understanding of variance through detailed decomposition,
highlighting the influence of factors such as initialization, label noise, and training data. Overall,
the trend of variance in model ensemble attack remains a valuable area for future research. We may
borrow insights from machine learning literature to get a better understanding of this.

D.9 INSIGHT FOR MODEL ENSEMBLE DEFENSE

While our paper primarily focuses on analyzing model ensemble attacks, our theoretical findings can
also provide valuable insights for model ensemble defenses:

From a theoretical perspective. The vulnerability-diversity decomposition introduced for model
ensemble attacks can likewise be extended to model ensemble defenses. Mathematically, this results
in a decomposition similar to conclusions in ensemble learning (see Proposition 3 in Wood et al.
(2023) and Theorem 1 in Ortega et al. (2022)), which shows that within the adversarial perturbation
region,

Expected loss ≤ Empirical ensemble loss − Diversity.
Thus, to improve model robustness (reduce the expected loss within the perturbation region), the core
strategy involves minimizing the ensemble defender’s loss or increasing diversity.

However, there is also an inherent trade-off between these two objectives: when the ensemble loss
is sufficiently small, the model may overfit to the adversarial region, potentially reducing diversity;
conversely, when diversity is maximized, the model may underfit the adversarial region, potentially
increasing the ensemble loss. Therefore, from this perspective, our work provides meaningful insights
for adversarial defense that warrant further analysis.

From an algorithmic perspective. We can consider recently proposed diversity metrics, such as
Vendi score (Friedman & Dieng, 2022) and EigenScore (Chen et al., 2024a). Following the method-
ology outlined in Deng & Mu (2023), diversity can be incorporated into the defense optimization
objective to strike a balance between diversity and ensemble loss. By finding an appropriate trade-off
between these two factors, the effectiveness of ensemble defense may be enhanced.

E EVALUATION ON THE CIFAR-100 DATASET

Following the same setting in our experiments, we further validate the vulnerability-diversity decom-
position on the CIFAR-100 (Krizhevsky et al., 2009) dataset. The results are shown in fig. 6.
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Figure 6: Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs
on the CIFAR-100 dataset.

As the model becomes stronger (i.e., a smaller λ), the three metrics (ASR, loss and variance) increases,
validating the soundness of vulnerability-diversity decomposition.
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