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Figure 1: Video samples generated by ToonComposer using sparse keyframe sketches, featuring
scenes from cartoon movies (used with permission). ToonComposer supports precise keyframe
control and flexible inference with varying numbers of input keyframe sketches and output video
lengths (33 frames for the first and third samples, and 69 frames for the second sample). Frames
are evenly sampled for illustration in this figure. Each input and output frame is annotated with
its corresponding temporal index in the bottom right corner. These movies were excluded from the
training data.

ABSTRACT

Traditional cartoon and anime production involves keyframing, inbetweening, and
colorization stages, which require intensive manual effort. Despite recent ad-
vances in AI, existing methods often handle these stages separately, leading to
error accumulation and artifacts. For instance, inbetweening approaches struggle
with large motions, while colorization methods require dense per-frame sketches.
To address this, we introduce ToonComposer, a generative model that unifies in-
betweening and colorization into a single post-keyframing stage. ToonComposer
employs a sparse sketch injection mechanism to provide precise control using
keyframe sketches. Additionally, we propose a novel cartoon adaptation method
with the spatial low-rank adapter (SLRA) to effectively tailor a modern video
foundation model to the cartoon domain while keeping its temporal prior intact.
Requiring as few as a single sketch and a colored reference frame, ToonComposer
excels with sparse inputs, while also supporting multiple sketches at any tempo-
ral location for more precise motion control. This dual capability reduces manual
workload and improves flexibility, empowering artists in real-world scenarios. To
evaluate our model, we further created PKBench, a benchmark featuring human-
drawn sketches that simulate real-world use cases. Our evaluation demonstrates
that ToonComposer outperforms existing methods in visual quality, motion con-
sistency, and production efficiency, offering a superior and more flexible solution
for AI-assisted cartoon production.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION
Cartoons and anime are celebrated for their vibrant aesthetics and intricate narratives, standing as
a cornerstone of global entertainment. Traditional cartoon production involves keyframing, inbe-
tweening, and colorization stages, each of which requires artists to craft numerous frames to ensure
fluid motion and stylistic consistency (Tang et al., 2025). While the keyframing stage is a cre-
ative process that embodies human artistry, the subsequent inbetweening and colorization stages are
highly labor-intensive and time-consuming. Specifically, the inbetweening and colorization stages,
which require less creative input, demand the production of hundreds of drawings for mere seconds
of animation, resulting in significant time and resource costs.

Recent advances in generative models have facilitated the inbetweening and colorization stages, such
as ToonCrafter (Xing et al., 2024a; Jiang et al., 2024), AniDoc (Meng et al., 2024), or LVCD (Huang
et al., 2024b). However, these methods face critical limitations: (1) inbetweening approaches (Xing
et al., 2024a; Jiang et al., 2024) struggle to interpolate large motions from sparse sketch inputs,
often requiring multiple keyframes for a smooth motion; (2) colorization methods (Meng et al.,
2024; Huang et al., 2024b) demand detailed per-frame sketches, imposing significant artist work-
load. (3) Additionally, their sequential processing leads to error accumulation, where inaccuracies
in interpolated sketches affect the colorization stage, resulting in artifacts and reduced quality (Tang
et al., 2025). These shortcomings highlight a significant gap in achieving a streamlined and efficient
production pipeline that produces high-quality results.

Sparse
Keyframe
Sketches

Per-frame
Sketches Colorization

Model
Inbetweening

Model

Keyframing (By Human Artists)

Cartoon
Video

Our Workflow

Previous Workflow

Color
Reference

Frame
ToonComposer

(Generative Post-keyframing)

Figure 2: Comparison between previous cartoon
production workflow and ours. ToonComposer
enables the post-keyframing stage, seamlessly in-
tegrating inbetweening and colorization into a sin-
gle automated process, streamlining cartoon pro-
duction compared to previous traditional and ex-
isting AI-assisted workflows.

In fact, the inbetweening and colorization
stages are highly interdependent. Both of
them require searching for correspondences
among keyframe sketches or color reference
frames. Therefore, we introduce the post-
keyframing stage, a novel paradigm that fol-
lows the keyframe creation stage and merges
inbetweening and colorization into a single
automated process. This unification enables
the model to jointly utilize the information in
keyframe sketches and color reference frames
in a single stage, avoiding the risk of cross-
stage error accumulation. As illustrated in Fig-
ure 2, the post-keyframing stage requires only a
few keyframe sketches and a colored reference
frame to generate a complete high-quality cartoon video. This approach significantly reduces man-
ual effort, allowing artists to focus on creative keyframe design, while AI manages repetitive tasks.

To achieve this, we adopt modern Diffusion Transformer (DiT)-based foundation models (Wang
et al., 2025a), which demonstrate superior video generation performance. Although it offers new
possibilities for cartoon video production, it also presents two significant challenges: 1) Controlla-
bility: DiT foundation models are typically weakly conditioned on text prompts or initial frames,
lacking the precision needed to incorporate sparse keyframe sketches for motion guidance at a spe-
cific temporal position. 2) Adaptation: Since they are trained on natural video datasets, adaptation
to the cartoon domain is necessary to produce high-quality cartoon videos. However, the previous
adaptation method for cartoon (Xing et al., 2024a) is limited to UNet-based models, which alters the
models’ spatial behavior while preserving temporal prior by only tuning the decoupled spatial lay-
ers, leading to superior performance than joint spatial-temporal tuning. Nonetheless, in our context,
the full attention mechanism in the DiT model jointly learns spatial and temporal behaviors, where
the previous cartoon adaptation method (Xing et al., 2024a) is no longer valid.

To address the above challenges, we propose ToonComposer, a cartoon generation model for post-
keyframing. First, to solve the challenge of precise controllability with sparse sketches, we devise
the sparse sketch injection mechanism, which enables accurate control in cartoon generation using
sparse keyframe sketches. Second, to handle the challenge of domain adaptation in DiT models, we
tailor the cartoon adaptation for ToonComposer. It adapts the foundation DiT model to the cartoon
domain with a novel spatial low-rank adapter (SLRA) strategy, which adapts the appearance to the
cartoon domain while preserving its powerful temporal prior intact, leading to superior performance
than joint spatial-temporal tuning. In addition, we improve the flexibility of ToonComposer by intro-
ducing the region-wise control, which enables flexible motion generation without drawing sketches

2
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Figure 3: Model design of ToonComposer. A sparse sketch injection mechanism enables precise
control using keyframe sketches, and a cartoon adaptation method incorporating a spatial low-rank
adapter tailors the DiT-based video model to the cartoon domain, preserving its temporal priors.

in indicated regions. These contributions ensure that ToonComposer generates stylistically coherent
animations with minimal input, as shown in Figure 1, effectively realizing the post-keyframing stage
within one model.

To support the training of the proposed model, we curated a dataset PKData, which contains high-
quality anime and cartoon video clips. Each clip is accompanied by keyframe sketches in multiple
styles, providing a solid foundation for training. In addition to evaluating our model on benchmark
with synthetic sketches, we curated PKBench, a new benchmark that contains 30 original cartoon
scenes with human-drawn keyframe sketches and reference color frames. Extensive experiments on
both benchmarks demonstrate that ToonComposer outperforms existing methods in visual quality,
motion coherence, and production efficiency. Our contributions are summarized as follows:

• We propose ToonComposer, the first DiT-based cartoon generation model for post-
keyframing stage, incorporating sparse sketch injection and region-wise control to generate
high-quality cartoon videos from sparse inputs.

• We design a cartoon adaptation mechanism using SLRA, which effectively tailors the spa-
tial behavior of the video DiT model to the cartoon domain while preserving its temporal
prior, leading to superior performance than joint spatial-temporal tuning.

• We curate a cartoon post-keyframing dataset with diverse sketches for training and develop
a high-quality benchmark with real human-drawn sketches.

• Extensive experiments on both synthetic and human-drawn benchmarks demonstrated the
superiority of our method, with additional ablation studies validated the effectiveness of
each proposed component in our framework.

2 RELATED WORK
AI-assisted Cartoon Production AI has increasingly been applied to automate labor-intensive
tasks in cartoon and anime production (Tang et al., 2025; Zhang et al., 2025), such as inbetweening
and colorization. For inbetweening, early methods like AnimeInterp (Li et al., 2021) and Aut-
oFI (Shen et al., 2022) focus on linear and simple motion interpolation. More recently, diffusion-
based methods (Xing et al., 2024a; Jiang et al., 2024) become capable of handling cases with more
complex motion by harnessing the generative priors of a pretrained model. For colorization, early
GAN-based (Isola et al., 2017) and recent diffusion-based methods (Zhuang et al., 2024; Meng et al.,
2024; Huang et al., 2024b; Zhuang et al., 2025; Chen et al., 2025) have automated the colorization
of line art based on one or a series of reference frames. However, while existing AI-assisted methods
have advanced cartoon production by automating inbetweening and colorization, they often require
dense frame inputs, operate as separate, isolated stages, and face challenges with complex motions
and stylistic consistency (Tang et al., 2025). ToonComposer overcomes these hurdles by offering a
unified, sparse-input solution for post-keyframing that simplifies the production workflow.

Video Diffusion Model Diffusion models have emerged as the cornerstone for generative
tasks (Ho et al., 2020), particularly in image and video synthesis, by iteratively denoising sam-
ples from a noise distribution to produce high-quality outputs (Blattmann et al., 2023b). For video
generation, these models must effectively capture both spatial details and temporal dynamics, a
challenge that has led to distinct architectural approaches. Traditional UNet-based diffusion mod-
els (Ho et al., 2022; Blattmann et al., 2023b;a; Xing et al., 2024c) extend 2D U-Nets to handle
videos by incorporating 3D convolutions and separated spatial and temporal attention layers. In
these models, spatial attention layers process intra-frame features, often across channels or spatial
positions, while separate temporal attention layers model inter-frame dependencies. In contrast,

3
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Diffusion Transformers (DiTs) (Peebles & Xie, 2023) leverage transformer architectures, replacing
UNet’s convolutional backbone with full attention mechanisms that model long-range dependencies
in both spatial and temporal dimensions (Yang et al., 2024; Kong et al., 2024; Wang et al., 2025a).
Although showing stronger performance compared to spatial-temporal decoupled design, such full
attention mechanism eliminates the availability of spatial adaptation tailored for domains such as
cartoon (Xing et al., 2024a). Our work builds upon the DiT-based foundation model to harness
the high-quality video prior with a new cartoon adaptation mechanism, which adapts the DiT-based
foundation model to the cartoon domain in spatial behavior while keeping its temporal motion prior
intact.

Controllable Generation Controllable generation seeks to steer image and video synthesis with
explicit conditions such as reference images (Ye et al., 2023; Zhang & Agrawala, 2023), depth
maps (Xing et al., 2024b), human poses (Zhu et al., 2024; Hu, 2024), and semantic labels. Tech-
niques such as IP-Adapter (Ye et al., 2023) and ControlNet (Zhang & Agrawala, 2023) inject these
visual cues into diffusion models alongside text prompts, allowing fine-grained manipulation of
both content and style. The value of controllability of generation is particularly evident in domain-
specific pipelines. For cinematography, camera-aware generators expose handles for 2D scene lay-
out and 3D camera trajectories (He et al., 2024; Wang et al., 2024b; Li et al., 2024; Wang et al.,
2025b), allowing video creators to frame shots and motion with high precision. In cartoon produc-
tion, sketch-guided models support interpolation, inbetweening, and colorization (Meng et al., 2024;
Huang et al., 2024b; Xing et al., 2024a). Our method focuses on the controllable cartoon generation
using sparse keyframe sketches with DiT models.

3 METHODOLOGY

We introduce ToonComposer, a novel generative post-keyframing model that produces high-quality
cartoon videos with sparse control. To achieve this, we propose a curated sparse sketch injection
strategy, which effectively enables precise sketch control at arbitrary timestamps (Section 3.2). Fur-
thermore, to fully leverage the temporal prior in video generation models, we design a novel low-
rank adaptation strategy that efficiently adapts the spatial prior to the cartoon domain while leaving
the temporal prior intact (Section 3.3). To further alleviate artist workload and improve efficiency,
our method also enables region-wise control, empowering artists to draw only part of sketches while
leaving the model to reason how the motion should be generated in blank areas (Section 3.4).

3.1 POST-KEYFRAMING STAGE

The cartoon industry has benefited significantly from the development of generative AI, facilitat-
ing the stage of inbetweening (Xing et al., 2024a) and colorization (Huang et al., 2024b; Meng
et al., 2024). The two stages are highly interdependent: both require searching and interpolating
along the correspondence between elements in the keyframes/sketches, indicating that their internal
mechanisms are similar. Merging the two processes significantly alleviates the requirement of dense
per-frame sketches and avoids the risk of cross-stage error accumulation. Motivated by this, we pro-
pose the post-keyframing stage, a new stage that automates cartoon production and consolidates the
inbetweening and colorization into a unified generative process. Given one colored reference frame
and one sketch frame, the post-keyframing stage aims to directly produce a high-quality cartoon
video that adheres to the guidance provided by these inputs.

Formally, given a colored reference frame f1 and a sketch frame sj , we aim to obtain a model Gθ

that directly generates a high-quality cartoon video with K frames:

{f̂k}Kk=1 = Gθ(f1, sj , etext), (1)

where j represents the temporal location of sj , and etext represents the prompt describing the scene.

3.2 SPARSE SKETCH INJECTION

Advanced video generation models, such as Wan (Wang et al., 2025a), demonstrate exceptional
performance in producing high-quality videos. While image-to-video (I2V) video generation models
variant supports video generation guided by an initial frame, precise control using sparse sketches
at arbitrary temporal positions remains unexplored. To this end, we introduce a novel sparse sketch

4
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injection mechanism that integrates sketches into the latent token sequence of an I2V DiT model for
precise temporal control.

In the standard I2V DiT model ϵθ, the input image is concatenated with the noisy latent z along the
channel dimension. To inject the sketch frame sj into the latent representation of the DiT model
ϵθ for precise control over the temporal location j in the generated cartoon, we first introduce an
additional projection head that embeds the conditional sketch latents into sketch tokens s′j that are
compatible with the latent dimension of the model. Then, we apply the position embedding mapping
process that borrows the RoPE (Su et al., 2024) encodings from the corresponding video tokens at
the temporal index j before each attention operator. These sparse sketch tokens are concatenated
with the video tokens along the sequence dimension to facilitate the attention computation process.

This mechanism enables efficient integration of sketch conditions into the latent space with temporal
awareness during the generation process. In addition, it facilitates the simultaneous use of multiple
keyframes and sketches as control input. Given the complexity of motion in some cartoon scenes,
precise control often necessitates multiple keyframes and sketches. Therefore, we extend the formu-
lation to support both multiple colored reference frames and multiple sketch inputs. Consequently,
the forward step of the I2V DiT model with sparse sketch injection is expressed as:

ϵ̂ = ϵθ

([
[{z(t)k }Kk=1, pad({f ′

ic}
C
c=1)]c, {s′in}

N
n=1

]
s
, etext, t

)
, (2)

where {s′in}
N
n=1 represents N sketch frames and {f ′

ic
}Cc=1) denotes C colored reference frames.

[·, ·]s means concatenation along the token sequence dimension. This formulation enables pre-
cise control over multiple inputs, while also supporting the minimal input requirement of the post-
keyframing stage (one colored and one sketch frame, described in Section 3.1).

In addition, an extra position-aware residual is introduced in our model to enhance the flexibility of
sketch control. Please refer to the Appendix Section A.1 for more details.

3.3 CARTOON ADAPTATION DiT Block (with Cartoon Adaptation)
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Figure 4: SLRA used for cartoon
adaptation. It takes the hidden
states before the spatial-temporal
self-attention module as input and
outputs a residual that is added af-
ter the self-attention operation.

Previous work (Xing et al., 2024a) has demonstrated the suc-
cess of adapting video generation models to the cartoon do-
main by tuning only the spatial layers of a spatial-temporal U-
Net, preserving the temporal motion prior while adapting ap-
pearance. However, modern video models (Yang et al., 2024;
Wang et al., 2025a; Kong et al., 2024) employ 3D-full atten-
tion, intertwining spatial and temporal representations, making
direct spatial adaptation infeasible.

To address this, we introduce the Spatial Low-Rank Adapter
(SLRA), a novel low-rank adaptation mechanism that modifies
the attention module’s spatial behavior while preserving the
temporal prior. As shown Figure 4, given a token sequence h ∈
RL×D in each self-attention module of ϵθ, SLRA produces
residual hres to adapt the original self-attention modules in the DiT model for the cartoon domain:

hres = [attn
W̃

([hWdown]reshape)W
up]resume, (3)

where attn(·) performs self-attention independently on the spatial dimension of each frame, with
the same positional embeddings as the main model applied to the video and sketch tokens. Wdown ∈
RD×D′

and Wup ∈ RD′×D are trainable downsampling and upsampling matrices operating on the
feature dimension. W̃ = {WQ,WK ,WV ,WO}, where WQ,WK ,WV ,WO ∈ RD′×D′

are the
trainable matrices in the SLRA’s attention. Assume H and W are the spatial sizes of DiT’s latent
tokens, and K and N are the temporal length of the video tokens and sketch tokens. The reshape
operation [·]reshape reorganizes the spatial-temporal token arrangement into R(K+N)×(H×W )×D′

,
where D′ ≪ D, constraining attention to the spatial dimension (H ×W ) only. The resume-shape
operation [·]resume restores the sequence form to RL×D′

. Distinct from vanilla LoRA, SLRA ex-
plicitly restricts information propagation to the spatial dimension, leaving the temporal dimension
intact. This effectively adapts the appearance of the base video generation model to the cartoon do-
main, while maintaining its strong temporal prior. As demonstrated in Table 3, SLRA outperforms
LoRA and its variants. Please refer to Appendix Section A.2 for more details.
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3.4 REGION-WISE CONTROL

Sometimes cartoon creators may only want to draw the foreground sketch and let the generator create
the background for them. If they simply leave the background blank, this may result in undesirable
artifacts, as shown in the second row of Figure 7.

To this end, we propose a novel region-wise control mechanism that allows artists to specify blank
regions in sketches for the model to generate plausible content based on context or text prompts.
During training, random masks min ∈ {0, 1}H×W are applied to the sketch frames sin , where
min(i, j) = 0 indicates a region where the sketch is not provided. An additional channel is concate-
nated to sin , which is encoded as:

s̃′in = [E(sin),min ]c , (4)

where s̃′in is used to replace the s′in described in Equation (2) during training. The model learns to
reconstruct full frames in masked regions, enabling flexible inference where artists can assign the
value of min and leave masked areas blank for context-driven generation.

Complementary to the support of temporally sparse keyframes and sketches, our region-wise control
allows the input sketch to be spatially sparse, further alleviating the requirements and labors for
cartoon creators.

3.5 TRAINING OBJECTIVE

ToonComposer is trained as a conditional diffusion model following Rectified Flow (Esser et al.,
2024), which predicts the velocity vt at a timestep t sampled from logit-normal distribution. For
simplicity, we write the input part in Equation (2) as xin:

xin =
[
[{z(t)k }Kk=1, pad({f ′

ic}
C
c=1)]c, {s̃′in}

N
n=1

]
s
, (5)

and let z0 = {z(0)k }Kk=1 be a clean cartoon video latent, the training objective minimizes the expected
velocity prediction error:

L = Ez0,η,t

[
∥vt − ϵθ (xin, etext, t)∥22

]
, (6)

where η is the random Gaussian noise, vt is the velocity derived from {z(t)k }Kk=1 − η, and ϵθ is the
ToonComposer model to be trained.

Human-Drawn

IC-SketcherColor Frame Lineart Anime

Lineart Anyline

Figure 5: Examples of different sketch types
used during training and evaluation. All vari-
ants except human-drawn sketches are in-
cluded in the training set. The diversity of
training sketches improves ToonComposer’s
robustness to varying sketch styles in real use
cases. Human-drawn sketches are used for
evaluation, as discussed in Section 4.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset Based on web video sources, we filtered
and constructed the PKData, a high-quality cartoon
dataset containing 37K diverse cartoon video clips.
Each clip was accompanied by a descriptive caption
generated by CogVLM (Wang et al., 2024a) and a
set of sketch frames. Recognizing the stylistic di-
versity in sketches due to different artist preferences
or creation tools, we augmented our dataset with di-
verse types of sketches. Specifically, we synthesize
four versions of sketches per frame using four open-
source CNN-based sketch models, including two ba-
sic lineart models used in ControlNet (Zhang & Agrawala, 2023), Anime2Sketch (Xiang et al.,
2022), and Anyline (Soria et al., 2023). Furthermore, we tune an image-to-image generative model
from FLUX.1-dev with in-context LoRA (Huang et al., 2024a) on a small real-sketch dataset from
multiple artists. This model, named IC-Sketcher, is then used to produce another version of sketches.
Figure 5 illustrates one example frame with diverse sketches.

Benchmark We first evaluate our methods on a synthetic benchmark obtained from cartoon
movies (use with permission, for evaluation only), where sketches for each video frame are pro-
duced using sketch models. We adopt reference-based metrics on this benchmark since the ground
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Table 1: Quantitative evaluation results on the synthetic benchmark, comparing ToonComposer with
previous AI-assisted cartoon generation methods: AniDoc (Meng et al., 2024), LVCD (Huang et al.,
2024b), and ToonCrafter (Xing et al., 2024a).

Method LPIPS↓ DISTS↓ CLIP↑ Subject Con.↑ Motion Smo.↑ Background Con.↑ Aesthetic Qua.↑
AniDoc 0.3734 0.5461 0.8665 0.9067 0.9798 0.9408 0.4962
LVCD 0.3910 0.5505 0.8428 0.8316 0.9810 0.9183 0.4984

ToonCrafter 0.3830 0.5571 0.8463 0.8075 0.9550 0.8920 0.5035
ToonComposer 0.1785 0.0926 0.9449 0.9451 0.9886 0.9547 0.5999

Input

AniDoc

LVCD

ToonCrafter

Ours

Input

AniDoc

LVCD

ToonCrafter

Ours

Reference

Reference

Figure 6: Comparison on the synthetic benchmark among AniDoc, LVCD, ToonCrafter, and our
ToonComposer. Zoom-in patches of a randomly selected region are shown in the rightmost column.
Our method demonstrates superior visual quality, smoother motion, and better style consistency with
the input image. Evaluation scenes are sourced from movies with permission (Mr. Miao and Big
Fish & Begonia). Please refer to the supplementary video for more results.

truth is available. Furthermore, we developed PKBench, a novel benchmark featuring human-drawn
sketches to enable a more comprehensive evaluation of cartoon post-keyframing in real-world sce-
narios. PKBench contains 30 samples, each including 1) a colored reference frame, 2) a textual
prompt that describes the scene, and 3) two real sketches that depict the start and end frames of a
scene, drawn by professional artists.

Metrics For evaluation metrics, we adopt 1) reference-based perceptual metrics for synthetic
benchmark, including LPIPS (Zhang et al., 2018), DISTS (Ding et al., 2020), and CLIP (Radford
et al., 2021) image similarity, 2) reference-free video quality metrics from VBench (Huang et al.,
2024c) for both synthetic and real benchmarks, including subject consistency (S. C.), motion con-
sistency (M. C.), background consistency (B. C.) and aesthetic quality (A. Q.). 3) A user study on
human perceptual quality for the real benchmark.

Training Details We adopt Wan 2.1 (Wang et al., 2025a) (14B image-to-video) as our base model
and apply the injection and adaptation techniques outlined in Section 3. The model is then trained on
our dataset for 10 epochs with an effective batch size of 16, using the AdamW optimizer (Loshchilov
& Hutter, 2017) and a learning rate of 10−5. The SLRA internal dimension D′ is set to 144 by
default. We use the zero redundancy optimizer (Rajbhandari et al., 2020) stage 2 to reduce memory
cost during training.
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Input
First Frame

Output Video
w/o Region-wise Control

Output Video
with Region-wise Control

Input
Last Sketch 
w/o Region-wise Control

Input
Last Sketch
with Region-wise Control

Prompt
“At the railway station, a subway train with red doors and a 

gray body slowly passes the platform, and a girl walks 
forward on the platform.”

Figure 7: Illustration of region-wise control in ToonComposer. Without region-wise control, blank
areas in keyframe sketches are misinterpreted as textureless regions, producing a flat blue train
(second row, highlighted with a dashed box). With region-wise control, users can specify areas
for context-driven generation without explicit sketches, enabling the model to create plausible and
detailed content, such as the dynamic train motion (third row, highlighted with a dashed box).

4.2 EVALUATION ON SYNTHETIC BENCHMARK

We first evaluate our ToonComposer on a synthetic cartoon benchmark and compare it with pre-
vious methods, including AniDoc (Meng et al., 2024), LVCD (Huang et al., 2024b), and Toon-
Crafter (Xing et al., 2024a). In this synthetic evaluation, sketches are obtained from cartoon video
frames using the same sketch model (Xiang et al., 2022). To ensure evaluation fairness, we align the
ground truths in both spatial and temporal dimension to fit the pre-defined settings of each model
for metrics calculation.

Baseline Methods Although our model requires only one inference to get the final cartoon video,
previous methods demand a two-stage process, as shown in Figure 2. For ToonCrafter (Xing et al.,
2024a), we first generate the dense sketch sequence by interpolating the first and last sketch frames,
then we use its sketch guidance mode (which requires the first and last color frames as input) to
generate the final cartoon video. For LVCD (Huang et al., 2024b) and AniDoc (Meng et al., 2024),
we first generate the dense sketch sequence interpolated by ToonCrafter, then colorize the sketches
into a final cartoon video using the two models, respectively.

Results Table 1 shows the numeric results of the synthetic evaluation. Our method out-
performs previous methods in both reference-based metrics and reference-free metrics. For
example, our model reports a significantly lower DISTS score, indicating that its per-
ceptual quality is much better than that of its counterparts. Figure 6 visualized the
qualitative comparison between these methods, with the ground truth video provided as
references. In both samples, our method produces smooth and natural cartoon video
frames, while other methods fail to handle such challenging cases with sparse sketches.

Table 2: Quantitative evaluation results on
the real sketch benchmark PKBench, com-
paring ToonComposer with other AI-assisted
cartoon generation models.

Method S. C.↑ M. S.↑ B. C.↑ A. Q.↑
AniDoc 0.9456 0.9842 0.9664 0.6611
LVCD 0.8653 0.9724 0.9394 0.6479

ToonCrafter 0.8567 0.9674 0.9343 0.6822
ToonComposer 0.9509 0.9910 0.9681 0.7345

For example, in the zoom-in patches of the first
sample, AniDoc and ToonCrafter produce distorted
faces. LVCD generates a reasonable face but loses
all details in subsequent frames. In contrast, our
method produces a clear face which preserves the
identity of the first reference frame. These observa-
tions align with our method’s numeric performance
advantages in Table 1. More results are provided in
the supplementary video.

4.3 EVALUATION ON REAL BENCHMARK

In addition to the evaluation on the synthetic test set, we further compared all methods on our
proposed benchmark PKBench with real human sketches. Since ground truth is not available for
each sample, we evaluated the generated videos using reference-free metrics from VBench (Huang
et al., 2024c). The quantitative comparison is shown in Table 2, where our model outperforms
previous methods in all metrics, achieving superior appearance and motion quality. We present more
visual comparison results on the real benchmark in Appendix Section B.3 and a human evaluation
in Appendix Section B.2.
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LoRA

TO (Temporal-Only Adaptation)

LA (Linear Adaptation)ST (Spatial Temporal Adaptation)

SLRA (Ours)Keyframe Sketch

Figure 8: Visualized comparison between the SLRA
and alternative adaptation methods. SLRA yields
higher visual quality and better coherence with the
input keyframe sketches.

Table 3: Ablation study on the SLRA for car-
toon adaptation: temporal-only (TO), spatial-
temporal (ST), degraded linear adaptation
(LA), and the LoRA model. Mixed means both
spatial and temporal adaptation are applied.

Method Type Attn. LPIPS↓ DISTS↓ CLIP↑

SLRA Spatial " 0.1874 0.0955 0.9634

TO Temp. " 0.1956 0.1109 0.9581
ST Mixed " 0.1977 0.1068 0.9587
LA Mixed % 0.2030 0.1091 0.9589

LoRA Mixed % 0.1922 0.1082 0.9628

4.4 DISCUSSION AND ANALYSIS

In this section, we discuss key analyses to validate ToonComposer’s effectiveness. Due to space
limits, more comparisons, ablation studies, and analysis are detailed in the Appendix Section C.

Use Case of Region-wise Control We visualize how region-wise control affects the generated
video. Without region-wise control, leaving a blank area in the keyframe sketch causes the model
to interpret it as a textureless region, resulting in flat areas in the generated frames, as illustrated
in the second row of Figure 7. In contrast, with the region-wise control enabled, users can simply
draw an area with brush tools to indicate areas that require generating proper motion according to
the context. As shown in the last row of Figure 7, our model is able to infer from the input keyframe,
the sketch, and the mask given, and automatically generate a plausible movement of the train in the
masked area. This mechanism significantly improves flexibility, further alleviating manual workload
in real scenarios.

Ablation on the SLRA To evaluate the significance of spatial adaptation in ToonComposer, we
conducted an ablation study on the SLRA by comparing it against alternative adaptation strate-
gies. These include: TO (temporal-only adaptation), which constrains SLRA’s internal attention to
the temporal dimension, emphasizing temporal dynamics; ST (spatial-temporal adaptation), which
permits mixed spatial-temporal interactions within the SLRA’s attention mechanism; LA (linear
adaptation), a simplified variant that removes SLRA’s attention block entirely, acting as a learnable
residual across the whole original attention module; and LoRA (Hu et al., 2022), a baseline that
applies residuals to all linear layers (query, key, value, and output) in the DiT’s attention modules,
implicitly affecting both spatial and temporal behaviors.To ensure a fair comparison, we set LoRA’s
rank to 24 to match SLRA’s parameter count, and all models were trained under identical conditions.

The results are presented in Table 3 and Figure 8, where SLRA outperforms all variants in both
numeric results and visual quality. In Table 3, we denote the adaptation type in Type column and
whether the adaptation method uses attention operation in Attn. column. Specifically, TO (temporal-
only adaptation) and ST (spatial-temporal adaptation) yield higher errors due to insufficient or con-
flicting spatial adjustments, while LA (linear adaptation) lacks the nuanced adaptation required for
cartoon aesthetics. Despite the broader scope of LoRA, it underperforms SLRA due to its less tar-
geted adaptation, which disrupts the temporal priors critical for a smooth transition. These findings
underscore SLRA’s effectiveness in adapting DiT’s spatial behavior for cartoon-specific features,
while preserving the temporal prior intact.

5 CONCLUSION

In this paper, we present ToonComposer, a novel model that streamlines cartoon production by au-
tomating tedious tasks of inbetweening and colorization through a unified generative process named
post-keyframing. Built on the DiT architecture, ToonComposer leverages sparse keyframe sketches
and a single colored reference frame to produce high-quality, stylistically consistent cartoon video
sequences. Experiments show that ToonComposer surpasses existing methods in visual fidelity, mo-
tion coherence, and production efficiency. Features such as sparse sketch injection and region-wise
control empower artists with precision and flexibility, making ToonComposer a versatile system for
cartoon creation. Despite limitations such as computational costs, ToonComposer offers a promising
solution to streamline the cartoon production pipeline through generative models.

9
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or sponsorship issues that could compromise the work.

Reproducibility Statement To facilitate reproducibility, we provide detailed descriptions of our
model architecture, training procedures, and evaluation metrics in the main paper and appendix.
Codes, weights, dataset pipeline, and the benchmark will be publicly released upon acceptance of
the paper. Pretrained model weights will be made available for replication of results.

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023b.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A MODEL DESIGN DETAILS

Due to the space limit in the main paper, this section provides a detailed explanation for the model
designs of the position-aware residual and the SLRA in ToonComposer.

A.1 POSITION-AWARE RESIDUAL

To enhance the flexibility of sketch control, our ToonComposer also allows users to dynamically
adjust the control strength of input sketches, through an adjustable weight during inference. This is
done through a positional-aware residual module in the sparse sketch injection process. For sparse
sketch tokens at controlled keyframe indices {in}Nn=1, we transform these tokens through a linear
layer Wres and combine them with the corresponding video tokens at matching indices, scaled by a
weight α:

{z(t)k }k∈{in}N
n=1

:= {z(t)k }k∈{in}N
n=1

+ α{s′in}
N
n=1Wres, (7)

where Wres ∈ RD×D is a trainable weight, D is the feature dimension of tokens. During training,
the scale weight α is set to 1. During inference, users can adjust the weight α to loosen or strengthen
the control of keyframe sketches. The ablation and use case of position-aware residual mechanism
is illustrated in Appendix Section C.3.

A.2 DETAILS OF SLRA

The SLRA in ToonComposer is designed to effectively adapt video generation models to the cartoon
domain while keeping its temporal video prior intact. In this section, we describe the inner process of
SLRA step by step. Unlike conventional LoRA, the SLRA is designed to alter the spatial behaviors
of the attention modules in a DiT model, so as to preserve its temporal prior, which is essential for
video generation. The SLRA operates on a low-rank space and learns two matrices Wdown and Wup

to downsample the token feature to the low-rank space and to the original space. Let H and W be
the spatial sizes of DiT’s latent tokens, and K and N be the temporal length of the video tokens
and sketch tokens. Given a token sequence h ∈ RL×D inside each self-attention module of ϵθ,
where L = (K + N) × H × W is the full length of the token sequence, SLRA operates first by
downsampling the feature dimension of the input hidden token with a linear layer:

hlow = hWdown, (8)

where Wdown ∈ RD×D′
D′ ≪ D, yielding hlow ∈ RL×D′

.

Then, SLRA reshapes hlow to h̃low ∈ R[K+N ]×[H×W ]×D′
, recovering their original spatial-temporal

arrangements. After reshaping, we perform a self-attention operation on spatial dimension only.
This is achieved by performing the attention mechanism on the spatial dimension of each frame
independently:

Q = pos(h̃low
l WQ), K = pos(h̃low

l WK), V = h̃low
l WV (9)

O = softmax
(
QKT

)
VWO, (10)

where the subscript l represents the index along the l-th temporal dimension, and pos(·) applies
positional embeddings of corresponding spatial locations on queries and keys. Thus, the attention
computation is performed within each frame. WQ,WK ,WV ,WO ∈ RD′×D′

are trainable matri-
ces, and O ∈ RH×W×D′

. The same positional embeddings as the main model will be applied to
both video and sketch tokens during this attention operation. As a result, the propagation of infor-
mation in the SLRA module is performed only in the spatial dimension, while leaving the temporal
dimension intact.

Following that, we reshape O to ĥlow ∈ RL×D′
as a sequence, then upsample it to the original

dimension:
hres = ĥlowWup, (11)

where Wup ∈ RD′×D. Finally, the adapted DiT model’s self-attention output SA(h) will be modi-
fied as:

h′ = SA(h) + hres. (12)

SLRA ensures that cartoon-specific spatial features are learned without disrupting temporal coher-
ence, efficiently adapting a DiT-based video diffusion model to the cartoon domain.
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B EXPERIMENTAL DETAILS

In this section, we present additional experimental results to complement the evaluations in the
main paper, including the dataset processing pipeline, the human evaluation conducted on the real-
world PKBench benchmark, qualitative comparisons showcasing ToonComposer’s performance
with human-drawn sketches.

B.1 DATASET CONSTRUCTION PIPELINE

This section outlines the detailed pipeline for constructing the PKData dataset. The process involves
four stages: video scene-cut segmentation, clip filtering, caption generation, and sketch generation.
Each stage is carefully designed to ensure the dataset is diverse, high-quality, and suitable for train-
ing ToonComposer in the post-keyframing task.

Video Scene-Cut Segmentation To create manageable and coherent video clips, we first segment
the source cartoon videos into shorter clips using PySceneDetect 1, a scene detection library that
identifies scene boundaries based on visual transitions. We get clips with an average duration of
approximately 10 seconds after this process. This scene-cut segmentation ensures that each clip
represents a single coherent scene, facilitating the generation of temporally consistent animations.

Clip Filtering To ensure the quality and relevance of the dataset, we apply a rigorous filtering
process to remove unsuitable clips. This process involves multiple criteria to eliminate low-quality
or irrelevant content:

• Rule-Based Filtering: We discard clips containing all-white, all-black, or pure-color
scenes, as these lack meaningful visual content for training.

• Scene Consistency Check: To ensure clips represent a single coherent scene, we compute
the DINO (Caron et al., 2021) feature similarity between the first and last frames of each
clip. Clips exhibiting drastic scene changes (i.e., low similarity scores) are removed to
avoid abrupt transitions that could disrupt training.

• Text Scene Detection: Using Qwen-VL (Bai et al., 2023), a vision-language model, we
identify and filter out clips dominated by pure text, which are irrelevant for animation
generation.

• Scene Cut Validation: To verify the accuracy of scene-cut segmentation, we employ
Qwen-VL (Bai et al., 2023) again to detect clips containing multiple scene cuts within
a single clip. This is achieved by asking the VLM model if the first and last video frames
are from the same scene. Clips with multiple scene cuts will be removed from the training
dataset.

Through this multi-step filtering, we reduce an initial pool of approximately 100K clips to 37K
high-quality clips, ensuring each clip is visually coherent, content-rich, and suitable for training
ToonComposer.

Caption Generation To provide textual context for each clip, we generate descriptive captions
using CogVLM (Wang et al., 2024a). The captions are designed to enhance the model’s ability to
understand and generate cartoon sequences by focusing on key visual and dynamic elements. We use
the following prompt for caption generation: “Describe this cartoon video in detail, ensuring that
the main object(s) in the scene serves as the grammatical subject of your answer sentence. Focus
on transformations throughout the video, including changes in color, lighting, and atmosphere, as
well as the movements, actions, and interactions of characters or objects.” This prompt ensures
that captions are detailed, action-oriented, and centered on the primary subjects, capturing essential
transformations and interactions within each clip.

Sketch Generation To enhance the robustness of ToonComposer across varied sketch styles in
post-keyframing tasks, we generate diverse sketches for input video frames, reflecting the stylistic

1PySceneDetect is a scene cut detection and video splitting tool: https://www.scenedetect.com/.
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variations arising from different artist preferences and tools. Specifically, we generate four dis-
tinct sketch versions per frame using open-source CNN-based models: two lineart models from
ControlNet (Zhang & Agrawala, 2023), Anime2Sketch (Xiang et al., 2022), and Anyline (Soria
et al., 2023). Additionally, we develop IC-Sketcher, an image-to-image generative model based on
FLUX.1-dev 2, fine-tuned with in-context LoRA (Huang et al., 2024a) on a curated dataset of real
human-drawn sketches from multiple artists. IC-Sketcher generates a fifth sketch variant that closely
mimics real-world artistic styles, further enriching the dataset’s diversity. These diverse sketches,
illustrated in Figure 5, equips ToonComposer to handle a wide variety of sketch inputs, enhancing
its applicability in practical cartoon production scenarios.

B.2 HUMAN EVALUATION ON REAL BENCHMARK

To further investigate users’ preferences on the generation results, we conducted human evaluations
to compare the generation results produced by our method and other baselines. We randomly select
30 samples from the benchmarks and generate cartoon videos for each method using the aforemen-
tioned pipeline. Our evaluation process involved 47 participants, each of whom was asked to select
the video with the best aesthetic quality and motion quality. The results are shown in Table 4, where
our method achieves the highest win rate on both metrics, significantly exceeding the second best
competitor.

Table 4: User preference rates for aesthetic quality (A. Q.) and motion quality (M. Q.) of cartoons
generated by ToonCrafter (Xing et al., 2024a), AniDoc (Meng et al., 2024), LVCD (Huang et al.,
2024b), and our ToonComposer.

Method Aesthetic Quality↑ Motion Quality↑

AniDoc 4.45% 5.34%
LVCD 7.54% 7.91%

ToonCrafter 17.02% 18.19%
ToonComposer (Ours) 70.99% 68.58%

B.3 QUALITATIVE COMPARISON ON REAL BENCHMARK

Figure 9 visualizes the comparison between all methods, with zoom-in patches from a randomly
selected region provided in the rightmost column. It is observed that previous methods deviate from
the overall style of the first reference frame. Specifically, ToonCrafter generates intermediate frames
with prominent bold lines, likely influenced by the bold brush strokes in the human-drawn sketches,
revealing its limited robustness to diverse sketch styles. In contrast, our ToonComposer produces
video frames with superior visual quality, motion coherence, and style consistency, consistent with
the quantitative results.

C MORE ANALYSIS

This section provides more comprehensive analyses of ToonComposer’s performance and design
choices. Specifically, we discuss 1) the model’s controllability with varying numbers of keyframe
sketches, 2) compare its performance against baselines with increased sketch inputs, 3) ablate key
architectural components (sparse sketch injection, positional-encoding mapping, and position-aware
residual), 4) evaluate SLRA against LoRA with different ranks, 5) assess the impact of text prompts,
6) discuss its generalization to 3D animation, and 7) discuss the limitation of current model.

C.1 COMPARISON USING MULTIPLE SKETCHES

In the primary experiments, all models were evaluated using two keyframe sketches. To assess
performance with additional inputs, we extended the evaluation to four sketches for each model. As
reported in Table 5, ToonComposer outperforms all baselines when limited to two sketches, which

2FLUX.1-dev image generation model: https://github.com/black-forest-labs/flux.
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Input
AniDoc

LVCD

ToonCrafter

Ours

Input
AniDoc

LVCD

ToonCrafter

Ours

Input
AniDoc

LVCD

ToonCrafter

Ours

Figure 9: Comparison on the benchmark PKBench, using keyframe sketches drawn by the human
artists. Zoom-in patches are shown in the rightmost column. Our method generates high-quality re-
sults from real sketch inputs, whereas other methods struggle to maintain visual consistency. Please
refer to the supplementary video for additional examples.

Sketch #2

Sketch #1 Output with Sketch #1

Output with Sketch #1 and #2

Control the Middle Frame (Additional)

Controls the Last Frame

Figure 10: ToonComposer’s flexible controllability with varying keyframe sketches. Using only
sketch #1 as the final keyframe and the prompt “an old man turns back,” ToonComposer generates
a sequence where the old man turns directly (first row). Adding sketch #2 to control the middle
keyframe, while keeping the prompt unchanged, results in a sequence where the old man first picks
up a fruit before turning back (second row).

even surpasses the results of all baseline methods with four sketches. This outcome underscores
ToonComposer’s robustness and efficiency, while also exposing the error accumulation challenges
inherent in prior two-stage approaches.
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Table 5: Performance comparison with varying numbers of sketches on the synthetic benchmark.

Model Sketch Num LPIPS↓ DISTS↓ CLIP↑

ToonComposer 2 0.1785 0.0926 0.9449
4 0.0882 0.0656 0.9636

ToonCrafter 2 0.3830 0.5571 0.8463
4 0.2956 0.5247 0.8973

LVCD 2 0.3910 0.5505 0.8428
4 0.3711 0.5558 0.8495

AniDoc 2 0.3734 0.5461 0.8665
4 0.3076 0.5378 0.8880

C.2 CONTROLLABILITY WITH INCREASING KEYFRAME SKETCHES

The sparse sketch injection mechanism of ToonComposer enables flexible control by supporting a
variable number of input keyframe sketches, increasing its utility in the cartoon production pipeline.
This adaptability allows artists to balance creative control and automation based on the complexity
of the desired motion. As shown in Figure 10, we demonstrate the ability of ToonComposer to
generate distinct cartoon sequences from different numbers of input sketches, all conditioned on the
same text prompt. Additional examples are available in the supplementary video, which illustrates
the versatility of our method in diverse scenarios.

Table 6: Ablation study on network modules of ToonComposer: position-aware residual (Pos. Res.),
positional-encoding mapping (Pos. Map.), and sparse sketch injection (Sk. Inj.) on the synthetic
benchmark.

Sk. Inj. Pos. Map. Pos. Res. LPIPS↓ DISTS↓ CLIP↑

" " " 0.1874 0.0955 0.9634
% " " 0.2534 0.1398 0.9493
" % " 0.2893 0.1659 0.9286
" " % 0.2293 0.1097 0.9308

C.3 MORE ABLATION ON MODEL DESIGN

To further assess the individual contributions of the key architectural components in ToonComposer,
we perform a series of ablation experiments on the sparse sketch injection (Sk. Inj.), positional-
encoding mapping (Pos. Map.), and position-aware residual (Pos. Res.). These ablations are con-
ducted on the synthetic benchmark, with quantitative results summarized in Table 6. The results
demonstrate that each module plays a critical role in maintaining high perceptual quality. Below, we
provide detailed analyses for each component, highlighting their impact on model performance and
functionality.

Sparse Sketch Injection This mechanism is designed to seamlessly integrate sparse keyframe
sketches into the latent token sequence of the DiT-based model while enabling precise temporal
keyframe sketch control. To evaluate its effectiveness, we replace it with a conventional channel-
wise concatenation approach. As shown in Table 6, this substitution leads to a noticeable degradation
in all metrics. This decline underscores the superiority of our sparse sketch injection design. Since
we are adapting an existing foundation model to the cartoon domain, channel-wise concatenation al-
ters the original structure of noisy latents, increasing the risk of disrupting the pretrained video prior.
In contrast, our sparse sketch injection mechanism appends conditional sketches as additional tokens
following the original noisy latents and maps corresponding positional embeddings to indicate the
specific frame indices the tokens reference, thereby minimizing interference with the original model
prior.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Keyframe Sketch Position-aware Residual α=1.0 Position-aware Residual α=0.5

Figure 11: The position-aware residual in ToonComposer includes an adjustable parameter α that
users can tune during inference to control the strength of keyframe sketch guidance. Decreasing α
in Equation (7) from 1.0 to 0.5 allows for slight deviations from the input sketch (e.g., the boy’s
mouth shape), while ensuring the generated content remains natural and coherent.

Table 7: Comparison of SLRA and LoRA adaptations with varying ranks (value of D′ in SLRA).

Rank Adaptation Parameter Count LPIPS↓ DISTS↓ CLIP↑

24 SLRA 37M 0.1742 0.0975 0.9642
LoRA 105M 0.1922 0.1082 0.9628

144 SLRA 89M 0.1874 0.0955 0.9634
LoRA 499M 0.2076 0.1218 0.9586

256 SLRA 134M 0.1785 0.1046 0.9597
LoRA 866M 0.2114 0.1342 0.9591

Positional-encoding Mapping The positional-encoding mapping in our sparse sketch injection
mechanism leverages RoPE encodings to endow sketch tokens with temporal awareness, ensuring
precise alignment of control signals within the video sequence. To validate its effectiveness, we
trained a model with the sparse sketch injection mechanism but without the positional-encoding
mapping. As shown in Table 6, omitting this module disrupts the model’s ability to associate
sketches with specific timestamps, leading to significant performance degradation. These results val-
idate the necessity of positional awareness for handling sparse inputs at arbitrary temporal locations,
as it prevents misalignment and enhances the model’s capacity to generate temporally consistent
animations.

Position-aware Residual This component refines the integration of sketch tokens by adding a
scaled residual to corresponding video tokens, improving conditioning during training, and offering
flexibility during inference through an adjustable parameter α in Equation (7). According to the
results in Table 6, removing it causes performance degradation, indicating its role in strengthening
sketch guidance. During inference, the adjustable α allows users to fine-tune the control strength of
keyframe sketches. For instance, as illustrated in Figure 11, reducing α from the default value of
1.0 to 0.5 relaxes adherence to the sketch, enabling subtle deviations (e.g., the boy’s mouth shape)
while preserving overall plausibility and coherence. This adaptability makes ToonComposer more
versatile for creative workflows, where varying degrees of control may be desired.

Collectively, these ablation studies affirm that the proposed modules are integral to ToonComposer’s
effectiveness, enabling robust handling of sparse inputs and high-quality cartoon video synthesis.

C.4 COMPARISON BETWEEN SLRA AND LORA WITH VARYING RANKS

To further validate SLRA’s efficiency and effectiveness, we compare SLRA models with LoRA
models with varying ranks of 24, 144, and 256. Rank here refers to the value of D′ described in
Section 3.3. As shown in Table 7, all SLRA models outperform their LoRA counterparts, even with
significantly fewer trainable parameters with the same rank (indicated by Parameter Count). This
highlights SLRA’s superiority in adapting the model while preserving temporal consistency. We
empirically observe that larger ranks do not guarantee better results.
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Table 8: Performance comparison with and without text prompts on the synthetic benchmark.

Model Prompt LPIPS↓ DISTS↓ CLIP↑
ToonComposer w/ 0.1785 0.0926 0.9449
ToonComposer w/o 0.2091 0.0941 0.9517

ToonCrafter w/ 0.3830 0.5571 0.8463
LVCD w/o 0.3910 0.5505 0.8428

AniDoc w/o 0.3734 0.5461 0.8665

C.5 EFFECT OF TEXT PROMPTS

In video generation tasks, text prompts supply contextual details about the scene, enabling video
generation models to produce outputs that better align with user intentions. In our experiments, the
prior cartoon inbetweening model ToonCrafter (Xing et al., 2024a) requires prompts, whereas the
colorization models LVCD (Huang et al., 2024b) and AniDoc (Meng et al., 2024) lack support for
them. In ToonComposer, text prompts are treated as optional inputs in the post-keyframing process,
primarily serving to resolve ambiguities.

To evaluate ToonComposer’s robustness in the absence of prompts, we test it on the synthetic bench-
mark using empty prompts. As reported in Table 8, our model continues to outperform all baselines
even without prompts, demonstrating its strong performance even without textual guidance.

C.6 GENERALIZATION TO 3D ANIMATION

Although 3D animation production pipelines differ from 2D cartoon, ToonComposer can be ex-
tended to 3D-rendered animations by adapting the initial reference frame to a 3D-rendered image.
We fine-tune the model on a small dataset of 3D animation clips, allowing it to generate high-quality
sequences in a 3D style while adhering to the post-keyframing paradigm. This extension underscores
ToonComposer’s versatility and its potential for applications beyond traditional 2D cartoons. Sam-
ples of these 3D animations are included in the supplementary video.

C.7 LIMITATIONS

Although employing data augmentation to enhance robustness, ToonComposer may experience per-
formance degradation when handling drastic sketch style variations, such as thick ink strokes, which
can lead to reduced alignment with keyframe details in highly unconventional cases. Moreover, the
computational cost of the underlying video diffusion model remains substantial, requiring significant
resources for training and inference, which may limit accessibility in resource-constrained settings.
Optimizing the model’s inference speed presents a valuable direction for future research.

D SUPPLEMENTARY VIDEO

To provide a comprehensive demonstration of ToonComposer’s capabilities, we include a supple-
mentary video in the submission’s supplementary materials (in the ZIP file). This video showcases
qualitative results, including generated cartoon sequences, comparisons with baseline methods, and
examples of region-wise control, multiple-keyframe controllability, and generalization to 3D ani-
mation. We encourage reviewers to refer to the supplementary video to evaluate the visual quality,
motion coherence, and versatility of our approach, as dynamic video content more effectively con-
veys these attributes than static images in the manuscript.

E USE OF LARGE LANGUAGE MODELS

We utilized large language models only for minor polishing of the manuscript’s writing. LLMs did
not contribute to research ideation or experimental design. The authors take full responsibility for
all contents of the paper.
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