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Abstract

Despite the fact that much communication
takes place in them, low-resource language va-
rieties used in specific regions or by specific
groups remain neglected in the development of
Multilingual Language Models. A great deal of
cross-lingual researches focus on inter-lingual
language transfer which strives to align allied
varieties and suppress linguistic differences be-
tween them. For low-resource varieties, linguis-
tic dissimilarity is also an important cue allow-
ing generalization to unseen varieties. Unlike
prior approaches, we propose a two-stage Lan-
guage Generalization framework that focuses
on capturing variety-specific cues while also ex-
ploiting rich overlap offered by high-resource
source variety. First, we propose TOPPing, a
source-selection method specifically designed
for low-resource varieties. Second, we sug-
gest a lightweight VACAI-Bowl architecture
that learns variety-specific attributes with one
branch while a parallel branch captures variety-
invariant attributes using adversarial training.
We evaluate our framework on dependency
parsing task as proxy for performance on other
downstream tasks. Together, the methods out-
perform all baselines across 10 low-resource
varieties.

1 Introduction

Multilingual Language Models (MLMs) have led
to great strides in Natural Language Processing
(NLP), enabling language technologies in more
than one hundred languages (Pires et al., 2019;
Conneau et al., 2020). Developers of these models
have usually treated languages as discrete entities,
despite decades of research in linguistics showing
that languages lay on a continuum of similarity (Lin
et al., 2019). Crucially, a large portion (perhaps the
majority) of real-world communication is carried
out in language varieties that are not represented
among the quasi-standardized set of roughly one
hundred languages that comprise MLM training
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Figure 1: Visualization on training to align two different
varieties in the embedding space, comparative to align-
ing and at the same time preserving variety-specific
attributes.

data. When confronted with such variants, existing
models fail (Faisal et al., 2024).

Intra-linguistic variation is at least as pervasive
as inter-linguistic variation. Linguists often refer to
intra-language variants as “dialects” or “sociolects”.
In this paper, we avoid the term dialect for two
reasons: (i) it can carry pejorative connotations,
and (ii) it is unduly restrictive, implying mutual
intelligibility with other variants of a language. We
therefore adopt the more neutral and inclusive term
language variety (or variety), that broadly denotes
variants shaped by regional, social, and cultural
distinctions of its speaker community (Chambers
and Trudgill, 1998).

Past modeling approaches to language varia-
tion, including the large volume of research in
interlingual transfer, tended to focus on similarity-
based alignment between language varieties. For
example, Yang et al. (2022) proposes instance-
level regularization to minimize representational
gaps, thereby improving transferability. While such
feature-level alignment can be helpful to some ex-
tent, it disregards linguistic variances developed
in real-world. In this paper, instead, we propose



a variety-aware Language Generalization frame-
work that effectively generalizes to low-resource
varieties, even when the variety is unseen during
MLM pre-training. By learning not just ‘how it
is similar to a high-resource variety’, but ‘how it
is different’, the model learns to disentangle and
strategically combine linguistic features to perform
in zero-shot settings. We also propose an improved
automatic method for identifying high-resource va-
rieties most relevant for training a model targeting
a particular low-resource variety without any usage
of labels, annotation, or parallel dataset. Together,
these methods achieve better results than all base-
lines on dependency parsing (DEP), which we be-
lieve to be an informative proxy for performance
on other downstream tasks.
Our key contributions are as follows:

* This paper suggests Language Generalization
framework, focusing on making a model ro-
bust to unseen language variations.

* We introduce TOPPing, a method for select-
ing source varieties to generalize on a target
low-resource variety without annotations or
parallel dataset.

* We propose VACAI-Bowl, a novel and
lightweight architecture to not only align, but
also distinguish varieties.

2 Related Work

2.1 Low-Resource Varieties

The disparity of MLMs performing significantly
worse in low-resource varieties arises even when
the variety is typologically close to, and partially
represented in, the training corpus. Through em-
pirical studies, drops in performance when data
shifts to a low-resourced variant have been proven
to be biased towards dominant varieties (Blasi
et al., 2022; Blaschke et al., 2024, 2023; Faisal
et al., 2024; Srivastava and Chiang, 2025; Lin et al.,
2025).

Given this limitation, several works have at-
tempted to address the gap. Inspired by findings in
cross-lingual transfer (Sn@bjarnarson et al., 2023;
Bafna et al., 2024), recent approaches focus on
developing distance metrics that rank varieties by
similarity to identify the most similar variety best
suited to support low-resource varieties. Specifi-
cally, Bafna et al. (2025) propose two approaches:
one that trains models on artificially generated vari-
ants, and another that adapts input data at inference

time to closely resemble the high-resource stan-
dard. Similarly, Nguyen et al. (2025) define the
dialectal gap between language variants and apply
test-time adaptation techniques to improve model
performance on nonstandard inputs.

2.2 Zero-shot Cross-lingual Transfer

Prevailing methods to improve cross-lingual trans-
ferability for language varieties without explicit
training suggest various methods to align language
representations. Wang et al. (2023) introduce a
self-augmentation approach that substitutes tokens
in English dataset with tokens from different vari-
ety and then perturbing to distill token-level align-
ment. X-MIXUP reduces cross-lingual representa-
tion discrepancy of parallel sentences, so that the
target representation is explicitly pulled toward the
source (Yang et al., 2022). Wu and Monz (2023)
re-parameterises the embedding table with a graph
network that forces meaning-similar words to con-
verge on the same coordinate region. Huang et al.
(2021) adopts robust training strategies, such as
randomized smoothing, to enhance cross-lingual
transfer in zero-shot settings. All these methods
focus on aligning the target variety to a source vari-
ety; while treating variety-specific information as
something to be eliminated or suppressed rather
than be a potential transfer knowledge.

Another common strategy is to train models
on source languages that are linguistically simi-
lar to the target language. Prior work investigat-
ing the factors that influence transfer performance
has shown that linguistic similarity tends to cor-
relate with better cross-lingual transfer (Eronen
et al., 2023a,b; Lauscher et al., 2020; Dufter and
Schiitze, 2020). This has motivated efforts to iden-
tify optimal source languages using various lin-
guistic similarity metrics. For example, de Vries
et al. (2022) examine part-of-speech tagging across
diverse source-target language pairs and suggest
optimal pairs for certain languages, and Lin et al.
(2019) proposes a ranking method based on mul-
tiple linguistic similarity features, offering a more
systematic framework with quantitative features.
However, these rely on predefined languages, mak-
ing it inapplicable to low-resource varieties.

2.3 Domain Generalization

Domain Generalization (DG) aims to ensure model
performance on domains inaccessible during train-
ing (Blanchard et al., 2011; Muandet et al., 2013;
Zhou et al., 2023). This has been a long-standing
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Figure 2: Overall framework of this paper. Using TOPPing, with just unparallel and unlabeled datasets, we can
select source varieties with not only shared but also distinctive features to capture relationship between varieties.
From the obtained source variety pair, VA learns the semantic differences of neighboring source varieties and learns
to generalize on the target low-resource variety in a zero-shot manner.

problem in machine learning, where models trained
with a limited set of training data fail to success-
fully perform in domain variations. A very basic
approach for DG is to align the different domains
together, aiming to learn domain-invariant features
that are robust across domains (Muandet et al.,
2013; Li et al., 2018a,b), which is also adopted
in NLP tasks (Wang et al., 2024, 2021; Li et al.,
2024).

In multilingual NLP, Jung et al. (2024) analyze
multilingual modeling from a domain-level per-
spective, treating each language as a separate do-
main. Building on this view, we explore the possi-
bility to frame zero-shot transfer to low-resource
varieties as a DG problem, where the goal is to
generalize to unseen linguistic domains without
explicit training. While most prior works focus
on learning domain-invariant features (Ganin et al.,
2016; Ngo and Nguyen, 2024; Tahery et al., 2024),
we aim to capture domain-specific signals to help
the model recognize linguistic differences within
similar varieties—thereby improving generaliza-
tion to unseen varieties.

3 Methods

In this paper, we propose a novel framework
that leverages both variety-invariant and variety-
specific information to generalize to unseen low-
resource variety in a zero-shot manner, and
a method to carefully select exploitable high-
resource source variety pair for the low-resource

target variety.

3.1 TOPPing

For low-resource language varieties, obtaining suf-
ficient labeled training data remains expensive and
labor-intensive (Blasi et al., 2022; Faisal et al.,
2024). When the low-resourced target variety has
high-resourced neighbors in terms of linguistic sim-
ilarity, utilizing the latter can be relatively cheaper.
Although works like LangRank provide a princi-
pled method for selecting source varieties for train-
ing, it relies on Lang2Vec and URIEL, collections
of pre-annotated information such as geometric dis-
tance, phylogenetic similarity based on Glottolog,
World Atlas of Language Structures, and Syntactic
Structures of World Languages (Lin et al., 2019;
Littell et al., 2017). This fine-grained approach is
applicable for only predefined set of varieties, leav-
ing otu low-resource varieties that are not present
in URIEL. LangRank is thus inherently biased to-
wards high-resourced varieties, with 31% of pre-
sented languages missing annotations (Toossi et al.,
2024).

To mitigate the constraints of low-resource va-
rieties, we suggest TOPPing : Token-Overlap &
Proximal embedding PairING, a simple yet effec-
tive method that does not require annotations and
allows preservation of varietal diversity for select-
ing source varieties. This allows a wide and general
usage even when the variety is unseen, unannotated,
and unlabeled. Previous works define language dis-



tances in various dimensions (Littell et al., 2017;
Rama et al., 2020). In this work, we rely on two
signals that can be computed automatically from
raw text and capture complementary aspects of
similarity. As illustrated in Figure 2, to encour-
age diversity in source selection, we compute these
similarity signals independently rather than com-
bining them into a single joint score. This preserves
the room for variety-specific information training
which serves as a key for generalization.

Let vy be the target low-resource variety, and
Vsre the set of high-resource source varieties. For
each variety v, let X,, = {xf}fvz“l denote its dataset.
First, we obtain a source variety by proxying the
phylogenetic distance between two varieties with
embedding distance (Rama et al., 2020). Let
Jous, (z) € R? denote the "[CLS]" representation
of input = from the second layer of a frozen MLM.
We aim to obtain a source variety vsim € Vsre such
that:

Usim = arg min HMU — Hoggy HQ )
UEVs'rc

o = Ni Z fors, ().

rzeX,

(1

We use the second-layer "[CLS]" rather than the
final layer because lower-layer representations
have been shown to capture more typological and
morpho-syntactic information, which aligns better
to proxy phylogenetic structure (Hewitt and Man-
ning, 2019; Mousi et al., 2024; Bakos et al., 2025).

Second, we proxy the lexical distance between
two varieties using token overlap (Blaschke et al.,
2025). Here, we introduce token-length weighted
Jaccard Similarity as lexical overlap calculation
tailored for low-resource varieties. Unlike highly
represented varieties, lexical items are often frag-
mented into shorter sub-tokens, which diminishes
the discriminative power of a standard Jaccard simi-
larity measure. Weighting overlaps by token length
mitigates this bias, preventing varieties from being
erroneously conflated based on scripts. The aim is
to obtain a source variety Voyerlap € Vsre such that :

Uoverlap = arg;nax TJ(X’lH X’Utgt)a (2)
vEVsre

where TJ(X,, Xy,,, ) is token-length weighted Jac-
card similarity.

> tokeT, T, @ (1OK)

ZtokETaUTb w(tok) 3)
w(tok) = max(1,len(tok) — 1).

TJ(Xq, Xp) =

The pair (Vsim, Voverlap), selected by independent
ranking, leaves room for diversity in source pair
selection. TOPPing can therefore offer a strong yet
inexpensive cues without requiring labeled or par-
allel dataset, suitable for low-resource scenarios.

3.2 VACAI-Bowl

In Figure 2, we illustrate our approach for Lan-
guage Generalization : Variety Aligned and
SpeC(C)ific AttrIbutes Blending for LOW-resouce
Language Varieties. This framework leverages
both variety-invariant and variety-specific knowl-
edge from high-resource varieties to effectively
model representations for an unseen, low-resource
variety. Specifically, we argue that a model must
learn not only to align but also to distinguish vari-
eties in order to fully grasp the linguistic character-
istics on an unseen variety.

In order to model variety-invariant and variety-
specific features, we use a frozen Multilingual Lan-
guage Model that produces a "[CLS]" embedding
for every input sentence. We implement two inde-
pendent 2-layer MLP encoders :

* Variety-invariant encoder fi,y is trained adver-
sarially to align varieties and learn invariant
features.

hinv = finv([CLS]) (4)

* Variety-specific encoder fgp. is trained nor-
mally to emphasize variety-specific features.

hspc = fspc([CLSD (5)
The outputs are concatenated into h.
h = hiny || hope € R*, ©)

where both encoders output d-dimensional vec-
tors. The joint feature h is used in place of original
"[CLS]" embedding for downstream tasks.

To train each encoders to successfully extract
variety-invariant and variety-specific features, each
encoder is paired with its own discriminator (Djyy
and D)) that performs classification on what vari-
ety the input belongs to. A gradient-reversal layer



Varieties
Methods aln  gug gun koi kpv lij nds sma gsw xum
source is eng
mBERT® 38.14 13.51 895 26.12 26.89 50.22 36.77 19.41 36.77 33.21
mBERT 39.13 13.03 1291 30.03 29.79 49.86 42.61 20.81 42.49 32.01
source selected using LangRank (Lin et al., 2019)
mBERT 4390 22.13 10.47 33.97 3251 59.38 46.45 27.79 51.12 36.14
+Alignment 49.58 25.98 16.40 36.33 33.37 59.68 50.49 29.90 52.60 34.67
+VACAI-Bowl (OURS) | 51.00 27.05 17.21 36.90 35.32 63.02 50.92 32.62 52.23 36.29
source selected using TOPPing (OURS)
mBERT 4455 34.10 15.18 40.83 36.80 63.99 52.54 35.63 57.22 37.21
+Alignment 4530 31.56 16.53 40.72 36.52 62.96 52.04 38.80 54.84 35.99
+VACAI-Bowl (OURS) | 46.34 36.39 19.00 42.29 38.19 64.29 54.90 39.67 57.74 37.67

Table 1: Quantitative results on UAS scores using mBERT as backbone on dependency parsing task evaluated
across selected low-resource varieties from DialectBench. © refers to value reported in original paper. Underlined
scores refer to best performing on target under controlled source variety. Bold scores refer to best performing on the

target variety.

G is inserted in front of Dy, to selectively up-
date parameters to fool Dj,y (Ganin and Lempitsky,
2015).

0G

0z
where A is a hyperparameter. Contrastingly, fpc
learns to help Dy, by producing easily distinguish-
able features. The discriminators yield two loss
terms :

Gi(2) = 2, = -, @)

Linv = LCE(DinV(G/\(hinV))a yvar)v

®)
Lspc = LCE(DSpC<hSpC)7 yvar>,

where Lcg denotes Cross Entropy Loss.

Lastly, the task loss is employed for the fine-
tuning objective and to ground the representation
extraction in right directions.

Liask = Ltask(ftask(h)a ytask)' )]
Finally, the objective function is defined as fol-

lows :

Ltotal = Linv + Lspc + Ltask- (10)

4 Experiments

4.1 Experimental Setup

Benchmark. DialectBench provides datasets
and benchmarks for low-resource varieties with
annotations that group varieties into language

clusters, allowing direct visualization of perfor-
mance gaps within the same cluster. For our
experiment, we select target low-resource varieties
that face following constraints : First, there is no
training dataset available for the variety. Second,
the zero-shot performance does not meet 50% of
criteria. For source varieties, we utilize the rest of
DialectBench and sample high-resourced varieties
representative of distinctive language clusters
from Universal Dependencies (Nivre et al., 2017;
de Marneffe et al., 2021). These source variety
sets are used for TOPPing variety selection. We
evaluate on dependency parsing task, which is a
structured prediction task.

Source Selection Baselines. In Figure 1,
we illustrate how automated source language
selection using TOPPing can be a simple yet
effective method for source language selection
especially for unseen varieties. This selection
is applicable to diverse cross-lingual transfer
scenarios, not limited to a specific method. We
implement a LangRank baseline where the source
varieties are selected based on pre-annotated
linguistic features and dataset-dependent features
(Lin et al., 2019). Please refer to Appendix B for
detailed information on selected source languages.

Language Generalization Baselines. To
compare the VACAI-Bowl framework, we imple-
ment two baselines : (1) MLM baseline illustrates
performance when the model is simply finetuned



Varieties
Methods aln  gug gun koi kpv lij nds sma gsw xum
source is eng
XLM-R® 4350 11.15 4.23 3091 32.14 43.78 34.70 28.28 34.70 28.75
XLM-R 52.58 13.61 4.38 31.50 30.60 53.79 42.92 30.20 43.60 24.50
source selected using LangRank (Lin et al., 2019)
XLM-R 55.58 28.44 1095 41.51 33.27 60.37 47.36 41.25 43.75 33.08
+Alignment 5741 2844 1247 4049 35.80 59.51 47.61 42.16 46.95 34.30
+VACAI-Bowl (OURS) | 58.55 31.23 12.51 42.41 36.13 59.82 48.38 42.53 47.47 34.56
source selected using TOPPing (OURS)
XLM-R 55.07 30.57 11.27 40.50 38.04 63.80 48.73 40.76 52.23 35.68
+Alignment 56.54 28.67 847 39.60 35.85 63.13 50.81 40.20 56.62 34.76
+VACAI-Bowl (OURS) | 57.50 31.97 13.98 44.66 37.76 63.44 51.65 40.99 57.74 36.60

Table 2: Quantitative results on UAS scores using XLM-R as backbone on dependency parsing task evaluated
across selected low-resource varieties from DialectBench. © refers to value reported in original paper. Underlined
scores refer to best performing on target under controlled source variety. Bold scores refer to best performing on the

target variety.

on source languages. (2) Alignment baseline
where the model leverages adversarial training to
learn only variety-invariant features, adopted from
DG and robust training is implemented (Huang
et al., 2021).

Implementation Details. We utilize mBERT
(Devlin et al., 2018) and XLM-R (Conneau et al.,
2020) as MLMs for all tasks. We set the learning
rate as 2e-4, batch size as 64 for mBERT. We
set the learning rate as 5e-5, batch size as 64
for XLM-R. Overall, \ for gradient-reversal
layer is searched in [0.1, 0.5, 1.0] for following
experiments. Parameters are optimized using
Adam optimizer. We finetune each model for 10
epochs and halt at step size of 1000 to not exceed
the finetuning steps of zero-shot cross-lingual
steps. Please refer to Appendix C for detailed
information on parameter search.

4.2 Quantitative Results

In accordance with the previous discussions, a
model that can learn both the variety-invariant and
variety-specific features should show higher gen-
eralization performance regardless of source vari-
eties. Also, this performance should be boosted
with model-agnostic source selection TOPPing that
preserves noticeable differences in source varieties.
At the same time, TOPPing is also expected to per-
form comparatively to LangRank which prioritizes
linguistic similarities.

Source Selection. Table 1 and Table 2 presents

results on DEP task, using mBERT and XLM-R
as backbones, respectively. Comparing the scores
reported using each LangRank and TOPPing, it is
noticeable that in Table 1, evaluations made using
TOPPing outperforms LangRank across all meth-
ods in 9 out of 10 varieties. Also, simply finetuning
the mBERT model on TOPPing itself beats the
best score obtained using LangRank for 8 out of
10 varieties. These results show that TOPPing is
an effective source selection method even without
pre-annotated descriptions of varieties. In cases
where LangRank enhances transferability and gen-
eralization, aln and xum, it is notable that the target
varieties all fall into Indo-European family. This
advantage is largely attributable to the dense ty-
pological and lexical metadata available for Indo-
European languages in resources such as URIEL
and WALS, which furnish LangRank with infor-
mative feature vectors and reliable genealogical
signals for ranking candidate sources. Thus, for
targets that are partially represented with charac-
teristics of Indo-European family, LangRank can
discriminate between closely related sources. How-
ever, for under-documented varieties every can-
didate looks equally (dis)similar, which leads to
unsuitable source selection.

Language Generalization. Our proposed archi-
tecture, VACAI-Bowl, achieves the highest per-
formance on 9 out of 10 target varieties across
both source selection methods for mBERT. Pay-
ing close attention to other baselines, it is no-
table that the Alignment method, which attempts
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to enforce alignment by pulling diverse variety
embeddings together, fails to surpass the perfor-
mance on fine-tuned MLM baseline for certain va-
rieties. Specifically, for varieties {gug, koi, kpv,
lij, nds, gsw, xum} in Table 1 and {gug, gun, koi,
kpv, lij, sna} in Table 2. We refer to this phe-
nomenon as alignment-induced fails. When this
occurs, VACAI-Bowl overomes the fails of Align-
ment by utilizing variety-specific attributes under
for all cases. Especially in in Table 1, for 6 out
of 7 alignment-induced fails observed using TOP-
Ping, VACAI-Bowl! outperforms all methods on
the target variety. This illustrates promising results
from utilizing variety-specific cues. Also, VACAI-
Bowl performs consistently better than Alignment
method across all varieties. This suggests that
merely forcing alignment across distinct linguis-
tic domains is insufficient. Rather, effective gen-
eralization and zero-shot performance requires the
model to adapt to and preserve the diversity inher-
ent in different language varieties.

4.3 Qualitative Results

In Figure 3, we can observe how different similar-
ity metrics used to obtain TOPPing in Section 3.1
affect performances in VACAI-Bowl. LangRank
utilizes est, sme as source varieties, which seem
largely correlated with the [CLS] Cosine Distance
we use to proxy phylogenetic similarity. TOPPing’s
performance hints that phylogenetic similarity may
not contribute to model performance as much, con-
sidering it utilizes glg, sme as source varieties. Ad-
ditionally, as can be observed in the case of CD,
performance is also model-dependent. XL.M-R

tends to stay robust on diverse source varieties un-
line mBERT. Beyond the observed performance
gains, incorporating variety-specific knowledge of-
fers valuable linguistic insights. Contrary to pre-
vailing assumptions in NLP, certain cross-lingual
transfer scenarios benefit more from dissimilar lan-
guage pairs than from closely related ones. These
findings underscore the importance of preserving
variety-specific information so that models can bet-
ter generalize to unseen and low-resource varieties,
with potential applicability beyond reported cases.

5 Conclusion

This paper introduces a Language Generalization
pipeline that tackles the twin challenges of select-
ing helpful high-resource varieties and learning
representations that respect, rather than erase, dis-
tinctiveness of varieties. With TOPPing, we auto-
matically choose a linguistically overlapping and
complementary source pair for any unseen variety,
requiring no labels or parallel data. Coupled with
the lightweight VACAI-Bowl dual-encoder, one
branch aligning varieties and the other amplifying
variety-specific cues, our framework delivers con-
sistent gains on dependency parsing. Experiments
across ten low-resource varieties, TOPPing with
VACAI-Bowl lifts zero-shot UAS by an average
of 50.63% and 58.6%, using mBERT and XLM-R,
respectively. This beats alignment-centric baseline
and even rescues cases where full alignment hurts
(“alignment-induced fails”). Beyond parsing, the
approach is model-agnostic, computation-friendly
(MLM layers stay frozen), and immediately appli-
cable to other tasks.



Limitations

The methods presented in this research proved to
be effective in handling under-represented varieties
that pre-trained MLMs cannot easily generalize
to. Although we suggest an end-to-end pipeline
that does not require any human annotated work
on either source or target varieties, the method still
requires unique selection of source varieties for
each training. To counterpart this computational
complexity, our method freezes the MLM and train
only the MLP encoders, discriminators, and the
task-specific head. This approach significantly re-
duces both the model size and training overhead
compared to methods that require full fine-tuning
of MLMs. Yet, it should be recognized that the
ultimate goal of Language Generalization is to
leverage only a limited set of language varieties
to develop a model capable of robust generaliza-
tion across all varieties, regardless of their resource
availability.

Ethical Considerations

We study a method to enhance zero-shot cross-
lingual transfer to very low-resourced varieties,
which are often not provided with sufficient data
for training or evaluation. While we aim to develop
language technologies targeting under-represented
language communities, we still lack such coverage,
limiting our research to datasets that are publicly
available. Nevertheless, our approach provides a
valuable step toward addressing the gap, by not
simply aligning low-resource varieties with high-
resource ones, but instead encouraging the model
to recognize and preserve the linguistic differences
that define them. All resources used in this re-
search are publicly available, and no personal or
sensitive information was collected or utilized. We
do not anticipate any potential harm arising from
this study.
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Variety ISO 639-3 UD-code

gheg aln UD_Gheg-GPS
paraguay mbya guarani gug UD_Mbya_Guarani-Thomas
brazil mbya guarani gun UD_Mbya_Guarani-Dooley
permyak komi koi UD_Komi_Permyak-UH
zyrian komi kpv UD_Komi_Zyrian-IKDP
ligurian lij UD_Ligurian-GLT
central alemanic nds UD_Swiss_German-UZH
skolt saami sma UD_Skolt_Sami-Giellagas
low saxon gsw UD_Low_Saxon-LSDC
umbrian Xum UD_Umbrian-IKUVINA

Table 3: Target Varieties in Section 4 with their ISO 639-3 and Universal Dependencies code

Appendix
A Language Codes

In this section, we provide the ISO 639-3 and Universal Dependency dataset code for the varieties used in
this paper.
B Selected Source Varieties

In this section, we list the selected source varieties used to train VACAI-Bowl in Section 4. Table 5 lists
TOPPing selected source varieties using mBERT as embedding backbone, which was used to produce
results for Table 1. Table 6 lists TOPPing selected source varieties using XLM-R as embedding backbone,
used to evaluate results on 2. The LangRank selected source varieties are same for both experiments, as
LangRank does not take consideration of the MLM used in training.

C Parameter Search for Lambda of Gradient-Reversal Layer

For the gradient-reversal layer used to adversarially train invariant feature encoder in Section 3.2, we
provide an ablation study on its affects on performance.

D Number of Model Parameters

We use mBERT (Devlin et al., 2018) and XLM-R (Conneau et al., 2020)in their base size, where mBERT
has 110M and XLM-R has 125M number of parameters.
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Variety ISO 639-3 UD-code

gheg ita UD_Italian-MarkIT
paraguay mbya guarani nor UD_Norwegian-Bokmaal
brazil mbya guarani sme UD_North_Sami-Giella
permyak komi zho UD_Chinese-GSDSimp
zyrian komi por UD_Portuguese-Bosque
ligurian spa UD_Spanish-AnCora
central alemanic fin UD_Finnish-TDT
skolt saami est UD_Estonian-EDT
low saxon cat UD_Catalan-AnCora
umbrian ind UD_Indonesian-CSUI
galician glg UD_Galician-CTG
galician glg UD_Galician-TreeGal
turkish tur UD_Turkish-Penn
turkish tur UD_Turkish-IMST
serbian SIp UD_Serbian-SET
croatian hrv UD_Croatian-SET
czech ces UD_Czech-CAC
slovak slk UD_Slovak-SNK
russian rus UD_Russian-SynTagRus
old church slavonic chu UD_OId_Church_Slavonic
belarusian bel UD_Belarusian-HSE
ukrainian ukr UD_Ukrainian-IU
upper sorbian hsb UD_Upper_Sorbian-UFAL
bulgarian blg UD_Bulgarian-BTB
irish gle UD_Irish-IDT
welsh cym UD_Welsh-CCG

Table 4: Source Varieties in Section 4 with their ISO 639-3 and Universal Dependencies code
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. LangRank TOPPing
cluster target variety Source ‘ UAS Source ‘ UAS
albanian sheg italian s1.00 | twrkishgerman o0,
finnish italian
gallo-italian ligurian catalan 63.02 portuguese 64.29
spanish italian
high german central alemannic | O coan bokmal 52.23 german 57.74
italian turkish german
komi-zyrian 1ndon(?s1an 35.32 bulga.rlan 38.19
Komi turkl'sh russian
komi-permyak estonian 36.90 bulgarian 42.29
portuguese turkish
saami skolt saami estonian . 32.62 north' saart 39.67
north saami galician
sabellic umbrian estoqlan 35.07 north a‘fnc.an arabic 37.67
turkish italian
paraguay spanish turkish
tubi-cuarani mbya guarani hindi 27.05 italian 36.39
pi-g brazil finnish 1701 english 19.00
mbya guarani turkish ’ upper sorbian '
west low german | low saxon e?ng!lsh 50.92 turkish germatl 54.90
italian english

Table 5: Selected two source varieties for Dependency Parsing and its scores with VACAI-Bowl using mBERT as

backbone. Abbreviations (spk) and (wrt) each refer to mode of dataset, spoken and written, respectively.
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cluster target variety LangRank TOPPing
source ‘ UAS source ‘ UAS
albanian gheg italian 58.55 | norwegian bokmaal | o, o,
finnish italian
gallo-italian ligurian catalan 59.82 portuguese 63.44
spanish italian
. . | norwegian bokmaal german
high german central alemannic S 47.47 : 57.74
italian turkish german
komi-zyrian indonesian 35.32 bulgarian 37.76
Komi turkish russian
komi-permyak estonian 42.41 bulgarian 44.66
portuguese turkish
saami skolt saami north saami 42.53 north saami 40.99
estonian north saami ' galician '
sabellic umbrian estoqlan - north a.frlc.an arabic 32.77
turkish italian
paraguay spanish 3123 turkish 31.97
tubi-cuarani mbya guarani hindi ' italian '
pi-g brazil finnish 1127 english 13.98
mbya guarani turkish ' italian '
west low german | low saxon e'ngysh 48.38 german 51.65
italian turkish german

Table 6: Selected two source varieties for Dependency Parsing and its scores with VACAI-Bowl using XLM-R as
backbone. Abbreviations (spk) and (wrt) each refer to mode of dataset, spoken and written, respectively.

lambda | aln gug gun koi kpv lij nds sma  gsw  xum
0.1 46.09 35.00 15.03 36.56 40.61 64.72 52.13 37.18 5640 36.14
0.5 4541 35.25 15.17 3570 4027 63.74 5236 40.12 5491 37.37
1.0 46.34 36.39 19.00 4229 38.19 6429 5490 39.67 57.74 37.67

Table 7: Ablation study on VACAI-Bowl performance with mBERT backbone based on different lambda values.
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