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Abstract001

Despite the fact that much communication002
takes place in them, low-resource language va-003
rieties used in specific regions or by specific004
groups remain neglected in the development of005
Multilingual Language Models. A great deal of006
cross-lingual researches focus on inter-lingual007
language transfer which strives to align allied008
varieties and suppress linguistic differences be-009
tween them. For low-resource varieties, linguis-010
tic dissimilarity is also an important cue allow-011
ing generalization to unseen varieties. Unlike012
prior approaches, we propose a two-stage Lan-013
guage Generalization framework that focuses014
on capturing variety-specific cues while also ex-015
ploiting rich overlap offered by high-resource016
source variety. First, we propose TOPPing, a017
source-selection method specifically designed018
for low-resource varieties. Second, we sug-019
gest a lightweight VAÇAÍ-Bowl architecture020
that learns variety-specific attributes with one021
branch while a parallel branch captures variety-022
invariant attributes using adversarial training.023
We evaluate our framework on dependency024
parsing task as proxy for performance on other025
downstream tasks. Together, the methods out-026
perform all baselines across 10 low-resource027
varieties.028

1 Introduction029

Multilingual Language Models (MLMs) have led030

to great strides in Natural Language Processing031

(NLP), enabling language technologies in more032

than one hundred languages (Pires et al., 2019;033

Conneau et al., 2020). Developers of these models034

have usually treated languages as discrete entities,035

despite decades of research in linguistics showing036

that languages lay on a continuum of similarity (Lin037

et al., 2019). Crucially, a large portion (perhaps the038

majority) of real-world communication is carried039

out in language varieties that are not represented040

among the quasi-standardized set of roughly one041

hundred languages that comprise MLM training042

Variety Aligned Only

Variety Aligned and Variety Specific

Variety Representation

Loss of Variety-Specific Attributes
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Variety-Specific Attributes

training process

Figure 1: Visualization on training to align two different
varieties in the embedding space, comparative to align-
ing and at the same time preserving variety-specific
attributes.

data. When confronted with such variants, existing 043

models fail (Faisal et al., 2024). 044

Intra-linguistic variation is at least as pervasive 045

as inter-linguistic variation. Linguists often refer to 046

intra-language variants as “dialects” or “sociolects”. 047

In this paper, we avoid the term dialect for two 048

reasons: (i) it can carry pejorative connotations, 049

and (ii) it is unduly restrictive, implying mutual 050

intelligibility with other variants of a language. We 051

therefore adopt the more neutral and inclusive term 052

language variety (or variety), that broadly denotes 053

variants shaped by regional, social, and cultural 054

distinctions of its speaker community (Chambers 055

and Trudgill, 1998). 056

Past modeling approaches to language varia- 057

tion, including the large volume of research in 058

interlingual transfer, tended to focus on similarity- 059

based alignment between language varieties. For 060

example, Yang et al. (2022) proposes instance- 061

level regularization to minimize representational 062

gaps, thereby improving transferability. While such 063

feature-level alignment can be helpful to some ex- 064

tent, it disregards linguistic variances developed 065

in real-world. In this paper, instead, we propose 066
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a variety-aware Language Generalization frame-067

work that effectively generalizes to low-resource068

varieties, even when the variety is unseen during069

MLM pre-training. By learning not just ‘how it070

is similar to a high-resource variety’, but ‘how it071

is different’, the model learns to disentangle and072

strategically combine linguistic features to perform073

in zero-shot settings. We also propose an improved074

automatic method for identifying high-resource va-075

rieties most relevant for training a model targeting076

a particular low-resource variety without any usage077

of labels, annotation, or parallel dataset. Together,078

these methods achieve better results than all base-079

lines on dependency parsing (DEP), which we be-080

lieve to be an informative proxy for performance081

on other downstream tasks.082

Our key contributions are as follows:083

• This paper suggests Language Generalization084

framework, focusing on making a model ro-085

bust to unseen language variations.086

• We introduce TOPPing, a method for select-087

ing source varieties to generalize on a target088

low-resource variety without annotations or089

parallel dataset.090

• We propose VAÇAI-Bowl, a novel and091

lightweight architecture to not only align, but092

also distinguish varieties.093

2 Related Work094

2.1 Low-Resource Varieties095

The disparity of MLMs performing significantly096

worse in low-resource varieties arises even when097

the variety is typologically close to, and partially098

represented in, the training corpus. Through em-099

pirical studies, drops in performance when data100

shifts to a low-resourced variant have been proven101

to be biased towards dominant varieties (Blasi102

et al., 2022; Blaschke et al., 2024, 2023; Faisal103

et al., 2024; Srivastava and Chiang, 2025; Lin et al.,104

2025).105

Given this limitation, several works have at-106

tempted to address the gap. Inspired by findings in107

cross-lingual transfer (Snæbjarnarson et al., 2023;108

Bafna et al., 2024), recent approaches focus on109

developing distance metrics that rank varieties by110

similarity to identify the most similar variety best111

suited to support low-resource varieties. Specifi-112

cally, Bafna et al. (2025) propose two approaches:113

one that trains models on artificially generated vari-114

ants, and another that adapts input data at inference115

time to closely resemble the high-resource stan- 116

dard. Similarly, Nguyen et al. (2025) define the 117

dialectal gap between language variants and apply 118

test-time adaptation techniques to improve model 119

performance on nonstandard inputs. 120

2.2 Zero-shot Cross-lingual Transfer 121

Prevailing methods to improve cross-lingual trans- 122

ferability for language varieties without explicit 123

training suggest various methods to align language 124

representations. Wang et al. (2023) introduce a 125

self-augmentation approach that substitutes tokens 126

in English dataset with tokens from different vari- 127

ety and then perturbing to distill token-level align- 128

ment. X-MIXUP reduces cross-lingual representa- 129

tion discrepancy of parallel sentences, so that the 130

target representation is explicitly pulled toward the 131

source (Yang et al., 2022). Wu and Monz (2023) 132

re-parameterises the embedding table with a graph 133

network that forces meaning-similar words to con- 134

verge on the same coordinate region. Huang et al. 135

(2021) adopts robust training strategies, such as 136

randomized smoothing, to enhance cross-lingual 137

transfer in zero-shot settings. All these methods 138

focus on aligning the target variety to a source vari- 139

ety; while treating variety-specific information as 140

something to be eliminated or suppressed rather 141

than be a potential transfer knowledge. 142

Another common strategy is to train models 143

on source languages that are linguistically simi- 144

lar to the target language. Prior work investigat- 145

ing the factors that influence transfer performance 146

has shown that linguistic similarity tends to cor- 147

relate with better cross-lingual transfer (Eronen 148

et al., 2023a,b; Lauscher et al., 2020; Dufter and 149

Schütze, 2020). This has motivated efforts to iden- 150

tify optimal source languages using various lin- 151

guistic similarity metrics. For example, de Vries 152

et al. (2022) examine part-of-speech tagging across 153

diverse source-target language pairs and suggest 154

optimal pairs for certain languages, and Lin et al. 155

(2019) proposes a ranking method based on mul- 156

tiple linguistic similarity features, offering a more 157

systematic framework with quantitative features. 158

However, these rely on predefined languages, mak- 159

ing it inapplicable to low-resource varieties. 160

2.3 Domain Generalization 161

Domain Generalization (DG) aims to ensure model 162

performance on domains inaccessible during train- 163

ing (Blanchard et al., 2011; Muandet et al., 2013; 164

Zhou et al., 2023). This has been a long-standing 165
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Figure 2: Overall framework of this paper. Using TOPPing, with just unparallel and unlabeled datasets, we can
select source varieties with not only shared but also distinctive features to capture relationship between varieties.
From the obtained source variety pair, VA learns the semantic differences of neighboring source varieties and learns
to generalize on the target low-resource variety in a zero-shot manner.

problem in machine learning, where models trained166

with a limited set of training data fail to success-167

fully perform in domain variations. A very basic168

approach for DG is to align the different domains169

together, aiming to learn domain-invariant features170

that are robust across domains (Muandet et al.,171

2013; Li et al., 2018a,b), which is also adopted172

in NLP tasks (Wang et al., 2024, 2021; Li et al.,173

2024).174

In multilingual NLP, Jung et al. (2024) analyze175

multilingual modeling from a domain-level per-176

spective, treating each language as a separate do-177

main. Building on this view, we explore the possi-178

bility to frame zero-shot transfer to low-resource179

varieties as a DG problem, where the goal is to180

generalize to unseen linguistic domains without181

explicit training. While most prior works focus182

on learning domain-invariant features (Ganin et al.,183

2016; Ngo and Nguyen, 2024; Tahery et al., 2024),184

we aim to capture domain-specific signals to help185

the model recognize linguistic differences within186

similar varieties—thereby improving generaliza-187

tion to unseen varieties.188

3 Methods189

In this paper, we propose a novel framework190

that leverages both variety-invariant and variety-191

specific information to generalize to unseen low-192

resource variety in a zero-shot manner, and193

a method to carefully select exploitable high-194

resource source variety pair for the low-resource195

target variety. 196

3.1 TOPPing 197

For low-resource language varieties, obtaining suf- 198

ficient labeled training data remains expensive and 199

labor-intensive (Blasi et al., 2022; Faisal et al., 200

2024). When the low-resourced target variety has 201

high-resourced neighbors in terms of linguistic sim- 202

ilarity, utilizing the latter can be relatively cheaper. 203

Although works like LangRank provide a princi- 204

pled method for selecting source varieties for train- 205

ing, it relies on Lang2Vec and URIEL, collections 206

of pre-annotated information such as geometric dis- 207

tance, phylogenetic similarity based on Glottolog, 208

World Atlas of Language Structures, and Syntactic 209

Structures of World Languages (Lin et al., 2019; 210

Littell et al., 2017). This fine-grained approach is 211

applicable for only predefined set of varieties, leav- 212

ing otu low-resource varieties that are not present 213

in URIEL. LangRank is thus inherently biased to- 214

wards high-resourced varieties, with 31% of pre- 215

sented languages missing annotations (Toossi et al., 216

2024). 217

To mitigate the constraints of low-resource va- 218

rieties, we suggest TOPPing : Token-Overlap & 219

Proximal embedding PairING, a simple yet effec- 220

tive method that does not require annotations and 221

allows preservation of varietal diversity for select- 222

ing source varieties. This allows a wide and general 223

usage even when the variety is unseen, unannotated, 224

and unlabeled. Previous works define language dis- 225
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tances in various dimensions (Littell et al., 2017;226

Rama et al., 2020). In this work, we rely on two227

signals that can be computed automatically from228

raw text and capture complementary aspects of229

similarity. As illustrated in Figure 2, to encour-230

age diversity in source selection, we compute these231

similarity signals independently rather than com-232

bining them into a single joint score. This preserves233

the room for variety-specific information training234

which serves as a key for generalization.235

Let vtgt be the target low-resource variety, and236

Vsrc the set of high-resource source varieties. For237

each variety v, let Xv = {xvi }
Nv
i=1 denote its dataset.238

First, we obtain a source variety by proxying the239

phylogenetic distance between two varieties with240

embedding distance (Rama et al., 2020). Let241

fCLS2(x) ∈ Rd denote the "[CLS]" representation242

of input x from the second layer of a frozen MLM.243

We aim to obtain a source variety vsim ∈ Vsrc such244

that:245

vsim = argmin
v∈Vsrc

∥∥µv − µvtgt

∥∥
2
,

µv =
1

Nv

∑
x∈Xv

fCLS2(x).
(1)246

We use the second-layer "[CLS]" rather than the247

final layer because lower-layer representations248

have been shown to capture more typological and249

morpho-syntactic information, which aligns better250

to proxy phylogenetic structure (Hewitt and Man-251

ning, 2019; Mousi et al., 2024; Bakos et al., 2025).252

Second, we proxy the lexical distance between253

two varieties using token overlap (Blaschke et al.,254

2025). Here, we introduce token-length weighted255

Jaccard Similarity as lexical overlap calculation256

tailored for low-resource varieties. Unlike highly257

represented varieties, lexical items are often frag-258

mented into shorter sub-tokens, which diminishes259

the discriminative power of a standard Jaccard simi-260

larity measure. Weighting overlaps by token length261

mitigates this bias, preventing varieties from being262

erroneously conflated based on scripts. The aim is263

to obtain a source variety voverlap ∈ Vsrc such that :264

voverlap = argmax
v∈Vsrc

TJ(Xv,Xvtgt), (2)265

where TJ(Xv,Xvtgt) is token-length weighted Jac-266

card similarity.267

TJ(Xa,Xb) =

∑
tok∈Ta∩Tb

ω(tok)∑
tok∈Ta∪Tb

ω(tok)
,

ω(tok) = max(1, len(tok)− 1).

(3) 268

The pair ⟨vsim, voverlap⟩, selected by independent 269

ranking, leaves room for diversity in source pair 270

selection. TOPPing can therefore offer a strong yet 271

inexpensive cues without requiring labeled or par- 272

allel dataset, suitable for low-resource scenarios. 273

3.2 VAÇAI-Bowl 274

In Figure 2, we illustrate our approach for Lan- 275

guage Generalization : Variety Aligned and 276

SpeC(Ç)ific AttrIbutes Blending for LOW-resouce 277

Language Varieties. This framework leverages 278

both variety-invariant and variety-specific knowl- 279

edge from high-resource varieties to effectively 280

model representations for an unseen, low-resource 281

variety. Specifically, we argue that a model must 282

learn not only to align but also to distinguish vari- 283

eties in order to fully grasp the linguistic character- 284

istics on an unseen variety. 285

In order to model variety-invariant and variety- 286

specific features, we use a frozen Multilingual Lan- 287

guage Model that produces a "[CLS]" embedding 288

for every input sentence. We implement two inde- 289

pendent 2-layer MLP encoders : 290

• Variety-invariant encoder finv is trained adver- 291

sarially to align varieties and learn invariant 292

features. 293

hinv = finv([CLS]) (4) 294

• Variety-specific encoder fspc is trained nor- 295

mally to emphasize variety-specific features. 296

hspc = fspc([CLS]) (5) 297

The outputs are concatenated into h. 298

h = hinv ∥hspc ∈ R2d, (6) 299

where both encoders output d-dimensional vec- 300

tors. The joint feature h is used in place of original 301

"[CLS]" embedding for downstream tasks. 302

To train each encoders to successfully extract 303

variety-invariant and variety-specific features, each 304

encoder is paired with its own discriminator (Dinv 305

and Dspc) that performs classification on what vari- 306

ety the input belongs to. A gradient-reversal layer 307
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Methods
Varieties

aln gug gun koi kpv lij nds sma gsw xum

source is eng
mBERT⋄ 38.14 13.51 8.95 26.12 26.89 50.22 36.77 19.41 36.77 33.21
mBERT 39.13 13.03 12.91 30.03 29.79 49.86 42.61 20.81 42.49 32.01
source selected using LangRank (Lin et al., 2019)
mBERT 43.90 22.13 10.47 33.97 32.51 59.38 46.45 27.79 51.12 36.14
+Alignment 49.58 25.98 16.40 36.33 33.37 59.68 50.49 29.90 52.60 34.67
+VAÇAÍ-Bowl (OURS) 51.00 27.05 17.21 36.90 35.32 63.02 50.92 32.62 52.23 36.29

source selected using TOPPing (OURS)
mBERT 44.55 34.10 15.18 40.83 36.80 63.99 52.54 35.63 57.22 37.21
+Alignment 45.30 31.56 16.53 40.72 36.52 62.96 52.04 38.80 54.84 35.99
+VAÇAÍ-Bowl (OURS) 46.34 36.39 19.00 42.29 38.19 64.29 54.90 39.67 57.74 37.67

Table 1: Quantitative results on UAS scores using mBERT as backbone on dependency parsing task evaluated
across selected low-resource varieties from DialectBench. ⋄ refers to value reported in original paper. Underlined
scores refer to best performing on target under controlled source variety. Bold scores refer to best performing on the
target variety.

Gλ is inserted in front of Dinv to selectively up-308

date parameters to fool Dinv (Ganin and Lempitsky,309

2015).310

Gλ(z) = z,
∂Gλ

∂z
= −λI, (7)311

where λ is a hyperparameter. Contrastingly, fspc312

learns to help Dspc by producing easily distinguish-313

able features. The discriminators yield two loss314

terms :315

Linv = LCE(Dinv(Gλ(hinv)), yvar),

Lspc = LCE(Dspc(hspc), yvar),
(8)316

where LCE denotes Cross Entropy Loss.317

Lastly, the task loss is employed for the fine-318

tuning objective and to ground the representation319

extraction in right directions.320

Ltask = Ltask(ftask(h), ytask). (9)321

Finally, the objective function is defined as fol-322

lows :323

Ltotal = Linv + Lspc + Ltask. (10)324

4 Experiments325

4.1 Experimental Setup326

Benchmark. DialectBench provides datasets327

and benchmarks for low-resource varieties with328

annotations that group varieties into language329

clusters, allowing direct visualization of perfor- 330

mance gaps within the same cluster. For our 331

experiment, we select target low-resource varieties 332

that face following constraints : First, there is no 333

training dataset available for the variety. Second, 334

the zero-shot performance does not meet 50% of 335

criteria. For source varieties, we utilize the rest of 336

DialectBench and sample high-resourced varieties 337

representative of distinctive language clusters 338

from Universal Dependencies (Nivre et al., 2017; 339

de Marneffe et al., 2021). These source variety 340

sets are used for TOPPing variety selection. We 341

evaluate on dependency parsing task, which is a 342

structured prediction task. 343

344

Source Selection Baselines. In Figure 1, 345

we illustrate how automated source language 346

selection using TOPPing can be a simple yet 347

effective method for source language selection 348

especially for unseen varieties. This selection 349

is applicable to diverse cross-lingual transfer 350

scenarios, not limited to a specific method. We 351

implement a LangRank baseline where the source 352

varieties are selected based on pre-annotated 353

linguistic features and dataset-dependent features 354

(Lin et al., 2019). Please refer to Appendix B for 355

detailed information on selected source languages. 356

357

Language Generalization Baselines. To 358

compare the VAÇAÍ-Bowl framework, we imple- 359

ment two baselines : (1) MLM baseline illustrates 360

performance when the model is simply finetuned 361
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Methods
Varieties

aln gug gun koi kpv lij nds sma gsw xum

source is eng
XLM-R⋄ 43.50 11.15 4.23 30.91 32.14 43.78 34.70 28.28 34.70 28.75
XLM-R 52.58 13.61 4.38 31.50 30.60 53.79 42.92 30.20 43.60 24.50
source selected using LangRank (Lin et al., 2019)
XLM-R 55.58 28.44 10.95 41.51 33.27 60.37 47.36 41.25 43.75 33.08
+Alignment 57.41 28.44 12.47 40.49 35.80 59.51 47.61 42.16 46.95 34.30
+VAÇAÍ-Bowl (OURS) 58.55 31.23 12.51 42.41 36.13 59.82 48.38 42.53 47.47 34.56

source selected using TOPPing (OURS)
XLM-R 55.07 30.57 11.27 40.50 38.04 63.80 48.73 40.76 52.23 35.68
+Alignment 56.54 28.67 8.47 39.60 35.85 63.13 50.81 40.20 56.62 34.76
+VAÇAÍ-Bowl (OURS) 57.50 31.97 13.98 44.66 37.76 63.44 51.65 40.99 57.74 36.60

Table 2: Quantitative results on UAS scores using XLM-R as backbone on dependency parsing task evaluated
across selected low-resource varieties from DialectBench. ⋄ refers to value reported in original paper. Underlined
scores refer to best performing on target under controlled source variety. Bold scores refer to best performing on the
target variety.

on source languages. (2) Alignment baseline362

where the model leverages adversarial training to363

learn only variety-invariant features, adopted from364

DG and robust training is implemented (Huang365

et al., 2021).366

367

Implementation Details. We utilize mBERT368

(Devlin et al., 2018) and XLM-R (Conneau et al.,369

2020) as MLMs for all tasks. We set the learning370

rate as 2e-4, batch size as 64 for mBERT. We371

set the learning rate as 5e-5, batch size as 64372

for XLM-R. Overall, λ for gradient-reversal373

layer is searched in [0.1, 0.5, 1.0] for following374

experiments. Parameters are optimized using375

Adam optimizer. We finetune each model for 10376

epochs and halt at step size of 1000 to not exceed377

the finetuning steps of zero-shot cross-lingual378

steps. Please refer to Appendix C for detailed379

information on parameter search.380

4.2 Quantitative Results381

In accordance with the previous discussions, a382

model that can learn both the variety-invariant and383

variety-specific features should show higher gen-384

eralization performance regardless of source vari-385

eties. Also, this performance should be boosted386

with model-agnostic source selection TOPPing that387

preserves noticeable differences in source varieties.388

At the same time, TOPPing is also expected to per-389

form comparatively to LangRank which prioritizes390

linguistic similarities.391

Source Selection. Table 1 and Table 2 presents392

results on DEP task, using mBERT and XLM-R 393

as backbones, respectively. Comparing the scores 394

reported using each LangRank and TOPPing, it is 395

noticeable that in Table 1, evaluations made using 396

TOPPing outperforms LangRank across all meth- 397

ods in 9 out of 10 varieties. Also, simply finetuning 398

the mBERT model on TOPPing itself beats the 399

best score obtained using LangRank for 8 out of 400

10 varieties. These results show that TOPPing is 401

an effective source selection method even without 402

pre-annotated descriptions of varieties. In cases 403

where LangRank enhances transferability and gen- 404

eralization, aln and xum, it is notable that the target 405

varieties all fall into Indo-European family. This 406

advantage is largely attributable to the dense ty- 407

pological and lexical metadata available for Indo- 408

European languages in resources such as URIEL 409

and WALS, which furnish LangRank with infor- 410

mative feature vectors and reliable genealogical 411

signals for ranking candidate sources. Thus, for 412

targets that are partially represented with charac- 413

teristics of Indo-European family, LangRank can 414

discriminate between closely related sources. How- 415

ever, for under-documented varieties every can- 416

didate looks equally (dis)similar, which leads to 417

unsuitable source selection. 418

Language Generalization. Our proposed archi- 419

tecture, VAÇAÍ-Bowl, achieves the highest per- 420

formance on 9 out of 10 target varieties across 421

both source selection methods for mBERT. Pay- 422

ing close attention to other baselines, it is no- 423

table that the Alignment method, which attempts 424
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Token Similarity source Cosine Distance Source mBERT XLM-R

TOPPing LangRank TJ CD

mBERT XLM-R DEP Evaluation

Figure 3: Analysis on source selection method. Two plots on the right illustrates TOPPing source selection scheme
on variety sma. The x-axis is closeness of Cosine Distance of "[CLS]" tokens (CD), and the y-axis is token-length
weighted Jaccard Similarity (TJ). We experiment VAÇAÍ-Bowl on two more source selections ; Token Similarity
source which takes two sources with highest TJ and Cosine Distance source which takes two sources with highest
CD. Note that TOPPing selects glg, sme and LangRank selects est, sme.

to enforce alignment by pulling diverse variety425

embeddings together, fails to surpass the perfor-426

mance on fine-tuned MLM baseline for certain va-427

rieties. Specifically, for varieties {gug, koi, kpv,428

lij, nds, gsw, xum} in Table 1 and {gug, gun, koi,429

kpv, lij, sna} in Table 2. We refer to this phe-430

nomenon as alignment-induced fails. When this431

occurs, VAÇAÍ-Bowl overomes the fails of Align-432

ment by utilizing variety-specific attributes under433

for all cases. Especially in in Table 1, for 6 out434

of 7 alignment-induced fails observed using TOP-435

Ping, VAÇAÍ-Bowl outperforms all methods on436

the target variety. This illustrates promising results437

from utilizing variety-specific cues. Also, VAÇAÍ-438

Bowl performs consistently better than Alignment439

method across all varieties. This suggests that440

merely forcing alignment across distinct linguis-441

tic domains is insufficient. Rather, effective gen-442

eralization and zero-shot performance requires the443

model to adapt to and preserve the diversity inher-444

ent in different language varieties.445

4.3 Qualitative Results446

In Figure 3, we can observe how different similar-447

ity metrics used to obtain TOPPing in Section 3.1448

affect performances in VAÇAÍ-Bowl. LangRank449

utilizes est, sme as source varieties, which seem450

largely correlated with the [CLS] Cosine Distance451

we use to proxy phylogenetic similarity. TOPPing’s452

performance hints that phylogenetic similarity may453

not contribute to model performance as much, con-454

sidering it utilizes glg, sme as source varieties. Ad-455

ditionally, as can be observed in the case of CD,456

performance is also model-dependent. XLM-R457

tends to stay robust on diverse source varieties un- 458

line mBERT. Beyond the observed performance 459

gains, incorporating variety-specific knowledge of- 460

fers valuable linguistic insights. Contrary to pre- 461

vailing assumptions in NLP, certain cross-lingual 462

transfer scenarios benefit more from dissimilar lan- 463

guage pairs than from closely related ones. These 464

findings underscore the importance of preserving 465

variety-specific information so that models can bet- 466

ter generalize to unseen and low-resource varieties, 467

with potential applicability beyond reported cases. 468

5 Conclusion 469

This paper introduces a Language Generalization 470

pipeline that tackles the twin challenges of select- 471

ing helpful high-resource varieties and learning 472

representations that respect, rather than erase, dis- 473

tinctiveness of varieties. With TOPPing, we auto- 474

matically choose a linguistically overlapping and 475

complementary source pair for any unseen variety, 476

requiring no labels or parallel data. Coupled with 477

the lightweight VAÇAÍ-Bowl dual-encoder, one 478

branch aligning varieties and the other amplifying 479

variety-specific cues, our framework delivers con- 480

sistent gains on dependency parsing. Experiments 481

across ten low-resource varieties, TOPPing with 482

VAÇAÍ-Bowl lifts zero-shot UAS by an average 483

of 50.63% and 58.6%, using mBERT and XLM-R, 484

respectively. This beats alignment-centric baseline 485

and even rescues cases where full alignment hurts 486

(“alignment-induced fails”). Beyond parsing, the 487

approach is model-agnostic, computation-friendly 488

(MLM layers stay frozen), and immediately appli- 489

cable to other tasks. 490
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Limitations491

The methods presented in this research proved to492

be effective in handling under-represented varieties493

that pre-trained MLMs cannot easily generalize494

to. Although we suggest an end-to-end pipeline495

that does not require any human annotated work496

on either source or target varieties, the method still497

requires unique selection of source varieties for498

each training. To counterpart this computational499

complexity, our method freezes the MLM and train500

only the MLP encoders, discriminators, and the501

task-specific head. This approach significantly re-502

duces both the model size and training overhead503

compared to methods that require full fine-tuning504

of MLMs. Yet, it should be recognized that the505

ultimate goal of Language Generalization is to506

leverage only a limited set of language varieties507

to develop a model capable of robust generaliza-508

tion across all varieties, regardless of their resource509

availability.510

Ethical Considerations511

We study a method to enhance zero-shot cross-512

lingual transfer to very low-resourced varieties,513

which are often not provided with sufficient data514

for training or evaluation. While we aim to develop515

language technologies targeting under-represented516

language communities, we still lack such coverage,517

limiting our research to datasets that are publicly518

available. Nevertheless, our approach provides a519

valuable step toward addressing the gap, by not520

simply aligning low-resource varieties with high-521

resource ones, but instead encouraging the model522

to recognize and preserve the linguistic differences523

that define them. All resources used in this re-524

search are publicly available, and no personal or525

sensitive information was collected or utilized. We526

do not anticipate any potential harm arising from527

this study.528
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Variety ISO 639-3 UD-code

gheg aln UD_Gheg-GPS
paraguay mbya guarani gug UD_Mbya_Guarani-Thomas
brazil mbya guarani gun UD_Mbya_Guarani-Dooley
permyak komi koi UD_Komi_Permyak-UH
zyrian komi kpv UD_Komi_Zyrian-IKDP
ligurian lij UD_Ligurian-GLT
central alemanic nds UD_Swiss_German-UZH
skolt saami sma UD_Skolt_Sami-Giellagas
low saxon gsw UD_Low_Saxon-LSDC
umbrian xum UD_Umbrian-IKUVINA

Table 3: Target Varieties in Section 4 with their ISO 639-3 and Universal Dependencies code

Appendix829

A Language Codes830

In this section, we provide the ISO 639-3 and Universal Dependency dataset code for the varieties used in831

this paper.832

B Selected Source Varieties833

In this section, we list the selected source varieties used to train VAÇAÍ-Bowl in Section 4. Table 5 lists834

TOPPing selected source varieties using mBERT as embedding backbone, which was used to produce835

results for Table 1. Table 6 lists TOPPing selected source varieties using XLM-R as embedding backbone,836

used to evaluate results on 2. The LangRank selected source varieties are same for both experiments, as837

LangRank does not take consideration of the MLM used in training.838

C Parameter Search for Lambda of Gradient-Reversal Layer839

For the gradient-reversal layer used to adversarially train invariant feature encoder in Section 3.2, we840

provide an ablation study on its affects on performance.841

D Number of Model Parameters842

We use mBERT (Devlin et al., 2018) and XLM-R (Conneau et al., 2020)in their base size, where mBERT843

has 110M and XLM-R has 125M number of parameters.844
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Variety ISO 639-3 UD-code

gheg ita UD_Italian-MarkIT
paraguay mbya guarani nor UD_Norwegian-Bokmaal
brazil mbya guarani sme UD_North_Sami-Giella
permyak komi zho UD_Chinese-GSDSimp
zyrian komi por UD_Portuguese-Bosque
ligurian spa UD_Spanish-AnCora
central alemanic fin UD_Finnish-TDT
skolt saami est UD_Estonian-EDT
low saxon cat UD_Catalan-AnCora
umbrian ind UD_Indonesian-CSUI
galician glg UD_Galician-CTG
galician glg UD_Galician-TreeGal
turkish tur UD_Turkish-Penn
turkish tur UD_Turkish-IMST
serbian srp UD_Serbian-SET
croatian hrv UD_Croatian-SET
czech ces UD_Czech-CAC
slovak slk UD_Slovak-SNK
russian rus UD_Russian-SynTagRus
old church slavonic chu UD_Old_Church_Slavonic
belarusian bel UD_Belarusian-HSE
ukrainian ukr UD_Ukrainian-IU
upper sorbian hsb UD_Upper_Sorbian-UFAL
bulgarian blg UD_Bulgarian-BTB
irish gle UD_Irish-IDT
welsh cym UD_Welsh-CCG

Table 4: Source Varieties in Section 4 with their ISO 639-3 and Universal Dependencies code

13



cluster target variety
LangRank TOPPing

source UAS source UAS

albanian gheg
italian

51.00
turkish german

46.34
finnish italian

gallo-italian ligurian
catalan

63.02
portuguese

64.29
spanish italian

high german central alemannic
norwegian bokmal

52.23
german

57.74
italian turkish german

komi
komi-zyrian

indonesian
35.32

bulgarian
38.19

turkish russian

komi-permyak
estonian

36.90
bulgarian

42.29
portuguese turkish

saami skolt saami
estonian

32.62
north saami

39.67
north saami galician

sabellic umbrian
estonian

35.07
north african arabic

37.67
turkish italian

tupi-guarani

paraguay spanish
27.05

turkish
36.39

mbya guarani hindi italian
brazil finnish

17.21
english

19.00
mbya guarani turkish upper sorbian

west low german low saxon
english

50.92
turkish german

54.90
italian english

Table 5: Selected two source varieties for Dependency Parsing and its scores with VAÇAÍ-Bowl using mBERT as
backbone. Abbreviations (spk) and (wrt) each refer to mode of dataset, spoken and written, respectively.
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cluster target variety
LangRank TOPPing

source UAS source UAS

albanian gheg
italian

58.55
norwegian bokmaal

57.50
finnish italian

gallo-italian ligurian
catalan

59.82
portuguese

63.44
spanish italian

high german central alemannic
norwegian bokmaal

47.47
german

57.74
italian turkish german

komi
komi-zyrian

indonesian
35.32

bulgarian
37.76

turkish russian

komi-permyak
estonian

42.41
bulgarian

44.66
portuguese turkish

saami skolt saami
north saami

42.53
north saami

40.99
estonian north saami galician

sabellic umbrian
estonian

-
north african arabic

32.77
turkish italian

tupi-guarani

paraguay spanish
31.23

turkish
31.97

mbya guarani hindi italian
brazil finnish

11.27
english

13.98
mbya guarani turkish italian

west low german low saxon
english

48.38
german

51.65
italian turkish german

Table 6: Selected two source varieties for Dependency Parsing and its scores with VAÇAÍ-Bowl using XLM-R as
backbone. Abbreviations (spk) and (wrt) each refer to mode of dataset, spoken and written, respectively.

lambda aln gug gun koi kpv lij nds sma gsw xum

0.1 46.09 35.00 15.03 36.56 40.61 64.72 52.13 37.18 56.40 36.14
0.5 45.41 35.25 15.17 35.70 40.27 63.74 52.36 40.12 54.91 37.37
1.0 46.34 36.39 19.00 42.29 38.19 64.29 54.90 39.67 57.74 37.67

Table 7: Ablation study on VAÇAÍ-Bowl performance with mBERT backbone based on different lambda values.
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