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Abstract

We investigate the convergence of stochastic mirror descent (SMD) under interpolation in
relatively smooth and smooth convex optimization. In relatively smooth convex optimiza-
tion we provide new convergence guarantees for SMD with a constant stepsize. For smooth
convex optimization we propose a new adaptive stepsize scheme — the mirror stochastic
Polyak stepsize (mSPS). Notably, our convergence results in both settings do not make
bounded gradient assumptions or bounded variance assumptions, and we show convergence
to a neighborhood that vanishes under interpolation. Consequently, these results correspond
to the first convergence guarantees under interpolation for the exponentiated gradient al-
gorithm for fixed or adaptive stepsizes. mSPS generalizes the recently proposed stochastic
Polyak stepsize (SPS) (Loizou et al., 2021) to mirror descent and remains both practical
and efficient for modern machine learning applications while inheriting the benefits of mirror
descent. We complement our results with experiments across various supervised learning
tasks and different instances of SMD, demonstrating the effectiveness of mSPS.

1 Introduction

We consider the constrained stochastic optimization problem,

min
x∈X

f(x) = Eξ [fξ(x)] , (1)

where X ⊆ Rd is a non-empty closed convex set that is possibly unbounded, and ξ is a random vector
supported on a set Ξ such that Eξ [fξ(x)] is always well defined. We assume that it is possible to generate
a sequence of independent and identically distributed (i.i.d.) realizations of ξ, and that for each x ∈ X
Eξ [∇fξ(x)] = ∇f(x). We use X∗ ⊂ X to denote the set of minimizers x∗ of (1) and assume that X∗ is not
empty.

A special case of interest is the finite-sum optimization problem where Ξ = {1, · · · , n} and Eξ [fξ(x)] =∑n
i=1

fi(x)
n . Finite-sum optimization problems are often used in machine learning tasks where vector x
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denotes the model parameters, fi(x) represents the loss on the training point i and the goal is to minimize
the average loss f(x) across the training points while satisfying the problem constraints (expressed as x ∈ X ).

A common iterative approach to solve (1) when X = Rd is stochastic gradient descent (SGD) (Robbins &
Monro, 1951; Gower et al., 2019), iterates are updated in the negative direction of a gradient computed from a
single realization of ξ. When the problem is constrained, X ⊂ Rd, one may employ projected methods such as
stochastic projected gradient descent (SPGD). However, the convergence guarantees of both SGD and SPGD
depend on values measured by the Euclidean norm. If the Euclidean structure is not naturally suited to the
problem, then SGD and PGD can suffer a worse dependence on the dimension d. A powerful generalization of
SGD and SPGD is stochastic mirror descent (SMD), permitting better convergence guarantees by matching
the geometry of the problem (Nemirovski & Yudin, 1983; Beck & Teboulle, 2003). For example in some
cases, SMD can improve SGD’s

√
d dependence to

√
log(d) (Ben-Tal et al., 2001; Beck & Teboulle, 2003).

Furthermore, mirror descent leverages non-Euclidean projections, allowing for different choices of projections
that are perhaps better suited to the constraint set. For example, in sequential games particular instances of
mirror descent have been designed to allow for efficient projections on the strategy spaces of players (Hoda
et al., 2010; Kroer et al., 2020).

A classical analysis of mirror descent and first-order methods often relies on smoothness with respect to
some norm ||·||. The norm ||·|| is often used in selecting the appropriate instance of mirror descent (Dekel
et al., 2012; Bubeck, 2015). However, a recent trend is to study non-euclidean methods like mirror descent
with the more general assumption of relative smoothness (Birnbaum et al., 2011; Bauschke et al., 2017; Lu
et al., 2018). Several applications of interest are not smooth but relatively smooth, e.g., algorithmic game
theory (Birnbaum et al., 2011); Poisson inverse problems (Bertero et al., 2009); and more (Lu et al., 2018).

In contrast to deterministic methods, stochastic methods under relative smoothness have received less atten-
tion. We contribute to the literature of SMD with new constant-stepsize results under relative smoothness
and new adaptive-stepsize results under smoothness, both of which use weak assumptions on the noise.

1.1 Main Contributions

The key contributions of this work are as follows:

• Technical assumptions on the noise. Unlike most of the SMD literature, all our convergence
results, with relative smoothness or smoothness, and for fixed and adaptive stepsizes, do not make
bounded gradient or bounded variance assumptions. Instead we use the finite optimal objective
difference, introduced by Loizou et al. (2021), for our adaptive smooth setting and introduce a new
constrained version for the relative smooth setting. More precisely, Loizou et al. (2021) assume

σ2 := f(x∗)− Eξ
[
f∗ξ
]
<∞, (2)

where f(x∗) = minx∈X f(x), f∗ξ := infx∈Rd fξ(x). In the finite-sum case, E [f∗i ] =
∑n
i=1

f∗i
n . For our

relative smooth results we introduce the constrained finite optimal objective difference, a refinement
that depends on the constraint X ,

σ2
X := f(x∗)− Eξ

[
f∗ξ (X )

]
<∞, (3)

where f∗ξ (X ) = infx∈X fi(x) and in the finite-sum case E [f∗i (X )] =
∑n
i=1

infx∈X fi(x)
n . From definition

we have that the constrained version is a weaker assumption than its unconstrained counterpart since
σ2
X ≤ σ2.

• Novel adaptive SMD. We propose the mirror stochastic Polyak stepsize (mSPS) as an adaptive
stepsize for SMD. Contrary to most adaptive mirror descent methods for stochastic optimization we
do not use an online to batch reduction (Cesa-Bianchi et al., 2004; Littlestone, 1989). Hence, we
avoid common assumptions like bounded constraints and provide efficient convergence results like
linear convergence under strong convexity and smoothness.

• Exact convergence with interpolation. In modern machine learning, overparametrized models
capable of driving training error to zero have increasingly become important in both theory and
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in practice (Ma et al., 2018; Zhang et al., 2021). Under these conditions (see Definition 4) it
has been shown that SGD enjoys favourable guarantees with exact convergence (Ma et al., 2018).
Our analysis with σ2, and σ2

X , shows that SMD inherits similar guarantees with fast and exact
convergence under interpolation. We are unaware of other similar results for SMD with adaptive
stepsizes. Moreover, our results provide the first convergence guarantees under interpolation for the
exponentiated gradient algorithm under both the relative smoothness and the classic smoothness
settings.

• Extensive numerical experiments for adaptive SMD.We demonstrate the adaptive capability
of our proposed adaptive stepsize across a wide variety of domains and mirror descent algorithms
for both constrained and unconstrained problems.

2 Related Work

Stochastic Mirror Descent. SMD is often analyzed as a stochastic method for optimizing non-smooth
Lipschitz continuous convex functions (Nemirovski et al., 2009; Bubeck, 2015; Beck, 2017). These results can
be derived from online to batch reductions yielding a O(1/

√
T) convergence rate (Cesa-Bianchi et al., 2004;

Duchi et al., 2010; Orabona, 2019). In the case of non-smooth and strongly convex, several works improve the
results following from online regret bounds with a O(1/T) convergence rate (Hazan & Kale, 2014; Ghadimi
& Lan, 2012; Juditsky & Nesterov, 2010). Under smoothness, similar improvements can be made (Dekel
et al., 2012; Bubeck, 2015). All of these results use bounded variance or bounded gradient assumptions.1
These assumptions can be difficult to verify, and may impose further restrictions. For example, one cannot
in general assume a bounded gradient with strong convexity if X is unbounded, therefore it is common to
assume X is compact.

In relative smooth optimization Hanzely & Richtarik (2021) make an assumption similar to bounded variance.
More recently, Dragomir et al. (2021) avoid making bounded variance or bounded gradient assumptions under
relative smoothness but make larger restrictions on the class of problems and mirror descent methods. We
make an in-depth comparison with these works in Section 5. We also add that there are several works related
to randomized coordinate descent methods (Hanzely & Richtarik, 2021; Gao et al., 2020; Hendrikx et al.,
2020), and with variance reduction (Hendrikx et al., 2020; Dragomir et al., 2021).

Interpolation in constrained optimization. Interpolation conditions have mostly been studied with
SGD in unconstrained settings (Gower et al., 2019; Vaswani et al., 2019a) or with SMD and conditions that
do not incorporate constraints Hanzely & Richtarik (2021). Consequently, these conditions can yield large or
unbounded neighborhoods of convergence in constrained optimization. Xiao et al. (2022) addresses some of
these shortcomings by introducing the variance based weak growth condition to model interpolation under
stochastic constrained optimization. However, the condition only holds under interpolation and requires the
variance to be zero at the optimum. In comparison, our constraint-aware condition σ2

X can hold without
interpolation and does not require variance to be zero at the optimum.

Adaptive stepsizes. Adaptive stepsizes for mirror descent have a long history. Accumulating past gradi-
ents or subgradients to set a stepsize, ηt ∝ 1/

√∑t

s=1
||gs||2∗ , can be traced back to online learning (Auer et al.,

2002; Streeter & McMahan, 2010). Recently, similar coordinate-wise stepsizes such as ADAGRAD (McMa-
han & Streeter, 2010; Duchi et al., 2011) have been proposed. The convergence guarantees for these methods
in convex optimization use online regret bounds, requiring sublinear regret. Unfortunately, all mirror descent
methods with the aforementioned stepsizes require a bounded constraint; when the problem is unconstrained
Orabona & Pál (2018) prove a Ω(T ) worst case lower bound for the regret.2 Furthermore, in the stochastic
case, bounded gradient and variance assumptions are made when using the online to batch reduction (Duchi,
2018; Orabona, 2019). In contrast our methods employ a completely different stepsize and we make a very

1Lei & Tang (2018) derive results for non-smooth and strongly convex functions without bounded subgradients but assume
a weak growth condition.

2Convergence results may still be possible without online to batch reductions; for example, in the case of unconstrained SGD
see Li & Orabona (2019).
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weak assumption on the noise. Another line of related work includes adaptive stepsizes for mirror descent
with non-smooth functional constraints (Bayandina, 2017; Bayandina et al., 2018; Stonyakin et al., 2019).

Polyak stepsize. Our adaptive stepsizes are in the spirit of Polyak’s stepsize — originally proposed for
deterministic projected subgradient descent (Polyak, 1987). In the deterministic setting Polyak’s results
have been been successfully extended and used for solving weakly convex and smooth problems (Boyd et al.,
2003; Davis et al., 2018; Hazan & Kakade, 2019). More recently, variations of the Polyak stepsize have
been proposed for stochastic optimization (Loizou et al., 2021; Prazeres & Oberman, 2021; Berrada et al.,
2020; Gower et al., 2021). The adaptive stepsizes proposed herein are a generalization of SPS proposed and
analyzed by Loizou et al. (2021) (see Section 4.2) to the constrained case and for mirror descent.

3 Background

We denote vectors within the feasible set as x ∈ X ⊆ Rd, where R is the set of real numbers. We use the
subscript to denote time, after t time steps the average of the iterates x1, · · · , xt is x̄t = 1/t

∑t
s=1 xs. With

a slight abuse of notation we may also refer to the ith coordinate of x as xi, x = (x1, · · · , xd). Whether the
subscript refers to time or the coordinate is clear from context. We denote ||·||2 as the Euclidean norm and
||·|| as any arbitrary norm with corresponding dual norm ||x||∗ = supy{〈x, y〉 : ||y|| ≤ 1}.

For a differentiable function ψ, we define the difference between ψ(x) and the first order approximation of
it at y as the Bregman divergence Bψ(x; y).
Definition 1 (Bregman divergence). Let ψ : D → R be differentiable on intD. Then the Bregman divergence
with respect to ψ is Bψ : D × intD → R, defined as

Bψ(x; y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉.

A differentiable function f is convex on a convex set X if Bf (x; y) ≥ 0 for any x, y ∈ X . Similarly, a function
f is L-smooth with respect to a norm ||·|| if Bf (x; y) ≤ L

2 ||x− y||
2, and is µ-strongly convex with respect

to the norm ||·|| if µ2 ||x− y||
2 ≤ Bf (x; y).

We will also refer to the generalization of smoothness and strong convexity — relative smoothness and
relative strong convexity defined below.
Definition 2. A function f is L-smooth relative to ψ on X if for all (x, y) ∈ X × (X ∩ intD) it holds that:
Bf (x; y) ≤ LBψ(x; y).
Definition 3. A function f is µ-strongly convex relative to ψ on X if for all (x, y) ∈ X × (X ∩ intD) it
holds that: µBψ(x; y) ≤ Bf (x; y).

3.1 Mirror descent

To solve problem (1) we consider the general stochastic mirror descent update with a convex function ψ and
domain D

xt+1 = arg min
x∈X
〈∇fξt(xt), x〉+ 1

ηt
Bψ(x;xt). (4)

Where ξt is a realization of ξ that is i.i.d.. In the non-smooth or deterministic setting ∇fξt(xt) may be
replaced by a subgradient or the full gradient respectively. To make the updates well defined, all we require
is that xt+1 ∈ intD in update (4), otherwise Bψ(·, xt+1) will be undefined at the next step.
Assumption 1. Let ψ be convex with domain D, differentiable over intD, and X ⊆ D. For any g, and any
stepsize ηt > 0, xt+1 = arg minx∈X 〈g, x〉+ 1

ηt
Bψ(x;xt) ∈ intD.

For example the following assumption by Orabona (2019) would be sufficient.
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Assumption (Section 6.4 Orabona (2019)). Let ψ : D → R be a strictly convex function such that X ⊆ D,
we require either one of the following to hold: limx→∂X ||∇ψ(x)||2 = +∞ or X ⊆ int D.3

The first requirement from Orabona (2019) amounts to assuming ψ is a Legendre function (i.e., essentially
smooth and strictly convex), which implies that xt+1 ∈ intD (Cesa-Bianchi & Lugosi, 2006). Otherwise, if
the second condition holds then the update is also well defined. Furthermore, we note that other assumptions
can be made to guarantee xt+1 ∈ intD; for more examples see Bauschke et al. (2003).

Another common assumption is to assume ψ is strongly convex over X , which will be important for our
adaptive stepsize in Section 6, however, it is not needed for the constant step size results of Section 5.

The following is a standard one step mirror descent lemma and will be used often (Beck, 2017; Bubeck, 2015;
Orabona, 2019; Duchi, 2018), this particular statement and proof is taken from Lemma 6.7 by Orabona
(2019) and we include the full proof in the appendix for completeness. All other omitted proofs are deferred
to the appendix.
Lemma 1. Let Bψ be the Bregman divergence with respect to a convex function ψ : D → R and assume
assumption 1 holds. Let xt+1 = arg minx∈X 〈gt, x〉+ 1

ηt
Bψ(x;xt). Then for any x∗ ∈ X

Bψ(x∗;xt+1) ≤Bψ(x∗;xt)− ηt〈gt, xt − x∗〉 −Bψ(xt+1;xt) + ηt〈gt, xt − xt+1〉. (5)

Furthermore if ψ is µψ-strongly convex over X then

Bψ(x∗;xt+1) ≤Bψ(x∗;xt)− ηt〈gt, xt − x∗〉+ η2
t

2µψ
||gt||2∗ . (6)

The SMD update (4) recovers both SGD and SPGD if ψ is taken to be 1
2 ||·||

2
2. Some other interesting

examples include the case where ψ(x) = 1
2 ||x||

2
p for 1 < p ≤ 2 (Grove et al., 2001; Gentile, 2003). If we instead

use ψ(x) = 1
2 〈x,Mx〉 = 1

2 ||x||
2
M for a positive definite matrixM then we recover the scaled projected gradient

algorithm, xt+1 = arg minx∈X
∣∣∣∣xt − ηtM−1gt − x

∣∣∣∣2
M

(Bertsekas & Tsitsiklis, 2003). Another common setup
is when ψ is taken to be the negative entropy with a constraint set X = ∆d = {xi ≥ 0|

∑d
i=1 xi = 1}. In

this case ψ is 1-strongly convex with respect to ||·||1 and the update rule corresponds to the exponentiated
gradient algorithm (Littlestone & Warmuth, 1994; Kivinen & Warmuth, 1997; Beck & Teboulle, 2003; Cesa-
Bianchi & Lugosi, 2006).

3.2 Overparameterization, interpolation, and constrained interpolation

Modern machine learning models are expressive and often over-parametrized, i.e., they can fit or interpolate
the training dataset (Zhang et al., 2021). For example when problem (1) is the training problem of an over-
parametrized model such as a deep neural network (Ma et al., 2018) or involves solving a consistent linear
system (Loizou & Richtárik, 2020b;a) or problems such as deep matrix factorization (Rolinek & Martius,
2018; Vaswani et al., 2019b), each individual loss function fi attains its minimum at x∗. That is the following
interpolation condition is satisfied.
Definition 4 (Interpolation). We say that the interpolation condition holds when there exists x∗ ∈ X∗ such
that fξ(x∗) = infx∈Rd fξ(x) almost surely.

In the finite-sum setting this condition amounts to fξ(x∗) = infx∈Rd fξ(x) for all i ∈ {1, · · · , n}. Note that
when the interpolation condition is satisfied, it follows that σ2 = 0 (see (2)).

The use of interpolation in the literature has mostly been discussed within the context of unconstrained
optimization. Despite Definition 4 being designed to study SGD for unconstrained optimization, we show
that constrained optimization with mirror descent enjoys similar convergence benefits if σ2 = 0. However,
the standard definition of interpolation, as given by Definition 4, does not adequately describe interpolation
with respect to the constraint X . For example, consider the case where fi(x) = f(x) for all x ∈ X but do not

3∂X denotes the boundary of X .
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agree outside the constraint X . In this case, it is possible to have σ2 arbitrarily large, meanwhile, there is
no variance in the stochastic gradient E

[
||∇f(x)−∇fi(x)||22

]
= 0 – rendering the problem non-stochastic.

Xiao et al. (2022) describe an interpolation-like condition within constraint optimization, however, this
condition requires the stochastic gradient to have zero variance at the optimum, which need not hold generally
despite all fξ sharing a common minimum (see for example Figure 1). Therefore, we also make use of the
following constrained interpolation condition:
Definition 5 (Contrained Interpolation). We say that the interpolation condition holds with respect to the
constraint X if there exists x∗ ∈ X∗ such that fξ(x∗) = infx∈X fξ(x) almost surely.

Similar to Definition 4 we have interpolation with respect to X holds when σ2
X = 0. In the finite-sum setting,

constrained interpolation reduces to fi(x∗) = infx∈X fi(x) for all i ∈ {1, · · · , n}.

4 Constant and Polyak stepsize for mirror descent

In this section we provide background on constant stepsize selection for mirror descent. For non-constant
setpsize, we introduce our natural extensions of the classic Polyak stepsize and SPS for mirror descent.

4.1 Constant Stepsize

When a function is L-smooth with respect to the Euclidean norm, a common stepsize for gradient descent
is η = 1/L, allowing for convergence in many settings (Bubeck, 2015). Similarly for an L-relatively smooth
function with respect to ψ, the prescibed stepsize for mirror descent using ψ is η = 1/L (Birnbaum et al.,
2011; Lu et al., 2018). In the stochastic and relatively smooth case, Hanzely & Richtarik (2021) use η = 1/L
as well as different stepsize schedules. In Section 5, we provide new convergence guarantees (under weaker
assumptions) for SMD with η = 1/L.

4.2 Polyak Stepsize

An alternative method to selecting a stepsize, as suggested by Polyak (Polyak, 1987), is to take ηt by
minimizing an upper bound on ||xt+1 − x∗||22. From Lemma 1, if we take ψ = 1

2 ||·||
2
2 and assume gt ∈ ∂f(xt)

is a subgradient at xt for f then we recover a well known inequality for projected subgradient descent4

1
2 ||x∗ − xt+1||22 ≤

1
2 ||x∗ − xt||

2
2 − ηt(f(xt)− f(x∗)) + η2

t

2 ||gt||
2
2 .

Minimizing the right hand size with respect to ηt yields Polyak’s stepsize, ηt = (f(xt)−f(x∗))/||gt||22 (Polyak,
1987; Beck, 2017). Following in a similar fashion, we propose a generalization of Polyak’s stepsize for mirror
descent. If ψ is µψ-strongly convex5 with respect to the norm ||·|| then we can minimize the right hand side
of equation (6) to arrive at the mirror Polyak stepsize

ηt = µψ(f(xt)− f(x∗))
||gt||2∗

. (7)

Despite the well-known connection between projected subgradient descent and mirror descent (Beck &
Teboulle, 2003), this generalization of Polyak’s stepsize is absent from the literature. For completeness,
we include analysis of the non-smooth case in Section D of the appendix, including both a O(1/

√
t) conver-

gence and a last iterate convergence result. As expected, mirror descent with the mirror Polyak stepsize
maintains the benefits of mirror descent — it permits a mild dependence on the dimension of the space.

4After using the fact that gt is a subgradient, f(xt)− f(x∗) ≤ 〈gt, xt − x∗〉.
5Without loss of generality we could assume ψ to be 1-strongly convex and scale ψ by 1/µψ. The stepsize would remain the

same, scaling of ψ inversely scales the stepsize.
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However, it inherits the impractical issues with the Polyak stepsize — knowledge of f(x∗) and an exact
gradient or subgradient.

In the stochastic setting Loizou et al. (2021) propose the more practical stochastic Polyak stepsize (SPS),
ηt = (fξt (xt)−f∗ξt )/c||∇fξt (xt)||22, and the bounded variant SPSmax, ηt = min{(fξt (xt)−f∗ξt )/c||∇fξt (xt)||22, ηb}.
Where f∗ξt is known in many machine learning applications, and c is a scaling parameter that depends on
the class of functions being optimized (Loizou et al., 2021).

Similar to our generalization of Polyak’s stepsize (7), we propose a generalization of SPS and SPSmax for
mirror descent, the mirror stochastic Polyak stepsize (mSPS) and the bounded variant mSPSmax,

mSPS : ηt =
µψ(fξt(xt)− f∗ξt)
c ||∇fξt(xt)||

2
∗
, (8)

mSPSmax : ηt = min
{
µψ(fξt(xt)− f∗ξt)
c ||∇fξt(xt)||

2
∗
, ηb

}
. (9)

4.2.1 Self-bounding property of mSPS

An important property of SPS and mSPS is its self-bounding property for when fξt is L-smooth and µ-
strongly convex with respect to a norm ||·||,

µψ
2cL ≤ ηt =

µψ(fξt(xt)− f∗ξt)
c ||∇fξt(xt)||

2
∗
≤ µψ

2cµ . (10)

We extensively use the lower bound, also known as the self-bounding property of smooth functions (Srebro
et al., 2010), and we provide a complete proof in the appendix (Section E). A proof of the upper bound can
be found in Orabona (2019)[Corollary 7.6].

5 Convergence with constant stepsize in relatively smooth optimization

In this section we provide new convergence results for SMD with constant stepsize under relative smoothness.
We provide the following lemma which allows us to bound the last two terms in (5). This result can be
seen as a generalization of Lemma 2 in Collins et al. (2008), where the exponentiated gradient algorithm is
studied under the relative smoothness assumption.
Lemma 2. Suppose f is L-smooth relative to ψ. Then if η ≤ 1

L we have

−Bψ(xt+1;xt) + η〈∇f(xt), xt − xt+1〉 ≤ η(f(xt)− f(xt+1)).

5.1 Relative smoothness and strong convexity

For an appropriately selected stepsize, we have that SMD enjoys a linear rate of convergence to a neighbor-
hood of the minimum x∗.
Theorem 1. Assume ψ satisfies assumption 1. Furthermore assume f to be µ-strongly convex relative to ψ
over X , and fξ to be L-smooth relative to ψ over X almost surely. Then SMD with stepsize η ≤ 1

L guarantees

E [Bψ(x∗;xt+1)] ≤ (1− µη)tBψ(x∗;x1) + σ2
X
µ
.

Importantly, we do not assume fξ to be convex and under interpolation with respect X we have σ2
X = 0

implying SMD will converge to the true solution if ψ is strictly convex. If ψ is strongly convex then Theorem
1 provides a linear rate on the expected distance ||xt+1 − x∗||2 for some norm ||·||. For example Collins
et al. (2008) show that a particular loss fξ appearing in the dual problem of fitting regularized log-linear
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models is both smooth and strongly convex relative to the negative entropy function. In this case, our
results provide a linear rate on E

[
||xt+1 − x∗||21

]
for the stochastic exponentiated gradient algorithm since

ψ (negative entropy) is strongly convex with respect to the norm ||·||1.

In the case of interpolation, we have that Bψ(x∗;xt+1) → 0 almost surely. If ψ is strictly convex then
xt → x∗ almost surely.
Corollary 2. Under the same assumptions as Theorem 1, if σ2

X = 0 then Bψ(x∗;xt+1)→ 0 almost surely.

5.2 Relative smoothness without convexity

Similar to Theorem 1 we show convergence of a quantity to a neighborhood, only assuming fξ to be L-smooth
relative to ψ, where f or fξ need not be convex.
Theorem 3. Assume ψ satisfies assumption 1. Furthermore assume fξ to be L-smooth relative to ψ over
X almost surely. Then SMD with stepsize η ≤ 1

L guarantees

E

[
1
t

t∑
s=1

Bf (x∗;xs)
]
≤ Bψ(x∗;x1)

ηt
+ σ2
X .

The above guarantee also implies a result for the “best” iterate if f is convex, E [min1≤s≤tBf (x∗;xs)],
to a neighborhood. If f is strictly convex then this implies at least one iterate xs converges to
a neighborhood of x∗ in expectation. If f is strictly convex and 1-coercive6 then its conjugate
function f∗ is also strictly convex (Hiriart-Urruty & Lemaréchal, 2004)[Corollary 4.1.3] and we have
Bf (x∗;xs) = Bf∗(∇f(xs);∇f(x∗)) (Bauschke et al., 1997)[Theorem 3.7], implying that the average gra-
dients 1/t

∑t
s=1∇f(xs) or at least one of ∇f(xs) converges to a neighborhood of ∇f(x∗). If f happens to

be convex and L-smooth with respect to a norm ||·|| then 1
2L ||∇f(x∗)−∇f(xs)||2∗ ≤ Bf (x∗;xs)(Nesterov,

2018)[Theorem 2.1.5], providing a similar convergence guarantee on the distance of gradients to ∇f(x∗).

Similar to Theorem 1, an almost surely convergence result follows from Theorem 3 under interpolation.
Corollary 4. Under the assumptions of Theorem 3, if f is convex and σ2

X = 0 then Bf (x∗;xt)→ 0 almost
surely.

5.2.1 Application of Theorem 3, solving linear systems

Theorem 3 provides convergence for the unconventional quantity Bf (x∗;xt), however, this quantity is some-
times equal to f(xt)− f(x∗), as in the case of solving linear systems. In this case Theorem 3 automatically
gives a result for the quantity E [f(x̄t)− f(x∗)] if f is convex.

More formally, solving a constrained linear system amounts to to finding x∗ such that

Ax∗ = b, and x∗ ∈ X . (11)

Problem (11) can be reformulated as a constrained finite sum problem with fi(x) = 1
2 (〈Ai:, x〉 − bi)2, where

Ai: and bi denote the ith row and component of A and b respectively. Note that x∗ interpolates all fi since
fi(x∗) = 0 by construction, with ∇fi(x∗) = 0 and σ2

X = 0. Since the divergence Bfi is symmetric7 and Bf
is simply the average over Bfi it holds that

Bf (x∗;xt) =
n∑
i=1

Bfi(x∗;xt)
n

=
n∑
i=1

Bfi(xt;x∗)
n

=
n∑
i=1

fi(xt)− fi(x∗)
n

= f(xt)− f(x∗).

Where the third equality follows from the fact that ∇fi(x∗) = 0.

Theorem 3 therefore gives a convergence result for the gap E [f(x̄t)− f(x∗)], and Corollary 4 guarantees
f(xt)→ f(x∗), provided each fi is relatively smooth. Relative smoothness of fi holds if ψ is strongly convex

6A function is 1-coercive if lim||x||→∞ f(x)/||x|| = +∞.
7See Proposition 1 in the appendix for a proof.
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since for any norm ||·|| there exists a constant Li for which fi is Li-smooth with respect to ||·||. Therefore,
taking L = maxi Li gives

Bfi(x; y) ≤ L

2 ||x− y||
2 = Lµψ

2µψ
||x− y||2 ≤ L

µψ
Bψ(x; y).

5.2.2 EG for finding stationary distributions of Markov chains

An important example of problem (11) for which x∗ exists and X 6= Rd is the problem of finding a stationary
distribution of a Markov chain with transition matrix P . That is, to find x∗ such that

(P> − I)x∗ = 0, and x∗ ∈ ∆n. (12)

Problem (12) is ubiquitous in science and machine learning, for example in online learning many algorithms
require computing a stationary distribution of a Markov chain at each iteration(Greenwald et al., 2006; Blum
& Mansour, 2007).

From the above discussion we can formulate the problem (12) as a finite-sum problem with constraint
X = ∆m. A natural choice for the simplex constraint is the stochastic EG algorithm (SMD with ψ taken
to be negative entropy). Denoting the gi = (P> − I)i: we have that fi(x) = 1

2 〈gi, x〉
2, and is 1-smooth with

respect to ||·||1. Since negative entropy is 1-strongly convex with respect to ||·||1 we have that fi is also
1-smooth relative to ψ. Therefore, Theorem 3 and Corollary 4 guarantee E [f(x̄)− f(x∗)] and f(xt)− f(x∗)
converge to zero, respectively, for the following stochastic update: sample i ∈ {1, · · · , n} uniformly at random
and

yt+1 = xt � exp (−∇fi(xt)), xt+1 = yt+1

||yt+1||1
. (13)

Where � and exp are component wise multiplication and component wise exponentiation respectively.

We highlight that no other existing works show convergence without a neighborhood under interpolation
for the EG algorithm. Additionally, problem (12) also exhibits a natural occurence where f∗i is known and
equal to 0, rendering mSPS (8) computable. In Section 6, we demonstrate similar guarantees with mSPS.

5.3 Comparison with related works

In the constant stepsize and relatively smooth regime, Hanzely & Richtarik (2021) and Dragomir et al. (2021)
provide convergence guarantees for SMD under different assumptions and to different neighborhoods. We
provide an in-depth comparison as well as demonstrate via an example where convergence to the solution is
not guaranteed by previous works but is possible by Theorem 1.

Hanzely & Richtarik (2021) make an assumption akin to bounded variance, they assume
E[〈∇f(xt)−∇fξt (xt),xt+1−x̃t+1〉|xt]/η ≤ σ2, where x̃t+1 is the mirror descent iterate using the true gradient
∇f(xt). In the case of relative smoothness and relative strong convexity they show a linear rate of conver-
gence to a neighborhood for E [f(x̄t)− f(x∗)] (Theorem 5.3), where x̄t is a particular weighted average of
the iterates (x1, · · · , xt). Without relative strong convexity, a similar result is shown for the uniform average
x̄t with a rate of O(1/T) using a particular schedule of stepsizes (Corollary 5.5).

Our results more closely resemble the work of Dragomir et al. (2021), giving the same rates and exact
convergence with interpolation (Theorem 1 and Theorem 3), however, there are several important differences.
Firstly, our results apply to a wider range of problems and mirror descent methods. Dragomir et al. (2021)
do not decouple the domain D of the function ψ and the constraint set X , they assume that xt+1 ∈ intX
where ∇ψ(xt+1) = ∇ψ(xt) − ηt∇fξt(xt). Therefore their definition of mirror descent precludes the famous
exponentiated gradient algorithm or projected gradient descent—no projection steps are allowed in their
definition. Furthermore, our analysis allows x∗ to be anywhere in X while Dragomir et al. (2021) require
∇f(x∗) = 0 and exclude the case when x∗ is on the boundary of X . Secondly, our neighborhoods of
convergence are different, they show convergence to a different neighborhood ησ2

/µ (ησ2 in the smooth case),

9
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Figure 1: Finite-sum example of Theorem 1 with SPGD and ψ = 1/2 ||·||22. (left) f(x) is strongly convex
and is a sum of smooth fi that are either non-convex or strongly convex functions. (right) As predicted by
Theorem 1, linear convergence is observed for the mean trajectory of SPGD over 10,000 runs.

where σ2 is such that E
[
||∇fξ(x∗)||2∇2ψ∗(zt)

]
≤ σ2.8 Unlike our results, their neighborhood can be controlled

with a smaller stepsize if interpolation does not hold. Thirdly, our results hold for η ≤ 1/L while they require
η ≤ 1/2L. Finally, when f is strongly convex relative to ψ they require fξ to be convex while we allow fξ to
be non-convex.

5.3.1 An example of Theorem 1

To demonstrate the differences with previous works we consider a finite-sum example with SPGD and
ψ = 1/2 ||·||22, where each fi : R → R : x 7→ aix

2 + bix + ci is quadratic, and the constraint is the closed
interval X = [0, 1]. As demonstrated in Figure 1, f is the average of both non-convex and strongly convex
quadratics, and f is strongly convex relative to ψ. Additionally, each fi is maxj 2|aj |-smooth relative to ψ.
More importantly, as depicted in Figure 1 we consider the case where σ2

X = 0, interpolation relative to X
holds with f(0) = f∗i (X ) for all i.

In comparison to Hanzely & Richtarik (2021), their results apply with a neighborhood of convergence equal
to ≈ 168. We note that their neighborhood depends on the choice of stepsize and we report the smallest
neighborhood guaranteed by their results by using their perscribed stepsize.

In comparison to Dragomir et al. (2021), their results do not apply for several reasons: SPGD is not included
in their analysis (only SGD in the Euclidean case is allowed), fi is not always convex, and ∇f(x∗) 6= 0.
Nevertheless, their variance term in the Euclidean case corresponds to E

[
||∇fi(x∗)||22

]
, the expected squared

norm at the optimum, which has a value of 520 in this constrained finite-sum example.

6 Convergence of mirror SPS

In this section we present our convergence results for SMD with mSPSmax when fi are Li-smooth and
with varying assumptions. First, we consider the case when f is strongly convex relative to ψ, a common
assumption when analysing mirror descent under strong convexity Hazan & Kale (2014). Then we present

8Note that Dragomir et al. (2021) assume ψ to be twice differentiable and strictly convex and ψ∗ is the conjugate function
of ψ. zt is some point within the line segment between ∇ψ(xt)− 2η∇fi(x∗) and ∇ψ(xt).

10
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rates under convexity and smoothness but without relatively strong convexity. Afterwards, we discuss the
results under interpolation and provide examples.

6.1 Smooth and strongly convex

With strong convexity of ψ and f being relatively strongly convex with respect to ψ we can show a linear
rate of convergence to a neighborhood.
Theorem 5. Assume fξ is convex and L-smooth almost surely with respect to the norm ||·||. Furthermore,
assume that f is µ-strongly convex relative to ψ over X , where ψ is µψ-strongly convex over X with respect
to the norm ||·|| and assumption 1 holds. Then SMD with mSPSmax and c ≥ 1

2 guarantees

E [Bψ(x∗;xt+1)] ≤ (1− µα)tBψ(x∗;x1) + ηbσ
2

αµ
.

Where α := min{µψ/2cL, ηb}.

Since ψ is strongly convex we get a guarantee on expected distance to the minimum, as µψ
2 ||x∗ − xt+1||2 ≤

Bψ(x∗;xt+1). Also, if each fi is a strongly convex function or if it satisfies the Polyak-Łojasiewicz (PL)
condition (Assumption 2) then mSPS is upper bounded by equation (10) and equivalent to mSPSmax with
ηb = µψ/2cµ. Therefore, SMD with mSPS converges by Theorem 5.

A similar result was shown for SGD with SPSmax Loizou et al. (2021)[Theorem 3.1]. Indeed, Theorem 5
generalizes their results; by taking ψ(x) = 1

2 ||x||
2
2 we recover a result which is true for both SGD and SPGD.

Corollary 6. Assume fξ is convex and L-smooth with respect to the norm ||·||2 almost surely and that f
is µ-strongly convex with respect to ||·||2 over X . Then SPGD (SGD if X = Rd) with SPSmax guarantees
E
[

1
2 ||x∗ − xt+1||22

]
≤ (1− µα)t 1

2 ||x∗ − x1||22 + ηbσ
2

αµ .

For the case of preconditioned SGD, ψ(x) = 1
2 ||x||

2
M and X = Rd, we can go further and extend a non-convex

result similar to Theorem 3.6 in Loizou et al. (2021). We include the result and proof in section G.3.

In Loizou et al. (2021) constant stepsize results are derived as a special case of SPSmax, similarly if in
mSPSmax ηb is selected such that ηb ≤ µψ/2cLmax then ηt is a constant and we can derive new constant
stepsize results for SMD. However, using Theorem 5 and mSPSmax to analyze constant stepsize SMD yields
weaker results than Theorem 1. The assumptions made in Theorem 5 are stronger. For example, Theorem 5
requires ψ to be both strongly convex and smooth on X with respect to a norm which would not be possible
if ψ is Legendre over X and X is bounded. This limitation, however, does not apply for Theorem 1 and the
next result for smooth convex losses since we do not enforce a smoothness condition on ψ.

6.2 Smooth and convex

Without f being relatively strongly convex we can attain convergence results on the average function value.
Theorem 7. If fξ is convex and L-smooth with respect to a norm ||·|| almost surely, assumption 1 holds,
and ψ is µψ-strongly convex over X with respect to ||·||. Then mirror descent with mSPSmax and c ≥ 1
guarantees

E [f(x̄t)− f(x∗)] ≤
2Bψ(x∗;x1)

αt
+ 2ηbσ2

α
.

Where α := min{µψ/2cL, ηb}.

Similarly to Theorem 5 we can derive constant stepsize results, except we require ηb ≤ ψ/2Lmax (with c = 1),
see Section G.2.1 for details. Unlike Theorem 5, however, this result does not require ψ to be smooth over
X .

Comparison with SPS. Unlike the analysis of SPS our results and stepsize depend on the choice of the
mirror map ψ. This dependence, as observed historically, is an important motivation for mirror descent,
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allowing for tighter bounds and better dependence on the dimension d. For example, suppose X = ∆d and fξ
is L smooth with respect to ||·||1 and for simplicity x1 = (1/d, · · · , 1/d), c = 1, and ηb is selected large enough
such that α = µψ/2cLmax. Then the bound in Theorem (7) for EG gives E [f(x̄t)− f(x∗)] ≤ 4L log d/t+4Lηbσ2.
Meanwhile, under SPGD the bound is 4dL/t+ 4dLηbσ2, since fξ is L̃ smooth with respect to ||·||2 if L̃ = dL.
Note that unlike SPGD the neighborhood of convergence for EG is independent of d! Moreover, under
interpolation EG converges at a rate that scales logarithmically in d, which is otherwise not possible with
SGD. Therefore, selecting the appropriate ψ and stepsize allows for better dependence on d with a smaller
neighborhood of convergence.

6.3 Exact convergence with adaptive stepsizes and interpolation

As a consequence of the previous results, we have several convergence guarantees under interpolation (σ2 =
0). In fact, when σ2 = 0 the upper bound ηb is not needed, the unbounded variant mSPS will enjoy the same
convergence rates as mSPSmax. Additionally, similar to Section 5, we can attain almost sure convergence
results analogous to Corollary 2 and Corollary 4. To the best of our knowledge, all existing results are
with constant stepsize (Section 5, Dragomir et al., 2021; Azizan & Hassibi, 2019), or with conditions on
the initialization of parameters Azizan et al. (2019). In contrast, with mSPS we have provided exact global
convergence guarantees with an adaptive stepsize.

6.4 Mirror descent examples

To demonstrate the generality of our results we consider two cases of Theorem 7. We examine the so called p-
norm algorithms, and preconditioned SGD. Similar results can also be derived with the exponential gradient
algorithm and the norm ||·|| 1.
Corollary 8 (p-norm). Suppose the assumptions of Theorem 7 hold with ||·|| = ||·||p for 1 < p ≤ 2 and

ψ(x) = 1
2 ||x||

2
p. Let q be such that 1

p + 1
q = 1. Then SMD with stepsizes ηt = min

{
(p−1)(fξt (xt)−f∗ξt )

||∇fξt (xt)||2
q

, ηb

}
,

guarantees E [f(x̄t)− f(x∗)] ≤ 2Bψ(x∗;x1)
αt + 2ηbσ2

α .

Another interesting case is SGD with preconditioning xt+1 = xt − ηM−1∇fi(xt), for some positive definite
matrix M . In other words, ψ is taken to be ψ(x) = 1

2 ||x||
2
M , with Bψ(x; y) = 1

2 ||x− y||
2
M and X = Rd.

Corollary 9 (Preconditioned SGD). Suppose X = Rd and the assumptions of Theorem 7 hold with
||·|| = ||·||M , for a positive definite matrix M . Then SMD with ψ(x) = 1

2 ||x||
2
M and stepsizes ηt =

min
{

(fξt (xt)−f∗ξt )

||∇fξt (xt)||2
M−1

, ηb

}
, guarantees E [f(x̄t)− f(x∗)] ≤ ||x∗−x1||2M

αt + 2ηbσ2

α .

7 Experiments

We test the performance of mSPS on different supervised learning domains and with different instances
of SMD. We use mSPS in our convex experiments with c = 1. In theory the bounded stepsize mSPSmax
is required in absence of interpolation, however, in practice we observe mSPS converges, likely due to the
problems being close to interpolation. For our non-convex deep learning experiments we follow Loizou et al.
(2021) by selecting c = 0.2 and a smoothing procedure to set a moving upper bound for mSPSmax.9 To com-
pare against a constant stepsize we sweep over {10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105}. Code
for our experiments and implementation is available at: https://github.com/IssamLaradji/mirror-sps.

We consider 4 series of experiments. First, we consider unconstrained convex problems with mSPS and
different p-norm algorithms, ψ(x) = ||x||2p. Second, we evaluate the performance of mSPS with SPGD and
positive constraints. Third, we solve a convex problem with a `1 constraint using mSPS and the exponentiated
gradient algorithm (EG). Finally, Section 7.4 demonstrates that our method shows competitive performance
over highly tuned stepsizes for deep learning without any tuning of the hyper-parameters.

9This technique is a moving upperbound. More precisely we run mSPSmax with an upper bound at time t given by
ηtb = τb/nηt−1 where b and n are the batchsize and number of examples respectively, which amounts to τb/n ≈ 1 in our
experiments, with ηtb ≈ ηt−1.
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Figure 2: Comparison between mSPS with c = 1 and constant stepsizes on convex binary-classification
problem with no constraints (row1), with non-negative (NN) constraints (row2), and with `1 constraints
(row3).
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Figure 3: Comparison between mSPS and constant stepsizes on non-convex multiclass classification with
deep networks. The leftmost plot shows the stepsize evolution of mSPS with smoothing and c = 0.2 for
different p values.

7.1 Mirror descent across p-norms.

We consider a convex binary-classification problems using radial basis function (RBF) kernels. We experi-
ment on the ijcnn dataset obtained from LIBSVM (Chang & Lin, 2011) which does not satisfy interpolation.10

ijcnn has 22 dimensions, 39,992 training examples, and 9998 test examples. We selected the kernel band-
width 0.05 following Vaswani et al. (2019b). For these experiments we compare across p ∈ {1.2, 1.4, 1.6, 1.8}
between mSPS and the standard constant stepsize. The first row of Figure 2 shows the training loss for the
different optimizers with a softmax loss. We make the following observations: (i) mSPS performs reason-
ably well across different values of p and outperforms most stepsizes of SMD. (ii) mSPS performs well on
ijcnn even though it is not separable in the kernel space (i.e. there is no interpolation). This demonstrates
some robustness to violations of the interpolation condition and to different values of the p. Note that each
optimizer was ran with five different random seeds to demonstrate their robustness.

10In the appendix we include results on the mushroom dataset where interpolation is satisfied.
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7.2 Projected gradient descent

In this setup we consider optimizing the logistic loss with a non-negative constraint on the parameters. We
run our optimizers on two real-datasets ijcnn and rcv1. rcv1 has 47,236 dimensions, 16194 training examples
and 4048 test examples. Following Vaswani et al. (2019b) we selected the RBF kernel on rcv1 with bandwidth
0.25.

We also ran the optimizers on two synthetic datasets for binary classification that are linearly separable
datasets with margins 0.01 and 0.05 respectively. Linear separability ensures the interpolation condition will
hold. For each margin, we generate a dataset with 10k examples with d = 20 features and binary targets.

We observe in the second row of Figure 2 that mSPS outperforms the best tuned constant stepsize in most
cases, and in the rest of the cases is competitive. The result underlines the importance of adaptive stepsizes.

7.3 Exponentiated gradient

To test the effectiveness of mSPS with EG we consider the datasets in Section 7.2 with logitistic regression
where parameters are constrained to the `1 ball, X = {x : ||x||1 ≤ λ}. To solve this problem with EG,
we employ the common trick of reducing an `1 ball constraint to a simplex constraint with dimension
(2d− 1) (Schuurmans & Zinkevich, 2016).

For these experiments we test our optimizers on rcv1 and ijcnn and the two synthetic datasets mentioned
in Section 7.2 and report their results in row 3 of Figure 2. Like in the previous experiments, mSPS is
significantly faster than most constant stepsizes even though c is kept at 1 and in some cases outperforms
the best tuned SMD. Note that the constant stepsizes that don’t appear in the plots have diverged.

7.4 p-norm for optimizing deep networks

For mutliclass-classification with deep networks, we considered the p-norm algorithms for the CIFAR10
dataset. CIFAR10 has 10 classes and we used the standard training set consisting of 50k examples and a
test set of 10k. As in the kernel experiments, we evaluated the optimizers using the softmax loss for different
values of p. We used the experimental setup proposed in Loizou et al. (2021) and used a batch-size of 128
for all methods and datasets. We used the standard image-classification architecture ResNet-34 (He et al.,
2016). As in the other experiments, each optimizer was run with five different random seeds in the final
experiment. The optimizers were run until the performance of most methods saturated; 200 epochs for the
models on the CIFAR10 dataset.

From Figure 3, we observe that: (i) mSPS with c = 0.2 and smoothing constantly converges to a good
solution much faster when compared to most constant stepsizes. (ii) The gap between the performance of
mSPS and constant stepsize increases as p decreases suggesting that, like in the convex setting, our method
is robust to different values of p.

8 Conclusions and future work

Stochastic mirror descent (SMD) is a powerful generalization of stochastic projected gradient descent to solve
problems without a Euclidean structure. We provide new convergence analysis for SMD with constant step-
size in relatively smooth optimization and with the new adaptive stepsizes mSPS, mSPSmax, in the smooth
case. Consequently, we achieve the first interpolation results for the EG algorithm under interpolation.

A main novelty of our results is the use of the finite optimal objective difference assumption (Loizou et al.,
2021) with mirror descent, allowing for convergence without bounded gradient or variance assumptions and
achieving exact convergence under interpolation. In relative smooth optimization we refine the finite optimal
objective difference assumption to better capture interpolation with constraints and achieve convergence in
cases not guaranteed by existing works.

In smooth optimization we experimentally validate mSPS in several supervised learning domains and across
various instances of mirror descent. mSPS requires no tuning but is nonetheless competitive or better than
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extensively hand-tuned step sizes. This adaptivity is important for tackling different problem domains with
different versions of mirror descent.

Beyond the scope of this paper there are several interesting directions for future work. For example, we
critically rely on the relative smoothness or smoothness, however, it would be interesting to attain rates of
convergence with the finite optimal objective difference assumption without smoothness. Additionally, our
convergence result of mSPSmax in Theorem 5 requires ψ to be smooth over X , an assumption not required
for our constant stepsize results in Section 5, it would be interesting to unify the results by developing a
variant of mSPSmax for the more general relatively smooth problem.
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A Appendix

The appendices include omitted proofs, other results, and additional experiments. The material is organized
as follows: equivalent definitions of relative smoothness are given in Section B; standard mirror descent
results are presented in Section C; non-smooth analysis of mirror descent with the mirror Polyak stepsize
is given in Section D; the lower bound proof of mSPS is included in Section E; the proofs for the results in
Section 5 are presented in Section F, including Theorem 1 and Theorem 3; proofs for Section 6 are given
in Section G, including a non-convex result for preconditioned SGD in Section G.3; experiment details are
given in Section H.

B Relative Smoothness

Relative smoothness is a generalization of smoothness in first order optimization that includes non-Lipschitz
gradients. A function is L-smooth with respect to a norm ||·|| if

||∇f(x)−∇f(y)||∗ ≤ L ||x− y|| .

With a Lipschitz gradient the error in the first order approximation of f grows at most quadratically

f(x)− (f(y)− 〈∇f(y), x− y〉) = Bf (x; y) ≤ L

2 ||x− y||
2
.

Relative smoothness replaces the quadratic upper bound with a divergence relative to a convex function ψ,

Bf (x; y) ≤ LBψ(x; y).

If ψ is strongly convex then smoothness with respect to a norm implies relative smoothness with respect
to ψ. However, a relative smooth function may not admit a Lipchitz gradient, as was first remarked by
Birnbaum et al. (2011) and later rediscovered by Lu et al. (2018) and Bauschke et al. (2017). Similar to
traditional smoothness, equivalent definitions of relative smoothness exist in the literature. For example, Lu
et al. (2018) prove that the following conditions are equivalent:
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1. f is L smooth relative to ψ

2. Lψ − f is convex

3. under twice differentiability ∇2f � L∇2ψ

4. 〈∇f(x)−∇f(y), x− y〉 ≤ L〈∇ψ(x)−∇ψ(y), x− y〉.

Similar conditions can also be stated for relative strong convexity.

Defining curvature and smoothness relative to a function ψ allows for a wider application of first order
methods via mirror descent. Recently, such assumptions have been used to establish both new results and
algorithms in machine learning. In reinforcement learning, Vaswani et al. (2022) use relative smoothness and
mirror descent to provide a new perspective on policy optimization in reinforcement learning. In algorithmic
game theory, Sokota et al. (2023) use relative strong convexity to establish fast convergence to quantal-
response equilibria in extensive-form games.

C Mirror descent lemmas

Lemma 3 (Three Point Property (Chen & Teboulle, 1993)). Let Bψ be the Bregman divergence with respect
to ψ : D → R. Then for any three points x, y ∈ intD , and z ∈ D, the following holds

Bψ(z;x) +Bψ(x; y)−Bψ(z; y) = 〈∇ψ(y)−∇ψ(x), z − x〉.

C.1 Proof of Lemma 1

Lemma 1. Let Bψ be the Bregman divergence with respect to a convex function ψ : D → R and assume
assumption 1 holds. Let xt+1 = arg minx∈X 〈gt, x〉+ 1

ηt
Bψ(x;xt). Then for any x∗ ∈ X

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈gt, xt − x∗〉 −Bψ(xt+1;xt) + ηt〈gt, xt − xt+1〉. (14)

Furthermore if ψ is µψ strongly convex over X then

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈gt, xt − x∗〉+ η2
t

2µψ
||gt||2∗ . (15)

Proof. The proof follows closely to the one presented in Orabona (2019)[Lemma 6.7]. First observe that
xt+1 statisfies the first order optimality condition

〈ηtgt +∇ψ(xt+1)−∇ψ(xt), x∗ − xt+1〉 ≥ 0,

since ∇xBψ(x;xt) = ∇ψ(x)−∇ψ(xt).

We start by examining the inner product 〈ηtgt, xt − x∗〉 and adding subtracting quantities to make the first
order optimality condition appear.

〈ηtgt, xt − x∗〉 = 〈ηtgt +∇ψ(xt+1)−∇ψ(xt), xt+1 − x∗〉+ 〈∇ψ(xt+1)−∇ψ(xt), x∗ − xt+1〉+ 〈ηtgt, xt − xt+1〉
≤ 〈∇ψ(xt+1)−∇ψ(xt), x∗ − xt+1〉+ 〈ηtgt, xt − xt+1〉(first order optimality)
= Bψ(x∗;xt)−Bψ(x∗;xt+1)−Bψ(xt+1;xt) + 〈ηtgt, xt − xt+1〉 (three point property).

Rearranging gives the first result. Note at this point we only require ψ to be convex and ψ to be differentiable
at xt and xt+1, which is guaranteed by assumption 1. To obtain the second result, observe

〈ηtgt, xt − x∗〉 ≤ Bψ(x∗;xt)−Bψ(x∗;xt+1)−Bψ(xt+1;xt) + 〈ηtgt, xt − xt+1〉 (from above)

≤ Bψ(x∗;xt)−Bψ(x∗;xt+1)− µψ
2 ||xt+1 − xt||2 + 〈ηtgt, xt − xt+1〉 (strong convexity)

≤ Bψ(x∗;xt)−Bψ(x∗;xt+1) + η2
t

2µψ
||gt||2∗ (Fenchel-Young inequality).

Rearranging gives the second result.
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D Non-smooth analysis of mirror SPS for Lipschitz functions

As we have already mentioned in the main paper, the Polyak step-size is used extensively in the literature
of projected subgradient descent for solving non-smooth optimization problems. However to the best of our
knowledge there is no efficient generalization of this step-size for the more general mirror descent update.
Theorem 10 (Non-smooth deterministic). Assume f is convex with bounded subgradients, ||∂f(xt)||∗ ≤ G.
Let ψ be µψ strongly convex with respect to the norm ||·||, and assume that Assumption 1 holds. Then mirror
descent with stepsize ηt = µψ(f(xt)−f(x∗))

||∂f(xt)||2∗
satisfies,

f (x̄t)− f(x∗) ≤ G

√
2
µψ
Bψ(x∗;x1)

t
,

where x̄t = 1
t

∑t
s=1 xs. The same result holds for the best iterate f(x∗t ) = mins{f(xs)}1≤s≤t. Moreover, we

have limt→∞ f(xt) = f(x∗).

Proof. Let gt be a subgradient of f at xt used to compute ηt. Then by Lemma 1 we have

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈gt, xt − x∗〉+ η2
t

2µψ
||gt||2∗

≤ Bψ(x∗;xt)− ηt(f(xt)− f(x∗)) + η2
t

2µψ
||gt||2∗ (by convexity)

= Bψ(x∗;xt)−
µψ (f(xt)− f(x∗))2

||gt||2∗
+ µψ (f(xt)− f(x∗))2

2 ||gt||2∗
(by definition of ηt)

= Bψ(x∗;xt)−
µψ (f(xt)− f(x∗))2

2 ||gt||2∗
.

Rearranging and summing across time we have
t∑

s=1

µψ (f(xs)− f(x∗))2

2 ||gs||2∗
≤ Bψ(x∗;x1)−Bψ(x∗;xt+1) ≤ Bψ(x∗;x1). (16)

Applying the upper bound ||gs||∗ ≤ G and taking the square root gives,√√√√ t∑
s=1

(f(xs)− f(x∗))2 ≤ G

√
2Bψ(x∗;x1)

µψ
.

The result then follows by the convexity of f and concavity of the square root function,

f(x̄t)− f(x∗) ≤
1
t

t∑
s=1

(f(xs)− f(x∗)) = 1
t

t∑
s=1

√
(f(xs)− f(x∗))2 ≤

√√√√1
t

t∑
s=1

(f(xs)− f(x∗))2

≤ G

√
2Bψ(x∗;x1)

tµψ
.

To obtain the best iterate result notice that f(x∗t )− f(x∗)) ≤ 1
t

∑t
s=1(f(xs)− f(x∗)).

To attain the limiting result observe that 16 implies
∞∑
s=1

µψ (f(xs)− f(x∗))2 ≤ G2Bψ(x∗;x1) < +∞.

Giving the result limt→∞ f(xt) = f(x∗).
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D.1 Last-iterate convergence to a solution

Under the same assumptions as Theorem 10 we have that mirror descent converges to a point. First we
provide a useful lemma applicable to mirror descent with a strongly convex mirror map ψ.
Lemma 4. Suppose ψ is strongly convex, then if the sequece {xt}t≥1 is Bregman monotone with respect to
a set S, that is for any x ∈ S we have

Bψ(x;xt+1) ≤ Bψ(x;xt),

then xt → x∗ ∈ S if and only if all the sequential cluster points of {xt}t≥1 are contained in S.

Proof. If the sequence is {xt}t≥1 is Bregman monotone then by strong convexity

µψ
2 ||x− xt+1||2 ≤ Bψ(x;x1),

hence the sequence is bounded. Therefore, the sequence has a limit point xl such that there exists a subse-
quence xbt → xl. Assume xl ∈ S and consider the sequence {yt = Bψ(xl;xt)}t≥1. Since yt is monotonically
decreasing and bounded below yt → L for some L ∈ R. However, the subesequence {Bψ(xl;xbt)} converges
to zero, therefore we have that limt→∞Bψ(xl;xt) = 0, implying that limt→∞ xt = xl by strong convexity of
ψ.

Corollary 11. Under the same assumptions as Theorem 10, mirror descent converges to a solution,

lim
t→∞

xt = x∗,

for some x∗ ∈ X∗.

Proof. From Theorem 10 we have the following inequality,

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)−
µψ (f(xt)− f(x∗))2

2 ||gt||2∗
.

Therefore by Lemma 4 it remains to show that all limit points of xt are contained within X∗.

By Theorem 10 we have that f(xt) → f(x∗). For any limit point xl we have a subsequence xbt such that
xbt → xl and by continuity of f , xl must be a solution,

f(x∗) = lim
t→∞

f(xt) = lim
t→∞

f(xbt) = f( lim
t→∞

xbt) = f(xl).

The result then follows by Lemma 4.

E Proof of mSPS lower bound in section 4

The lower bound of mSPS (10) when fξ is L smooth, restated below, is vital to our analysis,

µψ
2cL ≤ ηt =

µψ(fξ(xt)− f∗ξ )
c ||∇f(xt)||2∗

.

Notice the above inequality is equivalent to

1
2L ≤

(fξ(xt)− f∗ξ )
||∇f(xt)||2∗

.

The first inequality is attained by multiplying both sides by µψ/c. We provide a detailed proof below.
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Lemma 5. If f : Rn → R is L-smooth with respect to a norm ||·|| then

||∇f(x)||2∗
2L ≤ f(x)− inf

y∈Rn
f(y).

Rearranging and defining f∗ = infy∈Rn f(y) gives

1
2L ≤

f(x)− f∗

||∇f(x)||2∗
.

Proof. Since f is L-smooth we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2 ||x− y||
2 ∀x, y ∈ Rn.

Therefore we have the following upper bound on infy f(y).

inf
y
f(y) ≤ min

y

{
f(x) + 〈∇f(x), y − x〉+ L

2 ||x− y||
2
}

= min
r≥0,||z||≤1

{
f(x) + r〈∇f(x), z〉+ L

2 r
2 ||z||2

}
≤ min
r≥0,||z||≤1

{
f(x) + r〈∇f(x), z〉+ L

2 r
2
}

= f(x) + min
r≥0

{
min
||z||≤1

{r〈∇f(x), z〉}+ L

2 r
2
}

= f(x) + min
r≥0

{
−r max
||z||≤1

{〈∇f(x),−z〉}+ L

2 r
2
}

= f(x) + min
r≥0

{
−r ||∇f(x)||∗ + L

2 r
2
}

by the definition of ||·||∗

(r=||∇f(x)||∗/L)
= f(x)− ||∇f(x)||2∗

L
+ ||∇f(x)||2∗

2L

Simplifying and rearranging gives the result.

F Proofs for section 5

In this section we provide proofs of our main results in the relative smooth setting. For convenience we
denote the expectation conditional upon (ξ1, ξ2, · · · , ξt) as Et [·]. All statements hold almost surely.

F.1 Proof of Lemma 2

Lemma 2. Suppose f is L smooth relative to ψ. Then if η ≤ 1
L we have

−Bψ(xt+1;xt) + η〈∇f(xt), xt − xt+1〉 ≤ η(f(xt)− f(xt+1)).

Proof. Since f is L smooth relative to ψ it is also 1
η smooth relative to ψ (because L ≤ 1

η and ψ is convex).
Therefore,

Bf (xt+1;xt) ≤
1
η
Bψ(xt+1;xt)

=⇒ −Bψ(xt+1;xt) + ηBf (xt+1;xt) ≤ 0.
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Now we examine the inner product η〈∇f(xt), xt − xt+1〉,

η〈∇f(xt), xt − xt+1〉 = η (f(xt+1)− f(xt)− 〈∇f(xt), xt+1 − xt〉+ f(xt)− f(xt+1))
= η (Bf (xt+1;xt) + f(xt)− f(xt+1)) .

Therefore, we have the following

−Bψ(xt+1;xt) + η〈∇f(xt), xt − xt+1〉 = −Bψ(xt+1;xt) + ηBf (xt+1;xt) + η(f(xt)− f(xt+1)
≤ η(f(xt)− f(xt+1).

F.2 Proof of Theorem 1

Theorem 1. Assume ψ satisfies assumption 1. Furthermore assume f to be µ-strongly convex relative to ψ
over X , and fξ to be L-smooth relative to ψ over X almost surely. Then SMD with stepsize η ≤ 1

L guarantees

E [Bψ(x∗;xt+1)] ≤ (1− µη)tBψ(x∗;x1) + σ2
X
µ
.

Proof. From Lemma 1 (before applying strong convexity but assuming convexity of ψ) we have

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− η〈∇fξt(xt), xt − x∗〉 −Bψ(xt+1;xt) + η〈∇fξt(xt), xt − xt+1〉
≤ Bψ(x∗;xt)− η〈∇fξt(xt), xt − x∗〉+ η(fξt(xt)− fξt(xt+1)) (by Lemma 2)
≤ Bψ(x∗;xt)− η〈∇fξt(xt), xt − x∗〉+ η(fξt(xt)− f∗ξt(X )) (by definition of f∗ξt(X ))
= Bψ(x∗;xt)− η〈∇fξt(xt), xt − x∗〉+ η(fξt(xt)− fξt(x∗)) + η(fξt(x∗)− f∗ξt(X )).

By taking an expectation conditioning on (ξ1, · · · , ξt) we obtain,

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)− η〈∇f(xt), xt − x∗〉+ η(f(xt)− f(x∗)) + η(f(x∗)− Et
[
f∗ξt(X )

]
)

= Bψ(x∗;xt)− η (f(x∗)− f(xt)− 〈∇f(xt), x∗ − xt〉)︸ ︷︷ ︸
Bf (x∗;xt)

+η(f(x∗)− Et
[
f∗ξt(X )

]
) (17)

≤ Bψ(x∗;xt)(1− µη) + η(f(x∗)− Et
[
f∗ξt(X )

]
) (by relative strongly convexity of f).

Now by the tower property of expectations and applying the definition of σ2
X ,

E [Bψ(x∗;xt+1)] ≤ E [Bψ(x∗;xt)] (1− µη) + ησ2
X .

Iterating the inequality gives,

E [Bψ(x∗;xt+1)] ≤ Bψ(x∗;x1)(1− µη)t +
t−1∑
s=0

ησ2
X (1− µη)s

≤ Bψ(x∗;x1)(1− µη)t + σ2
X
µ
.

Where the last inequality follows by
∑t−1
s=0(1− µη)s ≤

∑∞
s=0(1− µη)s = 1/µη.

Corollary 2. Under the same assumptions at Theorem 1, if σ2
X = 0 then Bψ(x∗;xt+1)→ 0 almost surely.

Proof. By Theorem 1 the following inequality holds:

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)(1− µη). (18)

The result then follows by Franci & Grammatico (2022)[Lemma 4.7].
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F.3 Proof of Theorem 3

Theorem 3. Assume ψ satisfies assumption 1. Furthermore assume fξ to be L-smooth relative to ψ over
X almost surely. Then SMD with stepsize η ≤ 1

L guarantees

E

[
1
t

t∑
s=1

Bf (x∗;xs)
]
≤ Bψ(x∗;x1)

ηt
+ σ2
X .

Proof. Note that in the proof of Theorem 1 relative strong convexity is not used to attain the inequality
(17). Therefore we have,

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)− ηBf (x∗;xt) + η(f(x∗)− Et
[
f∗ξt(X )

]
).

After applying the tower property, definition of σ2, and rearranging, we have

ηE [Bf (x∗;xt)] ≤ E [Bψ(x∗;xt)]− E [Bψ(x∗;xt+1)] + ησ2
X .

Summing across time and dividing by ηt gives the result.

Corollary 4. Under the assumptions of Theorem 3, if f is convex and σ2
X = 0 then Bf (x∗;xt)→ 0 almost

surely.

Proof. Under interpolation f(x∗)− Et
[
f∗ξt(X )

]
= 0. From Theorem 3 the following inequality holds:

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)− ηBf (x∗;xt). (19)

Since f is convex Bf (x∗;xt) ≥ 0, therefore, by the Robbins-Siegmun Lemma (e.g. (Franci & Grammatico,
2022)[Lemma 4.1]) Bf (x∗;xt)→ 0 almost surely.

Proposition 1. Let f(x) = 1
2 (〈g, x〉 − b)2 then Bf (x; y) = Bf (y;x).

Proof. Note that ∇f(x) = (〈g, x〉 − b) g. Therefore,

Bf (x; y) = 1
2 (〈g, x〉 − b)2 − 1

2 (〈g, y〉 − b)2 − (〈g, y〉 − b) 〈g, x− y〉 (20)

= 1
2(〈g, x〉)2 − 〈g, x〉b+ b2 − 1

2(〈g, y〉)2 + 〈g, y〉b− b2 − (〈g, y〉 − b) 〈g, x− y〉 (21)

= 1
2(〈g, x〉)2 − 〈g, x〉b− 1

2(〈g, y〉)2 + 〈g, y〉b− (〈g, y〉 − b) 〈g, x− y〉 (22)

= 1
2(〈g, x〉)2 − 〈g, x〉b− 1

2(〈g, y〉)2 + 〈g, y〉b− 〈g, y〉〈g, x〉+ b〈g, x〉+ (〈g, y〉)2 − b〈g, y〉 (23)

= 1
2(〈g, x〉)2 + 1

2(〈g, y〉)2 − 〈g, y〉〈g, x〉. (24)

It follows that Bf is symmetric.

G Proofs for section 6

In this section we provide proofs of our main results in the smooth setting. For convenience we denote the
expectation conditional upon (ξ1, ξ2, · · · , ξt) as Et [·]. All statements hold almost surely.

Notice that by definition of mSPSmax we have the following upper bound

ηt ≤
µψ(fξt(xt)− f∗ξt)
c ||∇fξt(xt)||

2
∗
.
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Muliplying both sides of the inequality with ηt||∇fξt (xt)||2∗/µψ gives the following useful inequality,

η2
t ||∇fξt(xt)||

2
∗

µψ
≤
ηt(fξt(xt)− f∗ξt)

c
. (25)

The inequality holds with equality for mSPS.

G.1 Proof of Theorem 5

Theorem 5. Assume fξ is convex and L-smooth almost surely with respect to the norm ||·||. Furthermore,
assume that f is µ-strongly convex relative to ψ over X , where ψ is µψ-strongly convex over X with respect
to the norm ||·|| and assumption 1 holds. Then SMD with mSPSmax and c ≥ 1

2 guarantees

E [Bψ(x∗;xt+1)] ≤ (1− µα)tBψ(x∗;x1) + ηbσ
2

αµ
.

Where α := min{µψ/2cL, ηb}.

Proof.

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈∇fξt(xt), xt − x∗〉+ η2
t

2µψ
||∇fξt(xt)||

2
∗

(25)
≤ Bψ(x∗;xt)− ηt〈∇fξt(xt), xt − x∗〉+ ηt

(fξt(xt)− f∗ξt)
2c

(c≥1/2)
≤ Bψ(x∗;xt)− ηt〈∇fξt(xt), xt − x∗〉+ ηt(fξt(xt)− f∗ξt)

= Bψ(x∗;xt)− ηt〈∇fξt(xt), xt − x∗〉+ ηt(fξt(xt)− fξt(x∗) + fξt(x∗)− f∗ξt)
= Bψ(x∗;xt)− ηt (fξt(x∗)− fξt(xt)− 〈∇fξt(xt), x∗ − xt〉)︸ ︷︷ ︸

≥0

+ηt(fξt(x∗)− f∗ξt)

(10)
≤ Bψ(x∗;xt)−min

{ µψ
2cL, ηb

}
(fξt(x∗)− fξt(xt)− 〈∇fξt(xt), x∗ − xt〉) + ηb(fξt(x∗)− f∗ξt)

Taking an expectation over i condition on xt gives

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)−min
{ µψ

2cL, ηb
}

(f(x∗)− f(xt)− 〈∇f(xt), x∗ − xt〉) + ηbEt
[
(fξt(x∗)− f∗ξt)

]
≤ Bψ(x∗;xt)

(
1− µmin

{
µψ

2cLmax
, ηb

})
+ ηbEt

[
(fξt(x∗)− f∗ξt)

]
(by relative strong convexity of f)

= Bψ(x∗;xt) (1− µα) + ηbEt
[
(fξt(x∗)− f∗ξt)

]
.

Now by the tower property of expectations and applying the definition of σ2,

E [Bψ(x∗;xt+1)] ≤ E [Bψ(x∗;xt)] (1− µα) + ηbσ
2.

Iterating the inequality gives,

E [Bψ(x∗;xt+1)] ≤ Bψ(x∗;x1)(1− µα)t +
t−1∑
s=0

ηbσ
2(1− µα)s

≤ Bψ(x∗;x1)(1− µα)t + ηbσ
2

αµ
.

Where the last inequality follows by
∑t−1
s=0(1− µα)s ≤

∑∞
s=0(1− µα)s = 1/µα.
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G.2 Proof of Theorem 7

Theorem 7. If fξ is convex and L-smooth with respect to a norm ||·|| almost surely, assumption 1 holds,
and ψ is µψ-strongly convex over X with respect to ||·||. Then mirror descent with mSPSmax and c ≥ 1
guarantees

E [f(x̄t)− f(x∗)] ≤
2Bψ(x∗;x1)

αt
+ 2ηbσ2

α
.

Where α := min{µψ/2cL, ηb}.

Proof. We begin with Lemma 1,

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈∇fξt(xy), xt − x∗〉+ η2
t

2µψ
||∇fξt(xt)||

2
∗

≤ Bψ(x∗;xt)− ηt (fξt(xt)− fξt(x∗)) + η2
t

2µψ
||∇fξt(xt)||

2
∗ by convexity

(25)
≤ Bψ(x∗;xt)− ηt (fξt(xt)− fξt(x∗)) +

ηt(fξt(xt)− f∗ξt)
2c

(c≥1)
≤ Bψ(x∗;xt)− ηt (fξt(xt)− fξt(x∗)) +

ηt(fξt(xt)− f∗ξt)
2

= Bψ(x∗;xt)− ηt
(
fξt(xt)− f∗ξt + f∗ξt − fξt(x∗)

)
+
ηt(fξt(xt)− f∗ξt)

2

= Bψ(x∗;xt)− ηt
(

1− 1
2

)(
fξt(xt)− f∗ξt

)
+ ηt(fξt(x∗)− f∗ξt)

= Bψ(x∗;xt)−
ηt
2
(
fξt(xt)− f∗ξt

)︸ ︷︷ ︸
≥0

+ηt(fξt(x∗)− f∗ξt)

(10)
≤ Bψ(x∗;xt)−

α

2
(
fξt(xt)− f∗ξt

)
+ ηb(fξt(x∗)− f∗ξt)

= Bψ(x∗;xt)−
α

2 (fξt(xt)− fξt(x∗))−
α

2
(
fξt(x∗)− f∗ξt

)
+ ηb(fξt(x∗)− f∗ξt)

≤ Bψ(x∗;xt)−
α

2 (fξt(xt)− fξt(x∗)) + ηb(fξt(x∗)− f∗ξt)

Recall from (10) that we have

α = min
{

µψ
2cLmax

, ηb

}
≤ ηt ≤ ηb.

By a simple rearrangement we have

α

2
(
fξt(xt)− f∗ξt

)
≤ Bψ(x∗;xt)−Bψ(x∗;xt+1) + ηb(fξt(x∗)− f∗ξt).

Taking an expectation on both sides, dividing by α, and applying the definition of σ2 yields

E [f(xt)− f(x∗)] ≤
2
α

(E [Bψ(x∗;xt)]− E [Bψ(x∗;xt+1)]) + 2ηb
α
σ2.

Summing across time, applying convexity of f , and dividing by t gives

E [f(x̄t)− f(x∗)] ≤
1
t

t∑
s=1

E [f(xs)− f(x∗)] ≤
2Bψ(x∗;x1)

αt
+ 2ηbσ2

α
.
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G.2.1 Constant stepsize corollary

In this section we present the constant stepsize corollary for Theorem 7. If ηb ≤ µψ/2L then mSPSmax with
c = 1 is a constant stepsize because of the lower bound (10), ηt = ηb, and we have that ηb = α. Therefore
plugging in these values into Theorem 7 gives the following corollary.
Corollary 8. Assume fξ is convex and L smooth with respect to a norm ||·|| almost surely, assumption 1
holds, and ψ is µψ strongly convex over X with respect to the norm ||·||. Then stochastic mirror descent with
η ≤ µψ/2L guarantees

E [f(x̄t)− f(x∗)] ≤
2Bψ(x∗;x1)

ηt
+ 2σ2.

G.3 SGD with preconditioning

In this section we extend the result of mSPSmax to the non-convex setting when f is smooth and satisfies
the PL condition. The result generalizes Theorem 3.6 in Loizou et al. (2021) by replacing SGD with precon-
ditioned SGD. Note that in this case we have ψ(x) = 1

2 〈x,Mx〉 is (µψ = 1)-stronlgy convex with respect to
the norm ||·||M and Bψ(x; y) = 1

2 ||x− y||
2
M .

Assumption 2 (Polyak (1964); Łojasiewicz (1963)). Assume that f : Rn → R satisfies the PL condition
with respect to the norm ||·||∗ if there exists µ > 0 such that for all x ∈ Rn

||∇f(x)||2∗ ≥ 2µ(f(x)− f∗). (26)

Theorem 9. Assume that f and fξ are L smooth with respect to the norm ||·||M almost surely, where M
is a positive definite matrix. Furthermore, assume that f satisfies the PL condition (26) with respect to the
norm ||·||M−1 , then unconstrained stochastic mirror descent with ψ(x) = 1

2 ||x||
2
M and stepsizes

ηt = min
{

fξt(xt)− f∗ξt
c ||∇fξt(xt)||

2
M−1

, ηb

}
,

with c > Lmax
4µ and ηb < max

{
1/( 1

α−2µ+Lmax
2c ), 1

2cLmax

}
, guarantees

E [f(xt+1)− f(x∗)] ≤ νt(f(x1)− f(x∗)) + Lσ2ηb
2(1− ν)c ,

where α = min{ 1
2cLmax

, ηb} and ν = ηb( 1
α − 2µ+ Lmax

2c ) ∈ (0, 1).

Proof. We have that the algorithm performs updates of the form

xt+1 = xt − ηtM−1∇fξt(xt).

We first apply the L smoothness upper bound on f ,

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+ L

2 ||xt+1 − xt||2M

= f(xt)− ηt〈∇f(xt),M−1∇fξt(xt)〉+ Lη2
t

2
∣∣∣∣M−1∇fξt(xt)

∣∣∣∣2
M

= f(xt)− ηt〈∇f(xt),M−1∇fξt(xt)〉+ Lη2
t

2 〈M
−1∇fξt(xt),MM−1∇fξt(xt)〉

= f(xt)− ηt〈∇f(xt),M−1∇fξt(xt)〉+ Lη2
t

2 ||∇fξt(xt)||
2
M−1

=⇒ f(xt+1)− f(xt)
ηt

≤ −〈∇f(xt),M−1∇fξt(xt)〉+ Lηt
2 ||∇fξt(xt)||

2
M−1

(25)
≤ −〈∇f(xt),M−1∇fξt(xt)〉+ L

2c (fξt(xt)− f∗i )

= −〈∇f(xt),M−1∇fξt(xt)〉+ L

2c (fξt(xt)− fξt(x∗)) + L

2c (fξt(x∗)− f∗i )
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We proceed by taking an expectation over ξt condition on knowing xt.

Et
[
f(xt+1)− f(xt)

ηt

]
= −〈∇f(xt),M−1∇f(xt)〉+ L

2 (f(xt)− f(x∗)) + L

2 Et [(fξt(x∗)− f∗i )]

≤ − ||∇f(x)||2M−1 + L

2c (f(xt)− f(x∗)) + L

2cσ
2

(26)
≤ −2µ(f(xt)− f(x∗)) + L

2c (f(xt)− f(x∗)) + L

2cσ
2

Let α = min{ µψ
2cLmax

, ηb}.

Et
[
f(xt+1)− f(x∗)

ηt

]
≤ Et

[
f(xt)− f(x∗)

ηt

]
− 2µ(f(xt)− f(x∗)) + L

2c (f(xt)− f(x∗)) + L

2cσ
2

≤ 1
α

(f(xt)− f(x∗))− 2µ(f(xt)− f(x∗)) + L

2c (f(xt)− f(x∗)) + L

2cσ
2

=
(

1
α
− 2µ+ L

2c

)
(f(xt)− f(x∗)) + L

2cσ
2

≤
(

1
α
− 2µ+ Lmax

2c

)
(f(xt)− f(x∗)) + L

2cσ
2

Therefore we have the following sequence of inequalities,

Et
[
f(xt+1)− f(x∗)

ηb

]
≤ Et

[
f(xt+1)− f(x∗)

ηt

]
≤
(

1
α
− 2µ+ Lmax

2c

)
(f(xt)− f(x∗)) + L

2cσ
2

By the tower property of expectations and multiplying both sides by ηb we have

E [f(xt+1)− f(x∗)] ≤ ηb
(

1
α
− 2µ+ Lmax

2c

)
︸ ︷︷ ︸

ν

E [(f(xt)− f(x∗))] + ηbL

2c σ
2.

If ν ∈ (0, 1) then iterating the inequality and summing the geometric series gives the result,

E [f(xt+1)− f(x∗)] ≤ νt(f(x1)− f(x∗) +
t−1∑
s=0

νs
ηbL

2c σ
2

≤ νt(f(x1)− f(x∗) + ηbLσ
2

2(1− ν)c .

Therefore, it remains to show that 0 < ν < 1. For the lower bound notice that α ≤ 1
2cLmax

,

ν = ηb

(
1
α
− 2µ+ Lmax

2c

)
≥ ηb

(
2cLmax − 2µ+ Lmax

2c

)
= ηb

((
2c+ 1

2c

)
Lmax − 2µ

)
> 0.

Following similar arguments made in Loizou et al. (2021)[Theorem 3.6], we can show ν < 1 by considering
two cases. Recall from our assumptions we have c > Lmax

4µ and ηb < max
{

1/( 1
α−2µ+Lmax

2c ), 1
2cLmax

}
, therefore
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we consider the two following cases:

ηb <
1

2cLmax
(27)

ηb <
1( 1

α − 2µ+ Lmax
2c
) . (28)

For the first case (27) we have α = ηb and

ν = ηb

(
1
ηb
− 2µ+ Lmax

2c

)
= 1− 2ηbµ+ Lmax

2c ηb

(c>Lmax
4µ )
< 1− 2µηb + 2µηb = 1.

For the second case (28) we have α = 1
2cLmax

and by the upper bound we have

ν = ηb

(
1
α
− 2µ+ Lmax

2c

)
< 1.

However, we also have α = 1
2cLmax

≤ ηb, to avoid a contradiction we need

1
2cLmax

<
1

1
α − 2µ+ Lmax

2c
= 1

2cLmax − 2µ+ Lmax
2c

.

Which holds by assumption since c > Lmax
4µ .

H Experiment details

In this section we provide details for our experiments including the updates for different mirror descent
algorithms. Note that in all our experiments we have f∗i = 0.

H.1 Compute resources

We ran around a thousand experiments using an internal cluster, where each experiment uses a single
NVIDIA Tesla P100 GPU, 40GB of RAM, and 4 CPUs. Some experiments like the synthetic ones took only
few minutes to complete, while the deep learning experiments like CIFAR10 took about 12 hours.

H.2 Mirror descent across p-norms

We select ψ(x) = 1
2 ||x||

2
p and X = Rd for 1 < p ≤ 2. We have in this case that ψ is µψ = (p − 1) strongly

convex with respect to the norm ||·||p with dual norm ||·||q where q is such that 1/p + 1/q = 1 (Orabona,
2019). Therefore, as defined in Corollary 8, mSPSmax with c = 1 is

ηt = min
{

(p− 1)(fi(xt)− f∗i )
||∇fi(xt)||2q

, ηb

}
,

and similarly for mSPS.

The closed form update for mirror descent in this case is given by the following coordinate wise up-
dates (Duchi, 2018): let φp : Rd → Rd with component functions φpi (x) = (||x||p)2−p sign(xi)|xi|p−1, then
the mirror descent update with stepsize ηt is

xt+1 = φq(φp(xt)− ηt∇fi(xt)).
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H.3 Projected gradient descent with positive constrains

We select ψ(x) = 1
2 ||x||

2
2 to recover projected gradient descent, in this case ψ is µψ = 1 strongly convex with

respect to the Euclidean norm and ||·||∗ = ||·||2. Since X = Rd+, the non-negative orthant, the projection
step amounts to clipping negative values (setting them to zero).

H.4 Exponentiated gradient with `1 constraint

We consider the case of supervised learning with constraint set X = {x : ||x||1 ≤ λ}. In our experiments we
set λ = 10, 000 · d. To consider the exponentiated gradient algorithm we equivalently write the set X as a
convex hull of its corners, X = {Λx : x ∈ ∆2d} where ∆2d is the (2d − 1)-dimensional probability simplex
and Λ is a matrix with 2d columns and d rows,

Λ =


λ −λ 0 0 · · · 0 0
0 0 λ −λ · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · λ −λ

 .
Therefore we can use the exponentiated algorithm with constraint set ∆2d by selecting ψ(x) =∑2d
i=1 xi log(xi). In this case ψ is µψ = 1 strongly convex on ∆2d with respect to the norm ||·||1. Since

the dual norm ||·||∗ = ||·||∞ we have that mSPSmax with c = 1 is

ηt = min
{

(fi(xt)− f∗i )
||∇fi(xt)||2∞

, ηb

}
,

and similarly for mSPS.

The mirror descent update then can be written in two steps (Bubeck, 2015),

yt+1 = xt � exp(−ηt∇fi(xt))

xt+1 = yt+1

||yt+1||1
.

Where � and exp are component wise multiplication and component wise exponentiation respectively.

H.5 Additional Results across p-norms

We observe in Figure 4 that mSPS outperforms a large grid of step-sizes for most values of p. Note that we
used the mushrooms dataset with the kernel bandwidth selected in Vaswani et al. (2019b) which satisfies
interpolation.
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Figure 4: Comparison between mSPS with c = 1 and constant step-sizes on convex binary-classification
problem on the mushroom dataset.

For the non-convex multi-class classification problem in Figure 5 we use MNIST. MNIST has a training set
consisting of 60k examples and a test set of 10k examples. We use a 1 hidden-layer multi-layer perceptron
(MLP) of width 1000. We also observe that mSPS is either competitive or better than most constant stepsizes
across various values of p.
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Figure 5: Comparison between mSPS with c = .2 and constant step-sizes on MNIST across different values
of p.
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Figure 6: Comparison between mSPS with and without smoothing on non-convex multiclass classification
with deep networks across different values of p.
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