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Abstract

Game-theoretic algorithms are commonly benchmarked on recreational games,
classical constructs from economic theory such as congestion and dispersion games,
or entirely random game instances. While the past two decades have seen the rise of
security games – grounded in real-world scenarios like patrolling and infrastructure
protection – their practical evaluation has been hindered by limited access to the
datasets used to generate them. In particular, although the structural components
of these games (e.g., patrol paths derived from maps) can be replicated, the critical
data defining target values – central to utility modeling – remain inaccessible. In
this paper, we introduce a flexible framework that leverages open-access datasets
to generate realistic matrix and security game instances. These include animal
movement data for modeling anti-poaching scenarios and demographic and in-
frastructure data for infrastructure protection. Our framework allows users to
customize utility functions and game parameters, while also offering a suite of
preconfigured instances. We provide theoretical results highlighting the degeneracy
and limitations of benchmarking on random games, and empirically compare our
generated games against random baselines across a variety of standard algorithms
for computing Nash and Stackelberg equilibria, including linear programming,
incremental strategy generation, and self-play with no-regret learners.

1 Introduction

Equilibrium finding in games has become a cornerstone of artificial intelligence, powering break-
throughs in recreational play (e.g., poker, Stratego, Diplomacy) [5, 8, 38, 2] as well as critical
applications in security and logistics [39, 20, 44, 25, 11]. At the heart of these successes are efficient
algorithms for computing game-theoretic equilibria. To develop, evaluate, and compare such methods,
practitioners typically turn to benchmarks drawn from recreational games, classical economic models,
or pseudo-random payoff matrices. Yet among these standard baselines, the model that has seen the
greatest real-world success, the Stackelberg security game model, is conspicuously absent.

Security games, where a defender allocates limited resources across targets and an attacker selects
among them, have guided deployment of patrols across the eight terminals of Los Angeles Interna-
tional Airport [39], helped protect biodiversity across 2,500 km2 of conservation area [20, 18, 19] and
screening more than 800 million US air passengers annually [7]. Extensions have been developed for
traffic monitoring, drug interdiction, and cybersecurity [43]. Practical evaluation of game-theoretic
algorithms on security games, however, has been hindered by limited access to the most valuable
component: target-value utilities. Although the structural components–map-based patrol routes and
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scheduling constraints–can be reconstructed, till this day, the utilities that encode real-world strategic
trade-offs remain largely inaccessible to algorithm developers.

To fill this gap in benchmarking ability, we introduce GUARD,1 a flexible framework that constructs
realistic matrix and security game instances from open-access data. Drawing on readily available
sources such as animal movement records for anti-poaching scenarios and demographic or infras-
tructure data for critical asset protection, our framework supports both custom game specification
and access to a library of ready-made instances, enabling meaningful and reproducible evaluation of
game-theoretic algorithms on security-inspired scenarios. The framework provides a more realistic
real-world resource allocation and security grounded alternative to existing game generators such
as Gamut [36], which includes more traditional and classical economic games, or OpenSpiel [30],
which offers a wide range of recreational and synthetic benchmarks. A more detailed explanation
of the differentiation between Gamut and GUARD is provided in C.9. Our game instances can be
exported in formats compatible with tools like OpenSpiel and Gambit [40], and can also provide
target values for integration into pursuit-evasion frameworks such as GraphChase [50].

In addition, we examine the implications of using randomly generated games as benchmarks, a
common approach in the literature. In Section 3, we show that Stackelberg equilibria in random games
exhibit very sparse or degenerate solutions, which are not expected in realistic games. Specifically,
we show that for random utilities drawn from the uniform distribution, near-optimal utility for the
defender can already be achieved with pure (or very sparse) strategies for random normal-form
games, and with very few resources for random security games. Notably, this suggests that random
Stackelberg games typically give unreasonable advantage to the defender, effectively ignoring the
impact of the adversary. In Section 5, we complement these findings with empirical results, comparing
our realistic game instances with random ones. We observe similar degeneracy not only in random
general-sum games, but also in zero-sum settings and even in games played on realistic maps, where
randomness is limited to the assignment of target values.

2 Game Representations and Solution Concepts

Normal-form games. We study two-player games in which Player 1 has n actions and Player 2
has m actions. In the normal-form (or matrix) representation, each player’s payoffs are encoded
by matrices A,B ∈ Rn×m. Entry Aij (respectively Bij) gives the payoff to Player 1 (resp. Player
2) when the players choose actions i and j. Each player may randomize over their actions; their
mixed strategy spaces are the simplexes ∆n and ∆m, where ∆n = {x ∈ Rn

+ |
∑n

i=1 xi = 1}. For
any strategy x ∈ Rd, we define its support as supp(x) = {i ∈ [d] | xi ̸= 0}. The best responses
of Player 2 to a mixed strategy x ∈ ∆n is the set BR2(x) = argmaxy∈[m] x

TBy; ties are resolved
arbitrarily. Player 1’s best responses to strategies of Player 2 are denoted analogously as BR1(y).

Security games. Beyond matrix games, we also consider security games, which model defender-
attacker interactions over a set of targets T . The defender (Player 1) controls a set of resources R,
each of which can be assigned to a schedule from a set S ⊆ 2T , where a schedule specifies a subset of
targets simultaneously protected by a single resource. A target is deemed “covered” if some assigned
schedule includes it. The attacker (Player 2) selects targets to attack. In the standard formulation,
the players’ utilities depend only on whether the attacked target is covered. The defender receives a
utility of uc

d(t) if a covered target t is attacked, and uu
d(t) if it is not covered. The attacker similarly

obtains uc
a(t) or uu

a(t) depending on coverage. If multiple attacks are allowed, utilities are aggregated
equally across targets. When the resources in R are not identical, a mapping A : R→ S may define
the valid schedules for each resource. We refer to the tuple (A, uu, uc) as the schedule form of the
game. It can be expanded into a normal-form game by enumerating all (exponentially many) actions.

Nash equilibrium (NE) in zero-sum games. In a zero-sum game, A = −B. Finding a Nash
equilibrium (x∗, y∗) in a two-player zero-sum game can be formulated as a saddle-point problem
using the first player’s payoff matrix. In particular, von Neumann’s minimax theorem shows that
(x∗, y∗) is achieved by a saddle point of xTAy,

max
x∈∆n

min
y∈∆m

xTAy = min
y∈∆m

max
x∈∆n

xTAy = x∗TAy∗.

1Code open-sourced and publicly-available at https://github.com/CoffeeAndConvexity/GUARD.
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The minimax theorem shows that (x∗, y∗) is a NE if and only if each mixed strategy optimizes the
players’ payoff assuming that the other player best responds. Two-player zero-sum games can be
solved efficiently using a variety of methods, including fictitious play [6], linear programming [42],
strategy generation [33], or self-play with no-regret learners [24].

Strong Stackelberg equilibrium (SSE) in general-sum games. In general-sum two-player games,
where A and B may be arbitrary n×m matrices, a Stackelberg equilibrium (x∗, y∗) can be formulated
as a bilevel problem [48, 13]:

x∗ = argmax
x∈∆n

xTAy∗(x),where y∗(x) ∈ BR2(x) = argmax
y∈[m]

xTBy.

The equilibrium is considered strong if, in addition, Player 2 breaks ties in favor of Player 1. In
zero-sum games, NE and SSE coincide for Player 1, i.e., the optimal SSE strategy for Player 1 is also a
NE strategy. Beyond zero-sum, SSE can be computed efficiently using a sequence of linear programs
in both two-player normal-form games [13] and security games with single-target schedules [29].

Sparsity in game theoretic equilibria. In both normal-form and security games, the support
of a strategy reflects the strategic complexity of the equilibrium. Sparse strategies (with small
supports) can indicate focused and interpretable behavior, and are often desirable for execution in
real-world settings where certain constraints may limit the feasibility of complex strategies. However,
extreme sparsity may reflect an underlying degeneracy in the game structure, particularly in synthetic
benchmarks where unrealistic structures may result in equilibria that incorrectly simplify the strategy
space. Conversely, overly dense strategies may offer only marginal gains from added complexity,
leading to diminishing returns, potential redundancy, and impractical deployment in real systems. In
this sense, the support sizes of equilibrium strategies serve as a diagnostic for evaluating whether
a game meaningfully captures strategic nuance, thus becoming a useful empirical metric in the
assessment of benchmark game realism.

3 Limitations of Benchmarking on Random Games

Random games often admit very sparse equilibria, making them tractable in ways that real-world
instances are not. For example, while finding a Nash equilibrium in two-player general-sum games
is PPAD-hard [12], random games with suitable payoff distributions can be solved in expected
polynomial time [3]. More broadly, multi-player games with i.i.d. payoffs almost surely have a
pure Nash equilibrium (approaching probability 1 − 1/e as action sets grow) [23, 16], and two-
player Gaussian or uniform games admit equilibria supported on just two actions with probability
1−O(1/ log n) [3]. In fact, the chance that a random two-player game has no equilibrium of support
size k decays exponentially in k, so brute-force support enumeration runs in expected polynomial
time. We demonstrate that the same degeneracy arises in SSE too.

Random general-sum normal-form games. We assume that all elements in the utility matrices A
and B are sampled i.i.d. uniformly in [0, 1]. For any Player 1 strategy x ∈ ∆n, let us denote by V (x)
any possible value Player 1 can obtain after Player 2 best-responds to x, i.e., V (x) ∈ {xTAy, y ∈
BR2(x)}. Since all payoffs are uniform in [0, 1], we always have V (x) ∈ [0, 1]. In particular, the
SSE satisfies V (x∗) ≤ 1. We analyze the performance of sparse strategies for Player 1. To this end,
we define by x∗(k) their best k-sparse Stackelberg equilibrium strategy, i. e., supp(x∗(k)) ≤ k, that
maximizes the value V under any fixed tie-breaking rule. The proof is given in Appendix A.1.

Theorem 1. Let A,B be sampled i.i.d. uniformly in [0, 1]. Then (i) V (x∗(1)) ∼ Beta(n, 1), and
for every C ≥ 0, EA,B [V (x∗(1))] = 1 − 1

n+1 and PA,B

[
V (x∗(1)) < 1− C

n

]
≤ e−C , and (ii)

there exist universal constants c0, c1, c2 > 0 such that c1
√
logn

n3/2 ≥ 1 − EA,B [V (x∗(c0 log n))] ≥
1− EA,B [V (x∗)] ≥ c2

√
logn

n3/2 .

The theorem’s first part shows Player 1 can attain a value arbitrarily close to 1 using a pure strategy,
while the second part extends this to optimality up to constant factors with anO(log n)-sparse support.
Its proof is constructive: concentrate weight on one action that already nearly maximizes Player
1’s payoff, then mix in O(log n) additional actions to compensate. Consequently, one can find an
optimal SSE in expectation up to constant factors simply by using this explicit sparse strategy; no
support-search is required.
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Random general-sum security games. Given T targets and R identical defender resources, we
consider a case when schedules form a partition of the T targets2. That is, the resources can choose
from k non-empty schedules S1, . . . , Sk ⊆ [T ] which satisfy

⋃
i∈[k] Si = [T ] and Si ∩ Sj = ∅ for

any i, j ∈ [k] with i ̸= j. We consider the following random model for utilities: uc
d(t) = uc

a(t) = 0
for all targets t ∈ [T ], while uu

d(t) and uu
a(t) are sampled i.i.d. uniformly in [−1, 0] and [0, 1],

respectively. We expect our results to be relatively robust to the choice of distributions.

Theorem 2. Let uu
d and uu

a be sampled i.i.d. uniformly in [−1, 0] and [0, 1]. For T targets and R
defender resources, let ∅ ⊊ S1, . . . , Sk ⊆ [T ], 1 ≤ k < R, form a partition of the targets, and denote
α :=

maxi∈[k] |Si|
mini∈[k] |Si| . Then there exists a constant c > 0 such that Eu[V (x∗)] ≥ −c

(√
α
RT + 1

k

)
.

The proof is given in Appendix A.2. When R ≥ k, we have V (x∗) = 0, and even if R ∈ (0, 1],
we need only use a single resource with probability at most R. In standard settings, the dominant
error term is −c

√
α
RT , with a smaller correction when schedules are few. Consequently, for random

uniform security games, Player 1 achieves near-optimal utility with very few resources: if α = O(1),
then E[V (x∗)] ≳ −O

(
1/
√
RT
)
, so a single resource already yields expected utility −O(1/

√
T ).

Moreover, one can achieve near-maximum utility by using that resource only with probability
O(1/

√
T ), a vanishingly small rate, a behavior unlikely in realistic settings.

4 Design of the Framework

The GUARD framework builds realistic security-game instances directly from publicly available,
real-world data. As shown in Figure 1, the framework is organized into three core components:
Data, Games, and Solvers. These components interact to define game instances from raw data
inputs, model their structure and rules, and compute equilibrium solutions. Open-source datasets
feed into a hierarchical game-class structure (Graph Game→ Security Game→ Domain-Specific
Game), enabling users to instantiate realistic instances. Currently, GUARD supports three data
streams–animal movement data, demographic data, and map data–as well as two domain-specific
game implementations: Green Security Games (GSGs) and Infrastructure Security Games (ISGs).
Users may construct games in either normal-form (NFG) or schedule-form (SFG), with all generation
parameters detailed in C.3. In addition, we provide a library of preset, high-fidelity game instances to
jump-start experimentation. Every game created within GUARD can be exported to standard formats
(.pkl, .h5, and native Gambit/Gamut .nfg/.game files) and, conversely, imported via our Loaded Game
class. While export functionality ensures compatibility with external libraries such as Gambit and
OpenSpiel, GUARD also includes multiple built-in solvers for Nash and Stackelberg equilibria.

4.1 Data

Once processed, real-world input data populates the hierarchical game class structure, providing
detailed parameter settings, target specifics, and environment constraints while preserving flexibility
for user customization. Here we introduce the primary data sources used to instantiate realistic security
games in the GUARD framework, while additional metrics drawn from real-world domain-specific
literature are outlined in Section 5 and Appendices D.2, D.3, and D.4.

Movebank. To instantiate our GSGs, we utilize data from Movebank, a free, curated online platform
for animal movement data maintained by the Max Planck Institute of Animal Behavior [49, 27].
Movebank hosts contributions from researchers globally and contains thousands of tracked individuals
across diverse species and ecosystems. In our preset game instances, we aggregate nine GPS collar
datasets for African Elephants from the Elephant Research – Lobéké National Park (Cameroon)
study [32], which captures the movement of six unique elephants from 2002 to 2007. This dataset
includes 3,183 spatiotemporal observations, and after preprocessing (Appendix D.1), we keep the
following fields: animal id, latitude, longitude, and timestamp. These data form the basis for target
generation and scoring in our game environment. Notably, any animal location dataset either from
Movebank or another source when preprocessed can be used as input data for a GSG.

OpenStreetMap. To represent infrastructure targets in ISG instances, we extract data from Open-
StreetMap (OSM) using Overpass Turbo [37], a query interface that supports structured data retrieval

2In particular, this includes also all simple schedules where every Si is a singleton.
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Figure 1: The structure of the GUARD framework.

from OSM’s geospatial database (query in Appendix C.4). In our preset games, we query all power
grid, medical, judicial, educational, and police features—including nodes (single coordinate locations,
such as power stations or health clinics) and ways (sequences of nodes representing linear structures,
such as power lines)—within the New York City metropolitan area. This region encompasses all
five NYC boroughs and adjacent areas. Once filtered and preprocessed, the dataset includes 23,607
infrastructure features with attributes including ID, type, latitude, and longitude. These points serve
as target locations in our game instances. This OSM data is interchangeable with any geographic
region feature data for any desired game instance.

Census. In ISG instances, an attack on a given target must be assigned some value to both the
defender and attacker. To do so, we use census data that aggregates regional population levels.
Specifically, we utilize publicly available block-level population data from the 2020 U.S. Census
TIGER/Line Shapefiles [47]. For our preset instances, the data provide both population counts and
geospatial boundaries for 288,819 census blocks across the state of New York. Each entry includes a
GEOID, population count, and a Polygon geometry specifying the spatial extent of the block.

4.2 Game Classes

GUARD follows a three-tiered game class hierarchy for flexible and extensible modeling. At the
base, the Graph Game class defines core graph functionality, target definitions, action spaces, and
utility matrices. The intermediate Security Game class adds domain-agnostic security mechanics,
including defender/attacker movement, coverage rules, and NFG/SFG formulations. At the top,
Domain-Specific Game classes integrate real-world data to define context-specific target locations
and values, environment structure, and constraints, fully instantiating a real-world Security Game
while leveraging the computational functionality of the lower layers.

Graph Game. The Graph Game class is a general-purpose abstraction for modeling dynamic
multi-agent normal-form games on graphs, and provides a flexible, modular interface for generating
data-driven security games. Users can configure the game graph, number and type of player resources
(moving/stationary), game length, sum type (zero/general), and interdiction rules. Higher-level
games are built by passing domain-specific parameters to this base class, which handles resource
instantiation, action space generation, and (if specified) construction of NFG utility matrices according
to zero or general sum specification. After computation, these action sets and utilities are then made
available in the higher-level game classes for further specialization and experimentation. Specific
parameterization details for the base Graph Game layer can be found in Appendix C.1.

The Graph Game initializes with a user-supplied directed graph G = (V,E), which serves as the
structural foundation for strategy computation. Path enumeration is performed via time-constrained
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depth-first search (Appendix B.3), generating valid traversal-based action sets and enabling utility
evaluation through node visitation and distance-based interdiction dynamics. In this base layer, the
graph is time-expanded to support multi-timestep play. Thus, each player’s action is a fixed-length
2D array encoding resource positions over T timesteps. For player i ∈ {a, d} with mi resources, a
full action is represented as a matrix Ai = (vj,τ )j∈[mi],τ∈[T ] ∈ V mi×T , where vj,τ denotes the node
occupied by resource j at timestep τ . In particular, stationary resources are encoded as constant rows
in Ai. We define Ai as the set of all such possible actions for player i.

The utility for each player in a normal form representation is determined by the targets successfully
captured by Player 2’s attacking resources, subject to interdiction by Player 1’s defending resources.
The attacker’s utility Ua is defined as the sum of the values of all targets successfully captured:

Ua(Aa, Ad) =
∑
t∈T

Vt · 1 [t is captured] + C(Aa, Ad),

where Vt is the value of target t, 1[t is captured] is the indicator of whether the target is successfully
reached by an attacker without being interdicted, and C(Aa, Ad) is an optional defender path cost
term in general sum formulations, which can account for traversal costs or environmental factors.
The Graph Game class encompasses various formulations for attacker resources being interdicted.
Specifically, for an attacker moving resource ja ∈ [ma], interdiction occurs if a defender resource
jd ∈ [md] comes within the capture radius r of the attacker:

1 [ja is captured] = 1[∃jd ∈ [md],∃τ ∈ T : d(Aa
ja,τ , A

d
jd,τ

) ≤ r],

where d(v, w) is the distance between two nodes v, w ∈ V . For an attacker stationary resource
ja ∈ [ma] at target t, a defender resource must visit this target a minimum number of timesteps δ for
the defender to prevent it from being captured, where δ is a defense time threshold:

1[ja is captured] = 1[|{τ ∈ T : ∃jd ∈ [md] : A
a
ja,τ = t}| ≥ δ].

Security Game. The Security Game layer extends the base Graph Game class by enforcing key
constraints of standard security games: no stationary defenders, no moving attackers, and start/end
constraints at home bases for defender paths. This creates a classic setting where mobile defender(s)
patrol from fixed bases, and attacker(s) selects target(s) without traversing the graph.

This layer defines both zero-sum and general-sum formulations using a target utility matrix with
covered and uncovered payoffs uc(t) and uu(t) for each target t ∈ T . The Security Game Layer also
implements the Stackelberg schedule-form games when specified, passing SFG artifacts to the highest
domain-specific layer for the user to access. These artifacts include defender resource schedule
mappings, the target utility matrix, an expanded defender action set enumerating all possible defender
schedule combinations, and NFG-expanded utility matrices. For general schedule-form games, this
layer manages finding mappings from defenders to valid schedules which can be expanded into
normal-form action spaces (and thus into the aforementioned NFG utility matrices for compatibility
with broader classes of game-theoretic algorithms). See Appendix B.1 for schedule-finding algorithm
implementations. Appendix C.2 details the specific parameters for the Security Game layer.

4.2.1 Domain Specific Games

Green Security Games. GSGs model the interaction between defenders (e.g., park rangers) and
poachers in conservation areas as adversarial games over a spatial domain [20, 18]. The defender
seeks to patrol animal location targets to establish coverage over animal targets and prevent poaching.
Both simultaneous (pursuit-evasion) and Stackelberg formulations are supported. The game is played
on a grid-world abstraction of a national park (nodes represent cells, edges connect adjacent cells).

Given spatiotemporal animal tracking data from Movebank or similar datasets, our framework infers
target locations and values based on observation density. Users initialize a realistic GSG in the
GUARD framework by supplying this data along with a bounding box, grid dimensions, a scoring
method ("centroid" or "density"), and number of cluster targets if using the centroid method.

In the centroid method, K-means is applied to observation coordinates, and each cluster cen-
troid is assigned a score proportional to its size, scaled by the animal-to-observation ra-
tio: score = cluster_size ×

( num_animals
num_total_observations

)
. For general-sum games, the at-

tacker value includes an optional escape proximity factor: attacker_value = score ×
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Figure 2: (Left) Down-sampled elephant movements in Lobéké National Park and the corresponding
GSG model. (Right) Civil infrastructure in Manhattan’s Chinatown and the corresponding ISG model.
Graph structures represent the traversable game environments. Red nodes indicate target locations,
blue house icons are home bases.

(
1 + α

(
1− di−dmin

dmax−dmin

))
, defender_value = −score, where di is the distance to the escape

boundary, and α is the proximity scaling factor. In the density method, each observation contributes
to the score of its containing cell, with values scaled by the overall animal-to-observation ratio.

Infrastructure Security Games. ISGs model adversarial interactions over civil infrastructure,
where attackers aim to damage key assets (e.g., power grids, hospitals) and defenders patrol to
protect and establish coverage over these sites. Like in GSGs, both simultaneous (pursuit-evasion)
and Stackelberg formulations are supported. Games are typically played on a grid-like network
representing an urban environment.

To initialize a realistic ISG in the GUARD framework, users supply: (i) a GeoPandas DataFrame of
infrastructure features with coordinates and types; (ii) a block-level population GeoDataFrame; (iii)
a weight dictionary for infrastructure types; (iv) a geographic bounding box; and (v) a population
assignment method ("block" or "radius"). The block method assigns the population of the containing
census block, while the radius method sums populations of intersecting blocks within a buffer
around each feature. The framework then builds a street graph from OSM within the bounding
box, maps infrastructure features to the nearest graph node, and computes each node’s base score
as raw_score = W · (log(P + 1))

α, where W is the infrastructure type weight, P is the assigned
population, and α is a scaling parameter controlling population importance.

In general-sum games, scores are adjusted for proximity to a predefined escape point:
attacker_value = raw_score ×

(
1 + α

(
dmax−di

dmax−dmin

))
, defender_value = −raw_score,

where di is the distance to the escape point, and α controls proximity scaling. Final values are
assigned to graph nodes to define the game’s target set.

4.3 Solvers

The GUARD platform includes a suite of built-in solvers for computing Nash and Stackelberg
equilibria across different security game instances. For zero-sum NFGs, we implement the standard
Nash LP [42] and a support-bounded MILP [1] that fixes the size of one player’s support. For iterative
equilibrium computation, we include a range of no-regret and oracle-based methods. The no-regret
methods include Regret Matching (RM) [24], Regret Matching+ (RM+) [45], and Predictive Regret
Matching+ (PRM+) [21] (with each variant’s parameter specifications discussed in Appendix D.3).
For the oracle-based approaches, we provide both a standard Double Oracle algorithm [33] and its
extension for schedule form; both are detailed in Appendix B.2. For general-sum games, we provide
two algorithms. The simple SSE multiple LP [28] is used for security games with singleton schedules,
while the general SSE multiple LP [13] is used for arbitrary NFGs.

4.4 Pre-defined Game Instances

GUARD comes loaded with several pre-defined realistic security game instances. These games are
accessible as out-of-the-box .pkl files housing the entire pre-generated game objects for NFGs, and
schedule form object dictionaries for SFGs. The suite of games includes GSGs for the aforementioend
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support, with real (solid) and random (dashed) lines for each timestep setting. Errorbars on random
runs reflect standard error bounds ( σ√

n
) over 10 random seeds.

Lobéké National Park elephants in Cameroon and Etosha National Park elephants in Namibia [22]. It
also includes ISGs for multiple locations with dense civil infrastructure in New York City. These
settings are generated for 7-9 timestep games and available in both NFG and SFG format for zero-sum
and general-sum formulations; full pre-defined game details are in Appendix C.8.

5 Empirical Evaluation

We compare equilibrium properties in selected typical realistic versus randomized games by evaluating
(i-a) sparsity and runtime across support bounds and (i-b) convergence of iterative algorithms in
zero-sum games, and (ii) defender utility, support size, and runtime in general-sum games. For
GSGs, we use preset instances based on a 7 × 7 grid of Lobéké National Park, with 10 clustered
elephant targets and 3 ranger bases, with a SFG target-coverage scaling ratio uu

d(t)/u
c
d(t) of 5 to

reflect observed 80% poacher apprehension rates [9]. ISGs use Manhattan’s Chinatown, with 23
infrastructure targets and 5 police stations as bases, with a SFG coverage scaling of 3 to match
observed upper-end 67% urban crime mitigation rates [35, 26, 31].

Sparsity Experiments. We evaluate sparsity in zero-sum GSGs using 1 (NFG) or 2 (SFG) de-
fenders and a defense time threshold of 1 (NFG) or 2 (SFG) timesteps, with randomized instances
generated by uniformly sampling matrix entries within the observed range of real payoff values.
Utility is normalized as Unorm = U−Uk=1

UNash−Uk=1
, runtime as Rnorm = R−Rmin

Rmax−Rmin
, and support size as

knorm = k
kmax Nash

where kmax Nash is the maximum Nash equilibrium support size across both real and
randomized instances. Additional parameter specifications for these sparsity experiments are detailed
in Appendix D.2. Results in Figure 3 show that real instances yield smaller supports at optimal utility,
reaching approximately 40-60% (NFG) and 50-70% (SFG) of randomized support sizes across 7-, 8-,
and 9-timestep games. Real instances also exhibit higher computational runtimes at larger supports,
while randomized instances peak early and decline steadily.

Iterative Algorithm Experiments. In Figure 4, we evaluate the convergence behavior of four
iterative algorithms—DO, RM, RM+, and PRM+—on both real and randomized instances in the GSG
and ISG domains (with parameterization details in Appendix D.3), using NFG and SFG formulations.
Across all algorithms, real instances consistently exhibit faster convergence than their randomized
counterparts, particularly for the enhanced RM+ and PRM+ variants. In GSGs, real DO instances
typically reach equilibrium faster, with smoother convergence trajectories. In ISGs, randomized DO
often struggles to converge cleanly, exhibiting significant oscillations in utility gaps, especially in the
NFG setting. These results indicate that real instances produce more stable convergence dynamics
and reduced computational complexity, while randomized games introduce irregular behavior and
inflated support sizes.

Stackelberg Experiments. We compute SSE for both simple (singleton) and general (multiple target)
schedules in a general-sum formulation, comparing defender utility and support size across real and
randomized GSG and ISG instances with parameterization details (including general sum path costs
and proximity weights) in Appendix D.4. Randomized instances are generated by sampling target
values uniformly within the range of real covered and uncovered target values, while ensuring covered
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Figure 4: Convergence of iterative algorithms for different game types, formulations, and real vs.
randomized (dashed lines with standard error bars) runs.

Table 1: SSE Results for GSG and ISG settings. RT = randomized target values, RM = randomized
matrix, RTS = randomized target values and schedules. ud is max defender utility, R is runtime in
seconds, and S is support of defender coverage strategy.
Form Trial GSG ISG

ud R S ud R S

Simple
Real -0.390 0.015s 6 -0.429 0.030s 11

RT -0.298 ± 0.03 0.01s ± 0 5.0 ± 0.52 -0.214 ± 0.05 0.04s ± 0 7.5 ± 1.20

General

Real -0.207 0.46s 9 -0.408 838s 14

RM -0.035 ± 0 0.52s ± 0.02 2 ± 0.15 -0.026 ± 0 541.5s ± 1.98 1.7 ± 0.15

RT -0.253 ± 0 0.35s ± 0.01 1.7 ± 0.26 -0.013 ± 0 116.2s ± 1.87 1 ± 0

RTS -0.270 ± 0 0.45s ± 0.03 1.4 ± 0.16 -0.032 ± 0 1.57± 0.04 1 ± 0

payoffs are strictly lower: uc
a(t) ≤ uu

d(t), ∀t. Table 1 details our experimental results. With simple
schedules, real instances tend to exhibit higher complexity, resulting in slightly larger support sizes and
lower defender utilities compared to their randomized counterparts. The difference is more apparent
with general schedules. We expand the schedule-form coverage strategy space into matrix-NFG form
to run the general SSE multiple LP, and evaluate GUARD-generated realistic game instances against
three randomized baselines: randomizing the expanded NFG matrices (RM), randomizing target
values only (RT), and randomizing both target values and schedule assignments (RTS). Schedule
randomization is detailed in Appendix D.5. In GSGs, the real instance yielded significantly larger
support size than all randomized settings, which generally produced minimal supports (Real: S =
9, Rand: SRM = 2, SRT = 1.7, SRTS = 1.4). Similarly, in ISGs, the real instance achieved
substantially larger support and lower defender utilities compared to the randomized baselines which
tend to inflate defender payoffs (Real: ud = −0.4076, Rand: ud = −0.026,−0.013,−0.032), and
collapse to degenerate supports (Real: S = 14, Rand: SRM = 1.7, SRT = 1, SRTS = 1). These
observations are in close accord with theoretical results in Section 3: random general-sum instances
often have degenerate support and give significant advantage to the defender, while realistic instances
yield richer strategy profiles.

6 Conclusion

We present a flexible framework for generating structured games grounded in publicly available
data, offering a range of customizable and preconfigured instances inspired by real-world security
applications. Alongside this, we provide a dataset of ready-to-use games and support for exporting
to standard formats. Our theoretical analysis highlights limitations of random games for evaluating
equilibrium-finding algorithms, and our experiments confirm that such instances can exhibit degener-
ate behavior absent in more structured settings. Together, these contributions aim to support more
robust and practical benchmarking in algorithmic game theory.
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Limitations. In regards to limitations, GUARD faces scalability challenges in dense environments,
where complex structure and rich data inflate game sizes and hinder algorithmic performance.
Specifically, at high timestep settings, defender path action sets explode in size making utility
matrices intractable to compute. More broadly, the framework depends on raw datasets that may
imperfectly capture real-world dynamics, limiting fidelity to the underlying game environment.
Also, our realistic security game instance generation was only tested in GSG and ISG domains.
Additionally, some realistic instances exhibit degenerate behaviors as a consequence of certain
environments having trivial best-response profiles under current target and action definitions. For
example, data-driven targets may be unreachable for defender resources under certain game length
and home-base constraints, causing trivial attacker best-responses and game degeneration. Finally,
incorporating more real-world features like resource-specific subgraph constraints (modeling differing
security patrol roles) could further enhance modeling realism. Limitations are discussed in greater
detail in Appendix C.6.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical claims in the abstract and introduction about randomized
security games are proven in Section 3 and match experimental results in Section 5. The
claims related to having built a framework for generating realistic security game instances
reflect our work in Section 4, and our code for the framework is accessible at https:
//github.com/CoffeeAndConvexity/GUARD.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our work’s limitations are discussed in detail in Section 6 and Appendix C.6.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All statements of the theoretical results contain the all necessary assumptions
(specifically distributional assumptions on the random games considered). We include
complete proofs in Appendices A.1 and A.2 and refer to these within the body of the paper.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experiments are fully reproducible in that framework specifics and param-
eters are discussed in detail in Section 1, Appendices C.3, C.1, and C.2, and all data used
(discussed in Section 4) to build game instances for our experiments are static and publicly
available. Experimental parameter settings are discussed in Section 5 and Appendices D.3
and D.4, with our exact code available at the aforementioned URL.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All of our data is openly accessible and we provide detailed instructions
about raw data access, preprocessing, and reproducability in Section 4 and throughout
Appendices C and D. All of our code for the GUARD framework and for building games and
running algorithms and experiments is open source and has been compiled into scripts in our
publicly available Github repo https://github.com/CoffeeAndConvexity/GUARD.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: While our work does not involve training or testing any models, our experi-
ments do involve parameter settings for instantiating realistic games with certain specifica-
tions. These specifications are outlined in Section 5 and throughout Appendix D.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard-error shaded error bars for experimental results using
randomly seeded game instances across figures and tables in Section 5 and specifically
define them in Figure 3. Otherwise, we do not incorporate claims of statistical significance
in our experiments.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experimental compute resources are outlined in Appendix D, and memory
constraints on certain experiment runs are mentioned in Appendix C.6. Experimental
runtimes are outlined in Appendix D.2, Figure 4, and Table 1.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not violate any aspect of the code of ethics. Our work is fully
funded for the authors and involves no human participants- aside from that, there are no
harmful aspects of our work and no violations of anyone’s well-being.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader positive societal impacts and potential applications of
our work throughout Section 1 and Section 6. Additionally, we discuss the potential negative
societal impacts and applications of our work in Appendix C.7.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks, as there are no high risk data or models as
part of our framework. While misuse is possible (discussed in Appendix C.7), all datasets
used are publicly available and do not involve scraped data, pretrained models, images, or
personally identifiable information.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Citations for all academic papers, movebank, overpass turbo, OSM, Census,
and all movebank studies we obtained animal datasets from are cited and referenced cor-
rectly in our references. Studies with data have their licenses and attribution discussed in
Appendix C.5.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: While we do introduce a new framework, the framework is completely
open source with the code made available and is well documented both in the code and
README.md. However, we do not introduce any new assets, and access to pre-existing
assets we use are cited and referenced correctly in our references and also discussed in
Appendix C.5.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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A Proofs

A.1 Proof of Theorem 1

First, we prove the first part of the theorem. Because all coordinates B are uniform, with probability
one, there are no two equal entries. We consider that this event holds in the rest of the proof.
Then, for any i ∈ [n], the best-response for the leader strategy ei is y∗(ei) = ej(i) where j(i) =
argmaxj∈[n] Bi,j . Hence, since all entries of B are i.i.d. the indices j(i) for i ∈ [n] are all i.i.d.
uniform on [n]. In turn, since A and B are independent, the variables e⊤i Ay∗(ei) = Ai,j(i) for i ∈ [n]
are i.i.d. uniform on [0, 1]. In summary, V (x∗(1)) is distributed as the maximum of n i.i.d. uniform
variables, that is, V (x∗(1)) ∼ Beta(n, 1). The given expectation and deviation bounds are classical
for this beta distribution.

Now we can move to the second part of the theorem. We prove each inequality separately, starting
with the lower bound on the value of sparse solutions:
Lemma 1. There exist universal constants c0, c1 > 0 such that for random uniform Stackelberg
games,

1− E[V (x∗(c0 log n))] ≤
c1
√
log n

n
√
n

.

Proof. We give a constructive proof for this lower bound on V (x∗(c0 log n)), that is, we explicitly
construct a O(log n)-sparse strategy for the leader then analyze its expected value. We did not
optimize for constants in the following.

Construction of the sparse strategy. We first compute all pairs of indices for which the leader has
the desired large payoff:

S := {(i, j) : Ai,j ≥ 1− δn} where δn := 211
√
log n

n
√
n

.

If S = ∅, we return any arbitrary strategy xsparse = e1. We suppose that S ̸= ∅ from now. Next, we
identify the pair of indices which yields the largest payoff for the follower, where ties can be broken
arbitrarily:

(i∗, j∗) := argmax
(i,j)∈S

Bi,j .

Next, we compute a set of other row indices. To do so, we start by identifying the rows i for which
Bi,j∗ is significant entries and the row Bi,· does not contain entries from S other than possibly (i, j∗),

R(j∗) :=

{
i ∈ [n] \ {i∗} : Bi,j∗ ≥

3

4
,∀j ∈ [n] \ {j∗}, (i, j) /∈ S

}
.

Among these rows, we take the c0 log n − 1 rows maximizing the entries of A·,j∗ . Precisely, we
enumerate R(j∗) =

{
i1, . . . , i|R(j∗)|

}
where Ai1,j∗ ≥ Ai2,j∗ ≥ . . . ≥ Ai|R(j∗)|,j∗ . We then pose

R∗ := {is, s ≤ c0 log n− 1} where c0 = 200.

The final leader strategy that we use is

xsparse := (1− ηn)ei∗ +
ηn
|R∗|

∑
i∈R∗

ei, where ηn := 8(1−Bi∗,j∗).

Analysis of the sparse strategy value. The main steps of the analysis are to show that the best
response for the follower is y∗(xsparse) = ej∗ , and that the leader has large value for x⊤

sparseAej∗ .

First, because all entries of A are i.i.d. uniform on [0, 1], the matrix (1[Ai,j ≥ 1 − δn)i,j has i.i.d.
Bernoulli entries Ber(δn). In particular, |S| ∼ Binom(n2, δn). Using Chernoff’s bound, we have

P
[∣∣|S| − n2δn

∣∣ > 1

2
n2δn

]
≤ 2e−

1
12n

2δn . (1)

For convenience, we denote by E =
{

1
2n

2δn ≤ |S| ≤ 3
2n

2δn
}

the complementary event. Condi-
tionally on S, B still has all entries i.i.d. uniform on [0, 1]. Then, conditional on S and S ̸= ∅,
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Bi∗,j∗ ∼ Beta(S, 1) is distributed as the maximum of S i.i.d. uniforms on [0, 1]. In particular, we
have

E [Bi∗,j∗ | S, E ] =
S

S + 1
≥ 1− 2

n2δn
, (2)

where in the last inequality we used that fact that on E , |S| ≥ 1
2n

2δn.

In the rest of the proof, we reason conditionally on S and {Bi,j , (i, j) ∈ S}. Conditionally to these,
the other coordinates Ai,j and Bi,j for (i, j) /∈ S are still all independent and distributed as uniform
variables on [0, 1− δn] for Ai,j and uniforms on [0, 1] for Bi,j . To analyze R(j∗) we first introduce
the following sets of rows:

R0 := {i ∈ [n] : ∃j ∈ [n], (i, j) ∈ S}
R1(j

∗) := R(j∗) ∩R0 = {i ∈ [n] \ {i∗} : (i, j∗) ∈ S, ∀j ∈ [n] \ {j∗}, (i, j) /∈ S} .
Clearly, we have |R0| ≤ |S| and i∗ ∈ R0 since (i∗, j∗) ∈ S. Conditionally on S and
{Bi,j , (i, j) ∈ S} the entries Bi,j∗ for all i /∈ R0 are distributed as i.i.d. uniforms on [0, 1]. Then,
R(j∗) \ R0 is distributed as independently including each element from [n] \ R0 with probability
1/4. In particular, conditional on S and {Bi,j , (i, j) ∈ S},

|R(j∗) \R0| ∼ Binom
(
n− |R0|,

1

4

)
.

Note that under E , we have n− |R0| ≥ n− |S| ≥ n− 3
2n

2δn ≥ n
2 for n sufficiently large. Under

that event, |R(j∗) \ R0| therefore stochastically dominates a binomial Binom(n/2, 1/4). Hence,
Chernoff’s bound implies

P
[
|R(j∗) \R0| ≤

n

16
| S, j∗, E

]
≤ e−n/64. (3)

For convenience, we denote G := {|R(j∗) \R0| ≥ n/16}. In particular, for n sufficiently large,
under G, R(j∗) contains at least l0 := ⌊c0 log n⌋ − 1 row indices. Hence under G we have |R∗| = l0.

We next compute ∑
i∈R∗

Ai,j∗ =
∑

i∈R∗∩R1(j∗)

Ai,j∗ +
∑

i∈R∗\R0

Ai,j∗

(i)

≥ |R∗ ∩R1(j
∗)|(1− δn) +

∑
i∈R∗\R0

Ai,j∗ , (4)

where in (i) we used the definition of R1(j
∗) implying that any i ∈ R1(j

∗) satisfies (i, j∗) ∈ S.
Recall that within R∗ we include the first l0 := ⌊c0 log n⌋ − 1 rows by decreasing order of Ai,j∗ for
j∗ ∈ R(j∗). Therefore, R∗ \R0 corresponds to the first |R∗ \R0| rows by decreasing order of Ai,j∗

among R(j∗) \R0. Recall that conditionally on S and {Bi,j , (i, j) ∈ S}, all entries Ai,j∗ and Bi,j∗

for i /∈ R0 are independent. As a result, conditionally on S, {Bi,j , (i, j) ∈ S}, and R(j∗), all entries
Ai,j∗ for i ∈ R(j∗) \R0 are still distributed as i.i.d. uniforms on [0, 1− δn]. For convenience, let us
define l1 := l0 − |R∗ ∩R1(j

∗)| and l2 := |R(j∗) \R0|. In summary, conditionally on S, R(j∗), R0,
R1(j

∗), and G, ∑
i∈R∗\R0

Ai,j∗ ∼ (1− δn)

l1−1∑
i=0

X(l2−i:l2),

where (Yi)i∈[l2] is an i.i.d. sequence of uniforms on [0, 1], and Y(a:n) denotes the a-th order statistic
of (Yi)i∈[l2]. Using standard results on the expectation of order statistics of uniforms, we can further
the bounds from Eq. (4) to obtain

E

[∑
i∈R∗

Ai,j∗ | S,R(j∗), R0, R1(j
∗),G

]
(i)

≥ (1− δn)(l0 − l1) + (1− δn)

l1−1∑
i=0

l2 − i

l2 + 1

= (1− δn)l0 − (1− δn)
l1(l1 + 1)

l2 + 1
(ii)

≥ (1− δn)

(
1− l0 + 1

l2 + 1

)
l0

(iii)

≥
(
1− δn − 16c0

log n

n

)
|R∗|.
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In (i) we used E[X(a:b)] =
a

b+1 for the expectation of the a-th order statistics for b i.i.d. uniforms on
[0, 1]. In (ii) we used l1 ≤ l0. In (iii) we used l2 ≥ n/16 and |R∗| = l0 since G is satisfied. As a
summary, for n sufficiently large, we obtained

E

[
1

R∗

∑
i∈R∗

Ai,j∗ | S,R(j∗), R0, R1(j
∗), Bi∗,j∗ ,G

]
≥ 1− 17c0

log n

n
. (5)

By construction of (i∗, j∗), we also have Ai∗,j∗ ≥ 1− δn. Together with the previous equation this
intuitively shows that x⊤

sparseAej∗ has large value for the leader. Precisely, using Eq. (5), we have

E
[
x⊤
sparseAej∗ | S,R(j∗), R0, R1(j

∗), Bi∗,j∗ ,G
]
= (1− ηn)Ai∗,j∗ + ηn

(
1− 17c0

log n

n

)
≥ 1− δn − 17c0

log n

n
ηn. (6)

We now show that ej∗ is indeed the best response of the follower for xsparse. Equivalently, we need
to show that the vector x⊤

sparseB = (1−ηn)Bi∗,·+
ηn

|R∗|
∑

i∈R∗ Bi,· attains its maximum for column
j∗. To do so, we introduce the following event

H :=

{
max

j∈[n]\{j∗}

1

|R∗|
∑
i∈R∗

Bi,j −
1

2
<

1

8

}
.

By construction of R(j∗), we know that for all i ̸= i∗ and j ̸= j∗, one has (i, j) /∈ S. In particular,
conditionally on S, {Bi,j , (i, j) ∈ S}, {Bi,j∗ , i ∈ [n]}, and R(j∗), all entries Bi,j for i ∈ R(j∗)
and j ̸= j∗ are still i.i.d. uniform on [0, 1]. Next, constructing R∗ from R(j∗) only involves
the quantities Ai,j∗ for i ∈ R(j∗), which are independent from the entries in B. Hence, con-
ditionally on I := {S, {Bi,j , (i, j) ∈ S} , {Bi,j∗ , i ∈ [n]}, R(j∗), R0, R1(j

∗), R∗,G}, the matrix
(Bi,j)i∈R∗,j∈[n]\{j∗} is exactly distributed as a l0 × (n − 1) random matrix with all entries i.i.d.
uniform on [0, 1]. Therefore, applying Hoeffding’s bound on each column j ∈ [n] \ {j∗} then the
union bound over all these columns, we have

P[Hc | I] ≤ (n− 1)e−|R∗|/32 = (n− 1)e−l0/32. (7)
In the last equality we used |R∗| = l0 under G.

Suppose thatH holds. Then, one one hand,

1− (xsparseB)j∗ = (1− ηn)(1−Bi∗,j∗) +
ηn
|R∗|

∑
i∈R∗

(1−Bi,j∗)
(i)

≤ (1−Bi∗,j∗) +
ηn
4

(ii)
=

3ηn
8

,

where in (i) we used R∗ ⊂ R(j∗) and the fact that F holds. In (ii) we used the definition of ηn. On
the other hand,

min
j∈[n]\{j∗}

1− (xsparseB)j∗ ≥ ηn · min
j∈[n]\{j∗}

(
1− 1

|R∗|
∑
i∈R∗

Bi,j

)
(i)
>

3ηn
8

,

where in (i) we used the fact thatH holds. In summary, we obtained
H ⊆ {y∗(xsparse) = ej∗}. (8)

where in the last inequality we used Eq. (7). Putting everything together, we obtained
1− E[V (xsparse)]

≤ P[(E ∩ G)c] + E[(1− V (xsparse))1[E ]1[G]]
≤ P[Ec] + P[Gc | E ] + P[y∗(xsparse) ̸= ej∗ | E ,G] + E[(1− x⊤

sparseAej∗)1[E ]1[G]]
(i)

≤ P[Ec] + P[Gc | E ] + P[Hc | E ,G] + δn + 212c0
log n

n
· E[(1−Bi∗,j∗)1[E ]1[G]]

≤ P[Ec] + P[Gc | E ] + P[Hc | E ,G] + δn + 212c0
log n

n
· E[1−Bi∗,j∗ | E ]

(ii)

≤ n1− c0
64 + δn + 213c0

log n

n3δn
≤ 1

n2
+ 2δn.
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In (i) we used Eq. (8) and the bound from Eq. (6) together with the definition of ηn. In (ii) we used
Eqs. (1) to (3) and (7), and took n large enough so that the term P[Hc | E ,G] from Eq. (7) dominates
and l0 ≥ c0

2 log n. Because xsparse only has l0 + 1 ≤ c0 log n non-zero entries, this ends the proof
that

1− E[V (x∗(c0 log n)] ≤ 1− E[V (xsparse)] ≤ c1

√
log n

n
√
n

,

for some universal constant c1 ≥ 2.

We next turn to the upper bound on the value of the Stackelberg game E[V (x∗)].
Lemma 2. There exists a universal constants c2 > 0 such that for random uniform Stackelberg
games,

1− E[V (x∗)] ≥ c2
√
log n

n
√
n

.

Proof. We will use similar notations as in the proof of the lower bound for E[V (xsparse)] in Lemma 1.
We define

S := {(i, j) : Ai,j ≥ 1− ϵn} where ϵn :=
c
√
log n

n
√
n

,

where c > 0 is a constant to be fixed. As in the proof of Lemma 1, the distribution of S corresponds
to adding each entry (i, j) independently with probability ϵn. Hence, Chernoff’s bound implies that

P
[∣∣|S| − n2ϵn

∣∣ > 1

2
n2ϵn

]
≤ 2e−

1
12n

2ϵn = 2e−
c
12

√
n. (9)

We define the complementary event by E := { c2
√
n log n ≤ |S| ≤ 3c

2

√
n log n}. Next, we introduce

the event that there are at most log n columns that contain at least 2 elements of S:

F1 := {|{j ∈ [n] : ∃i1 ̸= i2 ∈ [n], (i1, j), (i2, j) ∈ S}| ≤ log n} .

We have

P[Fc
1 ] ≤

1

log n

n∑
j=1

∑
i1 ̸=i2∈[n]

1[(i1, j), (i2, j) ∈ S] ≤ n3ϵ2

log n
= c2. (10)

In the first inequality we used Markov’s inequality. We next define the event in which S does not
contain three entries in the same column:

F2 := {∀j ∈ [n] : |{i ∈ [n] : (i, j) ∈ S}| ≤ 3} .

We give a lower bound on the probability of this event as follows,

P[Fc
2 ] ≤ E

∑
i∈[n]

∑
j1,j2,j3∈[n] distinct

1[(i, j1), (i, j2), (i, j3) ∈ S]

 ≤ n4 · ϵ3n ≤ c3
log2 n√

n
. (11)

Last, we define the event F := F1 ∩ F2. We suppose that this event is met in the rest of the proof.
We define G the set of good columns which contain exactly one element of S and B the set of bad
columns containing at least 2 elements of S. Under F1 we have |B| ≤ log n and all columns of B
contain exactly 2 elements of S. For any good column j ∈ G we let i(j) ∈ [n] be the row for which
(i(j), j) ∈ S. In the proof, we will treat separately columns G and B. More precisely, consider the
optimal strategy for the leader x⋆ ∈ ∆n. Up to resolving ties in favor of the leader, there exists a
column j ∈ [n] for which x⋆Aej ≥ V (x⋆). Now note that if j /∈ G ∪ B, we have for any x ∈ ∆n:

1− xAej =
∑
i∈[n]

xi(1−Ai,j) ≥ ϵn,

since for all i ∈ [n], (i, j) /∈ S. In other terms, for any η < ϵn,

{V (x⋆) > 1− η} ⊆
⋃

j∈G∪B

{
∃x ∈ ∆n, j = argmax

j′∈[n]

(x⊤B)j′ , x
⊤Aej > 1− η

}
. (12)
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From now, we reason conditionally on I := {S, E ,F , {Ai,j , (i, j) ∈ S}}. In particular, unless
mentioned otherwise, we always assume that E and F are satisfied. Under this conditioning, the
other entries of A and B are still all independent: the entries Ai,j for (i, j) /∈ S are i.i.d. uniform in
[0, 1− ϵn] while B has all entries i.i.d. uniform in [0, 1]. Note that conditionally on I, the variables
Bi(j),j for j ∈ G are i.i.d. uniform on [0, 1]. Then, we order G = {js, s ∈ [|G|]} by decreasing order
of Bi(js),js for js ∈ [|G|]. For convenience, we write is := i(js). From the previous discussion,
conditionally on I, the variables (Bis,js)s∈[|G|] are distributed as the order statistics of |G| i.i.d.
uniforms on [0, 1] (in reverse order). We next give bounds on the quantities

∆s := 1−Bis,js , s ∈ [|G|].

From the previous discussion, for any s ≤ |G|/4 and α ≥ 10, we have

P
[
∆s ≤

s

α|G|
| I
]
= PY∼Binom(|G|, s

α|G| )
[Y ≥ s]

(i)

≤ e−|G|D( s
|G|∥

s
α|G| )

(ii)

≤ 1

(α− 1)s(1−1/α)
≤ (2/α)s/2.

where in (i) the last inequality, we used Chernoff’s bound and in (ii) we used the identity D(p+ ϵ ∥
p) ≥ ϵ

2 ln
ϵ
p whenever ϵ ≥ 8p and p+ ϵ ≤ 1/4 (e.g. see Lemma 16 from [4]). When s ≥ |G|/4, we

can directly use

P
[
∆s ≤

s

2|G|
| I
]
≤ e−|G|D( s

|G|∥
s

2|G| ) ≤ e−c1|G| ≤ e−c1( c
2

√
n logn−3 logn) ≤ e−c2

√
n,

for some universal constants c1, c2 > 0. In the last inequality, we used the event E and F , under
which we have |G| ≥ |S| − 3|B| ≥ c

2

√
n log n− 3 log n. We then define the event

G(α) :=
⋂

s∈[S|

{
∆s ≥

s

2αc
√
n log n

}
.

Since we have |G| ≤ |S| ≤ 2c
√
n log n on E , the previous tail bounds imply for any s ∈ [|G|],

P[G(α)c | I] ≥
∑
s≥1

(2/α)s/2 + ne−c2
√
n ≤ c3√

α
+ e−c3

√
n, (13)

for some universal constant c3 > 0. We next add the variables Bi,j for (i, j) ∈ S to the conditioning
J := I ∪ {Bi,j , (i, j) ∈ S}, which does not affect the distribution of Ai,j and Bi,j for (i, j) /∈ S.

We now fix s ∈ [|G|]. We denote by i
(l)
s the index i ∈ [n] \ {is} with the l-th largest value of Ai,js .

We define for l ∈ [n− 1] the event

H1
s(α; l) :=

{
∃j ∈ [n] \ (G ∪ B) : 1−Bis,j ≤

s

4αc
√
n log n

and ∀l′ ∈ [l] : B
i
(l′)
s ,j

≥ B
i
(l′)
s ,js

}
.

We recall that |G ∪ B| ≤ |S| ≤ 2c
√
n log n under E . In particular, for n sufficiently large we have

|[n]\ (G ∪B)| ≥ n/2. Also, conditionally on J , all values of Bi,js for i ̸= is, and Bi,j for j /∈ G ∪B
are i.i.d. uniform on [0, 1]. Hence, we can directly bound the probability of failure of H1

s(α; l) as
follows:

P[H1
s(α; l)

c | J ] = EB
i
(1)
s ,js

,...,B
i
(l)
s ,js

(1− s(1−B
i
(1)
s ,js

) . . . (1−B
i
(l)
s ,js

)

4αc
√
n log n

)n−|G∪B|


≤ EB
i
(1)
s ,js

,...,B
i
(l)
s ,js

[
exp

(
−
s(1−B

i
(1)
s ,js

) . . . (1−B
i
(l)
s ,js

)

8αc

√
n

log n

)]
.

We recall that all the variables B
i
(1)
s ,js

, . . . , B
i
(l)
s ,js

are i.i.d. uniform on [0, 1]. In particular, for l = 1,
we have

P[H1
s(α; 1)

c | J ] ≤ 1

n2
+ 16αc

(log n)3/2

s
√
n

,
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where we distinguished whether 1 − Bi′s,js
> 16αc(log n)3/2/(s

√
n) or not. Next, for l ≥ 2,

− log(1 − B
i
(1)
s ,js

), . . . ,− log(1 − B
i
(l)
s ,js

) are i.i.d. exponential E(1) variables. Hence, (1 −
B

i
(1)
s ,js

) . . . (1−B
i
(l)
s ,js

) is distributed as e−Z were Z ∼ Erlang(l, 1). Then, letting ln :=
⌊
1
8 log n

⌋
and considering whether Z ≤ 2ln or not,

P[H1
s(α; ln)

c | J ] ≤ exp

(
− e−2ln

√
n

8αc
√
log n

)
+ P[Z ≥ 2ln]

(i)

≤ exp

(
− n1/4

8αc
√
log n

)
+ 2lne−2ln ≤ exp

(
− n1/4

8αc
√
log n

)
+

c4
nc4

,

for some universal constant c4 > 0. In (i), we used P[Z ≥ x] = e−x
∑ln−1

n=0
1
n!x

n for x ≥ 0. We
then define the event

H1(α) :=
⋂

s∈[|G|],s≥(logn)3

H1
s(α; 1) ∩

⋂
s∈[|G|],s≤(logn)3

H1
s(α; ln).

From now, we suppose that α ≤ n1/8. Then, taking the union bound, we obtained

P[H1(α)c | J ] ≤ c5
nc5

, (14)

for some universal constant c5 > 0.

Next, we recall that conditionally on J all these variables Ai,js for i ̸= is are i.i.d. and stochastically
dominated by the uniform distribution on [0, 1]. We introduce the following event for l < n− 1

H2
s(α; l) :=

{
1−A

i
(l+1)
s ,js

≥ l + 1

αns2/3

}
.

If l = 1, we can bound its probability of failure as follows

P[H2
s(α; 1)

c | J ] ≤ n2

(
2

αns2/3

)2

=
4

α2s4/3
.

In the first inequality, we used the fact that by construction, A
i
(2)
s ,js

is the second largest among Ai,js

for i ̸= is, and hence is stochastically dominated by the second largest value among n i.i.d. uniforms
on [0, 1]. Similarly, recalling that ln =

⌊
1
8 log n

⌋
, and α ≥ 10, we can also bound the probability of

failure for l = ln as follows:
P[H2

s(α; ln)
c | J ] ≤ PY∼Binom(n−1, ln+1

αns2/3
)[Y ≥ ln + 1]

(i)

≤ e−(n−1)D( ln+1
n−1 ∥ ln+1

αn ) ≤
(
2

α

) ln+1
4

≤ c6
nc6

,

for some universal constant c6 > 0. In summary, letting

H2(α) :=
⋂

s∈[|G|],s≥(logn)3

H2
s(α; 1) ∩

⋂
s∈[|G|],s≤(logn)3

H2
s(α; ln),

taking the union bound, we also obtained

P[H2(α)c | J ] ≤ c7
α2

+
c7
nc7

, (15)

for some universal constant c7 > 0. With all these events at hand, we are ready to treat each
column j ∈ G separately. In the following, we suppose that E ,F ,G(α),H1(α),H2(α) hold and that
10 ≤ α ≤ n1/8. We fix s ∈ [|G|] and for convenience, we write ln(s) := ln if s ≤ (log n)3 and
otherwise ln(s) := 1.

Let x ∈ ∆n such that js ∈ argmaxj′∈[n](x
⊤B)j′ . Let j ∈ [n] \ (G ∪ B) be the index of a column

satisfying the constraints fromH1
s(α; ln(s)). Then,

0 ≤ (x⊤B)js − (x⊤B)j
(i)

≤ −xis

s

2αc
√
n log n

+
∑

i∈[n]\{is,i(1)s ,...,i
(ln(s))
s }

xi(Bi,js −Bi,j)

≤ −xis

s

2αc
√
n log n

+
∑

i∈[n]\{is,i(1)s ,...,i
(ln(s))
s }

xi,
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where in (i) we used bothH1
s(α; ln(s)) and the lower bound on ∆s from G(α). Next,

1− x⊤Aejs ≥ (1−A
i
(ln(s)+1)
s ,js

)
∑

i∈[n]\{is,i(1)s ,...,i
(ln(s))
s }

xi

(i)

≥ s1/3(ln(s) + 1)

2α2cn
√
n log n

· xis .

In (i) we used the previous equation as well as H2(α; ln(s)). We recall that if s ≤ (log n)3, then
ln(s) + 1 = ln + 1 ≥ 1

8 log n; while if s > (log n)3 we directly have s1/3(ln(s) + 1) ≥ 2 log n. In
all cases, we obtain

1− x⊤Aejs ≥
√
log n

16α2cn
√
n
· xis

Also, since for any i ̸= is one has (i, js) /∈ S, we always have 1 − x⊤Aejs ≥ ϵn(1 − xis). In
summary, under E ,F ,G(α),H1(α),H2(α),

∀j ∈ G, j ∈ argmax
j′∈[n]

(x⊤B)j′ ⇒ 1− x⊤Aej ≥ min

(
c

2
,

1

32α2c

) √
log n

n
√
n

. (16)

Edge case: j ∈ B. It only remains to focus on columns in B. We recall that under F , we have
|B| ≤ log n, and that compared to columns in G, these contain two elements in S instead of one.
Because there are only very few of these columns, we can adapt the previous proof but with looser
parameters. Conditional on S,F , the values of Bi,j for all i, j ∈ [n] are i.i.d. uniform on [0, 1]. In
particular, if we define

H3 :=

{
∀j ∈ B,∀i ∈ [n], (i, j) ∈ S : 1−Bi,j ≥

1

log2 n

}
,

then by the union bound we directly have

P[(H3)c | S,F ] ≤ 2|B|
log2 n

≤ 2

log n
. (17)

Next, we define

H4 :=

{
∀j ∈ B,∃j′ ∈ [n] \ (G ∪ B) : ∀i ∈ [n], (i, j) ∈ S : Bi,j′ ≥

1 +Bi,j

2

}
.

We reason conditionally on E ,F , S, and {Bi,j , (i, j) ∈ S}. By the union bound,

P[(H4)c | S, E ,F ] ≤ P[(H3)c | S,F ] + P[(H4)c | S, E ,F ,H3]

(i)

≤ 2

log n
+
∑
j∈B

(
1− 1

4 log4 n

)n−|G∪B|

(ii)

≤ 2

log n
+ |B|e−

n
8 log4 n ≤ 2

log n
+ e

− n
8 log4 n log n. (18)

In (i) we used the eventH3 and in (ii) we used the fact that |G ∪ B| ≤ |S| ≤ n/2 for n sufficiently
large. Next, we define

H5 :=

{
∀j ∈ B,∀i ∈ [n], (i, j) /∈ S : 1−Ai,j ≥

1

n log2 n

}
.

We recall that conditional on S,F , the values of Ai,j for (i, j) /∈ S are i.i.d. stochastically dominated
by a uniform on [0, 1]. Hence, by the union bound

P[(H5)c | S,F ] ≤ (n− 2)|B|
n log2 n

≤ 1

log n
. (19)

Now suppose that E ,F ,H4,H5 hold. Fix any j ∈ B and x ∈ ∆n such that j ∈
argmaxj′∈[n](x

⊤B)j′ . Then, let j′ ∈ [n] \ (G ∪ B) corresponding to the event H4. For conve-
nience, let i1 ̸= i2 be the row indices for which (i1, j), (i2, j) ∈ S. Then, similarly as in the main
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case, we have

0 ≤ (x⊤B)j − (x⊤B)j′
(i)

≤ −xi1 + xi2

2 log2 n
+

∑
i∈[n]\{i1,i2}

xi(Bi,j −Bi,j′)

≤ −xi1 + xi2

2 log2 n
+

∑
i∈[n]\{i1,i2}

xi.

In (i) we usedH3,H4 and the definition of j′. On the other hand, sinceH5 holds,

1− x⊤Aej ≥
1

n log2 n

∑
i∈[n]\{i1,i2}

xi ≥
xi1 + xi2

2n log4 n
.

As in the main case, we also have 1 − x⊤Aej ≥ ϵn(1 − xi1 + xi2). In summary, under
E ,F ,H3,H4,H5, we obtained

∀j ∈ B, j ∈ argmax
j′∈[n]

(x⊤B)j′ ⇒ 1− x⊤Aej ≥ min

(
c

2
,

√
n

4 log4.5 n

) √
log n

n
√
n

. (20)

Combining bounds together. Combining Eqs. (16) and (20) together with the main decomposi-
tion from Eq. (12), we showed that under E ,F ,G(α),H1(α),H2(α),H3,H4,H5, we have for n
sufficiently large

1− V (x⋆) ≥ min

(
c

2
,

1

32α2c

) √
log n

n
√
n

.

On the other hand, combining Eqs. (9) to (11), (13) to (15) and (17) to (19), we have

P
[
E ∩ F ∩ G(α) ∩H1(α) ∩H2(α) ∩H3 ∩H4 ∩H5

]
≥ 1− c2 − c8√

α
− c8

log n
,

for some universal constant c8. As a result, we proved the desired expected bound

E [1− V (x⋆)] ≥ c9

√
log n

n
√
n

,

for some universal constant c9 > 0. As a remark, by adjusting the parameters c and α, we can also
get bound with high probability.

Together, Lemmas 1 and 2 prove Theorem 1.

A.2 Proof of Theorem 2

We start by constructing a candidate solution for the defenders then lower bound its value.

Construction of a solution to the security game. We order the schedules by decreasing order of
value for the attacker. Formally, we define

vi := max
t∈Si

uu
a(t) and ti := argmax

t∈Si

uu
a(t), i ∈ [k]

Then, we order [k] = {i(1), . . . , i(k)} such that vi(1) ≥ vi(2) ≥ . . . ≥ vi(k). Next, we define

Lmax := max

{
l ∈ {1, . . . , k} :

l∑
s=1

vi(s) − vi(l)

vi(s)
< R

}
.

Intuitively, by adjusting their schedules, Lmax corresponds to the maximum index l of the schedule
Si(l) that the defenders can force the attacker to focus on. The defenders then focus on the schedule
with index

l∗ := argmax
l∈[Lmax]

uu
d(ti(l)).
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We then compute the corresponding probabilities of coverage. We consider the following probabilities
of coverage for each schedule:

pi :=

{
vi−vi(l∗)+δ

vi
, if i = i(l), l < l∗

0 otherwise,

where δ > 0 is sufficiently small so that we still have
∑

i∈[k] pi ≤ K and pi < 1 (provided vi(l∗) > 0).
We recall that this is possible since l∗ ≤ Lmax. We then construct a scheduling strategy for the
defenders such that each schedule Si is covered with probability pi.

For instance, we can proceed as follows. We sampled a uniform distribution U on [0, 1]. For any
r ∈ [R] let ir be the index such that

ir−1∑
i=1

pi < U + r ≤
ir∑
i=1

pi.

For r = R, there may not always be such an index, in that case we can arbitrarily choose iR = 1.
The final schedule is then to assign defender r to Si(r).

Analysis of the proposed solution. By construction, each schedule Si has probability exactly
min(pi, 1) of being covered. Since the utilities uu

a(t) for t ∈ [T ] are sampled uniformly in [0, 1], on
an event E of probability 1 all elements uu

a(t) for t ∈ [T ] are distinct. Then, on this event we have for
any l < l∗ that vi(l) > vi(l∗), and hence we could always choose δ > 0 such that pi ≤ 1.

Therefore, on E , the expected value of target t ∈ Si(l) for l ∈ [k] for the attacker is

v(t) =

{
uu
a(t) ≤ vi(l) if l ≥ l∗

uu
a(t)(1− pi) ≤ vi(1− pi) = vi(l∗) − δ. if l < l∗

Further, under E , the inequalities are strict whenever t ̸= ti(l) and we have vi(l) < vi(l∗) whenever
l > l∗. In summary, the best-response for the attacker is to attack the target ti(l∗).

Therefore, the value of the defender under E is

V ∗ = uu
d(ti(l∗)) = max

l∈[Lmax]
uu
d(ti(l)),

where in the last equality we used the definition of l∗. Note that Lmax is defined using only the
utilities for the adversary uu

a(t) for t ∈ [T ]. Hence, the previous derivation shows that conditionally
on Lmax and E , V ∗ is distributed as the maximum of Lmax i.i.d. uniform on [−1, 0] random variables,
that is, as X − 1 where X ∼ Beta(Lmax, 1). Therefore,

E[V ∗] = E[E[V ∗ | Lmax, E ]1[E ]] = −ELmax

[
1

Lmax + 1

]
, (21)

where we used the fact that P[E ] = 1. It remains to lower bound Lmax. For any l ∈ [k], we have

l∑
s=1

vi(s) − vi(l)

vi(s)
≤ l(1− vi(l)).

Note that by construction, v1, . . . , vk are independent because they are the maximum of the utilities
of the attacker on each schedule and these are disjoint. Further, vi ∼ Beta(|Si|, 1). Hence, for any
i ∈ [k] and z ∈ [0, 1],

P[vi ≥ 1− z] = 1− (1− z)|Si| ≥ 1− e−z|Si| ≥ min(z|Si|, 1)
2

.

Now fix l ∈ [k/4] and let z(l) ≥ 0 such that

1

2

∑
i∈[k]

min(z(l)|Si|, 1) = 2l.
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Then, Bernstein’s inequality implies that

P[vi(l) < 1− z(l)] = P

∑
i∈[k]

1[vi ≥ 1− z(l)] < l


≤ P

∑
i∈[k]

1[vi ≥ 1− z(l)] <
1

2

∑
i∈[k]

P[vi ≥ 1− z(l)]


≤ exp

− 1

10

∑
i∈[k]

P[vi ≥ 1− z(l)]

 ≤ e−l/5.

We recall that α =
maxi∈[k] |Si|
maxi∈[k] |Si| and

∑
i∈[k] |Si| = T , which implies |Si| ≥ T

kα for all i ∈ [k]. Then,
for l < k/4,

4l =
∑
i∈[k]

min(z(l)|Si|, 1) ≥ k ·min

(
z(l)T

αk
, 1

)
=

z(l)T

α
,

where in the last inequality, we used the fact that if the minimum was 1 we would have 4l ≥ k which
contradicts the hypothesis on l. In summary, for any l < k/4, with probability at least 1− e−l/5 we
obtained

l∑
s=1

vi(s) − vi(l)

vi(s)
≤ lz(l) ≤ 4αl2

T
.

Let l̃ := min
(
k/4,

√
RT
5α

)
lmax :=

⌊
l̃
⌋

and denote by F the above event for l = lmax. Under E ∩F
we have

lmax∑
s=1

vi(s) − vi(lmax)

vi(s)
< R,

and as a result Lmax ≥ lmax. Plugging this into Eq. (21) and recalling that E has probability one
gives

E[V ∗] ≥ − 1

lmax + 1
− P[Fc] ≥ − 1

lmax + 1
− e−lmax/5

≳ −1[lmax = 0]− 1[lmax ≥ 1]

lmax
≳ −1

l̃
≳ −

(
1

k
+

√
α

RT

)
,

where the notation ≳ only hides universal constants. This ends the proof.

B Algorithms and Programs

B.1 Schedule-Finding Algorithms

Algorithm 1 and the subroutine given by Algorithm 2 are used to return valid general schedules
(multiple target coverages per schedule allowed) per defender resource.

The simple schedule case is handled via a closed-form condition: for any target t and home base node
h, if the shortest path p from h to t, in a game with defense time threshold δ, satisfies T ≥ 2|p|+δ−1,
then target t is considered validly defendable as a singleton schedule, as this condition implies that
the game length T is long enough for a defender resource to travel to it from its home base, wait the
required number of steps to meet the defense time threshold, and return to home base.

B.2 Best Response Oracles

B.2.1 Best Response Oracles in Normal-Form Double Oracle

As part of the double oracle algorithm for solving zero-sum security games, the normal-form defender
best response subroutine DEFENDERBRNF solves a mixed-integer program to determine the optimal
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Algorithm 1 Find General Schedules

Require: Graph G = (V,E), start node h, number of timesteps T , defense time threshold δ, path
cost per edge traveled c

Ensure: Set of valid schedules with associated movement costs
1: Ssimple ← GETSIMPLESCHEDULES(G, h, T , δ)
2: D ← ∅ ▷ Initialize general schedule list
3: for all t ∈ Ssimple do
4: Add {t} to D with corresponding round-trip cost
5: end for
6: function BACKTRACK(S,R)
7: if S ̸= ∅ then
8: (p, cost, steps)← GETFULLPATH(G, h, S, δ)
9: if cost ≤ T then

10: Add (S, c · steps) to D
11: end if
12: end if
13: for i = 1 to |R| do
14: BACKTRACK(S ∪ {Ri}, R>i)
15: end for
16: end function
17: BACKTRACK(∅, Ssimple)
18: return D

Algorithm 2 Get Full Path

1: function GETFULLPATH(G, h, S, δ)
2: Initialize min_cost←∞, min_steps←∞, best_path← ∅
3: for all permutations π of S do
4: p← [h], c← 0, s← 0, u← h
5: for all v ∈ π do
6: q ← SHORTESTPATH(G, u, v)
7: if q does not exist then continue to next permutation
8: end if
9: Append q \ {u} to p ▷ Avoid duplicate nodes

10: c← c+ |q| − 1, s← s+ |q| − 1
11: Append v to p (δ − 1) times ▷ Dwell at v
12: c← c+ δ − 1
13: u← v
14: end for
15: r ← SHORTESTPATH(G, u, h)
16: if r does not exist then continue to next permutation
17: end if
18: Append r \ {u} to p
19: c← c+ |r| − 1, s← s+ |r| − 1
20: if c < min_cost then
21: best_path← p, min_cost← c, min_steps← s
22: end if
23: end for
24: if best_path = ∅ then
25: return (None,∞,∞)
26: else
27: return (best_path,min_cost,min_steps)
28: end if
29: end function
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joint strategy for the defender, given a fixed distribution over attacker actions. This best response
accounts for spatial movement constraints, home base assignments, and a defense time threshold δ.

Let G = (V,E) be a directed graph over which defender movement is defined, and let T denote the
number of timesteps in the game. The defender team consists of D mobile resources, each with a
valid home base set Hd ⊆ V . Let T ⊆ V be the full set of targets, and let Ta ⊆ T denote the subset
of targets currently selected by the attacker. Each t ∈ Ta is associated with a target value Vt and a
probability of attack Pt.

We define binary variables v
(d)
i,τ ∈ {0, 1} to indicate whether defender d is at node i at timestep

τ ∈ {0, . . . , T }, and gt ∈ {0, 1} to indicate whether target t ∈ Ta is successfully interdicted. The
DEFENDERBRNF optimization is given by:

max
v,g

∑
t∈Ta

Pt · Vt · gt

s.t.
∑
i∈Hd

v
(d)
i,0 = 1,

∑
i∈Hd

v
(d)
i,T = 1 ∀d ∈ {1, . . . , D} (Start and end at home base)

v
(d)
i,0 = 0, v

(d)
i,T = 0, ∀i /∈ Hd, ∀d (No start/end outside home base)

v
(d)
i,τ ≤

∑
j∈N (i)

v
(d)
j,τ−1, ∀i ∈ V, ∀τ ∈ {1, . . . , T }, ∀d (Feasible movements)

∑
i∈V

v
(d)
i,τ = 1, ∀τ ∈ {0, . . . , T }, ∀d (Single location per timestep)

δ · gt ≤
T −1∑
τ=0

D∑
d=1

v
(d)
t,τ , ∀t ∈ Ta (Interdiction threshold)

v
(d)
i,τ ∈ {0, 1}, gt ∈ {0, 1}

Here, N (i) denotes the in-neighbors of node i (including self-loops for waiting). Constraints enforce
defender path feasibility, ensure one location per timestep, and require sufficient visitation to interdict
each target in Ta.

For our Normal-Form Double Oracle algorithm, we define the ATTACKERBRNF as selecting the
k targets with highest expected attacker value, where utility is discounted by the probability qt that
target t is interdicted under the current defender strategy xd. Formally, the attacker solves:

ATTACKERBRNF(xd) = argmax
S⊆T, |S|=k

∑
t∈S

Vt · (1− qt)

where T is the set of all targets, Vt is the value for target t, and qt is the interdiction probability of t
induced by defender strategy xd. The attacker selects the top-k targets with the highest discounted
expected utility.

B.2.2 Best Response Oracles in Schedule-Form Double Oracle

In schedule-form security games, each defender resource selects a schedule—a subset of targets it
can reach and cover—subject to mobility and defense time threshold constraints. Given a fixed mixed
strategy of the attacker, the defender’s best response selects one schedule per resource to maximize
expected utility. LetR denote the set of defender resources, T the set of targets, and Sr ⊆ 2T the set
of feasible schedules for defender resource r ∈ R. Let wt denote the expected utility of defending
target t, computed from the current attacker strategy.

We define binary variables xr,i ∈ {0, 1} indicating selection of the ith schedule in Sr, and gt ∈ {0, 1}
indicating whether target t is covered. The defender best response DEFENDERBRSF solves:
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min
x,g

−
∑
t∈T

wt · gt

s.t.
|Sr|∑
i=1

xr,i = 1, ∀r ∈ R (One schedule per resource)

gt ≤
∑
r∈R

∑
i:t∈Sr[i]

xr,i, ∀t ∈ T (Coverage implies schedule selection)

xr,i ∈ {0, 1}, gt ∈ {0, 1}

To compute the attacker best response, we assume the attacker selects the single target t ∈ T with the
highest expected utility under the defender’s current mixed strategy. Let Dd(j) be the probability
assigned to defender pure strategy j, and let t ∈ Sτ

j denote coverage of target t at timestep τ under
schedule j. The attacker solves:

ATTACKERBRSF(xd) = argmax
t∈T

∑
j

Dd(j) ·
{
V a

c,t if t ∈ Sj

V a
uc,t otherwise

The attacker computes expected utility using the coverage status of each target across all defender
schedules, receiving V a

c,t if t is ever covered, and V a
uc,t otherwise.

All experiments using best response oracles were computed with equilibrium gap tolerance ϵ = 10−12.

B.3 Time Constrained Depth First Search

To enumerate the full set of valid movement actions for a team of mobile units on a graph, we employ
a time-constrained depth-first search (DFS). This recursive procedure explores all paths of a fixed
length T , starting from allowed initial nodes and optionally constrained by required end nodes or
a return-to-start condition. Waiting behavior is supported by including self-loops when allowed.
For multiple units, individual path sets are generated and combined via Cartesian product, then
reformatted into time-expanded action matrices for use in normal-form action space construction.

Algorithm 3 GenerateMovingPlayerActions(G,m,S, T , wait, E , return)
Require: Graph G = (V,E), number of units m, start node sets S = (S1, . . . , Sm), number of

timesteps T , waiting flag wait, end node sets E = (E1, . . . , Em) (optional), return-to-start flag
return

Ensure: Set of valid movement actions for m units over T timesteps
1: if m = 0 then
2: return ∅
3: end if
4: if S or E are not length m then
5: raise error
6: end if
7: if S is empty then
8: S ← (V, . . . , V )
9: end if

10: if E is empty then
11: E ← (V, . . . , V )
12: end if
13: for i = 1 to m do
14: Pi ← GENERATEPATHS(G,Si, Ei, T , wait, return)
15: end for
16: A ← all Cartesian products of (P1, . . . ,Pm)
17: Format each joint action in A into timestep-major form
18: return A
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Algorithm 4 GeneratePaths(G,S,E, T , wait, return)
Require: Graph G = (V,E), valid start nodes S, end nodes E, timesteps T , waiting flag wait,

return-to-start flag return
Ensure: All valid paths of length T from S to E

1: Initialize all_paths← ∅
2: for all s ∈ S do
3: DFS([s], s)
4: end for
5: return all_paths
6: function DFS(path, origin)
7: if |path| = T then
8: if path[−1] ∈ E or return and path[−1] = origin then
9: Add path to all_paths

10: end if
11: return
12: end if
13: v ← path[−1]
14: N ← neighbors(v)
15: if wait or N = ∅ then
16: DFS(path+ [v], origin)
17: end if
18: for all u ∈ N do
19: DFS(path+ [u], origin)
20: end for
21: end function

C Framework Details

This Appendix details the the the GUARD game class hierarchy in greater detail than the main
text. For exact implementation details, please visit our public Git repository for this project at
https://github.com/CoffeeAndConvexity/GUARD.

C.1 Graph Game Parameters

The Graph Game class serves as the foundational layer of the GUARD architecture and is respon-
sible for configuring dynamic multi-agent game environments on graphs. It supports customizable
parameters to model general-sum and zero-sum security games with both moving and stationary
resources.

Core Parameters. The game is initialized with the following attributes:

• A directed graph G = (V,E) representing the environment.

• A time horizon T specifying the number of timesteps.

• Resource counts for each player: number of moving/stationary attackers and defenders.

• Allowed start and end node sets for moving players (e.g., patrol bases or entry points).

• Interdiction protocol, which determines how target interdiction occurs, including time
threshold and capture radius parameters.

• A set of Target objects, each with attacker and defender value attributes.

• Additional game constraints: waiting permissions (allow_wait) and forced return to origin
for moving resources (force_return).

Action Space Generation. The generate_actions(player) method constructs a valid joint
action space for either the attacker or defender, handling both moving and stationary resources.
Moving resource actions are computed using a constrained depth-first search that respects home
bases, end nodes, waiting rules, and return constraints (see Appendix B.3). Stationary attacker
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actions select from subsets of the target nodes (or include None), while stationary defender actions
are generated via Cartesian products of valid placements. Combined action paths are returned in
timestep-major form as T ×N arrays.

Utility Evaluation. The evaluate_actions(defender_action, attacker_action)
method simulates interactions between defender and attacker paths using the game’s interdiction
protocol. Attacker utilities are calculated by summing the values of targets reached without being
interdicted. Defender values are represented as the negation of attacker scores in zero-sum settings or
separately in general-sum settings. Interdiction for moving attackers is radius-based and computed at
each timestep; interdiction for stationary attackers is governed by a defense time threshold requiring
δ timesteps spent by defender resources at attacker-selected targets.

Utility Matrix Construction. The generate_utility_matrix(general_sum,
defender_step_cost) method constructs the full game matrix by evaluating all defender-
attacker action pairs. In zero-sum mode, the matrix U ∈ R|Ad|×|Aa| is normalized by its maximum
absolute value. In general-sum mode, two separate matrices are returned for attacker and defender
utilities, with optional penalties applied for defender movement steps.

General-Sum Evaluation. The evaluate_actions_general method extends utility computa-
tion by incorporating defender path costs. This enables richer modeling of path efficiency and
asymmetric incentives.

C.2 Security Game Parameters

The Security Game class extends the general Graph Game layer to implement a canonical Stackelberg
Security Game abstraction. It enforces a fixed role structure with stationary attackers (who each
select a single target) and moving defenders (who patrol over a graph from designated home bases).
This class is designed for both zero-sum and general-sum formulations and supports both normal-form
and schedule-form representations.

Core Assumptions. The class initializes with:

• Only stationary attackers: no attacker movement paths are generated.

• Only moving defenders: all defender units are assigned to start and end nodes (typically
enforcing home base return).

• An InterdictionProtocol object, which governs coverage rules based on defense time
thresholds and graph-based distances.

Schedule Form Capabilities. In schedule-form mode, each defender is assigned a set of feasible
schedules (i.e., subsets of targets reachable within the time horizon T while satisfying interdiction
dwell time requirements and optional return constraints). These schedules are generated via a
recursive backtracking procedure (see Algorithm 1) and then deduplicated.

The class supports:

• Defender schedule enumeration: find_valid_schedules(start_node).

• Cost-aware joint schedule assembly: generate_defender_actions_with_costs.

• Utility matrix generation: generate_schedule_game_matrix, with general-sum support
and normalization.

• Target utility assignment using attacker and defender multipliers, optionally randomized for
experimental baselines.

Target Utility Matrix. Each target is assigned a utility tuple reflecting covered/uncovered values
for each team. These are stored as a 4× |T | matrix:

• Row 0: Defender utility if uncovered

• Row 1: Defender utility if covered
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• Row 2: Attacker utility if covered

• Row 3: Attacker utility if uncovered

This matrix can be optionally scaled or randomized to reflect asymmetric preferences or experimental
perturbations.

Output. The final dictionary returned from schedule_form(...) includes defender schedules,
actions, and (if enabled) attacker and defender utility matrices. These outputs are formatted for com-
patibility with double oracle solvers, matrix-based Stackelberg optimization, or heuristic evaluations.

This abstraction isolates core Stackelberg security-game functionality while remaining modular
enough to support domain-specific modeling in higher layers, including target value scaling, defender
mobility constraints, and payoff asymmetries.

C.3 Domain-Specific Game Parameters

The GreenSecurityGame and InfraSecurityGame classes extend the SecurityGame layer to support
input data processing and target construction. Both game types ultimately instantiate and return a
configured SecurityGame object, but differ in how graphs and targets are derived.

Common Parameters. Both GSG and ISG classes accept the following arguments during genera-
tion:

• num_attackers: Number of stationary attackers (e.g., poachers or saboteurs).

• num_defenders: Number of mobile defender units.

• home_base_assignments: List of coordinate locations (lat, lon) from which each defender
unit may begin/end patrol.

• num_timesteps: Total number of time steps in the game.

• interdiction_protocol: Interdiction rules (e.g., defense time threshold).

• defense_time_threshold: Number of defender steps at a target required for successful
interdiction.

• generate_utility_matrix: Boolean flag to compute the full normal-form utility matrix.

• generate_actions: Whether to enumerate full defender and attacker action sets.

• force_return: If true, all defender paths must return to their starting location.

• schedule_form: If true, schedule-form representation is used.

• general_sum: Enables general-sum game formulation with asymmetric target values.

• alpha: Controls strength of escape-proximity influence on attacker utility.

• random_target_values: Overwrites target values with random values if true (zero-sum
only).

• randomize_target_utility_matrix: Randomizes utility entries in the target matrix
(for experiments).

Green Security Games. As detailed in the main text, GSGs define their graph using a custom
spatial grid over a bounding box. Each cell contains animal tracking data and is scored using either
density (raw frequency of observations) or centroid (K-means clustering with cluster weights).
Optional escape-line proximity adjustments are applied to model attacker incentives for exit routes.
Targets are created using the cell center, population density, and animal value scaling factors.

Additional parameters specific to GSGs include:

• scoring_method: “centroid” or “density”, for scoring animal activity.

• num_clusters: Number of centroid clusters (for centroid mode).

• num_rows, num_columns: Grid resolution.
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• escape_line_points: Two-point line representing an attacker escape boundary for com-
puting distance-to-escape metrics.

• attacker_animal_value: Scaling factor for attacker utilities based on species value
(functions to normalize payoffs).

• defender_animal_value: Scaling factor for defender valuation (e.g., tourism, biodiver-
sity - functions to normalize payoffs).

Infrastructure Security Games. As mentioned in the main text, ISGs use OpenStreetMap street
networks and power infrastructure feature data to construct real-world graphs. Nodes are street
intersections, and targets are mapped from power infrastructure features to the closest node. Target
values are computed using population estimates (from Census block data) and infrastructure type
multipliers.

Additional parameters specific to ISGs include:

• infra_df: DataFrame of infrastructure features with coordinates and types.

• block_gdf: Census block GeoDataFrame with geometry and population counts.

• infra_weights: Dictionary of weights per infrastructure type (e.g., medical clinic,
power_tower).

• mode: Either “block” or “radius” to determine population assignment method.

• escape_point: Coordinate (x, y) used to assign escape proximity-based scaling.

• population_scaler: Exponent applied to log-population terms in score computation.

• attacker_feature_value, defender_feature_value: Scaling weights for general-
sum target utilities, serves to normalize payoffs.

General-Sum and Schedule-Form Options. If general-sum mode is enabled, the system allows
asymmetric target coverage scaling factors:

• attacker_penalty_factor: Scales down (positive) gained attacker value when a target
is covered by a defender schedule.

• defender_penalty_factor: Scales down (negative) incurred defender value when a
target is covered by a defender schedule.

• defender_step_cost: Optional cost incurred by defenders per movement step.

If schedule-form mode is enabled:

• simple: If True, only single-target schedules are considered.

• The system generates valid schedules per defender and computes either full utility matrices
or reduced representations as needed.

Output. Each domain-specific game returns a fully parameterized SecurityGame instance, with
optional attributes: defender_actions, attacker_actions, utility matrices (utility_matrix,
attacker_utility_matrix, defender_utility_matrix), and schedule-form dictionaries, de-
pending on input configuration.

C.4 Overpass Turbo Query for OSM NYC Civil Infrastructure

[out:json][timeout:25];
(

// Healthcare
node["amenity"="hospital"](40.4774, -74.2591, 40.9176, -73.7004);
way["amenity"="hospital"](40.4774, -74.2591, 40.9176, -73.7004);
relation["amenity"="hospital"](40.4774, -74.2591, 40.9176, -73.7004);
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node["amenity"="clinic"](40.4774, -74.2591, 40.9176, -73.7004);
way["amenity"="clinic"](40.4774, -74.2591, 40.9176, -73.7004);
relation["amenity"="clinic"](40.4774, -74.2591, 40.9176, -73.7004);

// Education
node["amenity"="school"](40.4774, -74.2591, 40.9176, -73.7004);
way["amenity"="school"](40.4774, -74.2591, 40.9176, -73.7004);
relation["amenity"="school"](40.4774, -74.2591, 40.9176, -73.7004);

node["amenity"="university"](40.4774, -74.2591, 40.9176, -73.7004);
way["amenity"="university"](40.4774, -74.2591, 40.9176, -73.7004);
relation["amenity"="university"](40.4774, -74.2591, 40.9176, -73.7004);

// Water & Sanitation
node["man_made"="water_works"](40.4774, -74.2591, 40.9176, -73.7004);
way["man_made"="water_works"](40.4774, -74.2591, 40.9176, -73.7004);
relation["man_made"="water_works"](40.4774, -74.2591, 40.9176, -73.7004);

node["man_made"="wastewater_plant"](40.4774, -74.2591, 40.9176, -73.7004);
way["man_made"="wastewater_plant"](40.4774, -74.2591, 40.9176, -73.7004);
relation["man_made"="wastewater_plant"](40.4774, -74.2591, 40.9176, -73.7004);

// Energy Utilities
node["power"](40.4774, -74.2591, 40.9176, -73.7004);
way["power"](40.4774, -74.2591, 40.9176, -73.7004);
relation["power"](40.4774, -74.2591, 40.9176, -73.7004);

// Government and Emergency Services
node["amenity"="fire_station"](40.4774, -74.2591, 40.9176, -73.7004);
way["amenity"="fire_station"](40.4774, -74.2591, 40.9176, -73.7004);
relation["amenity"="fire_station"](40.4774, -74.2591, 40.9176, -73.7004);

node["amenity"="police"](40.4774, -74.2591, 40.9176, -73.7004);
way["amenity"="police"](40.4774, -74.2591, 40.9176, -73.7004);
relation["amenity"="police"](40.4774, -74.2591, 40.9176, -73.7004);

node["amenity"="courthouse"](40.4774, -74.2591, 40.9176, -73.7004);
way["amenity"="courthouse"](40.4774, -74.2591, 40.9176, -73.7004);
relation["amenity"="courthouse"](40.4774, -74.2591, 40.9176, -73.7004);

// Critical Infrastructure
node["man_made"="bunker_silo"](40.4774, -74.2591, 40.9176, -73.7004);
way["man_made"="bunker_silo"](40.4774, -74.2591, 40.9176, -73.7004);
relation["man_made"="bunker_silo"](40.4774, -74.2591, 40.9176, -73.7004);

// Communications
node["man_made"="communications_tower"](40.4774, -74.2591, 40.9176, -73.7004);
way["man_made"="communications_tower"](40.4774, -74.2591, 40.9176, -73.7004);
relation["man_made"="communications_tower"](40.4774, -74.2591, 40.9176, -73.7004);

);
out body;
>;
out skel qt;

C.5 Data Licenses and Attribution

All data used for building games with GUARD (movebank, OSM, Census) do not include personally
identifiable information or offensive content. All elephant study data is publicly available from the
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Movebank website [49] and with creative commons (CC) [32] and CC BY-NC 4.0 [22] licenses
permitting use without direct consent with correct attribution and non-commercial applications.

C.6 Limitations

The GUARD framework exhibits several scalability limitations when applied to dense environments
or large parameter configurations. In particular, for path-based NFG formulations over highly
connected graphs, generating instances with a large number of timesteps (e.g., 11 or more) while
requesting explicit computation of action sets and utility matrices can lead to prohibitively slow
game construction. At this scale, the number of valid defender paths can exceed 106, rendering
the corresponding utility matrices too large for most computation resources. Introducing multiple
defender resources further exacerbates this issue, as the defender’s action space grows exponentially
with the number of defenders due to the combinatorial nature of path assignments across resources,
as illustrated in Figure 1.

While SFG formulations are less sensitive to the number of timesteps in terms of action space
growth (actions are defined over defender schedules rather than full paths) the general schedule
construction algorithm described in Section B.1 also becomes computationally burdensome under
large timesteps or when the number of targets is high. This is due to the need to enumerate all feasible
combinations of targets and compute valid patrol tours within the time horizon. Then, once generated,
large utility matrices in both NFG and SFG formats can lead to memory limitations or significant
slowdowns when passed to game-theoretic solvers that rely on linear programming. Notably, we
encountered such issues when attempting to run sparsity experiments on the larger-scale Chinatown
ISG instances; resolving these would likely require machines with greater memory capacity or
improved parallelization support, especially when using support-bounded MIP solvers.

Additionally, the current definitions of targets and actions can result in degenerate game structures.
For instance, if a game instance includes targets that are unreachable by defenders due to resource
constraints, home base restrictions, or short time horizons, attackers will trivially exploit those
undefended targets in best-response strategies. Such cases are feasible in real-world domains and
highlight the need for enhanced constraint modeling.

Finally, extending the framework to support richer real-world constraints—such as assigning defend-
ers to restricted subgraphs or modeling role-specific access—would further improve the realism and
applicability of GUARD to practical security domains.

C.7 Potential Negative Societal Impacts

While our framework is designed to aid defenders in securing vulnerable assets using realistic data-
driven security game instances, it could in principle be misused to simulate or optimize attacker
behavior. For instance, adversaries could leverage the framework’s capabilities to test and refine
evasion strategies against known defensive patrol patterns in infrastructure or poaching contexts.
Additionally, access to detailed domain-specific game instances derived from real-world data could
reveal sensitive information and security details for real-world environments.

To mitigate such risks, we introduce several precautions. First, researchers and practitioners using
the framework should refrain from publicly releasing sensitive configuration files, particularly those
derived from real defense operations or infrastructure schematics (all data we utilize is publicly
available and does not compromise any specific assets). Second, future development can incorporate
access controls for datasets and models flagged as high-risk. Finally, if usage/development becomes
widespread, collaboration with domain experts can ensure responsible deployment and use of the
GUARD framework, particularly in settings involving law enforcement, conservation, or urban
infrastructure.

C.8 Pre-Defined Game Instance Details

The following are tables outlining parameter specifications of the pre-generated zero sum game
instances currently available via import in the GUARD library or at https://github.com/
CoffeeAndConvexity/GUARD in the /predefined_games directory as .pkl files.

Lobéké National Park GSG Instances - Preprocessing shown in Appendix D.1
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Instance Type C Grid T A D δ FR S Size
lobeke_nfg_gsg_1.pkl NFG 12 7× 7 7 1 1 1 F 7 9,075 × 12
lobeke_nfg_gsg_2.pkl NFG 10 7× 7 8 2 1 1 F 8 41,479 × 55
lobeke_sfg_gsg_1.pkl SFG 10 7× 7 7 1 3 2 T 9 24,389 × 10
lobeke_sfg_gsg_2.pkl SFG 12 8× 8 9 1 2 2 T 9 1,849 × 12

Table 2: Pre-generated GSG instances for Lobéké National Park. C = Num. Elephant Cluster Targets,
Grid = Game gridworld dimensions T = Timesteps, A = Attackers, D = Defenders, δ = Defense Time
Threshold, FR = Force Return, S = Nash Support, Size = Utility matrix dimensions (|Ad| × |Aa|), T
= True, F = False.

Etosha National Park GSG Instances

The Etosha elephant dataset contains 1,275,235 observations of 8 unique elephants from 2008 to
2012 [22].

The Etosha National Park bounding box used was:

• lat_min = −19.41637
• lat_max = −19.06224
• lon_min = 16.22564

• lon_max = 16.83427

Home bases for the Etosha National Park GSG were:

• Halali camp and tourist area at (-19.03683, 16.47170)
• Collection of safari/conservation attraction sites = (-19.31668, 16.87791)
• Park outpost on Ondongab road = (-19.20540, 16.19422)

Preprocessing for the Etosha dataset (nearly identical to the Lobéké preprocessing in Appendix D.1,
and unused in our experiments) can be found in the GUARD Git repo.

Instance Type C Grid T A D δ FR S Size
etosha_nfg_gsg_1.pkl NFG 8 6× 6 9 1 1 2 F 5 32,367 × 9
etosha_nfg_gsg_2.pkl NFG 8 6× 6 9 2 1 1 T 6 23,323 × 36
etosha_sfg_gsg_1.pkl SFG 7 6× 6 8 1 2 2 T 7 169 × 7
etosha_sfg_gsg_2.pkl SFG 7 8× 8 10 1 2 1 T 6 121 × 7

Table 3: Pre-generated GSG instances for Etosha National Park.

Chinatown ISG Instances - Preprocessing shown in Appendix D.1

Instance Type Region T A D δ FR S Size
chinatown_nfg_isg_1.pkl NFG Full 6 2 1 2 T 5 3,852 × 276
ne_chinatown_sfg_isg_1.pkl SFG NE 7 1 1 1 T 8 50 × 13
ne_chinatown_sfg_isg_2.pkl SFG NE 8 1 1 1 T 8 76 × 13
nw_chinatown_sfg_isg_1.pkl SFG NW 8 1 1 1 T 4 23 × 8

Table 4: Pre-generated ISG instances for Chinatown area of NYC.

C.9 Differentiation from Gamut

While GAMUT does generate games with structured types (e.g., coordination, zero-sum), its utility
assignments remain randomized and detached from any real-world dynamics. In contrast, GUARD
uses open-access data sources to define not only the game structure but also the utility values,
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enabling a more realistically-grounded game environment. Additionally, the types of games offered
by GAMUT differ substantially from those in GUARD, with GAMUT’s graph games lacking the
capacity to incorporate real-world data into target values or network structure. Overall, we do not
consider Gamut a direct competitor due to differences in objective and methodology.

D Additional Experiment Information and Results

In this section we provide extra details on how experiments were carried out including code snippets
for preprocessing and game generation, additional parameter settings, and metric values we set to
generate the games for the experiments. We also include some extra experiment results that were not
reported in the main text. Note: The number of timesteps reported in this appendix and throughout
the paper differs from the parameter num_timesteps in the code, as this variable actually refers
to the number of game states, which includes the zeroth state, so num_timesteps = T in a code
snippet actually refers to a T − 1 timestep game.

Compute Resources

Experiments were conducted on a Windows 64-bit machine with Intel(R) Core(TM) i9-14900KF,
3.20 GHz, with access to 64GB of RAM. All three classes of experiments maxed out this machine’s
RAM in the larger parameter settings, so all experiments required the total 64GB. We used Gurobi
10.0.3 (Gurobi Optimization, LLC 2023) for (MI)LPs.

D.1 Data Preprocessing and Sample Game Generation

This section provides reference code used to preprocess data and instantiate sample Green and
Infrastructure Security Game objects. Each domain requires cleaning real-world input data and
converting it into the format required by the domain-specific security game constructor. The following
code blocks also contain coordinate bounding boxes used to filter geospatial data to the correct location
for experiments.

Green Security Game. GSG instances are constructed from elephant GPS collar data collected in
Lobéké National Park. The raw data includes multiple collar devices across different elephants and
time periods. The following Python code concatenates and filters the raw datasets, extracting only
relevant fields:

Listing 1: Preprocessing raw elephant collar datasets into GSG input.
import pandas as pd

# Assume ’datasets ’ is a list of 6 individual CSVs from Movebank
datasets = [

pd.read_csv("collar_14118.csv"),
pd.read_csv("collar_14120.csv"),
pd.read_csv("collar_39839.csv"),
pd.read_csv("collar_46179.csv"),
pd.read_csv("collar_39840.csv"),
pd.read_csv("collar_47574.csv"),

]

# Columns of interest for location and metadata
columns_to_keep = [

"event -id", "timestamp", "location -long", "location -lat",
"individual -local -identifier"

]

# Clean and unify all datasets
cleaned = []
for df in datasets:

df = df[columns_to_keep ].copy()
df.columns = ["id", "timestamp", "lon", "lat", "animal_id"]
cleaned.append(df.dropna ())
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# Concatenate and write to final CSV
lobeke_df = pd.concat(cleaned , ignore_index=True)
# Save optional: lobeke_df.to_csv (" lobeke.csv", index=False)

After preprocessing, the final dataframe lobeke_df is passed into the game generator. Below is the
code for instantiating a GSG instance with centroid-based scoring:

Listing 2: Instantiating a sample Green Security Game.
from security_game.green_security_game import GreenSecurityGame

# Define Lobeke National Park bounding box
coordinate_rectangle = [2.0530 , 2.2837 , 15.8790 , 16.2038]

# Define defender bases and escape line
boulou_camp = (2.2, 15.9)
kabo_djembe = (2.0532 , 16.0857)
bomassa = (2.2037 , 16.1870)
inner_post = (2.2, 15.98)
sangha_river = [(2.2837 , 16.1628) , (2.053 , 16.0662)]

schedule_form_kwargs = {
"schedule_form": True ,
"simple": True ,
"attacker_penalty_factor": 5,
"defender_penalty_factor": 5,

}
general_sum_kwargs = {

"general_sum": True ,
"attacker_animal_value": 2350,
"defender_animal_value": 22966,
"defender_step_cost": 0,

}

# Create and generate game instance
gsg = GreenSecurityGame(

lobeke_df , coordinate_rectangle , "centroid",
num_clusters =10, num_rows=7, num_columns =7,
escape_line_points=sangha_river

)

gsg.generate(
num_attackers =1,
num_defenders =2,
home_base_assignments =[( kabo_djembe , bomassa , inner_post) for _ in

range (2)],
num_timesteps =8,
defense_time_threshold =1,
force_return=True ,
generate_utility_matrix=False ,
** schedule_form_kwargs ,
** general_sum_kwargs

)

Infrastructure Security Game. The ISG is built from a geospatial dataset of power, healthcare,
water, and communication infrastructure in Manhattan’s Chinatown. The following code preprocesses
and flattens infrastructure entries into point representations with standardized types:

Listing 3: Preprocessing OSM-derived infrastructure data.
import geopandas as gpd
import pandas as pd
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gdf = gpd.read_file("chinatown_infra.geojson")

# Standardize and extract infrastructure types
infra_columns = ["id", "name", "power", "man_made", "amenity", "

generator:method", "generator:source", "geometry"]
gdf = gdf[[col for col in infra_columns if col in gdf.columns ]]. copy()

# Construct unified ’type’ column from available tags
gdf["type"] = gdf["power"]. combine_first(gdf["amenity"]).combine_first

(gdf["man_made"])

# Flatten nodes and ways into point data
df_nodes = gdf[gdf["id"].str.contains("node")].copy()
df_nodes["x"] = df_nodes.geometry.x
df_nodes["y"] = df_nodes.geometry.y
df_nodes = df_nodes.drop(columns =["geometry"])

df_ways = gdf[gdf["id"].str.contains("way")].copy()
df_ways = df_ways.to_crs("EPSG :32618")
df_ways["centroid"] = df_ways.geometry.centroid
df_ways = df_ways.set_geometry("centroid").to_crs("EPSG :4326")
df_ways["x"] = df_ways.geometry.x
df_ways["y"] = df_ways.geometry.y
df_ways = df_ways.drop(columns =["geometry", "centroid"])

# Combine into one unified DataFrame
df_combined = pd.concat ([df_nodes , df_ways], ignore_index=True)[["id",

"name", "type", "x", "y"]]

Listing 4: Instantiating a sample Infrastructure Security Game.
from security_game.infra_security_game import InfraSecurityGame

ny_blocks_gdf = gpd.read_file("tl_2020_36_tabblock20.shp")

# User -specified set of relative feature importances
INFRA_WEIGHTS = {

"plant": 1.5, "solar_generator": 0.95, "hospital": 1.5,
"school": 1.25, "water_works": 1.45, "fire_station": 1.3,
"communications_tower": 1.25, "pole": 0.85, "tower": 1.1,
# truncated for brevity

}

bbox_downtown_large = (40.7215 , 40.710 , -73.9935 , -74.010)
fifth_precinct = (40.7163 , -73.9974)
booking_station = (40.7162 , -74.0010)
police_plaza = (40.7124 , -74.0017)
troop_nyc = (40.7166 , -74.0064)
first_precinct = (40.7204 , -74.0070)

schedule_form_kwargs = {
"schedule_form": True ,
"simple": True ,
"attacker_penalty_factor": 3,
"defender_penalty_factor": 3

}
general_sum_kwargs = {

"general_sum": True ,
"attacker_feature_value": 1,
"defender_feature_value": 100,
"defender_step_cost": 0,
"alpha": 0.5

}

# Create and generate ISG instance
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isg = InfraSecurityGame(df_combined , ny_blocks_gdf , INFRA_WEIGHTS ,
bbox=bbox_downtown_large)

isg.generate(
num_attackers =1,
num_defenders =3,
home_base_assignments =[( fifth_precinct , booking_station , troop_nyc

, first_precinct , police_plaza) for _ in range (3)],
num_timesteps =8,
defense_time_threshold =1,
force_return=True ,
generate_utility_matrix=False ,
generate_actions=False ,
** schedule_form_kwargs ,
** general_sum_kwargs

)

D.2 Sparsity Experiment Parameters

General Setup. All experiments were conducted on Green Security Game instances with the
following fixed parameters unless otherwise specified:

• Number of clusters: 10
• Grid dimensions: 7× 7

• General-sum disabled: All games were run as zero-sum games
• Defense time threshold: 1 for NFG, 2 for SFG
• Attacker schedule form coverage scaler penalty factor (SFG only): 5
• Defender schedule form coverage scaler penalty factor (SFG only): 5
• Home base options: Kabo Djembé (2.0532, 16.0857), Bomassa (2.2037, 16.1871),

Inner Post (2.2000, 15.9800)

NFG Sparsity Experiments.

• NFG (7 Timestep): 1 attackers, 1 defender, force return disabled, 9,075 defender actions.
• NFG (8 Timestep): 1 attacker, 1 defender, force return disabled, 41,479 defender actions.

SFG Sparsity Experiments.

• SFG (7 Timestep): 1 attacker, 2 defenders, force return enabled, 841 defender actions.
• SFG (8 Timestep): 1 attacker, 2 defenders, force return enabled, 1,024 defender actions.
• SFG (9 Timestep): 1 attacker, 2 defenders, force return enabled, 2,401 defender actions.

Runtimes. The total runtime for each sparsity experiment is calculated as the sum of the Nash
equilibrium solver time and the cumulative runtime of all MIP-based defender best responses during
the double oracle iterations. These values are reported in seconds:

• NFG, 7 Timesteps: Total runtime = 13.60s
(Nash: 1.03s, MIP: 12.56s)

• NFG, 8 Timesteps: Total runtime = 741.13s
(Nash: 4.06s, MIP: 737.06s)

• SFG, 7 Timesteps: Total runtime = 2.14s
(Nash: 0.10s, MIP: 2.04s)

• SFG, 8 Timesteps: Total runtime = 2.74s
(Nash: 0.18s, MIP: 2.56s)

• SFG, 9 Timesteps: Total runtime = 8.49s
(Nash: 0.29s, MIP: 8.21s)
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D.3 Iterative Experiment Parameters

Experiment Parameters. All experiments were conducted on zero-sum Security Game instances
using the following fixed parameters unless otherwise specified:

• General-sum disabled: All games were run as zero-sum games.

• Attacker coverage penalty (SFG only): 5 (GSG), 3 (ISG).

• Defender coverage penalty (SFG only): 5 (GSG), 3 (ISG).

GSG NFG Experiment.

• Game Type: Normal-form

• Number of clusters: 10

• Grid dimensions: 7× 7

• Number of attackers: 1

• Number of defenders: 1

• Timesteps: 7

• Defense time threshold: 1

• Force return: Disabled

• Home base options: Kabo Djembé (2.0532, 16.0857), Bomassa (2.2037, 16.1871),
Inner Post (2.2000, 15.9800)

GSG SFG Experiment.

• Game Type: Schedule-form (general schedules)

• Number of clusters: 10

• Grid dimensions: 7× 7

• Number of attackers: 1

• Number of defenders: 2

• Timesteps: 7

• Defense time threshold: 1

• Force return: Enabled

• Home base options: Same as GSG NFG

ISG NFG Experiment.

• Game Type: Normal-form

• Number of attackers: 1

• Number of defenders: 1

• Timesteps: 7

• Defense time threshold: 1

• Force return: Enabled

• Home base options: First Precinct (40.7204, -74.0070), Fifth Precinct (40.7163,
-73.9974), Police Plaza (40.7124, -74.0017), Troop NYC (40.7166, -74.0064),
Booking Station (40.7162, -74.0010)
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ISG SFG Experiment.

• Game Type: Schedule-form (general schedules)
• Number of attackers: 1
• Number of defenders: 2
• Timesteps: 7
• Defense time threshold: 1
• Force return: Enabled
• Home base options: Same as ISG NFG

Regret Matching Algorithm Settings. Each variant of regret matching was parameterized as
follows:

• RM (vanilla regret matching): runtime=120, interval=5, iterations=10000,
averaging=0, alternations=False, plus=False, predictive=False

• RM+ (regret matching + with linear averaging and alternations): runtime=120,
interval=5, iterations=10000, averaging=1, alternations=True, plus=True,
predictive=False

• PRM+ (predictive regret matching + with quadratic averaging and alternations):
runtime=120, interval=5, iterations=10000, averaging=2, alternations=True,
plus=True, predictive=True

D.4 Stackelberg Experiment Parameters

Stackelberg Setup. All Stackelberg Security Game experiments were run as general-sum schedule-
form games. The following common settings were used unless otherwise noted:

• Schedule form: Enabled
• General-sum: Enabled
• Timesteps: 7
• Defense time threshold: 1
• Force return: Enabled
• Escape point logic: Used to scale attacker values based on proximity (via alpha parameter)

GSG SSE Experiments. All GSG Stackelberg experiments used the same map: 10 centroid-scored
clusters on a 7× 7 grid, with the Sangha River ((2.2837, 16.1628) to (2.053, 16.0662)) as
the escape line. Defenders began at the same set of three home bases used in all GSG experiments.

• Simple Schedules: Enabled
• Number of attackers: 1
• Number of defenders: 2
• Attacker coverage scaler: 5
• Defender coverage scaler: 5
• Attacker target value: 2350
• Defender target value: 22966
• Defender step cost: 0
• Escape proximity scaling factor: α = 1

General SSE GSG Setting: Same as above, but:

• Simple Schedules: Disabled
• Defender step cost: 1.17 (realistic labor, fuel, and equipment cost per km)

42



ISG SSE Experiments. All ISG Stackelberg experiments used the same Chinatown-area power
grid graph with a fixed escape point at Brooklyn Bridge (40.7124, -74.0049). Defenders were
allowed to start at any of the same 5 precinct locations used in all ISG experiments.

• Simple Schedules: Enabled

• Number of attackers: 1

• Number of defenders: 3

• Attacker coverage scaler: 3

• Defender coverage scaler: 3

• Attacker target value: 1

• Defender target value: 100

• Escape proximity scaling factor: α = 0.5

General SSE ISG Setting: Same as above, but:

• Defender step cost: 1 (realistic patrol cost in USD per Manhattan block)

Step Cost Estimation. We computed defender step costs based on realistic patrol expenses in each
setting [46, 10, 14, 15, 34]:

• GSG Step Cost: Estimated at $1.17 per kilometer. This combines ranger labor ( $0.65/km,
based on $345/month salaries, team size 5, and 15 km/h patrol speed) with equipment and
supply costs (totaling $0.29/km) and fuel costs ( $0.17/km). Resulting in roughly $1.17/km.

• ISG Step Cost: Estimated at $1.00 per Manhattan block. Based on NYPD officer pay
($33/hour), typical patrol speed (5 mph = 0.01 hr/block), and average patrol team size of 2,
labor alone costs about $0.70/block. Adding estimated fuel ($0.02/block) and equipment
costs ($0.15/block), and considering that some patrols have more than 2 officers, the total
was roughly $1 per block.

Elephant Values in USD. Defender elephant value of $22,966 reflects the one year eco-tourism
value of an elephant. The attacker value is computed as an elephant’s 2 tusks × 100 pound tusk
average × $26/kg on the Cameroonian black-market is roughly $2,350 [41, 17]. These values serve
to normalize the payoffs. Because they are constant scalers on target values, they do not tangibly
impact the equilibria. However, the other general sum factors like path costs and escape proximities
do have material impact on the equilibria as they decouple target values nonlinearly.

D.5 Schedule Randomization

Schedules were randomized by assigning each defender the same number of schedules as in the real
instance, with each schedule containing as many randomly selected targets equal to the ceil of the
average real schedule length.

D.6 Additional Experiment Results

Below are additional iterative and Stackelberg experiment results from our realistic security game
instances, illustrating the strategic complexity and large relative support sizes characteristic of settings
with enhanced realism through the GUARD framework. All home base, scaling factors, and general
sum (for Stackelberg) parameter settings are equal to those used in the experiments in the main text
and detailed in Appendices D.3 and D.4.
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Form C Grid T A D δ FR S Time (s) DO Size Iters
NFG 12 10× 10 10 1 3 1 F 12 98.25 45× 12 46
NFG 12 9× 9 10 3 3 1 F 12 40.79 37× 41 41
NFG 12 8× 8 10 2 3 1 T 11 72.71 32× 31 33
NFG 11 8× 8 9 2 3 2 T 11 32.93 27× 27 28
NFG 10 7× 7 8 2 3 2 F 10 23.07 28× 27 29
SFG 12 8× 8 9 1 2 2 T 9 0.11 31× 10 35
SFG 10 10× 10 7 1 3 2 T 9 0.17 23× 9 24

Table 5: Results from GSG iterative double oracle experiments. Columns: C = Clusters, T =
Timesteps, A = Attackers, D = Defenders, δ = Defense Time Threshold, FR = Force Return, S =
Double Oracle Support, DO Size = Final action space dimensions of the DO subgame (|Ad| × |Aa|),
Iters = Iterations to Converge.

Form T A D δ FR S Time (s) DO Size Iters
NFG 9 3 3 2 F 16 671.05 27× 33 33
NFG 10 2 3 2 F 15 1661.28 31× 32 32
NFG 9 3 3 1 F 15 2303.54 41× 43 43
NFG 10 1 3 2 F 14 1494.30 47× 17 47
NFG 8 2 3 1 F 14 162.24 27× 28 28
SFG 9 3 2 1 T 12 0.28 37× 13 36
SFG 6 3 1 1 T 10 0.16 28× 12 28
Table 6: Results from ISG iterative double oracle experiments.

Form C Grid T A D δ FR S Time (s) Def. Utility
SFG→ NFG 10 7× 7 9 1 3 2 T 9 23.62 -0.133
SFG→ NFG 10 8× 8 8 1 3 1 T 9 5.08 -0.150
SFG→ NFG 10 10× 10 7 1 2 1 T 9 0.19 -0.230
SFG→ NFG 10 7× 7 9 1 1 1 T 8 0.03 -0.285
SFG→ NFG 8 8× 8 9 1 2 2 T 8 0.06 -0.204

Table 7: SSE experiment results for GSGs (general schedules, general sum, multiple LP SSE
solver). SFG → NFG indicates normal form matrix expansion. Columns: C = Clusters, T =
Timesteps, A = Attackers, D = Defenders, δ = Defense Time Threshold, FR = Force Return, S =
Support Size, Def. Utility = Defender max utility at equilibrium.

Form T A D δ FR S Time (s) Def. Utility
SFG→ NFG 7 1 3 1 T 14 838.88 -0.408
SFG→ NFG 9 1 3 2 T 13 762.70 -0.408
SFG→ NFG 8 1 3 1 T 13 2856.51 -0.404
SFG→ NFG 7 1 3 2 T 12 113.75 -0.422
SFG→ NFG 6 1 3 1 T 10 224.72 -0.421

Table 8: SSE experiment results for ISGs (general schedules, general sum, multiple LP SSE
solver).

D.7 Infra Weights (for ISGs)
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Listing 5: Infrastructure Security Game feature base weights, manually assigned based on qualitative
assessments of each feature’s relative criticality. While the default values serve as reasonable
approximations, the framework is designed to allow users to adjust the weights they use to reflect
application/domain-specific valuations.
INFRA_WEIGHTS = {

# Power Infrastructure
"plant": 1.5,
"generator": 1.35,
"solar_generator": 0.95,
"substation": 1.45,
"transformer": 1.25,
"tower": 1.1,
"pole": 0.85,
"line": 1.0,
"minor_line": 0.9,
"cable": 0.95,
"switchgear": 1.2,
"busbar": 0.8,
"bay": 0.85,
"converter": 1.05,
"insulator": 0.75,
"portal": 0.75,
"connection": 0.7,
"compensator": 1.0,
"rectifier": 0.95,
"inverter": 0.95,
"storage": 0.9,

# Healthcare
"hospital": 1.5,
"clinic": 1.35,

# Education
"school": 1.25,
"university": 1.4,

# Water & Sanitation
"water_works": 1.45,
"wastewater_plant": 1.4,

# Government & Emergency Services
"fire_station": 1.3,
"police": 1.4,
"courthouse": 1.2,

# Critical Infrastructure
"bunker_silo": 1.0,

# Communications
"communications_tower": 1.25,

}
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