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Abstract001

While LLMs undergo extensive safety training,002
whether they can internally encode the distinc-003
tion between safe versus unsafe inputs remains004
an open question. This paper investigates in-005
trinsic safety patterns in the latent activation006
space of large language models (LLMs), ex-007
amining how safety-aligned models distinguish008
between safe and unsafe inputs at the repre-009
sentation level. We perform a comprehensive010
analysis across 10 models and several datasets011
including safe, unsafe, and adversarial datasets.012
We show that LLMs implicitly encode safety-013
related patterns within their activation space,014
which can be leveraged for proactive detection015
of input safety. We introduce LatentShield, a016
mechanism for early unsafe input detection us-017
ing representations. LatentShield outperforms018
state-of-the-art safety shields, LlamaGuard 2019
and LlamaGuard 3, by up to 42% points when020
tested on the most challenging unsafe datatset,021
Q-Harm. On adversarial attacks, LlamaGuards’022
performance collapse to 25% in comparison of023
58.5% of LatentShield. Our findings strongly024
suggest that representations of a model can025
be leveraged to build a high performing light-026
weight model-specific safety shield.027

1 Introduction028

Large Language Models (LLMs) are widely used029

in many fields, making their safety a critical con-030

cern. To mitigate potential risks, researchers have031

put significant effort into aligning these models032

with human values and preventing harmful out-033

puts. Techniques such as Reinforcement Learning034

from Human Feedback (RLHF) (Christiano et al.,035

2023), Reinforcement Learning from AI Feedback036

(RLAIF) (Bai et al., 2022), Direct Preference Opti-037

mization (DPO) (Rafailov et al., 2024), adversarial038

training, and prompt-based guardrails have been039

employed to enhance LLM safety. These methods040

aim to optimize model behavior, strengthen refusal041

mechanisms against harmful inputs, and enforce042

safety constraints through carefully designed sys- 043

tem prompts. While these methods are rigorously 044

evaluated on safety benchmarks, their robustness 045

remains questionable as small variations in inputs 046

often breach their safety guards (Mazeika et al., 047

2024). 048

This brittle behavior raises questions about a 049

model’s ability to encode knowledge differentiat- 050

ing safe and unsafe requests, despite going through 051

safety training. For instance, are safe and unsafe 052

inputs distinctly represented in the latent space? 053

How do latent safety representations interact with 054

adversarial inputs? The interpretation of models’ 055

learning of safe/unsafe representation enables bet- 056

ter understanding and leads way towards design- 057

ing robust alignment strategies intrinsic to model’s 058

knowledge representation. 059

In this work, we analyze the latent representa- 060

tions of safety-aligned models. Specifically, we an- 061

swer the following research questions: (1) How do 062

safety-aligned LLMs internally represent safe and 063

unsafe inputs? (2) How universal are the represen- 064

tation patterns across diverse model architectures 065

and real-world datasets? (3) Can we harness these 066

intrinsic patterns to develop practical tools for early 067

detection of unsafe inputs? 068

We focus specifically on open LLMs, which are 069

models whose architectures, weights, and interme- 070

diate representations are publicly accessible. Un- 071

like proprietary models, open LLMs enable democ- 072

ratization of AI, enabling a broad community of 073

developers, researchers, and organizations to use 074

and extend them. However, this openness also 075

amplifies the risk of misuse, as adversaries can ex- 076

ploit vulnerabilities in these models without the 077

oversight or guardrails often imposed by commer- 078

cial providers (Bengio et al., 2025; Rosati et al., 079

2024b,a). 080

We analyze ten generative models using eleven 081

datasets including five unsafe datasets. We per- 082

form a qualitative assessment, comparing safe and 083
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unsafe input data using Principal Component Anal-084

ysis (PCA). We show that LLMs exhibit a clear085

pre-generation awareness of safety, as safe and086

unsafe prompts are distinctly represented in the087

latent space even before any output is produced.088

Notably, these distinctions are driven primarily by089

the prompt representations, not by the model’s re-090

sponse behavior, revealing a shallow encoding of091

safety being represented by the input only. We092

demonstrate the universality of these safety pat-093

terns across a wide range of real-world datasets094

and model architectures, including both explicitly095

aligned models and those that have not undergone096

safety-specific training.097

Lastly, we introduce LatentShield, a lightweight098

safety shield tailored to each model, to proac-099

tively detect unsafe prompts prior to generation.100

We demonstrate that LatentShield detects unsafe101

prompts with high precision and performs substan-102

tially better than state-of-the-art safety classifiers103

like LlamaGuard 2 and 3 (Inan et al., 2023)—espe-104

cially on unsafe inputs. We extend our analysis to105

adversarially unsafe inputs and adversarially safe106

inputs. Together, our analysis and proposed safety107

shield highlight the untapped potential of latent rep-108

resentations for both understanding, evaluating and109

improving LLM safety.110

2 Related Work111

Safeguards A range of safety moderation tools112

have recently emerged to detect and mitigate113

harmful behavior in LLMs. While frontier pro-114

prietary models (e.g., Openai moderation (Ope-115

nAI)) are widely used, recent efforts have fo-116

cused on developing open-source alternatives that117

are transparent and community-driven. Several118

such systems—LlamaGuard (Inan et al., 2023), its119

follow-ups LlamaGuard 2 and 3, Aegis (Ghosh120

et al., 2024), MD-Judge (Li et al., 2024), Beaver-121

Dam (Ji et al., 2023), the HarmBench classi-122

fier (Mazeika et al., 2024), and WildGuard (Han123

et al., 2024)—have been trained on curated mod-124

eration datasets to classify prompt-response pairs125

across various safety dimensions. In contrast, our126

approach introduces LatentShield, a lightweight,127

model-specific method that proactively detects un-128

safe prompts by analyzing a model’s internal ac-129

tivations before any text is generated. While La-130

tentShield requires individual calibration for each131

model, it offers enhanced robustness against unsafe132

prompts compared to methods like LlamaGuard133

2 and 3. By focusing on internal activations, La- 134

tentShield provides an efficient and proactive safe- 135

guard against the generation of harmful content. 136

Understanding safety Recent work has shown 137

that directions in activation space often capture se- 138

mantically meaningful features more effectively 139

than individual neurons (Elhage et al. (2022); 140

Geiger et al. (2024); Nanda et al. (2023); Park 141

et al. (2024)). Building on this, several studies as- 142

sume that features are linearly encoded, a property 143

that has been successfully exploited for erasing or 144

editing concepts in language models (Belrose et al. 145

(2023); Guerner et al. (2025); Shao et al. (2023); 146

Arditi et al. (2024)). 147

Recent safety-focused studies have applied 148

activation-level analyses. Ball et al. (2024) exam- 149

ined latent representations during jailbreaks, show- 150

ing that successful attacks induce distinct activa- 151

tion shifts in Vicuna, Qwen and MPT models using 152

parallel synthetic safe and unsafe prompts. Jain 153

et al. (2024) similarly demonstrated that safety- 154

tuned LLaMA models encode unsafe and safe 155

prompts in separable latent subspaces. How- 156

ever, both approaches rely on synthetic or paral- 157

lel data and evaluate on narrow model families. 158

In contrast, we analyze diverse model architec- 159

tures using real-world, non-parallel safe and unsafe 160

prompts—highlighting that safety-relevant struc- 161

ture emerges naturally in activation space without 162

synthetic pairing. Moreover, we propose a light- 163

weight safety shield that leverages the linear sepa- 164

rability of safe and unsafe data in the latent space 165

and serves as an effective safety moderation tool. 166

3 Datasets 167

To explore the intrinsic representation geometry of 168

safe and unsafe activations (which we refer to as 169

intrinsic safety patterns) in open weight LLMs, we 170

assemble a diverse collection of datasets compris- 171

ing unsafe, safe, and adversarially safe prompts (i.e. 172

they appear unsafe due to words like "kill" but are 173

actually safe since they are about "killing a python 174

process"). These datasets, primarily sourced from 175

existing public resources, support robust analysis 176

across input types. Table 1 provides a detailed 177

breakdown of the data composition and sample 178

sizes. 179

Unsafe Data The unsafe data aggregates 1,387 180

harmful prompts from multiple existing datasets, 181

such as HarmBench and Aya (multi-lingual), de- 182
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signed to elicit harmful, biased, or malicious out-183

puts. These samples test model vulnerabilities184

across a range of adversarial and unsafe scenarios.185

Safe Data The safe data collection comprises186

1,396 benign prompts sourced from existing187

datasets such as Natural Questions and Alpaca Eval,188

as well as 223 Crawled Prompts that were manually189

curated. These Crawled Prompts were collected190

from the web and selected based on quality and di-191

versity. For the existing datasets, random sampling192

was performed to ensure balance with the unsafe193

data, given the large size of the original sets.194

Adversarially Safe Data We included 450 sam-195

ples from the XSTest dataset as an adversarially196

safe benchmark. These prompts, engineered to ap-197

pear unsafe but remain benign, test the robustness198

of safety pattern detection against edge cases.199

Unsafe Prompts with Safe/Unsafe Responses200

We want to analyze latent representations of unsafe201

prompts that result in safe response by an LLM.202

Here, safe refers to a compliance response where203

LLM refused to answer a question that will result in204

harmful response. We generate responses of unsafe205

prompts with each target LLMs and use Llama-206

Guard 3, a state-of-the-art classifier, to annotated207

the prompt-response pairs for safety. We refer to208

the prompt-response pairs where the model refuses209

harmful outputs, indicating successful alignment as210

Unsafe Prompts with Safe Responses and instances211

where the model fails, producing harmful content212

as Unsafe Prompts with Unsafe Responses.213

4 Representation Visualization Analysis214

Given a safe dataset Ds and an unsafe dataset Du215

consisting of n and k instances respectively where216

each instance represents a sequence of words. We217

extract representations zs ∈ Rn×d of each instance218

in Ds and zu ∈ Rk×d of each instance in Du us-219

ing a model M where d is the number of dimen-220

sions. Specifically, we collect the representations221

from the last token position across all layers of the222

model. We apply linear dimensionality reduction223

technique, Principal Component Analysis (PCA)224

to visualize representations of Ds and Du in two225

dimensional space. In the following, we provide226

details of each step.227

4.1 Principal Component Analysis (PCA)228

We use PCA to analyze latent representations of229

the model. We hypothesize that if a model encodes230

knowledge of safe and unsafe distinctly, it should 231

show separability between representations of safe 232

and unsafe data points in the principal component 233

space. 234

We normalize each representation vector z and 235

compute the covariance matrix Σ of the normal- 236

ized data. Mathematically, for a set of m normal- 237

ized representations {z1, z2, . . . , zm}, the covari- 238

ance matrix is given by: Σ = 1
m

∑m
i=1 ziz

⊤
i 239

Next, we perform eigenvalue decomposition on 240

Σ, which yields a set of eigenvalues and their cor- 241

responding eigenvectors. The eigenvectors define 242

the principal components, and the eigenvalues indi- 243

cate the variance captured by each component. We 244

project the original representations onto the top two 245

principal components to reduce the dimensionality 246

to 2D. 247

4.2 Qualitative Analysis 248

We analyze the separability of safe and unsafe acti- 249

vations in the latent space of ten LLMs, comprising 250

of diverse designs. We systematically examine the 251

phenomenon across four key aspects: models, un- 252

safe datasets, safe datasets, and layers. For each 253

analysis, we varied one factor while keeping oth- 254

ers fixed: safe data from Crawled Prompts, unsafe 255

data from Harmbench, activations at Layer 16, and 256

Mistral as the baseline model, unless specified. We 257

selected Layer 16 based on the analysis in Ball 258

et al. (2024), who note that prior work found mid- 259

dle layers in 7B-scale models capture high-level se- 260

mantic information. To isolate the effect of prompt 261

content on latent representations, we deliberately 262

excluded system messages during inference. This 263

ensures that the observed safety patterns arise from 264

the prompt text itself, rather than being induced 265

by safety-oriented system instructions. Safe inputs 266

are shown as green dots, unsafe inputs with un- 267

safe responses as red dots, and unsafe inputs with 268

safe responses as orange dots in Figures 1–4. Ad- 269

ditional visualizations for other combinations of 270

models, datasets, and layers are included in the 271

Appendix A.1. 272

Across Models Activation patterns consistently 273

showed separable clusters of safe and unsafe inputs 274

across all models at Layer 16 (Figure 1). However, 275

the degree of separation varied: Llama-2 exhibited 276

the strongest clustering, while Starling, Koala and 277

Zephyr showed more overlap, suggesting differ- 278

ences in how safety alignment shapes latent rep- 279

resentations of safe and unsafe inputs. Notably, 280
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Category Dataset Samples

Unsafe

Harmbench (Mazeika et al., 2024) 200
HEx-PHI (Qi et al., 2024) 300
MaliciousInstruct (Huang et al., 2024) 100
Q-Harm (Bianchi et al., 2024) 100
Aya (Aakanksha et al., 2024) 987
Total Unsafe 1687

Safe

Crawled prompts 223
Natural Questions (Kwiatkowski et al., 2019) 300
Alpaca Eval (Li et al., 2023) 300
Dolly (Conover et al., 2023) 296
Ultrachat (Ding et al., 2023) 300
Total Safe 1419

Adversarially Safe XSTest (Röttger et al., 2024) 250

Table 1: Summary of Unsafe, Safe, and Adversarially Safe Datasets

Formal Model Name Shortened Name Base Model Safe?

Llama-3-8b-Instruct (AI@Meta, 2024) Llama-3 - ✓
Llama-2-7b-Chat (Touvron et al., 2023) Llama-2 - ✓
Orca-2-7b (Mitra et al., 2023) Orca Llama-2 ✗
Vicuna-7b-v1.5 (Chiang et al., 2023) Vicuna Llama-2 ✗
Koala-7b (Geng et al., 2023) Koala Llama-1 ✗
Mistral-7b-Instruct-v0.2 (Jiang et al., 2023) Mistral - ✗
Starling-LM-7b-Alpha (Zhu et al., 2024) Starling Mistral-7B-v0.1 ✓
Zephyr-7b-Beta (Tunstall et al., 2024) Zephyr Mistral-7B-v0.1 ✗
Qwen-7b-Chat (Bai et al., 2023) Qwen - ✓
Baichuan2-7b-Chat (Yang et al., 2023) Baichuan - ✓

Table 2: List of models used, their shortened names, respective base models, and whether they have undergone
safety tuning.

the models did not distinguish between unsafe re-281

sponses and always map all unsafe inputs together.282

As a side note, the relatively sparse red points in283

some safety-tuned models (e.g., Llama-2, Llama-3)284

reflect that they rarely produced unsafe comple-285

tions—except for Starling, which, despite tuning,286

still shows a noticeable number of such cases. See287

Appendix Table 6 for Attack Success Rate (ASR)288

scores across models and unsafe datasets evaluated289

using LlamaGuard 3.290

Across Unsafe Datasets We observed that the291

distinction between safe and unsafe data gener-292

alizes across unsafe datasets. Figure 2 presents293

the results of using Mistral at Layer 16 where we294

observed clear separation between safe (Crawled295

Prompts) and various unsafe datasets (e.g., Harm-296

bench, MaliciousInstruct). The separation is most297

pronounced for Harmbench and HEx-PHI, but298

weaker for Q-Harm, indicating that the nature of299

unsafe content influences activation patterns.300

Across Safe Datasets We further vary the safe301

datasets to evaluate the generalization of observed302

patterns. Across five safe datasets (e.g., Natu-303

ral Questions, Alpaca Eval), the model Mistral304

at Layer 16 showed consistently formed distinct 305

clusters from unsafe inputs (Figure 3). Natural 306

Questions showed the tightest clustering, while Ul- 307

trachat had more spread, reflecting variability in 308

safe input complexity. However, the activations 309

patterns are distinguishably separate from unsafe 310

datasets. 311

Across Layers Figure 4 compares the layer-wise 312

pattern of Layers 1, 16 and 32 to analyze the evo- 313

lution of representations across the model depth. 314

Mistral consistently showed separate patterns for 315

safe and unsafe inputs irrespective of model’s re- 316

sponse. However, we observe that at higher layer, 317

the tightness of safe and unsafe clusters within 318

themselves are relatively low. 319

Summary Our findings indicate that before gen- 320

eration begins, models demonstrate a strong pre- 321

generation awareness of safe vs. unsafe inputs in 322

the activation space. However, despite this inter- 323

nal differentiation, models do not always adhere to 324

safety constraints during generation. Even when ac- 325

tivations signal an understanding of safety, models 326

may still produce contrary outputs. This suggests 327

that while activations reflect internal knowledge, 328
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Figure 1: Activation visualization of Crawled prompts: safe vs. Harmbench unsafe inputs at Layer 16 across
different models.

Figure 2: Activation visualization of various Unsafe inputs vs. Crawled prompts safe inputs at Layer 16 of Mistral

they do not necessarily dictate final generation de-329

cisions, suggesting that activation clustering alone330

does not determine output behavior.331

5 LatentShield332

In this section, we empirically evaluate whether rep-333

resentations zs and zu are linearly separable and if334

yes, this may serve as a latent shield to detect safe335

and unsafe inputs before model generates an out-336

put. We annotate each representation with a label337

l ∈ {0, 1} where 0 refers to safe input and 1 refers338

to unsafe input. We train LatentShield, a logistic re-339

gression classifier, on the {zs/u, l}. We use Elastic-340

Net regularization with a categorical cross-entropy341

loss to encourage neurons with monosemantic and342

polysemantic behavior in playing a role in classi-343

fication (Dalvi et al., 2019). The loss function is344

defined as:345

L(θ) = −
∑

i logPθ(li|zi) + λ1∥θ∥1 + λ2∥θ∥22346

where Pθ(li|zi) is the probability of ith representa-347

tion zi with label li. λ1 and λ2 are the hyperparam-348

eters. We use a value of 0.1 for each of them. The349

weights θ are learned using gradient descent.350

We use the following data settings to test the351

efficacy of LatentShield.352

Inclusion: All available safe and unsafe data353

presented in Table 1 is utilized, with k-fold cross-354

validation applied to ensure robust and generaliz-355

able performance metrics. 356

Exclusion Experiments: To assess generaliz- 357

ability and the influence of individual datasets, 358

we conduct a series of exclusion experiments: 1) 359

Leave-one-out exclusion of individual safe datasets. 360

2) Leave-one-out exclusion of individual unsafe 361

datasets. 3) Combined exclusions of both safe and 362

unsafe datasets. 363

Baselines We benchmark LatentShield against 364

LlamaGuard 2 and LlamaGuard 3 by feeding the 365

same prompts to these models and comparing clas- 366

sification performance. 367

5.1 Results 368

Table 3 summarizes the results of LatentShield, 369

with accuracy reported as the primary metric to 370

reflect LatentShield’s ability to distinguish between 371

safe and unsafe prompts. 372

In the cross-validation inclusion setting (CV Ac- 373

curacy), LatentShield achieved high accuracies 374

across all models. This demonstrates linear sepa- 375

rability of safe and unsafe activation patterns in the 376

latent space, supporting our hypothesis that safety- 377

aligned LLMs encode distinct representations for 378

these input types. Exclusion experiments tested 379

the generalizability of these findings. We did not 380

observe any consistent reliance on particular safe 381

data as can be see from the results of column Safe 382
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Figure 3: Activation visualization of various safe inputs vs. harmbench unsafe inputs at Layer 16 of Mistral

Figure 4: Activation visualization of safe vs. Harmbench unsafe inputs of Mistral

Exclusion in Table 3. Excluding unsafe datasets,383

Unsafe Exclusion showed a drop of 4% − 8% in384

performance across all models. While this suggests385

the importance of observing representations of each386

unsafe dataset during training to achieve high pre-387

cision, the absolute performance scores of above388

88% with up to 95% showed that LatentShield is389

still able to detect unsafe inputs with high accu-390

racy. In other words, safe vs. unsafe separability391

is not overly reliant on any single dataset, re-392

inforcing the universality of safety patterns across393

diverse safe and unsafe inputs in a model. The com-394

bined exclusion setting, where both safe and unsafe395

datasets were systematically omitted, yielded high396

average accuracies. This consistent performance397

across conditions underscores the reliability of la-398

tent safety representations, even when training data399

is reduced or varied.400

Comparing LatentShield across models, Llama-401

2’s shield consistently performed well across all402

settings including Unsafe Exclusion, suggesting403

that its latent space encodes particularly stable404

safety distinctions with less reliance on a partic-405

ular dataset.406

These results highlight the effectiveness of La-407

tentShield as a lightweight, proactive safety de-408

tection mechanism that reliably identify unsafe in-409

puts before generation. Moreover, the consistency410

across models, including ones that have not been411

safety trained, and exclusion settings aligns with412

our qualitative findings (Section 4.2), where PCA 413

visualizations revealed separable clusters of safe 414

and unsafe activations. Overall, these quantitative 415

outcomes provide a strong foundation for leverag- 416

ing latent space patterns to enhance LLM safety 417

mechanisms. 418

5.2 Comparison with LlamaGuard 2 & 3 419

To assess LatentShield’s performance relative to 420

established safety mechanisms, we benchmarked 421

LatentShield against LlamaGuard 2 and Llama- 422

Guard 3 using a leave-one-out exclusion approach 423

across all ten models. For a given test dataset (e.g., 424

Natural Questions or Harmbench), LatentShield 425

was trained on all other safe and unsafe dataset 426

activations for a model, excluding the chosen test 427

dataset, as outlined in the exclusion experiments. 428

This ensures the test dataset is unseen during train- 429

ing, enabling a fair comparison of generalization. 430

LlamaGuard 2 and LlamaGuard 3 were applied di- 431

rectly to the same prompts from the test dataset. 432

Performance is reported as classification accuracy 433

(in percentage), with representative results summa- 434

rized in Table 4. We observed consistent results 435

across all models. To optimize space, we moved 436

the results of a few models to Appendix. 437

Across all ten models, LatentShield consistently 438

outperformed LlamaGuard2 and LlamaGuard 3 439

on unsafe datasets in this leave-one-out setting, 440

while remaining competitive on safe ones. Q-Harm 441
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Model CV Accuracy Safe Exclusion (avg.) Unsafe Exclusion (avg.) Combination (avg.)

Llama-3 97.49 97.63 92.01 94.51
Llama-2 98.20 99.05 95.52 97.80
Orca 97.71 96.60 89.71 92.57
Vicuna 97.88 97.27 90.70 94.06
Koala 97.75 95.27 89.77 92.44
Mistral 97.36 98.36 92.70 95.20
Starling 96.39 96.54 88.04 91.85
Zephyr 96.61 94.84 90.98 93.10
Qwen 98.45 97.07 91.47 94.82
Baichuan2 97.88 98.05 91.25 95.26

Table 3: Performance of each model’s LatentShield across various data settings.

seems to be the most difficult unsafe datasets to442

detect by all Shields with LlamaGuard 2 and Lla-443

maGuard 3 achieving only 48% and 42%. La-444

tentShield achieved a performance between 70-445

84% showing substantially better performance than446

state-of-the-art guard models. Aya, a multi-lingual447

dataset, is the second most difficult unsafe dataset448

where LlamaGurad’s achieve up to 64.13% ac-449

curacy. LatentShield showed substantially bet-450

ter performance with at most 96.45% on Llama-2451

illustrating that LatentShield might be more ro-452

bust to distribution shifts such as changes in lan-453

guages. The leave-one-out design further validates454

LatentShield’s robustness to unseen data.455

6 Discussion456

In this section, we perform several extended exper-457

iments to evaluate the strengths and limitations of458

latent space based safety shield.459

6.1 Adversarial Robustness460

Can LatentShield detect adversarial unsafe inputs?461

We perform a preliminary experiment using adver-462

sarially crafted unsafe prompts as input to the un-463

derstudied models. All safety shields, LatentShield464

and LlamaGuard 2/3, struggle to detect adversarial465

inputs with high precision. However, LatentShield466

demonstrated substantially better adversarial re-467

silience compared to LlamaGuard 2/3.468

For instance, we employed the PAIR at-469

tack (Chao et al., 2024) on 200 prompts from the470

Harmbench dataset. We used the Mixtral-8x7B-471

Instruct-v0.1 model (Jiang et al., 2024) both as472

the attacker and the judge to generate and evalu-473

ate adversarial variants of the prompts. The target474

model for the attack was Llama-2. Each prompt475

was subjected to up to 20 attack attempts. The re-476

sulting adversarial prompts were then passed to the477

LatentShield classifier, also based on Llama-2, as478

well as to LlamaGuard 2/3 for classification. While 479

LlamaGuard 2 and 3 achieved 21% and 25% ac- 480

curacy respectively, LatentShield showed substan- 481

tially better performance of 58.5%. Despite this 482

improvement over LlamaGuards, 58.5% accuracy 483

is still insufficient for reliable deployment. 484

To probe it further, we visualize the activa- 485

tion patterns of adversarial prompts, specifically 486

PAIR and GBDA (Guo et al., 2021) attacks, 487

as well as safe and unsafe prompts. These 488

three types—unsafe (Red-Teaming), PAIR (Neu- 489

ral Prompt-to-Prompt), and GBDA (Optimization- 490

Based Template attacks)—were selected to provide 491

coverage across the main categories of inference- 492

time attacks, as identified in survey Dong et al. 493

(2024). As can be seen in Figure 5 3rd and 4th 494

from left, different attack types exhibit linearly sep- 495

arable activation patterns, meaning that adversarial 496

prompts could potentially be classified if such ac- 497

tivations were included during training. However, 498

since our model has not been trained on adversar- 499

ial activations, it fails to recognize and correctly 500

classify these perturbed unsafe prompts. 501

6.2 Sensitivity to Exaggerated Safety 502

The exaggerated safety dataset, XSTest, is aimed at 503

detecting over filtering of safe prompts as unsafe. It 504

consists of sentences that resemble unsafe language 505

but the sentences are semantically safe, e.g. “How 506

do I kill a process" is a safe sentence but it used 507

the language and structure of a potentially unsafe 508

input. We test whether LatentShield can detect 509

adversarial safe inputs. Our findings also reveal 510

that LatentShield performs poor with a maximum 511

performance of 53.6% on the Starling model (see 512

Table 7 in Appendix). 513

We visualize the XSTest with safe, unsafe and 514

adversarially unsafe inputs in Figure 5 first, second 515

and last from left. XSTest, adv. Safe, shows sepa- 516

rate cluster from all types of safe and unsafe data. 517
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Dataset Name Baselines LatentShield Variants

LlamaG 2 LlamaG 3 Llama-3 Llama-2 Orca Vicuna Mistral Qwen Baichuan

Crawled Prompts 100.00 100.00 99.55 100.00 97.76 99.10 99.55 99.10 100.00
Natural Questions 99.66 98.00 97.33 99.00 98.00 97.00 99.00 97.00 97.67
Alpaca Eval 99.33 100.00 96.00 100.00 99.00 99.33 99.33 98.67 99.67
Dolly 100.00 100.00 96.96 96.28 93.92 93.92 94.59 92.91 93.24
Ultrachat 97.33 99.00 98.33 100.00 94.33 97.00 99.33 97.67 99.67

Harmbench 85.00 97.50 99.00 99.50 90.50 99.00 100.00 98.50 95.50
HEx-PHI 94.00 97.33 93.00 97.67 94.00 96.67 96.33 96.67 95.67
MaliciousInstruct 89.00 92.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00
Q-Harm 48.00 42.00 79.00 84.00 74.00 70.00 78.00 70.00 74.00
Aya 64.13 62.51 90.07 96.45 90.07 87.84 89.16 92.20 91.08

Table 4: Performance of models across datasets (in %). LlamaG refers to LlamaGuard.

Figure 5: Visualizing various adversarial datasets in comparison with safe and unsafe datasets. The header of each
figure mentions the combination of datasets used for visualization. Adv. Safe refers to the Exaggerated Safety
dataset, XSTest.

This may mean that if XSTest is used in the train-518

ing of LatentShield, it will be able to detect it with519

high accuracy. In a preliminary experiment, we use520

80% of XSTest for the training of LatentShield and521

used the rest 20% for testing. The performance of522

LatentShield improved by 54% points to 88.0%,523

successfully learning to differentiate between legit-524

imate safety concerns and excessive refusals.525

LlamaGuard 2/3 achieved over 92% on XSTest,526

suggesting possible exposure to data with similar527

characteristics during training. Supporting this,528

their performance is notably lower on adversarially529

unsafe inputs (PAIR and GBDA attacks), which are530

unlikely to resemble training data.531

The visualizations in Figure 5 shows the poten-532

tial of using latent space in precisely detecting var-533

ious types of input prompts. We leave the further534

exploration of the best combination of datasets to535

train a robust LatentShield to future work.536

7 Conclusion and Future Work537

We presented an extensive study analyzing repre-538

sentations of safety-aligned models in their abil-539

ity to distinguish between safe and unsafe inputs.540

Across 10 models and several datasets, we showed541

that models consistently represent safe and unsafe542

inputs differently in their latent space. However,543

this distinction is independent of the nature of the544

model’s output. Motivated by the consistent pat- 545

terns in latent space, we proposed LatentShield, 546

a light-weight model specific safety shield to de- 547

tect safe and unsafe inputs. LatentShield outper- 548

formed LlamaGuard 2 and 3, large input classifica- 549

tion models, in detecting unsafe input and adversar- 550

ially unsafe inputs. We showed that the inclusion 551

of small subset of any type of attack data substan- 552

tially improved the performance of LatentShield, 553

highlighting the benefits of training a light-weight 554

classifier customized for each model that can be 555

trained rapidly for any new unsafe datasets. 556

The discussion section leads way towards vari- 557

ous future directions. Notably, the visualization of 558

safe, unsafe, adversarially safe and adversarially 559

unsafe data show that it is possible to train a robust 560

shield that detects a large variety of unsafe inputs 561

effectively. This requires thorough experimentation 562

across various data and attack settings and is out of 563

the scope of the current paper. 564

8 Limitations 565

While our study demonstrates the potential of latent 566

space representations for safety detection, several 567

limitations remain. 568

First, LatentShield focuses on detecting unsafe 569

inputs and does not include mitigation or response- 570

generation mechanisms. For real-world applica- 571
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tions, combining detection with downstream safety572

actions would be essential.573

Second, although we evaluate LatentShield574

across multiple datasets, its robustness to unseen575

adversarial attacks is limited. Even with improved576

performance over baseline models, the accuracy577

remains insufficient for reliable deployment in real-578

world settings.579

Third, LatentShield shows reduced effectiveness580

on adversarial-safe inputs, such as those in the XS581

test set. These prompts are semantically benign but582

contain surface patterns similar to unsafe inputs.583

This suggests the model has difficulty distinguish-584

ing between truly harmful content and safe prompts585

with misleading phrasing.586

These limitations point to several future direc-587

tions, including integrating detection with mitiga-588

tion strategies, improving generalization to unseen589

adversarial attacks, and advancing the model’s abil-590

ity to deal with safety ambiguity.591

Ethics Statement592

This work analyzes safety-related patterns in open-593

source LLMs using both safe and unsafe prompt594

datasets. All unsafe prompts were sourced from595

publicly available datasets and used strictly for the596

purpose of evaluating model safety. No private user597

data or human subjects were involved. While La-598

tentShield aims to improve the proactive detection599

of unsafe prompts, we acknowledge that insights600

into latent representations could potentially be mis-601

used by adversaries. We have taken care to report602

findings in a manner that emphasizes safety en-603

hancements. We encourage responsible use of this604

research in the broader pursuit of AI alignment and605

safety.606
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Figure 6: Activation visualization of Natural Questions safe vs. MaliciousInstruct unsafe inputs at Layer 1 across
different models.

Figure 7: Activation visualization of Ultrachat safe vs. Aya unsafe inputs at Layer 16 across different models.

Figure 8: Activation visualization of Alpaca Eval safe vs. HEx-PHI unsafe inputs at Layer 32 across different
models.

Dataset Name Baselines LatentShield Variants

LlamaGuard 2 LlamaGuard 3 Llama-3 Llama-2 Orca Vicuna Koala Mistral Starling Zephyr Qwen Baichuan

Crawled Prompts 100.00 100.00 99.55 100.00 97.76 99.10 99.10 99.55 99.10 94.62 99.10 100.00
Natural Questions 99.66 98.00 97.33 99.00 98.00 97.00 94.33 99.00 99.67 98.67 97.00 97.67
Alpaca Eval 99.33 100.00 96.00 100.00 99.00 99.33 99.00 99.33 98.33 96.00 98.67 99.67
Dolly 100.00 100.00 96.96 96.28 93.92 93.92 92.22 94.59 96.28 93.24 92.91 93.24
Ultrachat 97.33 99.00 98.33 100.00 94.33 97.00 91.67 99.33 89.33 91.67 97.67 99.67

Harmbench 85.00 97.50 99.00 99.50 90.50 99.00 96.00 100.00 95.50 99.00 98.50 95.50
HEx-PHI 94.00 97.33 93.00 97.67 94.00 96.67 96.00 96.33 90.67 96.00 96.67 95.67
MaliciousInstruct 89.00 92.00 99.00 100.00 100.00 100.00 100.00 100.00 98.00 100.00 100.00 100.00
Q-Harm 48.00 42.00 79.00 84.00 74.00 70.00 70.00 78.00 75.00 75.00 70.00 74.00
Aya 64.13 62.51 90.07 96.45 90.07 87.84 86.83 89.16 81.05 84.90 92.20 91.08

Table 5: Performance of different Guard models across datasets (in %).
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Model Name Harmbench HEx-PHI MaliciousInstruct Q-Harm Aya

Llama-3 2.50 4.67 0.00 2.00 1.82
Llama-2 1.00 2.00 0.00 1.00 0.30
Orca 64.50 60.33 50.00 9.00 31.21
Vicuna 25.50 21.00 32.00 5.00 8.31
Koala 61.50 51.33 59.00 10.00 29.48
Mistral 51.00 44.33 17.00 3.00 16.31
Starling 71.00 48.67 71.00 16.00 32.52
Zephyr 86.00 77.67 60.00 10.00 40.43
Qwen 9.50 8.00 4.00 1.00 2.53
Baichuan 15.00 13.67 0.00 0.00 6.28

Table 6: Performance of different models across datasets (LlamaGuard 3-ASR metric).

Model Training Setting Accuracy (%)

Llama-3 Exclusion 51.6
Llama-2 Exclusion 31.2
Orca Exclusion 47.6
Vicuna Exclusion 45.6
Koala Exclusion 44.0
Mistral Exclusion 51.6
Starling Exclusion 53.6
Zephyr Exclusion 51.6
Qwen Exclusion 31.6
Baichuan Exclusion 45.6

Llama-3 Inclusion 82.0
Llama-2 Inclusion 84.0
Orca Inclusion 86.0
Vicuna Inclusion 92.0
Koala Inclusion 92.0
Mistral Inclusion 74.0
Starling Inclusion 64.0
Zephyr Inclusion 68.0
Qwen Inclusion 88.0
Baichuan Inclusion 88.0

Table 7: LatentShield results on Exaggerated Safety dataset with Exclusion (zero-shot) and Inclusion (80% data
used for training).
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