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Abstract

While LLMs undergo extensive safety training,
whether they can internally encode the distinc-
tion between safe versus unsafe inputs remains
an open question. This paper investigates in-
trinsic safety patterns in the latent activation
space of large language models (LLMs), ex-
amining how safety-aligned models distinguish
between safe and unsafe inputs at the repre-
sentation level. We perform a comprehensive
analysis across 10 models and several datasets
including safe, unsafe, and adversarial datasets.
We show that LLMs implicitly encode safety-
related patterns within their activation space,
which can be leveraged for proactive detection
of input safety. We introduce LatentShield, a
mechanism for early unsafe input detection us-
ing representations. LatentShield outperforms
state-of-the-art safety shields, LlamaGuard 2
and LlamaGuard 3, by up to 42% points when
tested on the most challenging unsafe datatset,
Q-Harm. On adversarial attacks, LlamaGuards’
performance collapse to 25% in comparison of
58.5% of LatentShield. Our findings strongly
suggest that representations of a model can
be leveraged to build a high performing light-
weight model-specific safety shield.

1 Introduction

Large Language Models (LLMs) are widely used
in many fields, making their safety a critical con-
cern. To mitigate potential risks, researchers have
put significant effort into aligning these models
with human values and preventing harmful out-
puts. Techniques such as Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al.,
2023), Reinforcement Learning from Al Feedback
(RLAIF) (Bai et al., 2022), Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), adversarial
training, and prompt-based guardrails have been
employed to enhance LLM safety. These methods
aim to optimize model behavior, strengthen refusal
mechanisms against harmful inputs, and enforce

safety constraints through carefully designed sys-
tem prompts. While these methods are rigorously
evaluated on safety benchmarks, their robustness
remains questionable as small variations in inputs
often breach their safety guards (Mazeika et al.,
2024).

This brittle behavior raises questions about a
model’s ability to encode knowledge differentiat-
ing safe and unsafe requests, despite going through
safety training. For instance, are safe and unsafe
inputs distinctly represented in the latent space?
How do latent safety representations interact with
adversarial inputs? The interpretation of models’
learning of safe/unsafe representation enables bet-
ter understanding and leads way towards design-
ing robust alignment strategies intrinsic to model’s
knowledge representation.

In this work, we analyze the latent representa-
tions of safety-aligned models. Specifically, we an-
swer the following research questions: (1) How do
safety-aligned LLMs internally represent safe and
unsafe inputs? (2) How universal are the represen-
tation patterns across diverse model architectures
and real-world datasets? (3) Can we harness these
intrinsic patterns to develop practical tools for early
detection of unsafe inputs?

We focus specifically on open LLMs, which are
models whose architectures, weights, and interme-
diate representations are publicly accessible. Un-
like proprietary models, open LLMs enable democ-
ratization of Al, enabling a broad community of
developers, researchers, and organizations to use
and extend them. However, this openness also
amplifies the risk of misuse, as adversaries can ex-
ploit vulnerabilities in these models without the
oversight or guardrails often imposed by commer-
cial providers (Bengio et al., 2025; Rosati et al.,
2024b,a).

We analyze ten generative models using eleven
datasets including five unsafe datasets. We per-
form a qualitative assessment, comparing safe and



unsafe input data using Principal Component Anal-
ysis (PCA). We show that LLMs exhibit a clear
pre-generation awareness of safety, as safe and
unsafe prompts are distinctly represented in the
latent space even before any output is produced.
Notably, these distinctions are driven primarily by
the prompt representations, not by the model’s re-
sponse behavior, revealing a shallow encoding of
safety being represented by the input only. We
demonstrate the universality of these safety pat-
terns across a wide range of real-world datasets
and model architectures, including both explicitly
aligned models and those that have not undergone
safety-specific training.

Lastly, we introduce LatentShield, a lightweight
safety shield tailored to each model, to proac-
tively detect unsafe prompts prior to generation.
We demonstrate that LatentShield detects unsafe
prompts with high precision and performs substan-
tially better than state-of-the-art safety classifiers
like LlamaGuard 2 and 3 (Inan et al., 2023)—espe-
cially on unsafe inputs. We extend our analysis to
adversarially unsafe inputs and adversarially safe
inputs. Together, our analysis and proposed safety
shield highlight the untapped potential of latent rep-
resentations for both understanding, evaluating and
improving LLM safety.

2 Related Work

Safeguards A range of safety moderation tools
have recently emerged to detect and mitigate
harmful behavior in LLMs. While frontier pro-
prietary models (e.g., Openai moderation (Ope-
nAl)) are widely used, recent efforts have fo-
cused on developing open-source alternatives that
are transparent and community-driven. Several
such systems—I.lamaGuard (Inan et al., 2023), its
follow-ups LlamaGuard 2 and 3, Aegis (Ghosh
et al., 2024), MD-Judge (Li et al., 2024), Beaver-
Dam (Ji et al.,, 2023), the HarmBench classi-
fier (Mazeika et al., 2024), and WildGuard (Han
et al., 2024)—have been trained on curated mod-
eration datasets to classify prompt-response pairs
across various safety dimensions. In contrast, our
approach introduces LatentShield, a lightweight,
model-specific method that proactively detects un-
safe prompts by analyzing a model’s internal ac-
tivations before any text is generated. While La-
tentShield requires individual calibration for each
model, it offers enhanced robustness against unsafe
prompts compared to methods like LlamaGuard

2 and 3. By focusing on internal activations, La-
tentShield provides an efficient and proactive safe-
guard against the generation of harmful content.

Understanding safety Recent work has shown
that directions in activation space often capture se-
mantically meaningful features more effectively
than individual neurons (Elhage et al. (2022);
Geiger et al. (2024); Nanda et al. (2023); Park
et al. (2024)). Building on this, several studies as-
sume that features are linearly encoded, a property
that has been successfully exploited for erasing or
editing concepts in language models (Belrose et al.
(2023); Guerner et al. (2025); Shao et al. (2023);
Arditi et al. (2024)).

Recent safety-focused studies have applied
activation-level analyses. Ball et al. (2024) exam-
ined latent representations during jailbreaks, show-
ing that successful attacks induce distinct activa-
tion shifts in Vicuna, Qwen and MPT models using
parallel synthetic safe and unsafe prompts. Jain
et al. (2024) similarly demonstrated that safety-
tuned LLaMA models encode unsafe and safe
prompts in separable latent subspaces. How-
ever, both approaches rely on synthetic or paral-
lel data and evaluate on narrow model families.
In contrast, we analyze diverse model architec-
tures using real-world, non-parallel safe and unsafe
prompts—highlighting that safety-relevant struc-
ture emerges naturally in activation space without
synthetic pairing. Moreover, we propose a light-
weight safety shield that leverages the linear sepa-
rability of safe and unsafe data in the latent space
and serves as an effective safety moderation tool.

3 Datasets

To explore the intrinsic representation geometry of
safe and unsafe activations (which we refer to as
intrinsic safety patterns) in open weight LLMs, we
assemble a diverse collection of datasets compris-
ing unsafe, safe, and adversarially safe prompts (i.e.
they appear unsafe due to words like "kill" but are
actually safe since they are about "killing a python
process”). These datasets, primarily sourced from
existing public resources, support robust analysis
across input types. Table 1 provides a detailed
breakdown of the data composition and sample
sizes.

Unsafe Data The unsafe data aggregates 1,387
harmful prompts from multiple existing datasets,
such as HarmBench and Aya (multi-lingual), de-



signed to elicit harmful, biased, or malicious out-
puts. These samples test model vulnerabilities
across a range of adversarial and unsafe scenarios.

Safe Data The safe data collection comprises
1,396 benign prompts sourced from existing
datasets such as Natural Questions and Alpaca Eval,
as well as 223 Crawled Prompts that were manually
curated. These Crawled Prompts were collected
from the web and selected based on quality and di-
versity. For the existing datasets, random sampling
was performed to ensure balance with the unsafe
data, given the large size of the original sets.

Adpversarially Safe Data We included 450 sam-
ples from the XSTest dataset as an adversarially
safe benchmark. These prompts, engineered to ap-
pear unsafe but remain benign, test the robustness
of safety pattern detection against edge cases.

Unsafe Prompts with Safe/Unsafe Responses
We want to analyze latent representations of unsafe
prompts that result in safe response by an LLM.
Here, safe refers to a compliance response where
LLM refused to answer a question that will result in
harmful response. We generate responses of unsafe
prompts with each target LLMs and use Llama-
Guard 3, a state-of-the-art classifier, to annotated
the prompt-response pairs for safety. We refer to
the prompt-response pairs where the model refuses
harmful outputs, indicating successful alignment as
Unsafe Prompts with Safe Responses and instances
where the model fails, producing harmful content
as Unsafe Prompts with Unsafe Responses.

4 Representation Visualization Analysis

Given a safe dataset D, and an unsafe dataset D,,
consisting of n and k instances respectively where
each instance represents a sequence of words. We
extract representations z, € R™*? of each instance
in D, and z, € R¥*4 of each instance in D,, us-
ing a model M where d is the number of dimen-
sions. Specifically, we collect the representations
from the last token position across all layers of the
model. We apply linear dimensionality reduction
technique, Principal Component Analysis (PCA)
to visualize representations of D, and D, in two
dimensional space. In the following, we provide
details of each step.

4.1 Principal Component Analysis (PCA)

We use PCA to analyze latent representations of
the model. We hypothesize that if a model encodes

knowledge of safe and unsafe distinctly, it should
show separability between representations of safe
and unsafe data points in the principal component
space.

We normalize each representation vector z and
compute the covariance matrix ¥ of the normal-
ized data. Mathematically, for a set of m normal-
ized representations {z1, 22, ..., 2}, the covari-
ance matrix is given by: ¥ = L 5™ 22T

Next, we perform eigenvalue decomposition on
>, which yields a set of eigenvalues and their cor-
responding eigenvectors. The eigenvectors define
the principal components, and the eigenvalues indi-
cate the variance captured by each component. We
project the original representations onto the top two
principal components to reduce the dimensionality
to 2D.

4.2 Qualitative Analysis

We analyze the separability of safe and unsafe acti-
vations in the latent space of ten LLMs, comprising
of diverse designs. We systematically examine the
phenomenon across four key aspects: models, un-
safe datasets, safe datasets, and layers. For each
analysis, we varied one factor while keeping oth-
ers fixed: safe data from Crawled Prompts, unsafe
data from Harmbench, activations at Layer 16, and
Mistral as the baseline model, unless specified. We
selected Layer 16 based on the analysis in Ball
et al. (2024), who note that prior work found mid-
dle layers in 7B-scale models capture high-level se-
mantic information. To isolate the effect of prompt
content on latent representations, we deliberately
excluded system messages during inference. This
ensures that the observed safety patterns arise from
the prompt text itself, rather than being induced
by safety-oriented system instructions. Safe inputs
are shown as green dots, unsafe inputs with un-
safe responses as red dots, and unsafe inputs with
safe responses as orange dots in Figures 1-4. Ad-
ditional visualizations for other combinations of
models, datasets, and layers are included in the
Appendix A.1.

Across Models Activation patterns consistently
showed separable clusters of safe and unsafe inputs
across all models at Layer 16 (Figure 1). However,
the degree of separation varied: Llama-2 exhibited
the strongest clustering, while Starling, Koala and
Zephyr showed more overlap, suggesting differ-
ences in how safety alignment shapes latent rep-
resentations of safe and unsafe inputs. Notably,



Category Dataset Samples
Harmbench (Mazeika et al., 2024) 200
HEx-PHI (Qi et al., 2024) 300
Unsafe MaliciousInstruct (Huang et al., 2024) 100
Q-Harm (Bianchi et al., 2024) 100
Aya (Aakanksha et al., 2024) 987
Total Unsafe 1687
Crawled prompts 223
Natural Questions (Kwiatkowski et al., 2019) 300
Safe Alpaca Eval (Li et al., 2023) 300
Dolly (Conover et al., 2023) 296
Ultrachat (Ding et al., 2023) 300
Total Safe 1419
Adversarially Safe  XSTest (Rottger et al., 2024) 250

Table 1: Summary of Unsafe, Safe, and Adversarially Safe Datasets

Formal Model Name Shortened Name Base Model Safe?
Llama-3-8b-Instruct (AI@Meta, 2024) Llama-3 - v
Llama-2-7b-Chat (Touvron et al., 2023) Llama-2 - v
Orca-2-7b (Mitra et al., 2023) Orca Llama-2 X
Vicuna-7b-v1.5 (Chiang et al., 2023) Vicuna Llama-2 X
Koala-7b (Geng et al., 2023) Koala Llama-1 X
Mistral-7b-Instruct-v0.2 (Jiang et al., 2023)  Mistral - X
Starling-LM-7b-Alpha (Zhu et al., 2024) Starling Mistral-7B-v0.1 v
Zephyr-7b-Beta (Tunstall et al., 2024) Zephyr Mistral-7B-v0.1 X
Qwen-7b-Chat (Bai et al., 2023) Qwen - v
Baichuan2-7b-Chat (Yang et al., 2023) Baichuan - v

Table 2: List of models used, their shortened names, respective base models, and whether they have undergone

safety tuning.

the models did not distinguish between unsafe re-
sponses and always map all unsafe inputs together.
As a side note, the relatively sparse red points in
some safety-tuned models (e.g., Llama-2, Llama-3)
reflect that they rarely produced unsafe comple-
tions—except for Starling, which, despite tuning,
still shows a noticeable number of such cases. See
Appendix Table 6 for Attack Success Rate (ASR)
scores across models and unsafe datasets evaluated
using LlamaGuard 3.

Across Unsafe Datasets We observed that the
distinction between safe and unsafe data gener-
alizes across unsafe datasets. Figure 2 presents
the results of using Mistral at Layer 16 where we
observed clear separation between safe (Crawled
Prompts) and various unsafe datasets (e.g., Harm-
bench, MaliciousInstruct). The separation is most
pronounced for Harmbench and HEx-PHI, but
weaker for Q-Harm, indicating that the nature of
unsafe content influences activation patterns.

Across Safe Datasets We further vary the safe
datasets to evaluate the generalization of observed
patterns. Across five safe datasets (e.g., Natu-
ral Questions, Alpaca Eval), the model Mistral

at Layer 16 showed consistently formed distinct
clusters from unsafe inputs (Figure 3). Natural
Questions showed the tightest clustering, while Ul-
trachat had more spread, reflecting variability in
safe input complexity. However, the activations
patterns are distinguishably separate from unsafe
datasets.

Across Layers Figure 4 compares the layer-wise
pattern of Layers 1, 16 and 32 to analyze the evo-
lution of representations across the model depth.
Mistral consistently showed separate patterns for
safe and unsafe inputs irrespective of model’s re-
sponse. However, we observe that at higher layer,
the tightness of safe and unsafe clusters within
themselves are relatively low.

Summary Our findings indicate that before gen-
eration begins, models demonstrate a strong pre-
generation awareness of safe vs. unsafe inputs in
the activation space. However, despite this inter-
nal differentiation, models do not always adhere to
safety constraints during generation. Even when ac-
tivations signal an understanding of safety, models
may still produce contrary outputs. This suggests
that while activations reflect internal knowledge,
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Figure 1: Activation visualization of Crawled prompts: safe vs. Harmbench unsafe inputs at Layer 16 across
different models.
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Figure 2: Activation visualization of various Unsafe inputs vs. Crawled prompts safe inputs at Layer 16 of Mistral

they do not necessarily dictate final generation de-  able performance metrics.

cisions, suggesting that activation clustering alone Exclusion Experiments: To assess generaliz-
does not determine output behavior. ability and the influence of individual datasets,

we conduct a series of exclusion experiments: 1)
5 LatentShield Leave-one-out exclusion of individual safe datasets.

2) Leave-one-out exclusion of individual unsafe
datasets. 3) Combined exclusions of both safe and
unsafe datasets.

In this section, we empirically evaluate whether rep-
resentations zg and z,, are linearly separable and if
yes, this may serve as a latent shield to detect safe
and unsafe inputs before model generates an out-  Baselines We benchmark LatentShield against
put. We annotate each representation with a label [ lamaGuard 2 and LlamaGuard 3 by feeding the

I € {0, 1} where 0 refers to safe input and 1 refers  same prompts to these models and comparing clas-
to unsafe input. We train LatentShield, a logistic re-  sification performance.

gression classifier, on the {2/, [}. We use Elastic-
Net regularization with a categorical cross-entropy ~ >-1 Results

loss to encourage neurons with monosemantic and  Table 3 summarizes the results of LatentShield,
polysemantic behavior in playing a role in classi-  with accuracy reported as the primary metric to
fication (Dalvi et al., 2019). The loss function is  reflect LatentShield’s ability to distinguish between
defined as: safe and unsafe prompts.

L(0) = — 3, 1log Py(ls]2:) + M ||0]l1 + X2]|0]|3 In the cross-validation inclusion setting (CV Ac-
where Py (l;]z;) is the probability of i representa-  curacy), LatentShield achieved high accuracies
tion z; with label [;. A1 and \g are the hyperparam-  across all models. This demonstrates linear sepa-
eters. We use a value of 0.1 for each of them. The  rability of safe and unsafe activation patterns in the

weights 6 are learned using gradient descent. latent space, supporting our hypothesis that safety-
We use the following data settings to test the  aligned LLLMs encode distinct representations for
efficacy of LatentShield. these input types. Exclusion experiments tested

Inclusion: All available safe and unsafe data  the generalizability of these findings. We did not
presented in Table 1 is utilized, with k-fold cross-  observe any consistent reliance on particular safe
validation applied to ensure robust and generaliz-  data as can be see from the results of column Safe
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Figure 3: Activation visualization of various safe inputs vs. harmbench unsafe inputs at Layer 16 of Mistral

Layer 16 Layer 32
° °
20 '.‘s oo 40 o L.
82 ® §995 o0t %0l o
° oo ® .o 30 Q ....‘ ° ..‘c
o 20 ® Se © 2 ,h °
° ‘ ° & ° b o ®
> e ° ° ~t‘ ° bl ° 101 o ode o .,
. (‘; ° 0 % o ¢° © ° o °, °© ‘7.
o %'. % o° © ° o 0 8 ° 0.. ® .
o* e % %0 & y %% o ’“% Q..' &
® H 20 S T A -10 ...? ..' S AL
- 0%e% % @ ° ° "%
¢ ° ° .‘;:'." —201 ° W g, o B8%, ‘J
L L ]
50 75 20  -20 0 20 40 40  -20 0 20 40

Safe

Unsafe Prompt, Safe Response

e Unsafe Prompt, Unsafe Response

Figure 4: Activation visualization of safe vs. Harmbench unsafe inputs of Mistral

Exclusion in Table 3. Excluding unsafe datasets,
Unsafe Exclusion showed a drop of 4% — 8% in
performance across all models. While this suggests
the importance of observing representations of each
unsafe dataset during training to achieve high pre-
cision, the absolute performance scores of above
88% with up to 95% showed that LatentShield is
still able to detect unsafe inputs with high accu-
racy. In other words, safe vs. unsafe separability
is not overly reliant on any single dataset, re-
inforcing the universality of safety patterns across
diverse safe and unsafe inputs in a model. The com-
bined exclusion setting, where both safe and unsafe
datasets were systematically omitted, yielded high
average accuracies. This consistent performance
across conditions underscores the reliability of la-
tent safety representations, even when training data
is reduced or varied.

Comparing LatentShield across models, Llama-
2’s shield consistently performed well across all
settings including Unsafe Exclusion, suggesting
that its latent space encodes particularly stable
safety distinctions with less reliance on a partic-
ular dataset.

These results highlight the effectiveness of La-
tentShield as a lightweight, proactive safety de-
tection mechanism that reliably identify unsafe in-
puts before generation. Moreover, the consistency
across models, including ones that have not been
safety trained, and exclusion settings aligns with

our qualitative findings (Section 4.2), where PCA
visualizations revealed separable clusters of safe
and unsafe activations. Overall, these quantitative
outcomes provide a strong foundation for leverag-
ing latent space patterns to enhance LLM safety
mechanisms.

5.2 Comparison with LlamaGuard 2 & 3

To assess LatentShield’s performance relative to
established safety mechanisms, we benchmarked
LatentShield against LlamaGuard 2 and Llama-
Guard 3 using a leave-one-out exclusion approach
across all ten models. For a given test dataset (e.g.,
Natural Questions or Harmbench), LatentShield
was trained on all other safe and unsafe dataset
activations for a model, excluding the chosen test
dataset, as outlined in the exclusion experiments.
This ensures the test dataset is unseen during train-
ing, enabling a fair comparison of generalization.
LlamaGuard 2 and LlamaGuard 3 were applied di-
rectly to the same prompts from the test dataset.
Performance is reported as classification accuracy
(in percentage), with representative results summa-
rized in Table 4. We observed consistent results
across all models. To optimize space, we moved
the results of a few models to Appendix.

Across all ten models, LatentShield consistently
outperformed LlamaGuard2 and LlamaGuard 3
on unsafe datasets in this leave-one-out setting,
while remaining competitive on safe ones. Q-Harm



Model CV Accuracy Safe Exclusion (avg.) Unsafe Exclusion (avg.) Combination (avg.)
Llama-3 97.49 97.63 92.01 94.51
Llama-2 98.20 99.05 95.52 97.80
Orca 97.71 96.60 89.71 92.57
Vicuna 97.88 97.27 90.70 94.06
Koala 97.75 95.27 89.77 92.44
Mistral 97.36 98.36 92.70 95.20
Starling 96.39 96.54 88.04 91.85
Zephyr 96.61 94.84 90.98 93.10
Qwen 98.45 97.07 91.47 94.82
Baichuan2 97.88 98.05 91.25 95.26

Table 3: Performance of each model’s LatentShield across various data settings.

seems to be the most difficult unsafe datasets to
detect by all Shields with LlamaGuard 2 and Lla-
maGuard 3 achieving only 48% and 42%. La-
tentShield achieved a performance between 70-
84% showing substantially better performance than
state-of-the-art guard models. Aya, a multi-lingual
dataset, is the second most difficult unsafe dataset
where LlamaGurad’s achieve up to 64.13% ac-
curacy. LatentShield showed substantially bet-
ter performance with at most 96.45% on Llama-2
illustrating that LatentShield might be more ro-
bust to distribution shifts such as changes in lan-
guages. The leave-one-out design further validates
LatentShield’s robustness to unseen data.

6 Discussion

In this section, we perform several extended exper-
iments to evaluate the strengths and limitations of
latent space based safety shield.

6.1 Adversarial Robustness

Can LatentShield detect adversarial unsafe inputs?
We perform a preliminary experiment using adver-
sarially crafted unsafe prompts as input to the un-
derstudied models. All safety shields, LatentShield
and LlamaGuard 2/3, struggle to detect adversarial
inputs with high precision. However, LatentShield
demonstrated substantially better adversarial re-
silience compared to LlamaGuard 2/3.

For instance, we employed the PAIR at-
tack (Chao et al., 2024) on 200 prompts from the
Harmbench dataset. We used the Mixtral-8x7B-
Instruct-v0.1 model (Jiang et al., 2024) both as
the attacker and the judge to generate and evalu-
ate adversarial variants of the prompts. The target
model for the attack was Llama-2. Each prompt
was subjected to up to 20 attack attempts. The re-
sulting adversarial prompts were then passed to the
LatentShield classifier, also based on Llama-2, as

well as to LlamaGuard 2/3 for classification. While
LlamaGuard 2 and 3 achieved 21% and 25% ac-
curacy respectively, LatentShield showed substan-
tially better performance of 58.5%. Despite this
improvement over LlamaGuards, 58.5% accuracy
is still insufficient for reliable deployment.

To probe it further, we visualize the activa-
tion patterns of adversarial prompts, specifically
PAIR and GBDA (Guo et al.,, 2021) attacks,
as well as safe and unsafe prompts. These
three types—unsafe (Red-Teaming), PAIR (Neu-
ral Prompt-to-Prompt), and GBDA (Optimization-
Based Template attacks)—were selected to provide
coverage across the main categories of inference-
time attacks, as identified in survey Dong et al.
(2024). As can be seen in Figure 5 3rd and 4th
from left, different attack types exhibit linearly sep-
arable activation patterns, meaning that adversarial
prompts could potentially be classified if such ac-
tivations were included during training. However,
since our model has not been trained on adversar-
ial activations, it fails to recognize and correctly
classify these perturbed unsafe prompts.

6.2 Sensitivity to Exaggerated Safety

The exaggerated safety dataset, XSTest, is aimed at
detecting over filtering of safe prompts as unsafe. It
consists of sentences that resemble unsafe language
but the sentences are semantically safe, e.g. “How
do I kill a process"” is a safe sentence but it used
the language and structure of a potentially unsafe
input. We test whether LatentShield can detect
adversarial safe inputs. Our findings also reveal
that LatentShield performs poor with a maximum
performance of 53.6% on the Starling model (see
Table 7 in Appendix).

‘We visualize the XSTest with safe, unsafe and
adversarially unsafe inputs in Figure 5 first, second
and last from left. XSTest, adv. Safe, shows sepa-
rate cluster from all types of safe and unsafe data.



Dataset Name \ Baselines \ LatentShield Variants
‘ LlamaG 2 LlamaG 3 ‘ Llama-3 Llama-2 Orca Vicuna Mistral Qwen Baichuan

Crawled Prompts 100.00 100.00 99.55 100.00 97.76 99.10 99.55 99.10 100.00
Natural Questions 99.66 98.00 97.33 99.00 98.00  97.00 99.00 97.00 97.67
Alpaca Eval 99.33 100.00 96.00 100.00 99.00  99.33 99.33 98.67 99.67
Dolly 100.00 100.00 96.96 96.28 93.92 93.92 94.59 92.91 93.24
Ultrachat 97.33 99.00 98.33 100.00 94.33 97.00 99.33 97.67 99.67
Harmbench 85.00 97.50 99.00 99.50 90.50  99.00 100.00  98.50 95.50
HEx-PHI 94.00 97.33 93.00 97.67 94.00  96.67 96.33 96.67 95.67
MaliciousInstruct 89.00 92.00 99.00 100.00  100.00 100.00  100.00  100.00 100.00
Q-Harm 48.00 42.00 79.00 84.00 74.00  70.00 78.00 70.00 74.00
Aya 64.13 62.51 90.07 96.45 90.07 87.84 89.16 92.20 91.08

Table 4: Performance of models across datasets (in %). LlamaG refers to LlamaGuard.
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Figure 5: Visualizing various adversarial datasets in comparison with safe and unsafe datasets. The header of each
figure mentions the combination of datasets used for visualization. Adv. Safe refers to the Exaggerated Safety

dataset, XSTest.

This may mean that if XSTest is used in the train-
ing of LatentShield, it will be able to detect it with
high accuracy. In a preliminary experiment, we use
80% of XSTest for the training of LatentShield and
used the rest 20% for testing. The performance of
LatentShield improved by 54% points to 88.0%,
successfully learning to differentiate between legit-
imate safety concerns and excessive refusals.

LlamaGuard 2/3 achieved over 92% on XSTest,
suggesting possible exposure to data with similar
characteristics during training. Supporting this,
their performance is notably lower on adversarially
unsafe inputs (PAIR and GBDA attacks), which are
unlikely to resemble training data.

The visualizations in Figure 5 shows the poten-
tial of using latent space in precisely detecting var-
ious types of input prompts. We leave the further
exploration of the best combination of datasets to
train a robust LatentShield to future work.

7 Conclusion and Future Work

We presented an extensive study analyzing repre-
sentations of safety-aligned models in their abil-
ity to distinguish between safe and unsafe inputs.
Across 10 models and several datasets, we showed
that models consistently represent safe and unsafe
inputs differently in their latent space. However,
this distinction is independent of the nature of the

model’s output. Motivated by the consistent pat-
terns in latent space, we proposed LatentShield,
a light-weight model specific safety shield to de-
tect safe and unsafe inputs. LatentShield outper-
formed LlamaGuard 2 and 3, large input classifica-
tion models, in detecting unsafe input and adversar-
ially unsafe inputs. We showed that the inclusion
of small subset of any type of attack data substan-
tially improved the performance of LatentShield,
highlighting the benefits of training a light-weight
classifier customized for each model that can be
trained rapidly for any new unsafe datasets.

The discussion section leads way towards vari-
ous future directions. Notably, the visualization of
safe, unsafe, adversarially safe and adversarially
unsafe data show that it is possible to train a robust
shield that detects a large variety of unsafe inputs
effectively. This requires thorough experimentation
across various data and attack settings and is out of
the scope of the current paper.

8 Limitations

While our study demonstrates the potential of latent
space representations for safety detection, several
limitations remain.

First, LatentShield focuses on detecting unsafe
inputs and does not include mitigation or response-
generation mechanisms. For real-world applica-



tions, combining detection with downstream safety
actions would be essential.

Second, although we evaluate LatentShield
across multiple datasets, its robustness to unseen
adversarial attacks is limited. Even with improved
performance over baseline models, the accuracy
remains insufficient for reliable deployment in real-
world settings.

Third, LatentShield shows reduced effectiveness
on adversarial-safe inputs, such as those in the XS
test set. These prompts are semantically benign but
contain surface patterns similar to unsafe inputs.
This suggests the model has difficulty distinguish-
ing between truly harmful content and safe prompts
with misleading phrasing.

These limitations point to several future direc-
tions, including integrating detection with mitiga-
tion strategies, improving generalization to unseen
adversarial attacks, and advancing the model’s abil-
ity to deal with safety ambiguity.
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A Appendix

A.1 Additional Activation Visualizations

In total, we generated 75 visualizations covering
both safe and unsafe settings across 10 models and
3 layers. Due to the volume and the presence of
recurring patterns across these plots, we include
only a representative selection here, omitting the
rest for brevity. See 6-8).
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Unsafe: MaliciousInstruct, Safe: Natural Questions, Layer: 1
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Figure 6: Activation visualization of Natural Questions safe vs. MaliciousInstruct unsafe inputs at Layer 1 across
different models.

Unsafe: Aya, Safe: Ultrachat, Layer: 16
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Figure 7: Activation visualization of Ultrachat safe vs. Aya unsafe inputs at Layer 16 across different models.

Unsafe: HEx-PHI, Safe: Alpaca Eval, Layer: 32
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Figure 8: Activation visualization of Alpaca Eval safe vs. HEx-PHI unsafe inputs at Layer 32 across different
models.

Dataset Name ‘ Baselines ‘ LatentShield Variants

‘LlamaGuardZ LlamaGuard 3 ‘ Llama-3 Llama-2 Orca Vicuna Koala Mistral Starling Zephyr Qwen Baichuan

Crawled Prompts 100.00 100.00 99.55 100.00  97.76  99.10  99.10  99.55 99.10 94.62  99.10 100.00
Natural Questions 99.66 98.00 97.33 99.00 98.00  97.00 9433  99.00 99.67 98.67  97.00 97.67
Alpaca Eval 99.33 100.00 96.00 100.00  99.00  99.33  99.00  99.33 98.33 96.00  98.67 99.67
Dolly 100.00 100.00 96.96 96.28 9392 9392 9222  94.59 96.28 9324 9291 93.24
Ultrachat 97.33 99.00 98.33 100.00 9433  97.00 91.67  99.33 89.33 91.67  97.67 99.67
Harmbench 85.00 97.50 99.00 99.50 90.50  99.00  96.00  100.00 95.50 99.00  98.50 95.50
HEx-PHI 94.00 97.33 93.00 97.67 94.00  96.67 96.00  96.33 90.67 96.00  96.67 95.67
MaliciousInstruct 89.00 92.00 99.00 100.00  100.00 100.00 100.00  100.00 98.00 100.00  100.00 100.00
Q-Harm 48.00 42.00 79.00 84.00 74.00  70.00  70.00  78.00 75.00 75.00  70.00 74.00
Aya 64.13 62.51 90.07 96.45 90.07 87.84  86.83 89.16 81.05 84.90  92.20 91.08

Table 5: Performance of different Guard models across datasets (in %).
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Model Name | Harmbench HEx-PHI MaliciousInstruct Q-Harm Aya

Llama-3 2.50 4.67 0.00 2.00 1.82
Llama-2 1.00 2.00 0.00 1.00 0.30
Orca 64.50 60.33 50.00 9.00 31.21
Vicuna 25.50 21.00 32.00 5.00 8.31
Koala 61.50 51.33 59.00 10.00 29.48
Mistral 51.00 44.33 17.00 3.00 16.31
Starling 71.00 48.67 71.00 16.00 32.52
Zephyr 86.00 77.67 60.00 10.00  40.43
Qwen 9.50 8.00 4.00 1.00 2.53
Baichuan 15.00 13.67 0.00 0.00 6.28

Table 6: Performance of different models across datasets (LlamaGuard 3-ASR metric).

Model Training Setting  Accuracy (%)

Llama-3 Exclusion 51.6
Llama-2 Exclusion 31.2
Orca Exclusion 47.6
Vicuna Exclusion 45.6
Koala Exclusion 44.0
Mistral Exclusion 51.6
Starling Exclusion 53.6
Zephyr Exclusion 51.6
Qwen Exclusion 31.6
Baichuan Exclusion 45.6
Llama-3 Inclusion 82.0
Llama-2 Inclusion 84.0
Orca Inclusion 86.0
Vicuna Inclusion 92.0
Koala Inclusion 92.0
Mistral Inclusion 74.0
Starling Inclusion 64.0
Zephyr Inclusion 68.0
Qwen Inclusion 88.0
Baichuan Inclusion 88.0

Table 7: LatentShield results on Exaggerated Safety dataset with Exclusion (zero-shot) and Inclusion (80% data
used for training).
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