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ABSTRACT

In recent years, attention mechanisms have played a crucial role in the success of
Transformer models, as seen in platforms like OpenAI’s ChatGPT. However, since
they compute the attentions from relationships of one or two objects, they fail to
effectively capture multi-object relationships in real-world scenarios, resulting in
low prediction accuracy. In fact, they cannot calculate attention weights across
diverse object types, like ’comments,’ ’replies,’ and specific ’subjects,’ which nat-
urally constitute conversations on platforms like Reddit, representing relationships
in real-world contexts. To overcome this limitation, we introduce the Tensorized
Attention Model (TAM), which leverages Tucker decomposition to calculate at-
tention weights across various object types and seamlessly integrates them into the
Transformer encoder. Evaluations using Reddit and TweetQA datasets, which take
into account relationships among various object types, demonstrate that TAM sig-
nificantly outperforms existing Transformer-based methods in terms of accuracy
in response selection tasks.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017), renowned for its robust attention mechanism,
has achieved extraordinary success in a wide range of natural language processing (NLP) tasks,
including named entity recognition (Yan et al., 2019), sentiment analysis (Wang et al., 2020), and
machine translation (Wang et al., 2019). Especially in the field of NLP, BERT (Devlin et al., 2019)
represents a pivotal milestone, showcasing the remarkable progress achieved primarily through the
potency of attention-based mechanisms pre-trained on massive datasets. This model’s impact has
accelerated the development of numerous other attention-centric models, effectively broadening the
horizons of NLP research. A prime example in the realm of attention-based architectures is Chat-
GPT (OpenAI, 2023), a prominent generative chatbot with support from InstructGPT (Ouyang et al.,
2022), which specializes in generating human-like responses and instructions. Other significant
contributions come from Google’s Lambda architecture (Thoppilan et al., 2022) and Meta’s Llama2
(Touvron et al., 2023). Together, these models underscore the transformative impact of attention
mechanisms in elevating the state-of-the-art in NLP.

Current attention-based models typically concentrate on relationships involving just one or two ob-
jects, such as query and memory objects, commonly seen in self-attention or source-target attention
mechanisms (Vaswani et al., 2017). However, real-world interactions often encompass more com-
plex relationships that involve three or more objects. For example, two connected sentences in a
Wikipedia article share a common topic, tweets may trigger a chain of replies connected to specific
locations, and multiple utterances in Reddit can stem from a shared conversational context. Incor-
porating these intricate multi-object relationships has the potential to unlock the latent capabilities
of transform-based models further.

The effective representation of such multi-object relationships can be achieved using tensors
(Nakatsuji et al., 2016). However, existing methods do not utilize tensors to represent multi-object
relationships. For example, (Ma et al., 2019) introduced a Tensorized Transformer model that in-
corporates a specialized self-attention encoder layer known as Multi-linear attention, along with the
Block-Term Tensor Decomposition (BTD) technique (De Lathauwer, 2008). This approach allevi-
ates the computational burden by compressing the extensive parameter set in multi-head attention
into a set of 3-order tensors through low-rank approximation. However, it faces several limitations.
Firstly, it cannot handle relationships among more than two types of objects due to constraints im-
posed by their tensor decomposition; it requires equal lengths of query and memory. This constraint
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limits its applicability in scenarios involving more diverse object types. Secondly, the approach di-
rectly computes transformer output from attention weight tensors and thus is inadequate to obtain
transformations from source object to different type target object, making it less versatile. Addi-
tionally, the method incurs higher memory overhead compared to traditional Tucker decomposition
(Tucker, 1966c; Li et al., 2017) because it simultaneously decomposes multiple tensors. In addition,
the method can suffer from overfitting when employing more than two core tensors, while it reduces
accuracy when using just one tensor. As a result, subsequent advancements in tensor-based attention
models have shown limited progress.

We introduce the Tensorized Attention Model (TAM) to efficiently integrate attention weights
among multi-object relationships into the Transformer architecture by extending the existing Ten-
sorized Transformer architecture (Ma et al., 2019). TAM takes a multi-dimensional approach to
representing complex real-world phenomena involving multiple object relationships. This enables
us to consider “concurrent occurrences among objects”, enhancing prediction accuracy. In this
context, we introduce a third object type, ’semantic objects,’ alongside the conventional query and
memory objects. These semantic objects represent “shared and common semantic elements within
query and memory objects”. Our choice of the term ’semantic objects’ emphasizes their pivotal role
in capturing essential aspects of multi-object relationships. Semantic objects organically connect
two different objects in the form of an independently shared axis. For example, in interconnected
sentences, a common topic becomes a semantic object. Similarly, in Twitter discussions, specific lo-
cations can serve as semantic objects, just like shared conversational contexts in Reddit. Therefore,
by introducing these semantic objects, we can effectively represent multi-object relationships.

TAM achieves these advancements by reimagining the current tensorized transformer framework
through three key ideas. First, TAM employs Tucker decomposition based on object-dimensional
sized matrices, as opposed to object-length sized matrices by Tensorized Transformer (Ma et al.,
2019). This adjustment ensures that the lengths of query, memory, and semantic vectors can vary
while still enabling the calculation of multi-dimensional attention. TAM then enhances accuracy
by implementing tensor decomposition that aggregates information from the memory and semantic
components in a manner that aligns with the query length. Second, TAM initially computes multi-
dimensional attentions among query, key (derived from memory), and semantics. It also leverages
these multi-dimensional attentions to learn the transformation from the source (value from memory)
to the target (query). Third, TAM employs an “iterative” process to average the attention compu-
tations obtained from Tucker decompositions. This approach ensures that the model consistently
optimizes its memory usage for at most two sets of multi-dimensional attentions associated with
two sets of core tensors, resulting in significant reductions in memory consumption compared to
(Ma et al., 2019), where memory allocation scales with the number of cores.

To showcase its effectiveness, we integrated TAM into the Transformer encoder and evaluated its
performance in response selection tasks. By following the previous approach (Ma et al. (2019)), this
paper focuses on measuring the impact of TAM’s multi-dimensional attention within the encoder
model although TAM could theoretically be applied to both encoder and decoder models. Our
experiments followed two paths: training the TAM model from scratch and augmenting it with pre-
trained Transformer models. The datasets employed for our evaluation were specifically designed
to encompass key dimensions seen in natural dialogue, such as ’the context of the current dialogue’,
’the entire history of a dialogue’, and ’the topic under discussion in the dialogue’. When tested
using the Reddit and TweetQA (Xiong et al., 2019) datasets, which cover a wide range of topics,
TAM consistently outperformed existing Transformer-based methods in terms of accuracy.

The paper’s main contributions can be summarized in three key aspects: (1) We introduce TAM,
a novel extension to the Transformer model that incorporates multi-dimensional attention mecha-
nisms, enriching attention outputs by considering relationships across three or more distinct object
types. (2) TAM innovates the tensorized transformer framework by employing Tucker decomposi-
tion for multi-object attention. It enhances accuracy through query-length-aligned tensor decompo-
sition of key and value components. It also computes transformer outputs using multi-object atten-
tion in source-to-target transformations. It further reduces memory usage and overfitting through
iterative averaging while maintaining accuracy. (3) We empirically validated TAM’s effectiveness
by integrating it into a Transformer encoder. Our experiments included training TAM from scratch
and that with a pre-trained Transformer encoder. Evaluations on the Reddit and TweetQA datasets
consistently demonstrated TAM’s superior accuracy over existing Transformer-based techniques.
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2 RELATED WORK

Several methods have explored tensor decomposition within transformer architectures to effi-
ciently capture complex relationships, leading to parameter compression and improved learning
efficiency (Bilgin et al., 2022; Ma et al., 2019; Shen et al., 2019; Panahi et al., 2021). For instance,
(Shen et al., 2019) introduces the Gated Multi-Head Attention (GMHA) module, which employs
low-order matrices to represent large-scale weight matrices within a network layer. GMHA uses in-
dependent gates for each attention head to control attention values and reduce redundancy. However,
despite these efforts to reduce parameters, experimental results indicate a decrease in accuracy.

(Ye et al., 2020) employs low-rank block-term tensors to approximate weight matrix correlations in
neural networks like CNNs and RNNs, enhancing representational capacity. (Hawkins et al., 2022)
presents an end-to-end framework for low-rank tensorized training, accommodating various low-
rank tensor formats. Their efforts to reduce parameters, however, could lead to accuracy decreases
in various scenarios. Importantly, these techniques have not been applied to Transformer attention
mechanisms. Several studies propose efficient word embedding compression methods using ten-
sor products (Hrinchuk et al., 2020; Gan et al., 2022). For instance, MorphTE (Gan et al., 2022)
combines morpheme vectors to represent word embeddings, integrating semantic and grammatical
knowledge into the learning process. However, MorphTE specifically addresses word embedding
compression and not the computation of multi-dimensional attention weights.

Actbert (Zhu and Yang, 2020) enhances encoding from three objects: action, regional, and linguistic
features. It first blends action features from linguistic ones and guides action features from regional
ones. It then computes source-target attentions from these blended or guided features to each target
features. In contrast, TAM emphasizes the simultaneous observations of three distinct features.

Tensorized Transformer (Ma et al., 2019) offers significant parameter reduction and performance
enhancements compared to the standard Transformer. However, due to tensor decomposition limita-
tions, it can only handle relationships between two types of objects, which necessitates equal query,
key, and value lengths, restricting its use to self-attention tasks. This approach also directly derives
the transformer output from attention weights among query, key, and value vectors, tailored for self-
attention tasks, distinguishing it from scenarios requiring transformations between different object
types. Furthermore, evaluation results show that increasing core tensors beyond two leads to higher
memory overhead and overfitting, while a single core tensor may reduce accuracy.

3 PRELIMINARY

This section explains the Tucker decomposition and Multi-linear Attention, as our idea is based
on these techniques. First we explain the notations of the paper. We use the Euler script letter
A to denote a 3-order tensor, which can be thought of as a multi-array extending the concept of
a matrix into three dimensions. Throughout this paper, we will use 3-order tensors for simplicity.
However, it is worth noting that this approach can be extended to higher-dimensional tensors. In
this specific context, the element in the 3-order tensor is denoted as Ad1,d2,d3 . We use “:” as an
index to fix certain dimensions in the tensor while representing the extraction of a face composed of
the remaining dimensions; e.g. Ad1,d2,: signifies the extraction of a vector with the first and second
dimensions fixed and the third dimension left open.

3.1 TUCKER DECOMPOSITION

Tucker decomposition (Tucker, 1966c) can model three-dimensional attention weights among the
different types of objects. Given a 3-order tensor A ∈ Rd1×d2×d3 , we can decompose it into a
core tensor G and three factor matrices U(1),U(2),U(3) by using Tucker decomposition. Here
G ∈ Rr1×r2×r3 , U(1) ∈ Rd1×r1 , U(2) ∈ Rd2×r2 , and U(3) ∈ Rd3×r3 . Tucker decomposition
can be formulated as follows where ×k denotes the tensor-matrix product along the k-th mode:
A = G ×1 U

(1) ×2 U
(2) ×3 U

(3).
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Figure 1: The attention architecture of the TAM.

3.2 MULTI-LINEAR ATTENTION BY BLOCK-TERM TENSOR DECOMPOSITION

This paper bases our ideas on a specialized attention mechanism, referred to as Multi-Linear At-
tention, which is built for the multi-head attention focusing on self-attention mechanism (Ma et al.,
2019). First, it assumes that the query, key, and value can be mapped into sets of three orthogonal
basis vectors. Each of these factor matrices (i.e. Q, K, and V) has a dimension of N × d, where N
is the sequence length and d is the dimensionality of the matrix. It next initializes a trainable 3-order
diagonal tensor G of rank R. The single-head attention mechanism is then defined as follows:

AttenTD(G;Q,K,V) =

Q∑
q=1

K∑
k=1

V∑
v=1

Gq,k,v (Qq,: ⊙Kk,: ⊙Vv,:) . (1)

AttenTD is an attention weight tensor that stores attention weights among the query, key, and value
as its elements. Here, G serves as the core tensor, while q, k, and v are its indices. Q, K, and V
represent the lengths of the query, key, and value, respectively, while The symbol ⊙ represents the
outer product. Qq,:, Kk,:, and Vv,: are column vectors extracted from Q, K, and V respectively. In
practice, it assumes that Q = K = V = R. This core tensor G is initialized such that:

Gq,k,v =

{
0 if q ̸= k or q ̸= v or k ̸= v

gr = rand(0, 1) s.t.
∑R

r=1 gr = 1 if q = k = v = r
(2)

The tensor G forms the weight vector g with trainable elements gr, computed along its diagonal
using the softmax function.

After that, it applies the Block-Term tensor decomposition to build multi-head mechanism, named
as Multi-linear attention, which can be formulated as follows:

MultiLinear(G;Q,K,V) = SplitConcat
(

1

H
× (T1 + . . .+ Th + . . .+ TH)

)
WO s.t. (3)

Th = AttenTD(Gh;QWq,KWk,VWv)

MultiLinear(G;Q,K,V) represents the attention output matrix which is computed directly from the
attention weight tensors, AttenTDs, by applying a linear function. The core tensor Gh is a diagonal
tensor, and the number of parameters in Gh is equal to the rank of the core tensor, h ∈ {1, . . . , H}.
G is the set of the core tensors. SplitConcat(·) is a function which achieves the concatenation after
splitting for a 3-order tensor. WO is the parameter matrix which is a fully connected layer and is
correlated to the output of Multi-linear attention. Wq,Wk, and Wv are parameter matrices that are
learned to adjust the dimension size of Q, K, V, respectively, and they are shared when constructing
multi-core tensors in Multi-linear attention.

In the evaluation conducted by (Ma et al., 2019), the model achieves its highest prediction accuracy
when the number of attention heads H is set to two while increasing H beyond this value leads to
overfitting during model training.

4 METHOD

This section explains the details of our new multi-object attention model, TAM.
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4.1 BASIC IDEA AND OUR ATTENTION ARCHITECTURE

First, we introduce our idea: a novel multi-object attention mechanism that captures real-world rela-
tionships. In conventional self-attention mechanisms, a query (Q ∈ RQ×D), a key from a memory
(K ∈ RK×D), and a value from a memory (V ∈ RV×D) are employed where D represents the
dimension size. In standard Self-Attention, Q, K, and V are identical, while in Source-Target
Attention, Q and K come from different sources, making them different. In our approach, we intro-
duce an additional component, “semantics” (S ∈ RS×D), which is distinct from the existing Q, K,
and V components to represent multi-object relationships. Specifically, our Tensorized Attention
framework operates such that Q, K, and S are all distinct from each other, while K and V remain
the same since they are from the same source, memory. This innovation enables our attention mech-
anism to capture complex dependencies and interactions more effectively by leveraging the semantic
information encapsulated in the “semantics” (S) component. As a result, our mechanism can more
accurately model natural relationships in the real-world context.

The architecture of TAM based on the above idea is depicted in Fig. 1. Unlike conventional attention
models, TAM takes not only query and memory but also semantics as inputs. Here, each of these
inputs first passes through a dense network, where Wq represents the weight matrix for queries, Ws

for semantics, Wk for keys, and Wv for values, respectively. Following this, the model calculates
three-dimensional attention tensor A among the query matrix Q, semantics matrix S, and key matrix
K by Multi-object Attention with Tucker Decomposition. To incorporate these three-dimensional
attention weight matrices into the value matrix V, we convert A into a two-dimensional matrix A
through semantic fusion, which involves summarizing the q × k matrices along the semantic direc-
tion. Subsequently, we perform Matmul (matrix multiplication) between this 2D matrix A and the
value matrix V. Afterward, we apply Add&Norm, i.e., addition and normalization, (Vaswani et al.,
2017) through a dense network between this updated value and the original query. Ultimately, this
process yields the output O of the Transformer encoder when TAM is integrated. In our experiments,
we replace the attention layer of the BERT implementation with TAM.

4.2 MULTI-OBJECT ATTENTION TUCKER DECOMPOSITION & SEMANTIC FUSING

The limitation of (Ma et al., 2019) lies in the fact that the length of matrices for Q, K, and V as-
sumes to be the same. However, real-world multi-dimensional object relationships naturally involve
objects of varying lengths. So, we revise Eq. (1) into the following Eq. (4) by D-length column vec-
tors Qq,:, Kk,:, and Ss,:, which are extracted from Q, K, and S respectively; the length of column
vectors is consistently the dimension size, making them all of the same length, denoted as D:

Aq,k,s =

D∑
i=1

D∑
j=1

D∑
l=1

Gq,j,l · (Q:,i ⊙Kk,: ⊙ Ss,:)q,:,:,j,:,l (4)

Here, the core tensor size is set to RQ×D×D, with length Q in Q retained on the core tensor side,
enabling alignment centered around Q for its relationships with K and S. This is the reason we
select the Q-length row vector Q:,i when computing the outer product among three matrices and
performing summation along the D dimension with respect to Q. In this equation, (Q:,i ⊙Kk,: ⊙
Ss,:)q,:,:,j,:,l is the outer product where first, fourth, and sixth dimensions are activated in (Q:,i ⊙
Kk,: ⊙ Ss,:). In Eq. (4), “·” represents dot product among two tensors. The core tensor G has a
D-length trainable weight vector g primarily on its diagonal and is initialized as below equation.

Gq,k,s =

{
0 if q ̸= k or q ̸= s or k ̸= s or D < q

gd = rand(0, 1) s.t.
∑D

d=1 gd = 1 if q = k = s = d
(5)

Each entry in g can be represented as gd for d ∈ {1, . . . , D}. If D < Q, then the element where
D < q becomes zero. If D ≥ Q, the length of g becomes equal to the length of Q, i.e. D = Q.

The previous study (Ma et al., 2019) hires a method known as “split&concat” that was used to
convert the multi-dimensional attention into a two-dimensional form. This method splits the three-
dimensional attention obtained from Attention Tucker Decomposition along the V -axis and then
concatenates them to create 2D-matrix whose size is RQ×(S·K). After that, this 2D-matrix was
transformed into the transformer output whose size is RQ×D through a Linear layer. However, this
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method diverges from the original strength of the Transformer especially when handling transfor-
mations from a source object to a different type of target object. This is because it cannot effectively
learn such transformations although the conventional Transformer excels at transforming V using
attention output and then seamlessly integrating it with Q.

To address these limitations, TAM collapses the S-axis of the multi-dimensional attention tensor to
effectively convert it into a two-dimensional matrix. Specifically, Eq. (4) can be re-formulated as:

Aq,k =

S∑
s=1

 D∑
i=1

D∑
j=1

D∑
l=1

Gq,j,l · (Q:,i ⊙Kk,: ⊙ Ss,:)q,:,:,j,:,l


:,:,s

. (6)

By doing so, TAM calculates 2D attention between Q and K based on a semantically rich 3D
attention tensor. Moreover, by performing an inner product with V as below, the model is able
to reflect the transformation by the attention mechanism within V itself. Finally, an ’Add&Norm’
operation is conducted with Q to generate the final output O as: O = Add&Norm(Aq,kV,Q).

4.3 MULTI-CORE ATTENTION COMPUTATIONS

TAM also hires multiple core tensors to compute multi-dimensional attentions by Tucker decom-
positions and averages them to build final multi-dimensional attention weights. Unlike the ap-
proach presented in (Ma et al., 2019), TAM significantly improves memory efficiency when pre-
dicting multi-dimensional attentions. It achieves this by dynamically summing three-dimensional
attention tensors on-the-fly; we can eliminate the need to calculate and store each tensor separately
before summing them and subsequently collapsing them along the S-axis during computation. This
approach enhances memory utilization. Furthermore, as previously mentioned, TAM overcomes the
Q = K = L constraint by prioritizing tensor decomposition centered around D. These capabilities
enhance accuracy, even when utilizing a single core, and consistently deliver robust performance
without overfitting or memory concerns, even when configured with three or more cores. The equa-
tion is iteratedly computed where 1 ≤ n ≤ (N−1) as follows:

An+1
q,k = An

q,k +∆n s.t. ∆n =

S∑
s=1

 D∑
i=1

D∑
j=1

D∑
l=1

Gn
q,j,l · (Q:,i ⊙Kk,: ⊙ Ss,:)q,:,:,j,:,l


:,:,s

(7)

where n is the index of the N number of core tensors and Gn
q,j,l is n-th core tensor. After each

iteration, the previous An
q,k is discarded to save memory. Finally, Aq,k is computed as: 1

NAN
q,k.

4.4 COMBINING THE PRE-TRAINED LANGUAGE MODEL

While TAM is powerful for its ability to naturally handle real-world relationships in multi-
dimensions, it can also be combined with pre-trained language models based on conventional 2D-
attention mechanisms such as BERT-base that are widely used today. We achieve this integration
by feeding the output from the pre-trained language model, along with corresponding semantic in-
formation, into the TAM as inputs. By doing so, TAM can also serve with the pre-train model,
extending its utility across various applications.

4.5 TRAINING THE MODEL

TAM pretrains the Masked Language Model (MLM) and Next Segment Prediction (NSP) using
input, memory, and semantics information, as illustrated in Fig. 1. The model is optimized using
the sum of cross-entropy losses for MLM and NSP, following the BERT training. In fine-tuning
for response selection, as in our evaluation, TAM utilizes the hidden vector Ocls extracted from the
first cls token in O. It then computes the matching score between the current utterance context and
the response using a single-layer neural network, denoted as σ(W ·Ocls), where W represents a
trainable parameter. The model weights are then updated using the cross-entropy loss function.

5 EVALUATION

This section evaluates TAM’s performance in response selection tasks.
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Table 1: Statistics of the datasets.
NFL Politics

Training Test Training Test
Number of dialogues 230,060 13,765 290,020 19,040
Avg. turns per dialogue 4.2 4.2 4.8 4.9
Avg. words per dialogue 56.3 57.6 81.1 81.5

Table 2: Comparison among the methods when learning from scratch.

Method NFL Politics
Metrics R10@1 R10@2 R10@5 #params R10@1 R10@2 R10@5 #params
BERT(CR) 34.08 51.28 81.56 146,167,049 37.62 55.46 83.37 146,167,269
BERT(SCR) 35.76 53.39 82.44 146,167,049 37.09 54.43 82.75 146,167,269
Tensorized Transformer(CR) 35.19 52.39 81.97 160,170,977 34.24 51.37 80.15 223,873,677
Tensorized Transformer(SCR) 32.05 49.39 79.32 169,342,001 36.37 53.54 81.73 315,644,781
TAM 45.61 61.86 85.57 156,228,041 51.51 65.92 87.65 155,047,461

5.1 DATASET

We used the Reddit dataset to evaluate TAM in the task of the response selection. Two
datasets, “NFL” and “Politics”, were compiled by sampling posts from their respective commu-
nities between September 2018 and February 2019. The dataset is accessible through BigQuery
(https://bigquery.cloud.google.com/dataset/fh-bigquery). We focused on active speakers and paired
their comments with responses, dividing the data into training and test datasets. Those comments
and their responses, which are being discussed among users, form “a threaded dialogue”. See Table
1 for dataset statistics. The response selection task aims to identify the last utterance (response) in a
dialogue based on the utterance context leading up to that response. In our evaluation, we focused
on the following three-object relationships as they encompass key dimensions observed in natural
dialogue: (1) ’The entire history of a dialogue’: This is derived from the word embedding stream for
the current dialogue and can serve as Q. We utilized the BERT-base tokenizer. (2) ’The context of
the current dialogue’: Created by applying GRU (Cho et al., 2014) to the word embedding streams
in both the utterance context and the response. The hidden embedding streams for the utterance
context and its response are concatenated, ensuring an unbiased representation of context by parti-
tioning the GRU streams before concatenation. This is represented as either K or V. (3) ’The topic
under discussion in the dialogue’: Obtained from the word embedding stream for the subject title of
the Reddit dialogue and represented as S. We set the dialogue length to 70 and title length to 35 for
the NFL dataset, and 180 for dialogue length and 60 for title length for the Politics dataset. These
settings cover 95% of the dialogues and titles in both datasets. We also conducted evaluations on the
TweetQA dataset. For the results pertaining to the TweetQA dataset, please refer to the Appendix.

5.2 COMPARED METHODS

We integrate TAM into the BERT implementation, as explained in Section 4.1, by replacing its at-
tention layer. By directly comparing TAM with the BERT model before TAM integration, we can ef-
fectively isolate and analyze the differences in multi-dimensional attention. This approach provides
a clear and comprehensive validation of TAM’s effectiveness in contrast to the standard Transformer
encoder. To ensure a fair evaluation, we use two variants of BERT: one that inputs ’the entire history
of a dialogue,’ as query, key, and value denoted as BERT(CR), and another that inputs a concatena-
tion of ’the topic under discussion in the dialogue’ and ’the entire history of a dialogue,’ denoted as
BERT(SCR). Additionally, we introduce two variants, Tensorized Transformer(CR) and Tensorized
Transformer(SCR), for comparison, following a similar configuration as BERT. All models utilize
12 transformer encoder layers.

Furthermore, in our experiments with pre-trained models (see Section 4.4), we followed three ap-
proaches: (1) we created a hybrid model by integrating the outputs of 12 layers of BERTP (SCR)
into the TAM model, denoted as BERTP (SCR)-TAM. (2) we used the output from BERT(CR)
or BERT(SCR) as input for BERT(CR) or BERT(SCR), labeled as BERTP (CR)-BERT(CR) or
BERTP (SCR)-BERT(SCR). (3) we also compared our model with a single 12 layers of BERTP (SCR).
Here, the term “BERTP ” refers to the pre-trained BERT-base model (12 layers), while the terms
“BERT” or “TAM” indicate unpretrained models with 4 layers. The choice of 4 layers was made
due to its superior performance and computational efficiency compared to the 12-layer model.
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Table 3: Comparison when leveraged a pretrained language model for initialization.
Method NFL Politics
Metrics R10@1 R10@2 R10@5 R10@1 R10@2 R10@5
BERTP (CR)-BERT(CR) 65.70 78.50 93.80 70.11 81.63 94.73
BERTP (SCR) 66.80 79.27 94.24 70.95 82.33 95.06
BERTP (SCR)-BERT(SCR) 68.04 80.36 94.78 71.73 83.01 95.19
BERTP (SCR)-TAM 68.54 80.94 94.89 72.07 83.32 95.48

Table 4: Ablation study when learning from scratch.
Method NFL Politics
Metrics R10@1 R10@2 R10@5 R10@1 R10@2 R10@5
TAM 45.61 61.86 85.57 51.51 65.92 87.65

w/o Semantic fusing 42.74 59.41 84.21 47.97 63.81 86.56
w/o query aligned 38.01 55.05 81.98 32.45 50.02 79.13

5.3 METRICS

Our evaluation metric is Recall10@k (R10@k) (Qian et al., 2021; Han et al., 2021). Given ten re-
sponses, the evaluation measures if the relevant response is ranked among the top k candidates. This
metric hires 9 responses randomly sampled from the test dataset as negatives. This takes into ac-
count the importance of both top-1 and lower-ranked predictions in diverse applications. The word
embeddings had an embedding size of 768 following (Devlin et al., 2019). The learning rate was
set to 1 × 10−5. We use the AdamW optimizer (Loshchilov and Hutter, 2019) with beta values
of 0.9 and 0.999, respectively, and an epsilon of 1.0 × 10−8. Pre-training was performed for 20
epochs, and fine-tuning was done for 15 epochs on both datasets for all methods when learning from
scratch. In experiments with pre-trained BERT-base models, pre-training for BERTP (SCR)-TAM
was performed for 6 epochs, and fine-tuning was done for 6 epochs on both datasets. Methods,
except for BERTP (SCR)-TAM, required 15 epochs for fine-tuning on both datasets. These epochs
were sufficient for model convergence. The Tensorized Transformer utilizes two cores for optimal
performance, as a single core tends to underperform, and using three or more cores is hindered by
memory constraints. For TAM, we configured the core count to be three for the NFL dataset and
twenty for the Politics dataset. We confirmed the reproducibility with five random seeds for accu-
racy comparisons. We set the dimension size of Q, K, V, and S to 192 for the NFL dataset and 160
for the Politics dataset. The batch size was 96 for both datasets for all methods. The hardware used
for these tests was an NVIDIA A100 GPU with 80GB of memory.

5.4 RESULT

Table 2 presents results from training the model from scratch, without using any pre-trained language
models. Firstly, BERT(SCR) demonstrates higher accuracy than BERT(CR) on the NFL dataset,
while the reverse holds true for the Politics dataset. These results suggest that semantic information
may be effective in improving accuracy, but the current attention model struggles to fully leverage
the potential benefits of different object types. Secondly, both Tensorized Transformer(CR) and Ten-
sorized Transformer(SCR) exhibit only modest improvements or slight decreases compared to BERT
across both datasets. This aligns with expectations since the primary aim of Tensorized Transformer
is to enhance memory efficiency in self-attention for single objects, limiting its ability to achieve sig-
nificant accuracy improvements in multi-object scenarios. Finally, TAM achieves remarkably high
accuracy on both datasets when trained from scratch. This emphasizes the importance of employing
multi-object tensors to naturally represent real-world relationships. TAM’s capability to aggregate
information from various objects around Q and facilitate transformations between source and target
objects significantly improves prediction accuracy. As for model parameters, TAM shows a marginal
increase compared to BERT, encompassing additional weights in dense networks and core tensor
weights. Conversely, Tensorized Transformer sees a significant rise in parameters, particularly in
the Politics dataset, attributed to the length-dependent Wo values associated with K × V .

Next, Table 3 presents the results when leveraging a pretrained language model for initialization.
BERTP (SCR)-BERT(SCR) outperforms BERTP (CR)-BERT(CR) and BERTP (SCR) in terms of ac-
curacy. Additionally, BERTP (SCR)-TAM achieves higher accuracy than BERTP (SCR)-BERT(SCR).
These findings indicate that incorporating semantic information to train multi-object attention is also
beneficial when combining TAM with a pre-trained traditional language model.
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Table 5: Performance of TAM (BERT(SCR)-TAM) against various batch sizes and dimension sizes.
NFL Politics

batch dim R10@1 R10@2 R10@5 batch dim R10@1 R10@2 R10@5
96 160 68.52 81.04 95.05 96 128 72.19 83.53 95.50
96 192 68.54 80.94 94.89 96 160 72.07 83.32 95.48
96 256 68.51 80.83 94.94 96 192 71.95 83.33 95.41
64 160 68.36 80.97 94.85 64 128 72.09 83.71 95.42
64 192 68.36 81.22 95.04 64 160 72.11 83.49 95.37
64 256 68.54 80.91 94.82 64 192 72.06 83.23 95.41

Table 6: R10@1 with variations in the number of cores.
NFL Politics

Number of Cores 1 2 3 20 1 2 3 20
TAM 44.98 45.39 45.61 43.04 50.86 49.88 49.84 51.51

Qualitative evaluation, including visualized examples of attention weights computed for both TAM
and BERT (SCR), can be found in the appendix A.1 for further details.

5.5 ABLATION STUDY

For the ablation study, we consider the “w/o Semantic Fusing” method, employing the same input
configuration as TAM: using the query as the dialogue history, the key and value as the current
utterance context, and the semantic as the dialogue title. However, w/o Semantic Fusing employs
split&concat to compute the transformer output directly from the attention weight tensor through
q-k-s attention tensor. We also consider “w/o Query Aligned”, which is another variant that shares
the TAM method but with a core tensor size of RD×D×D, not RQ×D×D (refer to Eq. (4)). This
implies a lack of alignment centered around Q.

Table 4 presents the results of the ablation study. w/o Semantic Fusing falls short compared to TAM
because it does not learn the transformations from source objects to different target objects using
attention weight tensors. w/o Query Aligned also exhibits lower accuracy than TAM due to the
latter’s ability to aggregate information from other objects around Q through tensor decomposition.
This aligns with the transformer’s process of updating Q, providing an explanation for the observed
performance gap. Table 5 displays the performance of TAM as we vary both the batch size and
dimension size. When considering this table alongside Table 2, it becomes evident that the accuracy
remains consistently high, regardless of batch size or dimension size, outperforming other methods
and demonstrating stability. This stability stems from the model’s flexibility, relying on the low-rank
D in the core tensor for calculations, rather than being limited by Query or Memory lengths.

5.6 TENSOR DECOMPOSITION CORES AND TAM RESULTS

The results of TAM, with variations in the number of cores used in tensor decompositions, are
presented in Table 6. Our approach employs a memory-efficient Tucker decomposition with multiple
cores as explained in Section 4.3. As a result, our approach can efficiently harness as many as twenty
cores in tensor decompositions, whereas the Tensorized Transformer in our evaluation setting only
utilizes up to two cores as mentioned in Section 5.3. We observed that the optimal number of
cores depends on the dataset. For instance, TAM achieves higher accuracy with three cores for the
NFL dataset and twenty cores for the Politics dataset. Furthermore, TAM is much more efficient
than Tensorized Transformer, as present in Table 2. Despite increasing the number of cores, the
parameter count barely increases, thanks to the memory-efficient Tucker decomposition.

6 CONCLUSION

This paper introduces the Tensorized Attention Model (TAM), which employs Tucker decomposi-
tions with multi-core tensors for memory-efficient computation of attention weights across diverse
object types, seamlessly integrating them into the Transformer encoder. The evaluation on the Red-
dit dataset demonstrates that TAM outperforms the standard Transformer and previous tensorized
transformers in terms of accuracy. We intend to employ TAM in future research for generative
models based on Transformer decoders, particularly on much larger datasets.
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REPRODUCIBILITY STATEMENT

Our methodology is currently awaiting patent approval. Once the patent is granted, we will release
the code to the public with permission from our affiliated organization. For our experiments, we
utilized an openly available Reddit dataset, as explained in Section 5.1. Creating datasets for ex-
periments can be achieved as long as there are triples of titles, comments, and replies. We have
ensured reproducibility through experiments conducted with five random seeds, as mentioned in
Section 5.3. The code for the tensorized transformer, the foundation of this paper (Ma et al., 2019),
is publicly accessible on GitHub (https://github.com/szhangtju/The-compression-of-Transformer).
Given the simplicity of the equations introduced in our method in Section 4, reproducing our results
is straightforward, enabling readers to easily replicate our experiments.
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A APPENDIX

A.1 MEANINGFUL RESULTS

We provide visualized examples of attention weights computed for both TAM and BERT (SCR)
in Fig. 2. The colors in the visualization represent the level of attention weight, with yellow indi-
cating high attention, green representing neutrality, and blue suggesting low attention. In TAM, we
represent utterance contexts on the x-axis and responses on the y-axis. In BERT(SCR), we depict
semantics and utterance contexts on the x-axis. We have selectively labeled certain words on the
X and Y axes for improved readability. In this example, semantics is “[Highlight] Marcus Peters
intercepts Mahomes with 1:13 remaining”, utterance context is “He’s a rookie. Sports went up +’s
be turnovers.”, and reply is “Can’t believe donovan mitchell is going to lose roty 2 years in a row”.
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Figure 2: Visualization examples of attention weights for TAM and BERT .

Table 7: Comparison among the methods when learning from scratch.
Method TweetQA
Metrics R10@1 R10@2 R10@5 #params
BERT(CR) 19.98 33.79 63.72 146,167,005
BERT(SCR) 23.39 37.48 69.52 146,167,005
Tensorized Transformer(CR) 14.18 26.80 58.38 157,474,437
Tensorized Transformer(SCR) 19.61 36.19 72.01 158,952,501
TAM 47.15 56.63 75.14 155,047,197

Fig. 2-(a) displays the sliced q× k matrix corresponding to the semantic token “intercept” by TAM.
Additionally, Fig. 2-(b) presents the summation of all q×k matrices for semantic tokens (refer to Eq.
(6)) by TAM. In Fig. 2-(a), TAM effectively captures relationships among the words “intercepts” in
semantics, “rookie” and “turnovers” in the utterance context, and “roty (rookie of the year)“ in the
response. These relationships are crucial, as they pertain to impressive interceptions and turnover
plays that are fundamental for a rookie. In Fig. 2-(b), TAM retains these relationships even after
summing the weights across the semantic tokens. In contrast, BERT (SCR) fails to identify such
relationships among the three different object types, as demonstrated in Fig. 2-(c).

In Reddit, casual language and fragmented sentences are often used, making it challenging to extract
context from text alone. However, TAM effectively manages to capture the relationships between
semantics, context, and response. In contrast, approaches like BERT that simply prepend semantics
to the beginning of the text reduce these multi-dimensional relationships to two dimensions. Con-
sequently, they may fail to accurately capture simultaneous relationships among semantics, context,
and response. In the given example, they might not effectively highlight the central topic of Ma-
homes’ rookie season and the critical attributes of rookies in the NFL.

A.2 EVALUATION ON QA DATASET

We conducted the evaluation on the Tweet QA dataset (Xiong et al., 2019). It is a large-scale dataset
designed for automated question answering, permitting abstractive responses over social media con-
tent. It specifically emphasizes meaningful tweets employed by journalists in the creation of news
articles. It consists of question-passage-answer triples. The passages are tweets that have been used
by journalists in news articles, implying that such tweets contain useful information. It includes
10,692 training triples and 1,979 test triples. The average question length is 6.95, and the average
answer length is 2.45.

We prepared the following three-object relationships as we did in Section 5.1: “The entire topic of
a passage”, which is derived from the word embedding stream for the passage and can serve as Q.
“The context of the passage-answer pair”, which is created by applying GRU (Cho et al., 2014) to
the word embedding streams in both the passage and the answer. This is represented as either K or
V. “The question assigned for the passage”, which is obtained from the word embedding stream for
the question and represented as S.

We set the passage-answer length to 48 and the question length to 15 for this dataset. These settings
cover 95% of the passage-answer pairs and questions in both datasets. Pre-training was performed
for 100 epochs, and fine-tuning was done for 20 epochs on both datasets for all methods since all
methods converge until the above epochs. We set the dimension size D of Q, K, V, and S to 160
for the Tweet QA dataset. The other parameters were set to the same values as in the Reddit dataset,
as detailed in Section 5.3.
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Table 8: Ablation study when learning from scratch.
Method TweetQA
Metrics R10@1 R10@2 R10@5
TAM 47.15 56.63 75.14

w/o Semantic fusing 40.61 54.14 76.61
w/o query aligned 14.73 26.52 61.79

Table 9: Evaluating accuracy and parameter size with varied number of layers in BERT(SCR).
Method NFL Politics
Num of layers R10@1 R10@2 R10@5 #params R10@1 R10@2 R10@5 #params
12 35.30 53.09 82.90 146,167,049 40.32 52.75 83.65 146,167,269
15 37.55 55.60 83.33 167,430,665 43.02 59.76 85.29 167,430,885
18 37.59 55.39 84.08 188,694,281 43.33 60.24 85.26 188,694,501
21 37.04 54.83 83.47 209,957,897 44.44 61.25 85.96 209,958,117

The results when learning from scratch are present in Table 7. The tendency of the results is almost
the same as those of the Reddit dataset. Interestingly, TAM achieves much higher accuracy than other
methods, including BERT(SCR) and Tensorized Transformer(SCR), compared to the improvements
observed in the Reddit dataset. We note that BERT(SCR) and Tensorized Transformer(SCR) use
the same inputs (e.g., questions, passages, and answers). They concatenate questions with passage-
answer pairs in a similar way as done in the Reddit dataset in Section 5.2. We attribute this significant
improvement to the stronger associations among questions and passage-answer pairs, in contrast to
the relationships observed among titles and utterances within the Reddit dataset. We also consider
that effective utilization of multi-objective relationships in a smaller-sized dataset like TweetQA
is essential, as it maximizes the use of the observed limited dataset, in comparison to the Reddit
dataset. TAM can effectively learn the co-occurrences of multi-object relationships such as those
among tokens in Q, K, and S from the restricted amount of observations.

Table 8 demonstrates the effectiveness of our semantic fusing and query-aligned approaches in im-
proving accuracy. Particularly, the results indicate that the query-aligned approach is successful in
enhancing accuracy by focusing on the alignment centered around Q for its relationships with K
and S in learning the core tensor. This is believed to occur because the explicit token embedding of
the Query can incorporate the latent semantics derived from the correlation between q, k, and v in
an explicit manner.

A.3 PARAMETER SIZE ANALYSIS: TAM VS. BERT IN LAYER VARIATION ABLATION STUDY

We conducted an ablation study by varying the number of layers in BERT(SCR) and TAM using
Reddit dataset. The results are summarized in Tables 9 and 10. For BERT(SCR), we set its param-
eters as 21 layers, a word embedding size of 768, and a batch size of 128, all set to their maximum
acceptable values in the hardware configuration outlined in section 5.3. In the case of TAM, we set
its parameters as 12 layers, a word embedding size of 768, a batch size of 96, and a dimension size
of 192. These specifications are constrained by the available memory limits.

Notably, when adjusting the parameter size of BERT(SCR) to be equal to or greater than TAM’s 12
layers, TAM consistently outperforms BERT(SCR) in terms of accuracy. This result suggests that
the superior performance of TAM is not solely attributed to parameter size but is also a result of the
effectiveness of the Tensorized attention mechanism.

To assess the scalability of TAM, we conducted experiments with a reduced number of layers set to
8, as shown in Table 10. The results demonstrate that as the number of layers increases from 8 to 12,
the accuracy of TAM improves, suggesting a positive impact of scaling up the number of parameters
on TAM’s performance.

A.4 COMPUTATIONAL PERFORMANCE DETAILS

In the realm of response selection models, BERT-FP (Han et al., 2021) stands out as state-of-the-art
across various datasets. Since BERT-FP is built upon BERT, the integration of TAM with BERT-
FP is a straightforward process. While BERT has slightly fewer parameters and marginally faster
computation times than TAM in scenarios with shorter context-response lengths, as exemplified
in the NFL dataset (Pretraining per epoch: BERT 19 minutes, TAM 33 minutes; Finetuning per
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Table 10: Evaluating accuracy and parameter size with varied number of layers in TAM.
Method NFL Politics
Num of layers R10@1 R10@2 R10@5 #params R10@1 R10@2 R10@5 #params
8 34.59 51.54 80.22 151,488,713 41.95 58.25 84.16 151,488,933
12 45.61 61.86 85.57 156,228,041 51.51 65.92 87.65 155,047,461

epoch: BERT 24 minutes, TAM 27 minutes; Memory: BERT 20,781 MiB, TAM 25,381 MiB), TAM
consistently demonstrates superior accuracy within a realistic timeframe. This superiority is evident
from the results presented in Tables 2 and 3. Furthermore, TAM is faster than BERT, especially
in longer context-response scenarios, as demonstrated by the POLITICS dataset (Pretraining per
epoch: BERT 33 minutes, TAM 29 minutes; Finetuning per epoch: BERT 49 minutes, TAM 46
minutes; Memory: BERT 51,531 MiB, TAM 62,817 MiB).

Moreover, alternatives such as RoBERTa (Liu et al., 2019) are available if we explore Trans-
former Encoder models for response selection except for BERT. However, when applying TAM
to RoBERTa, the effects on computational time and memory efficiency are expected to be similar to
those on BERT since the fundamental Transformer architecture is shared among them.
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