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ABSTRACT

Existing benchmarks like NLGraph and GraphQA evaluate LLMs on graphs by
focusing mainly on pairwise relationships, overlooking the high-order correla-
tions found in real-world data. Hypergraphs, which can model complex beyond-
pairwise relationships, offer a more robust framework but are still underexplored
in the context of LLMs. To address this gap, we introduce LLM4Hypergraph,
the first comprehensive benchmark comprising 21,500 problems across eight low-
order, five high-order, and two isomorphism tasks, utilizing both synthetic and
real-world hypergraphs from citation networks and protein structures. We evaluate
six prominent LLMs, including GPT-4o, demonstrating our benchmark’s effec-
tiveness in identifying model strengths and weaknesses. Our specialized prompt-
ing framework incorporates seven hypergraph languages and introduces two novel
techniques, Hyper-BAG and Hyper-COT, which enhance high-order reasoning and
achieve an average 4% (up to 9%) performance improvement on structure classi-
fication tasks. This work establishes a foundational testbed for integrating hyper-
graph computational capabilities into LLMs, advancing their comprehension. The
source codes are at https://github.com/iMoonLab/LLM4Hypergraph.

1 INTRODUCTION

Large Language Models (LLMs) (Vaswani, 2017; Devlin, 2018; Brown, 2020; Ouyang et al., 2022)
have made significant strides in domains such as dialogue systems (Bubeck et al., 2023) and image
understanding (Zhao et al., 2023). However, they often produce untruthful or unsupported content,
known as hallucinations (Wang et al., 2023). To mitigate this, Retrieval-Augmented Generation
(RAG) (Vu et al., 2023) enhances prompts with relevant, factual, and up-to-date information (Khan-
delwal et al., 2019), thereby grounding outputs more effectively. RAG typically retrieves structured
data with complex relational dependencies (Guu et al., 2020), such as social networks or molecular
structures, which are efficiently represented as graphs. Graph representations capture intricate inter-
dependencies and provide a concise encapsulation of data relationships. This has spurred research
to improve LLMs’ understanding of graph-structured data (Guo et al., 2023), leading to benchmarks
like NLGraph (Wang et al., 2024), GraphQA (Fatemi et al., 2023), and LLM4DyG (Zhang et al.,
2023). These benchmarks evaluate and enhance LLMs’ capabilities in handling graph-related tasks,
promoting the integration of graph-based representations in large language models.

However, real-world data often involve complex correlations beyond simple pairwise relationships
(Zhou et al., 2006). For example, sentences within a document sharing common keywords may
exhibit high-order correlations that traditional graph models fail to capture (PM et al., 2017). In
multimodal scenarios (Kim et al., 2020; Feng et al., 2023), interactions across different data types
further increase correlation complexity, exceeding the capabilities of conventional graphs, which
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are limited to pairwise correlations. In contrast, hypergraphs can model high-order correlations,
capturing intricate interdependencies among multiple entities simultaneously. This capability allows
hypergraphs to more accurately represent the complex relationships in retrieved information, thereby
enhancing prompting strategies in LLMs. Despite these advantages, hypergraphs pose a challenge
for LLMs, which are primarily designed to process linear textual data and cannot naturally ingest
hypergraph structures (Feng et al., 2024). This limitation hinders the integration of hypergraph-
based representations into LLM training and inference. Therefore, investigating whether LLMs can
comprehend hypergraphs and developing prompts to improve their understanding of hypergraph
structures remains an underexplored and promising research direction.
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Figure 1: Performance of six leading LLMs on
three types of hypergraph understanding task.

Here, we introduce the LLM4Hypergraph
Benchmark, the first comprehensive testbed de-
signed to evaluate LLMs’ understanding and
reasoning of hypergraphs. Unlike existing
graph benchmarks that focus on low-order,
pairwise vertex correlation tasks, our bench-
mark presents high-order tasks involving ver-
tex sets and isomorphism tasks that assess mod-
els’ ability to recognize and interpret global
structural correlations within hypergraphs. Our
benchmark includes both synthetic and real-
world hypergraphs, such as citation and pro-
tein networks, ensuring diverse and represen-
tative evaluations across domains. It com-
prises 21,500 problems, covering eight low-
order tasks, five high-order tasks, and two iso-
morphism tasks. Low-order tasks extend pair-
wise correlation reasoning to more complex
vertex interactions, while high-order tasks in-
volve reasoning about relationships among ver-
tex sets, capturing the rich multi-vertex correlations inherent to hypergraphs. Isomorphism tasks
evaluate the models’ ability to identify and interpret global structural patterns and symmetries within
hypergraphs. To assess our benchmark’s effectiveness, we evaluate six mainstream LLMs (including
ERNIE-Lite-8K, ERNIE-Speed-128K, Qwen-Long, LLaMA3-8B, GPT-3.5-Turbo, and GPT-4o) on
the LLM4Hypergraph Benchmark, as shown in Figure 1. The evaluation revealed four findings:

• In-context learning enhances LLMs’ comprehension and performance in hypergraph tasks.
• Current mainstream LLMs struggle with isomorphism recognition, especially in larger hy-

pergraphs, though improvements are possible.
• The proposed High-order languages (specified for hypergraphs) outperform low-order lan-

guages in enabling LLMs to understand beyond-pairwise correlations in hypergraphs.
• The proposed Hyper-COT and Hyper-BAG significantly boost LLMs’ performance on

more challenging hypergraph tasks like structure classification.

Additionally, we design a specialized prompting framework for hypergraphs with seven languages
for low-order and high-order structures, enabling nuanced interactions with LLMs. We introduce
two instruction-based prompting techniques: Hyper-BAG and Hyper-COT, which guide LLMs to
visualize high-order correlations and better understand multi-vertex relationships. Experimental
results show that Hyper-COT improves performance by 4% on average (up to 9%) in challenging
structure classification tasks. Despite these advancements, challenges in high-order reasoning and
encoding remain. Our work paves the way for future research to overcome these limitations and
further integrate hypergraph capabilities into LLMs.

2 LLM4HYPERGRAPH BENCHMARK

In this section, we introduce the LLM4Hypergraph Benchmark, designed to evaluate LLMs’ abil-
ity to comprehend the intricate higher-order structures of hypergraphs. To ensure a comprehensive
assessment, the benchmark encompasses a diverse array of tasks and hypergraph configurations, as
shown in Figure 2. It includes Low-order tasks (basic hypergraph properties and pairwise rela-
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Figure 2: Overview of the LLM4Hypergraph Benchmark.

tional inferences), High-order tasks (understanding complex multi-vertex interactions and higher-
order dependencies), and Isomorphic tasks (recognizing structural equivalences despite hypergraph
variations). Additionally, the LLM4Hypergraph Benchmark incorporates hypergraphs of varying
scales and types, ranging from small-scale hypergraphs with limited entities and relationships to
large-scale, intricate hypergraphs that emulate real-world complexity. By addressing these dimen-
sions, the benchmark provides a holistic framework for assessing the versatility and depth of LLMs
in comprehending and processing hypergraphs. Our LLM4Hypergraph Benchmark comprises
a diverse collection of hypergraphs, including both synthetic and real-world instances. Synthetic
hypergraphs are generated using random and regular-structured methods, while real-world hyper-
graphs are sourced from citation and protein networks. These hypergraphs are categorized by scale
to ensure a balanced complexity for comprehensive evaluation. For a detailed description of the
hypergraph generation process, please refer to Appendix D.

2.1 TASK DESIGN

In this subsection, we briefly introduce the 15 tasks included in our LLM4Hypergraph Bench-
mark. Detailed descriptions and methodologies for these tasks are provided in Appendix E.

Isomorphism Tasks. Isomorphic tasks are a fundamental category within the LLM4Hypergraph
Benchmark, designed to evaluate LLMs’ ability to recognize structural equivalences and classify
hypergraphs based on their overall architectural patterns. These tasks are crucial for applications
in specialized fields such as molecular and protein structure analysis, where distinguishing between
subtly different structural configurations is essential. We introduce two key isomorphic tasks:

• Isomorphism Recognition. This task assesses the model’s ability to determine whether two
hypergraph representations correspond to the same underlying structure.

• Structure Classification. This task evaluates the model’s proficiency in distinguishing hy-
pergraphs based on their macro-level architectural frameworks.

Low-Order Tasks. In addition to isomorphic tasks, our LLM4Hypergraph Benchmark incorpo-
rates a series of low-order tasks designed to test LLMs’ understanding of fundamental hypergraph
properties and vertex relationships. These tasks focus on basic hypergraph attributes and simple
connectivity patterns essential for more complex structural analyses.

• Hyperedge Count. Counts the total number of hyperedges.
• Vertex Count. Counts the total number of vertices.
• Vertex Degree. Counts the hyperedges connected to a specific vertex.
• Vertex Connection. Checks if two vertices are directly connected by a hyperedge.
• Connected Vertices. Lists all vertices connected to a given vertex.
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Table 1: Statistics of the LLM4Hypergraph Benchmark.

Task Task Name Task Type Difficulty #Sample

Low-Order

Hyperedge Count Counting Problems Easy 1500
Vertex Count Counting Problems Easy 1500
Vertex Degree Counting Problems Easy 1500

Vertex Connection Check Decision Problems Medium 1500
Reachability Check Decision Problems Medium 1500

Shortest Path Computational Problems Hard 1500
Connected Vertices Descriptive Problems Hard 1500

Disconnected Vertices Descriptive Problems Hard 1500

High-Order

Hyperedge Degree Counting Problems Easy 1500
Vertex Set Connection Check Decision Problems Medium 1500

Vertex-Set-in-Hyperedge Check Decision Problems Medium 1500
Hyperedge-in-Hyperedge Check Decision Problems Medium 1500

Shared-Vertices between Hyperedges Descriptive Problems Hard 1500

Isomorphism Isomorphism Recognition Computational Problems Hard 1500
Structure Classification Classification Problems Hard 500

Total 15 5 3 21,500

• Disconnected Vertices. Lists all vertices not connected to a given vertex.
• Shortest Path. Finds the shortest path between two vertices.
• Reachability Check. Determines if one vertex can be reached from another.

High-Order Tasks. Building upon low-order tasks, LLM4Hypergraph Benchmark introduces
high-order tasks designed to assess LLMs’ comprehension of complex correlations between vertex
sets within hypergraphs. Unlike low-order tasks that focus on individual vertices and hyperedges,
high-order tasks evaluate the model’s ability to understand and manipulate relationships involving
groups of vertices and their interactions through hyperedges.

• Hyperedge Degree. Determines the number of vertices in a given hyperedge.
• Vertex Set Connection (VS Connection). Checks if two vertex sets are jointly contained

within at least one hyperedge.
• Vertex-Set-in-Hyperedge Check (VS-in-He Check). Determines if a set of vertices is entirely

contained within any hyperedge.
• Hyperedge-in-Hyperedge Check (He-in-He Check). Assesses if one hyperedge is com-

pletely contained within another hyperedge.
• Shared-Vertices between Hyperedges. Identifies and outputs the set of vertices shared be-

tween two hyperedges.

2.2 BENCHMARK STATISTICS

Our LLM4Hypergraph Benchmark comprises 14 tasks totaling 21,500 problems, as detailed in
Table 1. These tasks are categorized into five types: Counting Problems (counting specific elements),
Computational Problems (numerical answers), Decision Problems (yes/no responses), Descriptive
Problems (listing sets of vertices or hyperedges), and Classification Problems (categorical labels).
Each type includes 1,500 samples, providing a comprehensive assessment of LLMs’ abilities in
numerical computations, binary decisions, descriptive generation, and hypergraph classification.

3 PROMPT ENGINEERING FOR HYPERGRAPHS

Prompt design is essential for accurately evaluating LLMs in our LLM4Hypergraph Benchmark,
as prompts guide the models’ understanding of hypergraph structures. Here, we integrate existing
strategies such as CoT (Wei et al., 2022; Kojima et al., 2022) and Few-Shot Prompting (Brown,
2020; Zhou et al., 2022a) to develop a prompt framework tailored for hypergraph-related tasks.
Additionally, we introduce a hypergraph language for textual descriptions and adapt these techniques
with modifications like Hyper-BAG and Hyper-COT to better accommodate hypergraphs.
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Figure 3: The proposed prompt structure for hypergraphs.

3.1 PROMPT FRAMEWORK

Prompt design is crucial for accurately evaluating LLMs in our LLM4Hypergraph Benchmark, as
it directs the models’ understanding of hypergraph structures. Figure 3 illustrates our prompt frame-
work, which consists of six components: Example, Hypergraph Description, Hyper-BAG, Question,
Tail, and Hyper-COT. The Example section includes question-answer pairs and may optionally con-
tain COT-for-Answer for detailed reasoning. Optional modules are indicated by brackets in the
figure. More details of the framework are provided in Appendix F. In the following, we briefly
introduce the following prompt configurations:

• ZERO-SHOT: Includes only Hypergraph Description, Question, and Tail, without exam-
ples or additional reasoning prompts.

• ZERO-HYPER-COT: Extends Zero-Shot by adding Hyper-COT after the Tail, introducing
hypergraph-specific reasoning.

• FEW-SHOT: Adds Example content with Hypergraph Description, Question, Tail, and An-
swer to provide concrete instances for guidance.

• COT: Enhances Few-Shot by including COT-for-Answer in each example, offering detailed
reasoning steps for more accurate responses.

• COT-HYPER-BAG: Builds on the CoT setup by inserting Hyper-BAG between Hypergraph
Description and Question, contextualizing the model’s focus on hypergraph construction
and comprehension.

3.2 HYPERGRAPH LANGUAGE

Unlike traditional graphs, hypergraphs allow hyperedges to connect any number of vertices, requir-
ing more complex textual descriptions. Abstract high-order descriptions may hinder LLM compre-
hension, while low-order descriptions enhance understanding but omit essential information. To
address this, we designed two hypergraph languages: Low-Order Structure Language and High-
Order Structure Language, as shown in Figure 4. The former focuses on pairwise relationships,
while the latter preserves complex multi-vertex correlations. More details can refer to Appendix G.

Low-Order Structure Language. To facilitate LLMs’ understanding of hypergraph structures
through pairwise correlations, we introduce three low-order structure languages as follows:

• Low-Order-Incidence Description (LO-Inc): Describes pairwise connections between ver-
tices, e.g., “Vertex v1 is connected to vertices v2 and v3.”

• Neighbor-Pair Description (N-Pair): Lists all pairs of vertices that share a hyperedge, e.g.,
“(v1, v2), (v1, v3).”

• Raw Adjacency Matrix Description (Adj-Mat): Uses a numerical adjacency matrix where
binary values indicate connections between vertex pairs.

High-Order Structure Language. To further enhance LLMs’ comprehension of hypergraph struc-
tures through higher-order correlations, we introduce four high-order structure languages as follows:
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Figure 4: The proposed “Hypergraph Language” for Hypergraph Description section.

• High-Order Neighbor Description (HO-Neigh): Describes hypergraph relationships in two
stages, detailing connections between vertices and hyperedges, then hyperedges and their
vertices.

• High-Order Incidence Description (HO-Inc): Extends LO-Inc by including higher-order
correlations, such as “Vertex v1 is connected to vertices v2 and v3 with hyperedge e1.”

• Neighbor-Set Description (N-Set): Lists entire sets of vertices connected by each hyper-
edge, for example, “(v1, v2, v3).”

• Raw Incidence Matrix Description (Inc-Mat): Uses an incidence matrix where each entry
indicates the inclusion of a vertex in a hyperedge.

3.3 SPECIFICAL PROMPTING FOR HYPERGRAPHS

Given that hypergraphs are difficult to describe using conventional language, we introduce two spe-
cialized prompting techniques to enhance LLMs’ comprehension of hypergraph structures: Hyper-
BAG and Hyper-COT. More details can be found in Appendix H.

• Build-a-Hypergraph Prompting (Hyper-BAG) facilitates mental visualization of hypergraphs by
guiding LLMs to imagine their architecture, helping the model form a coherent representation of
hypergraph connections (Wang et al., 2024).

• Chain-of-Thought for Hypergraphs (Hyper-COT) adapts traditional CoT prompting by incorpo-
rating step-by-step reasoning tailored for hypergraphs. It includes specific prompts that guide the
model to break down complex hypergraph tasks into manageable steps:

– v1: “Let’s think step by step. Make sure the data is calculated and recorded accurately at
each step.”

– v2: “Let’s analyze the connectivity by considering hyperedges linked to vertices and vertices
linked through hyperedges.”

– v3: “Let’s think hyperedges connected by vertices then vertices connected by hyperedges.”

4 EXPERIMENTS

Based on the LLM4Hypergraph Benchmark, we aim to investigate whether language models can
comprehend hypergraphs by evaluating LLMs and different prompting settings.

Experimental Settings. We evaluate six LLMs: ERNIE-Lite-8K (Zhang et al., 2019), ERNIE-
Speed-128K (Sun et al., 2021), Qwen-Long (Bai et al., 2023), LLaMA3-8B (Touvron et al., 2023),
GPT-3.5-Turbo (Brown, 2020), and GPT-4 (Achiam et al., 2023), selected for their diverse architec-
tures. In our experiments, we employ Qwen-Long as the LLM due to its robust performance and
scalability. In the “Few-Shot”, “CoT”, and “CoT-Hyper-BAG” settings, we provide two examples by
default. For Decision Problems, we maintain a balanced positive-to-negative ratio of 1:1 to ensure
fairness. Other tasks assess consistency by comparing LLM outputs to ground truth.
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4.1 RESULTS OF DIFFERENT HYPERGRAPH LANGUAGES

We evaluated different hypergraph languages under various settings using synthetic hypergraphs,
with the experimental results presented in Table 2 and Table 3.

Observation 1: Low-order structure languages enhance LLMs’ understanding of vertex cor-
relations within hypergraphs. As illustrated in Table 2, in low-order tasks, high-order languages
outperform low-order languages in simple tasks, achieving higher accuracy due to their ability to ac-
curately describe high-order structures. However, in medium and difficult low-order tasks, low-order
languages demonstrate superior performance. This decline in high-order language effectiveness in
more challenging low-order tasks can be attributed to the redundancy of high-order descriptions
when the primary focus shifts to investigating pairwise vertex correlations. Consequently, when
the objective is to examine relationships between individual vertices within hypergraphs, low-order
languages are more beneficial for enhancing LLMs’ understanding.

Table 2: Results of different prompting frameworks and hypergraph languages.

Difficulty Esay Medium Hard

Settings Hyperdge Vertex Vertex Vertex Reachability Shortest Connected Disconnection
Count Count Degree Connection Check Path Vertices Vertices

Z
E

R
O

-S
H

O
T

N-Pair 18.4% 99.4% 41.2% 93.0% 91.6% 60.2% 51.8% 34.0%
LO-Inc 59.2% 100.0% 40.4% 97.4% 93.8% 67.4% 79.4% 40.8%

Adj-Mat 57.6% 100.0% 23.0% 92.2% 73.2% 47.6% 19.8% 14.0%
Avg. 45.1% 99.8% 34.9% 94.2% 86.2% 58.4% 50.3% 29.6%

N-Set 85.8% 99.6% 90.4% 89.6% 88.8% 58.6% 46.2% 37.8%
HO-Inc 88.2% 100.0% 53.8% 84.0% 91.8% 70.4% 67.4% 39.8%
Inc-Mat 95.8% 99.8% 50.6% 79.8% 67.8% 33.8% 9.4% 8.6%

HO-Neigh 90.2% 100.0% 85.8% 87.6% 93.4% 56.4% 33.0% 25.0%
Avg. 90.0% 99.9% 70.2% 85.3% 85.5% 54.8% 39.0% 27.8%

Z
E

R
O

-H
Y

PE
R

-C
O

T N-Pair 20.6% 75.0% 49.0% 94.6% 95.6% 62.9% 70.6% 39.4%
LO-Inc 53.0% 99.8% 53.8% 99.8% 98.4% 69.8% 75.6% 57.2%

Adj-Mat 56.4% 99.2% 21.4% 94.0% 73.2% 51.8% 16.6% 7.2%
Avg. 43.3% 91.3% 41.4% 96.1% 89.1% 61.5% 54.3% 34.6%

N-Set 96.2% 54.6% 99.2% 91.4% 91.6% 63.2% 73.4% 46.4%
HO-Inc 97.2% 100.0% 97.4% 100.0% 99.2% 72.0% 73.8% 58.6%
Inc-Mat 76.0% 99.4% 67.8% 79.4% 69.4% 33.0% 16.4% 1.8%

HO-Neigh 91.4% 89.4% 97.6% 96.0% 95.6% 58.6% 58.6% 47.4%
Avg. 90.2% 85.9% 90.5% 91.7% 89.0% 56.7% 55.6% 38.6%

FE
W

-S
H

O
T

N-Pair 65.0% 99.2% 49.0% 93.8% 91.0% 74.2% 65.6% 30.4%
LO-Inc 95.6% 99.0% 45.4% 96.0% 93.6% 79.4% 92.8% 47.2%

Adj-Mat 79.2% 100.0% 33.8% 87.2% 85.6% 64.8% 34.2% 23.8%
Avg. 79.9% 99.4% 42.7% 92.3% 90.1% 72.8% 64.2% 33.8%

N-Set 84.0% 99.6% 78.0% 94.0% 88.8% 75.2% 55.8% 31.0%
HO-Inc 98.6% 100.0% 80.0% 98.2% 87.4% 74.8% 75.6% 45.4%
Inc-Mat 98.8% 99.8% 58.0% 73.0% 62.2% 46.9% 12.0% 14.8%

HO-Neigh 97.8% 98.0% 96.4% 90.4% 88.6% 63.2% 40.4% 23.4%
Avg. 94.8% 99.4% 78.1% 88.9% 81.8% 65.0% 46.0% 28.7%

C
O

T

N-Pair 90.6% 99.6% 48.0% 93.8% 91.6% 66.4% 63.2% 32.2%
LO-Inc 97.4% 99.6% 45.6% 95.6% 94.0% 73.4% 92.8% 48.2%

Adj-Mat 92.6% 99.8% 38.8% 87.2% 87.6% 64.6% 35.4% 24.2%
Avg. 93.5% 99.7% 44.1% 92.2% 91.1% 68.1% 63.8% 34.9%

N-Set 82.6% 99.8% 81.6% 94.0% 89.4% 71.6% 59.4% 31.4%
HO-Inc 97.2% 100.0% 87.2% 97.6% 87.6% 74.0% 78.2% 44.8%
Inc-Mat 97.8% 99.4% 60.4% 74.2% 66.6% 44.4% 13.0% 15.0%

HO-Neigh 96.6% 97.6% 96.4% 92.2% 88.6% 60.4% 42.8% 24.0%
Avg. 93.6% 99.2% 81.4% 89.5% 83.1% 62.6% 48.4% 28.8%

C
O

T-
H

Y
PE

R
-B

A
G

N-Pair 87.8% 100.0% 44.4% 95.0% 92.0% 70.8% 62.0% 32.4%
LO-Inc 95.8% 99.8% 47.0% 96.4% 94.0% 78.4% 90.8% 46.2%

Adj-Mat 89.2% 100.0% 36.4% 88.4% 87.8% 67.2% 35.2% 25.0%
Avg. 90.9% 99.9% 42.6% 93.3% 91.3% 72.1% 62.7% 34.5%

N-Set 93.6% 100.0% 79.4% 93.6% 86.8% 74.6% 55.8% 29.8%
HO-Inc 98.4% 100.0% 84.8% 97.8% 87.0% 76.8% 77.2% 43.2%
Inc-Mat 97.6% 99.6% 60.2% 77.2% 72.0% 47.2% 11.8% 16.0%

HO-Neigh 97.2% 98.8% 96.2% 90.0% 87.0% 67.2% 37.4% 22.6%
Avg. 96.7% 99.6% 80.2% 89.7% 83.2% 66.5% 45.6% 27.9%

Overall Avg. 83.4% 97.3% 63.4% 91.0% 86.6% 63.5% 52.1% 31.7%
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Table 3: Results of different prompting frameworks and hypergraph languages.

High-Order Tasks Isomorphism Tasks

Difficulty Easy Medium Hard Hard

Settings Hyperedge Vertex Set VS-in-He He-in-He Shared-Vertices Ismorphism Structure
Degree Connection Check Check between He Recognition Classification

Z
E

R
O

-S
H

O
T

N-Pair 51.6% 65.4% 73.0% 33.4% 30.3% 52.0% 25.2%
LO-Inc 22.6% 77.4% 82.2% 54.6% 25.1% 47.0% 31.9%

Adj-Mat 19.6% 14.6% 10.6% 51.4% 35.7% 50.6% 29.2%
Avg. 31.3% 52.5% 55.3% 46.5% 30.4% 49.9% 28.8%

N-Set 99.6% 92.6% 85.8% 67.0% 51.7% 46.2% 41.2%
HO-Inc 82.0% 83.8% 91.2% 61.6% 31.3% 50.6% 18.2%
Inc-Mat 39.2% 4.8% 1.4% 41.6% 45.4% 64.6% 36.3%

HO-Neigh 98.2% 82.2% 74.8% 57.2% 32.0% 51.2% 31.2%
Avg. 79.8% 65.9% 63.3% 56.9% 40.1% 53.2% 31.7%

Z
E

R
O

-H
Y

PE
R

-C
O

T N-Pair 54.2% 64.2% 79.6% 33.6% 29.7% 53.2% 27.0%
LO-Inc 21.2% 83.6% 83.8% 51.4% 28.8% 51.6% 31.4%

Adj-Mat 19.2% 13.0% 4.6% 53.2% 31.7% 48.6% 25.7%
Avg. 31.5% 53.6% 56.0% 46.1% 30.1% 51.1% 28.0%

N-Set 52.8% 93.8% 92.0% 60.8% 91.5% 47.8% 32.3%
HO-Inc 97.0% 96.6% 98.0% 52.0% 96.9% 52.8% 31.0%
Inc-Mat 52.0% 6.4% 2.6% 41.0% 44.4% 64.8% 26.1%

HO-Neigh 100.0% 97.8% 98.6% 47.2% 94.4% 56.4% 38.5%
Avg. 75.5% 73.7% 72.8% 50.3% 81.8% 55.5% 32.0%

FE
W

-S
H

O
T

N-Pair 56.4% 78.6% 81.2% 37.2% 22.6% 45.0% 30.5%
LO-Inc 33.2% 84.4% 90.8% 62.2% 20.7% 44.9% 42.0%

Adj-Mat 26.2% 68.8% 76.8% 53.2% 23.0% 41.4% 38.5%
Avg. 38.6% 77.3% 82.9% 50.9% 22.1% 43.8% 37.0%

N-Set 99.6% 83.4% 87.2% 82.6% 89.2% 43.3% 82.7%
HO-Inc 84.8% 87.8% 93.6% 65.2% 51.7% 44.2% 43.8%
Inc-Mat 40.6% 44.0% 53.2% 48.2% 23.0% 47.8% 53.5%

HO-Neigh 99.8% 81.4% 87.2% 65.2% 62.7% 47.7% 65.5%
Avg. 81.2% 74.2% 80.3% 65.3% 56.7% 45.8% 61.4%

C
O

T

N-Pair 49.8% 80.8% 76.4% 40.0% 25.7% 47.2% 28.3%
LO-Inc 34.0% 84.4% 82.4% 59.0% 18.5% 46.6% 41.8%

Adj-Mat 25.4% 74.6% 77.4% 62.4% 29.3% 44.2% 40.3%
Avg. 36.4% 79.9% 78.7% 53.8% 24.5% 46.0% 36.8%

N-Set 100.0% 84.0% 87.2% 77.4% 91.1% 47.2% 82.3%
HO-Inc 86.6% 88.4% 88.4% 69.8% 55.2% 46.0% 41.6%
Inc-Mat 42.6% 47.8% 53.6% 57.4% 24.1% 60.0% 52.2%

HO-Neigh 100.0% 84.2% 82.6% 66.6% 62.0% 49.2% 66.4%
Avg. 82.3% 76.1% 78.0% 67.8% 58.1% 50.6% 60.6%

C
O

T-
H

Y
PE

R
-B

A
G

N-Pair 53.2% 77.4% 75.0% 38.8% 24.9% 47.0% 27.4%
LO-Inc 32.8% 86.4% 82.2% 65.4% 23.9% 46.5% 39.4%

Adj-Mat 24.0% 49.8% 66.4% 64.6% 33.6% 47.4% 38.9%
Avg. 36.7% 71.2% 74.5% 56.3% 27.5% 47.0% 35.2%

N-Set 100.0% 84.6% 87.6% 81.4% 89.4% 46.6% 87.2%
HO-Inc 86.6% 90.4% 88.2% 77.2% 53.5% 48.2% 38.9%
Inc-Mat 44.6% 27.2% 43.0% 58.2% 28.4% 58.8% 49.6%

HO-Neigh 100.0% 83.0% 81.6% 70.4% 61.8% 56.6% 65.0%
Avg. 82.8% 71.3% 75.1% 71.8% 58.3% 52.6% 60.2%

Overall Avg. 60.8% 69.9% 72.0% 57.4% 45.2% 49.8% 42.3%

Observation 2: High-order structure languages enhance LLMs’ comprehension of vertex set
correlations within hypergraphs. As shown in Table 3, high-order structure languages signif-
icantly outperform low-order structure languages in high-order and isomorphism tasks across all
difficulty levels. This improvement stems from high-order tasks focusing on vertex set correlations,
which low-order languages find challenging to describe. High-order languages effectively repre-
sent complex multi-vertex structures, enabling LLMs to perform accurate computations and provide
precise answers for intricate relationships. Consequently, using high-order structure languages sig-
nificantly boosts LLMs’ understanding of vertex set correlations within hypergraphs.

Observation 3: Current LLMs struggle with isomorphism recognition tasks, but example-
based prompting can partially bridge this gap. In binary classification isomorphism tasks, LLMs
achieve around 50% accuracy (Table 3), showing that existing hypergraph textualizations are inad-
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equate. In three-class structure classification, low-order structure languages produce approximately
30% accuracy, failing to distinguish macro structures, and high-order structure languages alone of-
fer little improvement. However, combining high-order structure languages with example-based
prompting increases accuracy to over 60%, suggesting that providing examples can aid LLMs in
better understanding high-order structures and distinguishing between different macro-structures.

Observation 4: In-context learning methods enhance LLMs’ understanding of hypergraph
structures and task logic, thereby improving accuracy. Our experiments in Table 2 and Table 3
show that providing examples, such as Few-Shot and CoT prompts, significantly boost LLM perfor-
mance compared to scenarios without examples. These examples help LLMs grasp the task logic,
follow instructions more effectively, and produce accurate results. Specifically, settings with ex-
amples exhibit notable accuracy increases, highlighting the crucial role of in-context learning in
understanding complex hypergraph structures and task requirements.

In the following, we selected two typical tasks from each of the three hypergraph categories to study
the LLMs’ understanding of hypergraphs in depth.

4.2 RESULTS OF DIFFERENT LLMS

We evaluate six mainstream LLMs on hypergraph tasks, as shown in Figure 1. Larger models like
GPT-4 outperform smaller ones such as GPT-3.5, highlighting the importance of model capacity
in understanding complex hypergraph relationships. While LLMs handle low-order and high-order
tasks—analyzing local and multi-vertex associations—they struggle with isomorphism recognition,
which requires a comprehensive understanding of entire hypergraph structures beyond their current
visualization and global pattern recognition abilities.

Observation 5: Enhancing LLM capabilities improves hypergraph understanding, but cur-
rent models generally cannot solve isomorphism recognition tasks for macro-structures. Our
evaluation shows that increasing model power aids hypergraph comprehension, yet existing LLMs
fail to recognize and distinguish complex global structures within hypergraphs. This limitation un-
derscores the need for future research to enhance LLMs’ ability to visualize and internally represent
high-order relational dependencies essential for effective isomorphism recognition. Consequently,
only low-order and high-order tasks are used for further evaluation.

4.3 RESULTS OF DIFFERENT HYPER-COT PROMPTINGS

Observation 6: Hyper-COT enhances LLMs’ hypergraph comprehension. Hypergraphs’ high-
order correlations challenge LLMs more than low-order structures. We introduce Hyper-COT,
adding step-by-step prompts. Tested on structure classification tasks (Table 4), Hyper-COT con-
sistently outperforms the “Naive COT”. Note that “Naive COT” refers to “Let’s think step by step”.
Specifically, Hyper-COT v3 boosts performance by 4% on average across seven encodings and up
to 9% in N-Pair and N-Set encodings by guiding LLMs to interpret connections hierarchically.

Table 4: Resutls of different Hyper-COT prompts on the structure classification task.

Low-Order Language High-Order Language Avg.
N-Pair LO-Inc Adj-Mat N-Set HO-Inc Inc-Mat HO-Neigh Rank

Naive COT 24.3% 30.1% 27.0% 27.0% 25.2% 23.0% 32.3% 2.86
Hyper-COT v1 22.1% 27.4% 26.1% 29.6% 25.8% 23.9% 31.4% 2.86
Hyper-COT v2 22.1% 23.5% 27.1% 28.8% 27.0% 23.5% 31.9% 2.71
Hyper-COT v3 33.6% 36.7% 27.9% 36.0% 20.9% 29.2% 32.4% 1.43

4.4 RESULTS OF HYPER-BAG PROMPTING

Observation 7: Hyper-BAG enhances LLMs’ performance on high-order tasks. While Build-
A-Graph (BAG) prompting Wang et al. (2024) is effective for graph understanding, we introduce
Hyper-BAG tailored for hypergraphs. Experiments in Table 5 show that BAG does not significantly
improve simple low-order tasks. However, both BAG and Hyper-BAG enhance performance by over
2% in high-order tasks, with Hyper-BAG achieving a 2.8% improvement in the Vertex Set Connec-
tion task compared to no BAG usage. These findings demonstrate that Hyper-BAG effectively aids
LLMs in understanding and performing high-order hypergraph tasks.
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Table 5: The influence of using additional Hyper-
BAG prompting under different settings.

Settings
Low-Order Tasks High-Order Tasks
Vertex Rea. VS VS-in-He
Con. Check Connection Check

w.o. 94.0% 88.8% 83.4% 87.2%
BAG 93.0% 90.2% 85.2% 89.2%

COT-BAG 93.6% 87.8% 84.6% 87.2%
Hyper-BAG 93.6% 89.4% 86.2% 89.8%

Table 6: The influence of the Hyper-COT
with k-shot step-by-step demonstration.

#Shot
Low-Order Tasks High-Order Tasks
Vertex. Rea. VS VS-in-He
Con. Check Connection Check

0 83.8% 91.4% 84.4% 84.4%
1 82.4% 79.2% 90.2% 86.4%
2 96.2% 84.4% 87.8% 93.4%
3 97.8% 85.8% 90.4% 92.6%

4.5 RESULTS OF HYPER-COT WITH DIFFERENT NUMBER OF SHOTS

Observation 8: Providing example solutions enhances LLMs’ understanding of hypergraphs.
In structure classification tasks, supplying example solutions improves LLMs’ comprehension of hy-
pergraphs. Experiments in Table 6 show that increasing the number of examples does not enhance
performance in low-order tasks. However, in high-order tasks, more examples lead to significant
performance gains of approximately 6% to 9% compared to no examples. Specifically, example
prompts help LLMs better understand and distinguish complex hypergraph structures, thereby en-
abling more accurate classifications.

4.6 RESULTS OF DIFFERENT HYPERGRAPH SIZE ON REAL-WORLD HYPERGRAPHS

Observation 9: Larger hypergraphs pose greater challenges for LLMs’ comprehension. We
further investigated the impact of hypergraph size on the ability of LLMs to understand hyper-
graph structures. The experimental results are presented in Table 7. Considering that real-world
hypergraphs exhibit certain regularities as the number of vertices increases, we sampled hypergraph
structures from citation networks and protein structures for this experiment. The hypergraph sam-
pling method and size settings are detailed in Appendix D. From the results, we observe that as
the size of the hypergraph increases, the performance of LLMs deteriorates. This trend is more
pronounced in high-order tasks compared to low-order tasks. Specifically, in citation data, the per-
formance on high-order tasks declines by up to 13% as the hypergraph size grows. This degradation
is attributed to the increased complexity of larger hypergraph structures, which hinders LLMs’ abil-
ity to comprehend and reason effectively.

Table 7: Influence of hypergraph size on real-world citation and protein datasets.

Low-Order Tasks High-Order Tasks
Vertex Reachability Vertex Set Vertex-Set-in-Hyperedge

Connection Check Connection Check

Citation
Small 96.0% 90.0% 95.0% 94.0%

Middle 100.0% 82.0% 93.0% 90.0%
Large 97.0% 77.0% 91.0% 81.0%

Protein
Small 86.0% 92.0% 96.0% 92.0%

Middle 90.0% 91.0% 94.5% 86.0%
Large 90.0% 88.0% 94.0% 88.0%

5 CONCLUSION

In this paper, we introduce LLM4Hypergraph, the first benchmark designed to evaluate and en-
hance LLMs’ understanding of hypergraph-structured data. Our benchmark includes 21,500 tasks
covering various low-order, high-order, and isomorphism challenges using both synthetic and real-
world hypergraphs. Evaluating six prominent LLMs, we demonstrate the benchmark’s ability to
identify model strengths and weaknesses. Additionally, our specialized prompting framework, fea-
turing Hyper-BAG and Hyper-COT, boosts reasoning performance by an average 4% (up to 9%) on
the structure classification task. This work lays the groundwork for future integration of hypergraph
computational capabilities into LLMs, fostering more advanced data comprehension.
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A RELATED WORKS

LLMs for Graphs. LLMs’ ability to address graph-based problems has garnered significant at-
tention. Benchmarks like NLGraph Wang et al. (2024), GraphInstruct Luo et al. (2024),
GraphQA Fatemi et al. (2023), and LLM4DyG Zhang et al. (2023) demonstrate LLMs’ potential
in handling structured and dynamic graph data, emphasizing the importance of encoding strategies.
Additionally, in structured commonsense reasoning, LLMs generate various graph structures from
natural language inputs (Tandon et al., 2019; Madaan et al., 2022; Saha et al., 2021). However,
LLMs’ ability to perform reasoning within hypergraphs remains underexplored. To bridge this gap,
we introduce the benchmark, designed to enhance LLMs’ understanding of hypergraph tasks.

LLMs for Few-Shot Reasoning. Extensive research has assessed LLMs’ few-shot reasoning across
arithmetic, logical, and commonsense domains. Arithmetic tasks use datasets like AQUA (Ling
et al., 2017), GSM8K (Cobbe et al., 2021), and SVAMP (Patel et al., 2021). For mathematical
reasoning, NaturalProofs (Welleck et al., 2022) evaluates LLMs’ ability to generate proof steps and
complete proofs. Logical reasoning includes symbolic problems such as Coin Flip and Last Letter
Concatenation (Wei et al., 2022), and the Logic Grid Puzzle from BIG-BENCH (Srivastava et al.,
2022). Commonsense reasoning utilizes datasets from Talmor et al. (2018) and Geva et al. (2021).
Additionally, methods to enhance and evaluate LLMs’ algorithmic reasoning have been developed
(Zhou et al., 2022b; Lee & Kim, 2023; Liu et al., 2023). Despite these efforts, achieving reliable and
deep reasoning remains challenging. To address this, we introduce the LLM4Hypergraph, aimed
at improving the assessment of LLMs’ reasoning abilities in hypergraph-based tasks.

B EXPERIMENTS OF THE UNCERTAINTY QUANTIFICATION

To comprehensively assess the capability of LLMs in comprehending hypergraphs, we designed a
series of experiments focusing on their performance across various hypergraph-related tasks. Rec-
ognizing the importance of uncertainty quantification and error characterization, we introduced con-
trolled randomness by setting the temperature parameter to 0.8. This setup allows for the exami-
nation of model stability and consistency in output generation. We evaluated six prominent LLMs:
ERNIE-Lite-8K, ERNIE-Speed-128K, Qwen-Long, LLaMA3-8B, GPT-3.5 Turbo, and GPT-4o. For
each model, five independent runs were conducted to ensure the reliability of the results.

The evaluation encompassed six distinct tasks categorized into three types: low-order tasks (Vertex
Connection Check and Reachability Check), high-order tasks (Vertex Set Connection Check and
Vertex-Set-in-Hyperedge Check), and isomorphism tasks (Isomorphism Recognition and Structure
Classification). Table 8 presents the mean accuracy and standard error for each model across these
tasks.

Table 8: Mean accuracy (%) and standard error for each model across various tasks.

Model Low-Order Tasks High-Order Tasks Isomorphism Tasks

Vertex Reachability Vertex Set VS-in-He Isomorphism Structure
Connection Check Connection Check Recognition Classification

ERNIE-Lite-8K 82.12±0.43 78.28±1.49 67.52±0.83 77.52±2.13 43.24±0.14 42.58±4.69

ERNIE-Speed-128K 78.64±0.06 97.56±0.02 67.20±0.22 71.24±2.60 43.84±0.14 22.83±0.20

Qwen-Long 97.56±0.16 98.24±0.24 73.96±0.28 88.68±0.13 44.60±0.02 44.94±0.05

LLaMA3-8B 79.48±1.35 82.60±6.34 71.80±3.50 78.40±4.18 47.72±1.25 23.70±4.47

GPT-3.5 Turbo 73.68±1.01 74.12±1.29 58.64±1.34 70.40±1.10 44.68±0.01 27.60±3.48

GPT-4o 66.68±0.05 99.48±0.03 96.36±0.06 98.68±0.13 44.04±0.10 27.32±8.68

The results reveal several key insights into the performance and reliability of the evaluated LLMs.
Firstly, most models exhibit low standard errors across various tasks, indicating high consistency
and reliability in their performance. For example, Qwen-Long achieved a mean accuracy of
97.56±0.16% on the Vertex Connection Check task, demonstrating exceptional stability. Secondly,
significant variability exists in the performance of different models on the same tasks. While Qwen-
Long excels in the Reachability Check task with an accuracy of 98.24±0.24%, ERNIE-Speed-128K
underperforms in the Structure Classification task, attaining only 22.83 ± 0.20%. This variability
highlights inherent differences in the capabilities of each model rather than being attributable to
random errors.
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Furthermore, high-order tasks present greater challenges, as evidenced by higher standard errors
in some models. Notably, GPT-4o exhibits a substantial standard error of 8.68% in the Structure
Classification task, underscoring the increased complexity involved in high-order relational reason-
ing. This indicates that while LLMs can handle low-order relationships with high consistency, their
performance in more complex, high-order tasks remains variable and warrants further investigation.

In summary, the comprehensive experimental evaluation demonstrates that the evaluated LLMs
maintain consistent and reliable performance across a range of hypergraph-related tasks, with min-
imal impact from random errors. However, significant performance differences among models and
challenges in high-order tasks highlight the distinct strengths and limitations of each architecture.
These findings provide a robust foundation for future research aimed at enhancing the hypergraph
comprehension abilities of LLMs.

C IMPACT OF HYPERGRAPH DOMAINS ON LLM PERFORMANCE

To explore how the performance of LLMs varies across different hypergraph domains, we conducted
an additional set of experiments using real-world hypergraph datasets. The motivation behind this
investigation stems from the recognition that hypergraph structures can significantly influence the
ability of LLMs to comprehend and reason about complex relationships. Specifically, we aimed to
assess both low-order and high-order understanding capabilities of LLMs within varying hypergraph
contexts.

We selected two representative datasets: the Coauthorship dataset and the Protein dataset. These
were chosen based on their distinct average hyperedge degrees, with the Coauthorship dataset ex-
hibiting an average hyperedge degree of 3.34 and the Protein dataset an average of 2.75, compared to
traditional low-order structured graphs which typically have an average hyperedge degree of 2. This
distinction allowed us to quantify the high-order nature of each dataset and evaluate the models’
performance accordingly. The experiments focused on two primary tasks: the Vertex Connec-
tion Check Task as a representative low-order node understanding task, and the Vertex-Set-in-
Hyperedge Check Task as a representative high-order hyperedge understanding task. To encode
the hypergraph structures, we employed four distinct high-order encoding methods—N-Set, HO-Inc,
Inc-Mat, and HO-Neigh—ensuring a comprehensive evaluation of different encoding strategies.

Table 9: Mean accuracy (%) for each model across different hypergraph Domains and Tasks

Model Low-Order Task High-Order Task
Coauthorship Protein Coauthorship Protein

Averaged Hyperedge Degree 3.34 2.75 3.34 2.75
N-Set 98.0 97.6 95.6 94.6
HO-Inc 99.6 99.6 97.2 87.2
Inc-Mat 79.8 72.8 91.2 94.6
HO-Neigh 76.4 87.6 88.4 81.6

Averaged Results 88.4 89.4 93.1 89.5

Table 9 presents the mean accuracy for each model across the different tasks and datasets. The results
reveal that for the high-order Vertex-Set-in-Hyperedge Check Task, the performance of LLMs
improved as the hyperedge degree of the dataset increased, with an approximate enhancement of
3.6%. This suggests that the high-order encoding methods effectively enhance the models’ ability to
handle complex relational tasks, particularly benefiting from the richer high-order structures present
in the Coauthorship dataset. In contrast, for the low-order Vertex Connection Check Task, a lower
hyperedge degree correlated with better performance. Datasets with hyperedge degrees closer to
traditional graph structures facilitated higher accuracy, likely due to reduced redundancy in high-
order descriptive language, which simplifies structural comprehension for LLMs.

Furthermore, our findings confirm that variations in hypergraph domains lead to significant dif-
ferences in LLM performance. These differences are fundamentally attributable to variations in
hypergraph data distributions across domains, such as the sparsity of connections and the density
of hyperedges. For instance, the Protein dataset, with a lower average hyperedge degree of 2.75,
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supported better performance in low-order tasks compared to the Coauthorship dataset. This under-
scores the importance of considering domain-specific characteristics when evaluating and designing
LLMs for hypergraph comprehension.

In summary, the extended experiments demonstrate that the performance of LLMs is inherently
influenced by the characteristics of hypergraph domains. Higher-order structures in datasets like
Coauthorship enhance LLMs’ capabilities in complex relational tasks, while lower-order structures
in datasets such as Protein support better performance in simpler tasks. These insights highlight the
necessity of tailoring hypergraph encoding strategies to specific domain characteristics to optimize
LLM performance. Future work will involve expanding this analysis to additional real-world hy-
pergraph datasets from diverse domains to further elucidate the domain-specific impacts on LLM
performance.

D HYPERGRAPH GENERATION

We create a diverse series of hypergraphs that cover both synthetic and real-world instances. The
LLM4Hypergraph Benchmark encompasses a wide spectrum of hypergraph types and scales,
thereby providing a robust and versatile framework for assessing the proficiency of large language
models in understanding and processing hypergraph-based data structures.

D.1 SYNTHETIC HYPERGRAPHS

We first introduce the construction of synthetic hypergraphs. The synthetic hypergraphs can be cat-
egorized into two distinct types: random hypergraphs and regular-structured hypergraphs. Random
hypergraphs are generated using the ‘hypergraph Gnm()’ function* from the DHG toolkit*. Im-
portantly, we configure these hypergraphs with a “low-order first” structure. This configuration is
grounded in the principle of Occam’s razor, which posits that simpler, lower-order associations are
more prevalent and thus more representative of real-world scenarios where low-order relationships
typically dominate over high-order ones. Consequently, random hypergraphs are extensively utilized
across various tasks within the benchmark, with the exception of isomorphic tasks where structured
classification is paramount. In contrast, regular-structured hypergraphs are specifically tailored for
structural classification tasks. We select three classical hypergraph structures Feng et al. (2024)
known for their distinct and regular patterns: the Hyper Pyramid, Hyper Checked Table, and Hyper
Wheel. To introduce variability and enhance the robustness of the benchmark, we systematically
modify the hyperparameters of these base structures. For instance, we vary the number of layers in
the Hyper Pyramid and the number of vertices per blade in the Hyper Wheel, thereby generating a
multitude of structurally diverse yet regularly patterned hypergraphs.

D.2 REAL-WORLD HYPERGRAPHS

As for the real-world instances, we source data from citation networks and protein structure datasets.
The construction process involves randomly sampling sub-hypergraphs by selecting a central vertex
and performing a random walk through selected hyperedges. During this walk, the vertices encoun-
tered are randomly retained until the sub-hypergraph reaches the predetermined vertex count. This
methodology ensures that the sampled hypergraphs retain the intricate and authentic correlations
inherent in real-world data.

D.3 MULTI-SCALE SETTINGS

To ensure scalability and applicability across a range of scenarios, both synthetic and real-world
hypergraphs are categorized based on their size, defined by the number of vertices: small-scale
hypergraphs (Containing between 5 to 10 vertices), medium-scale hypergraphs (Containing between
10 to 15 vertices), and large-scale hypergraphs (containing between 15 to 20 vertices). Additionally,
to maintain structural generality, synthetic hypergraphs adhere to a hyperedge-to-vertex ratio ranging
from 0.2 to 1.5 times the number of vertices. This ratio ensures a balanced complexity that is neither

*dhg.random.hypergraph Gnm()
*www.deephypergraph.com
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too sparse nor excessively dense, thereby facilitating meaningful evaluations of LLM capabilities.
In contrast, real hypergraphs do not impose such restrictions on the number of hyperedges, allowing
them to naturally reflect the inherent connectivity patterns of their source datasets.

E DETAILS OF TASK DESIGN

In this section, we will introduce the proposed three types of tasks in detail, respectively.

E.1 ISOMORPHISM TASKS

In the LLM4Hypergraph Benchmark, we prioritize isomorphic tasks as a fundamental component
of our evaluation framework. This prioritization is grounded in the belief that a comprehensive
understanding of the overall structural architecture is essential for LLMs to be effectively utilized
in practical applications. Isomorphic tasks serve as a theoretical cornerstone for numerous model
capabilities, particularly in specialized fields such as molecular structure analysis and protein anal-
ysis. In these domains, proteins with similar global structures but differing local configurations can
exhibit entirely distinct properties. This phenomenon underscores the necessity for models to pos-
sess a heightened sensitivity to structural isomorphism, enabling them to accurately recognize and
differentiate between nuanced structural variations. To evaluate this capability, we introduce two
representative isomorphic tasks within our benchmark:

• Isomorphism Recognition. This task assesses the model’s ability to determine whether
two different representations accurately reflect the same underlying hypergraph structure.
Given two hypergraphs G = {V, E} and G′ = {V ′, E ′}, the target is to find whether a
bijective mapping g := V → V ′ exists. The mapping g is called the isomorphism function,
such that (v1, v2, . . . , vm) ∈ E ⇐⇒ (g(v1), g(v2), . . . , g(vm)) ∈ E ′. Note that if |V| ≠
|V ′|, we can directly have G and G′ are not isomorphism.

• Structure Classification. This task evaluates the model’s proficiency in distinguishing hy-
pergraphs based on their macro-level architectural frameworks. It requires the model to
identify and understand differences in the overall structural layout, even when local config-
urations may appear similar. Let S denote an equivalence class set of hypergraphs, encom-
passing several distinct types of hypergraphs {T1, T2, . . . , Tn}. Each subtype Ti within S
adheres to a specific topological rule or structural pattern that defines its global architecture.
These topological rules encapsulate the macroscopic organizational principles that distin-
guish one hypergraph type from another within the equivalence class. Prior to the task,
the LLMs is provided with the fundamental topological rules governing each hypergraph
subtype in T . The model is expected to internalize these structural paradigms to facilitate
accurate classification. This task emphasizes the model’s ability to comprehend and differ-
entiate hypergraphs based on their overarching structural frameworks, rather than merely
local or pairwise relationships. Accurate performance on the Macroscopic Architecture
Differentiation task indicates that the LLM possesses a nuanced understanding of hyper-
graph topology, which is critical for applications in domains such as molecular structure
analysis and protein modeling.

E.2 LOW-ORDER TASKS

In addition to isomorphic tasks, our LLM4Hypergraph Benchmark incorporates a series of low-
order tasks designed to enhance LLMs’ understanding of fundamental hypergraph properties and
the relationships between vertices. These tasks facilitate the comprehension of basic hypergraph
attributes and simple connectivity patterns, which are essential for more complex structural analyses.

• Hyperdge Count. This task aims to evaluate the model’s ability to determine the total
number of hyperedges within a given hypergraph. Given a hypergraph G = {V, E}, the
target is to return |E|, the cardinality of the hyperedge set E .

• Vertex Count. This task assesses the model’s capability to ascertain the total number of
vertices in a hypergraph. Given G = {V, E}, the target is to return |V|, the cardinality of
the vertex set V .
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• Vertex Degree. This task assesses the model’s capability to count the number of hyperedges
that connects a specific vertex. Given G = {V, E} and vertex v, the target is to return
|{e | v ∈ e}|.

• Vertex Connection. This task is designed to evaluate whether a specific pair of vertices is
directly connected by at least one hyperedge. Given G = {V, E} and a pair of vertices
(u, v), the target is to determine if there exists a hyperedge e ∈ E such that u ∈ e and
v ∈ e.

• Connected Vertices. This task examines, given a vertex u, the model’s ability to output
the set of vertices directly connected to u by at least one hyperedge. Formally, given
G = {V, E} and a vertex u ∈ V , the target is to output the subset W ⊆ V such that
for each w ∈ W , there exists a hyperedge e ∈ E where u ∈ e and w ∈ e.

• Disconnected Vertices. This task requires, given a vertex u, the identification and output
of the set of vertices that are not connected to u by any hyperedge. Formally, given G =
{V, E} and a vertex u ∈ V , the target is to output the subset Z ⊆ V where for each z ∈ Z ,
there does not exist any hyperedge e ∈ E such that u ∈ e and z ∈ e.

• Shortest Path. This task aims to determine, given two vertices u and v, the minimal
sequence of vertices representing the shortest path connecting them. Formally, given
G = {V, E} and a pair of vertices (u, v), the target is to find the shortest sequence
[v1, v2, . . . , vn] such that u = v1, v = vn, and for each consecutive pair (vi, vi+1), there
exists a hyperedge e ∈ E containing both vi and vi+1.

• Reachability Check. This task assesses whether one vertex can be reached from another
through a sequence of hyperedges. Formally, given G = {V, E} and a pair (u, v), the target
is to determine if there exists a sequence of hyperedges e1, e2, . . . , ek ∈ E that connects u
to v.

These low-order tasks collectively ensure that LLMs develop a robust understanding of basic hyper-
graph properties and simple relational structures. By accurately performing tasks such as counting
hyperedges and vertices, determining direct and indirect connections, and assessing reachability,
models build a solid foundation for tackling more complex hypergraph-related challenges. The in-
clusion of these tasks within the LLM4Hypergraph Benchmark not only provides a comprehensive
assessment of a model’s foundational capabilities but also facilitates the identification of specific
areas requiring further enhancement, thereby contributing to the advancement of hypergraph com-
putational intelligence.

E.3 HIGH-ORDER TASKS

Building upon the foundation of low-order tasks, our LLM4Hypergraph Benchmark introduces a
series of high-order tasks tailored to assess LLMs’ comprehension of complex correlations between
vertex sets within hypergraphs. Unlike low-order tasks that focus on individual vertices and hy-
peredges, high-order tasks evaluate the model’s ability to understand and manipulate relationships
involving groups of vertices and their interactions through hyperedges.

• Hyperedge Degree. This task aims to determine the degree of a given hyperedge, which is
defined as the number of vertices it encompasses. Formally, given a hypergraph G = {V, E}
and a hyperedge e ∈ E , the target is to compute deg(e) = |{v ∈ V | v ∈ e}|.

• Vertex Set Connection. This task evaluates whether two distinct sets of vertices A and
B ⊆ V are jointly contained within at least one hyperedge, thereby determining if A and B
are connected through a common hyperedge. Formally, given G = {V, E} and two vertex
subsets A,B ⊆ V , the target is to ascertain whether there exists a hyperedge e ∈ E such
that A ∪ B ⊆ e.

• Vertex-Set-in-Hyperedge Check. This task involves determining whether a specific subset
of vertices S ⊆ V is entirely contained within any hyperedge of the hypergraph. Formally,
given G = {V, E} and a vertex subset S ⊆ V , the target is to evaluate if there exists a
hyperedge e ∈ E such that S ⊆ e.

• Hyperedge-in-Hyperedge Check. This task assesses whether one hyperedge is completely
contained within another, thereby identifying hierarchical or nested structures within the
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hypergraph. Formally, given G = {V, E} and two hyperedges e1, e2 ∈ E , the target is to
determine if e1 ⊆ e2.

• Shared-Vertices between Hyperedges. This task requires the model to identify and output
the set of vertices shared between any two given hyperedges, thus revealing the overlapping
structures and potential intersections within the hypergraph. Formally, given G = {V, E}
and two hyperedges e1, e2 ∈ E , the target is to return S = e1 ∩ e2, where S ⊆ V .

Collectively, these high-order tasks compel LLMs to engage in more sophisticated relational reason-
ing and structural analysis, enabling a deeper and more comprehensive understanding of hypergraph
architectures. By mastering these tasks, models can better handle complex scenarios encountered
in real-world applications such as molecular chemistry, social network analysis, and biological sys-
tems, where understanding intricate multi-way relationships is paramount. The inclusion of high-
order tasks within the LLM4Hypergraph Benchmark thus ensures a thorough evaluation of an LLM’s
ability to navigate and interpret the multifaceted connectivity inherent in hypergraph data structures,
promoting advancements in hypergraph computational intelligence.

E.4 COMPARISON WITH OTHER BENCHMARKS

In this subsection, we compare our LLM4Hypergraph Benchmark with existing graph bench-
marks, categorizing them into two main types: purely synthetic graph structure benchmarks and
real-world graph structure benchmarks. Prominent examples of purely synthetic benchmarks in-
clude NLGraph Wang et al. (2024) and CLEAR Chen et al. (2024), while real-world benchmarks
encompass GPT4Graph Guo et al. (2023) and GraphArena Tang et al. (2024). These existing bench-
marks predominantly focus on tasks that assess the understanding of local, low-order structural
properties within graphs. In contrast, our LLM4Hypergraph Benchmark not only includes low-
order structural understanding tasks but also introduces high-order tasks specifically designed to
evaluate models’ comprehension of associations between sets of vertices. This dual focus enables
a more comprehensive exploration of LLMs’ ability to grasp complex multi-way relationships in-
herent in hypergraphs. Moreover, our benchmark uniquely incorporates isomorphic tasks, marking
the first instance of such an inclusion in this domain. Isomorphic tasks serve to assess the models’
proficiency in understanding and discerning global structural properties of graphs and hypergraphs,
thereby providing a more holistic evaluation of their structural comprehension capabilities. Addi-
tionally, our benchmark integrates both synthetic hypergraph data and real-world hypergraph data,
ensuring a diverse and representative dataset that mirrors the complexities found in practices.

By encompassing both low-order and high-order tasks, along with the novel isomorphic tasks, our
LLM4Hypergraph Benchmark extends beyond the scope of existing benchmarks. It not only
evaluates foundational structural understanding but also delves into advanced relational reasoning
and global structural interpretation. This comprehensive approach facilitates a thorough assessment
of LLMs’ abilities to comprehend and process hypergraph structures, thereby advancing the field of
hypergraph computational intelligence. Consequently, our benchmark provides a robust framework
for identifying both the strengths and limitations of current models, guiding future improvements in
model architecture and training methodologies.

F DETAILS OF PROMPT FRAMEWORK

The overall prompt framework tailored for hypergraph structures is illustrated in Figure 3. A com-
plete prompt comprises six components: Example, Hypergraph Description, Hyper-BAG, Question,
Tail, and Hyper-COT. The Example section includes question-answer (QA) pairs for each hyper-
graph and may additionally contain COT-for-Answer, which provides a standard chain-of-thought
(CoT) explanation detailing the step-by-step reasoning process to derive the answer. In the depicted
figure, certain modules within the prompt are enclosed in brackets “[]”, indicating their optional na-
ture depending on the specific prompt configuration employed. We introduce a set of distinct prompt
configurations as follows:

• ZERO-SHOT: This configuration includes only the Hypergraph Description, Question, and
Tail sections, providing the model with the essential information required to address the
query without any illustrative examples or additional reasoning prompts.
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• ZERO-HYPER-COT: Building upon the Zero-Shot setup, this configuration incorporates
the Hyper-COT component after the Tail, introducing a hypergraph-specific chain-of-
thought prompt that facilitates structured reasoning tailored to hypergraph-related tasks.

• FEW-SHOT: Extending the Zero-Shot approach, the Few-Shot configuration precedes the
main prompt with Example content. These examples consist solely of Hypergraph De-
scription, Question, Tail, and Answer, thereby providing the model with concrete instances
to guide its understanding and response generation.

• COT: Enhancing the Few-Shot configuration, the CoT setup adds COT-for-Answer to each
example within the Example section. This addition entails detailed explanations of how
each answer is systematically derived, enabling the model to follow a logical reasoning
pathway for more accurate and transparent responses.

• COT-HYPER-BAG: This advanced configuration builds upon the CoT setup by inserting
the Hyper-BAG component as a transitional sentence between the Hypergraph Description
and the Question. The Hyper-BAG serves to contextualize the model’s focus on hyper-
graph construction and comprehension, thereby guiding it into the appropriate analytical
framework for handling hypergraph-specific queries.

By integrating these varied prompt structures, the proposed framework effectively leverages ex-
isting prompting strategies—such as Chain-of-Thought and Few-Shot Prompting—while introduc-
ing hypergraph-specific enhancements. This comprehensive prompt architecture ensures that large
language models are adequately guided through diverse hypergraph scenarios, encompassing both
synthetic and real-world complexities. Consequently, the framework optimizes the models’ inter-
pretative and reasoning capabilities, facilitating a more precise and nuanced evaluation of their hy-
pergraph comprehension within the LLM4Hypergraph Benchmark. The deliberate inclusion of
optional modules allows for flexible prompt configurations tailored to different evaluation require-
ments, thereby enhancing the robustness and versatility of the benchmarking process.

G DETAILS OF HYPERGRAPH LANGUAGE

Unlike traditional graphs, where an edge connects exactly two vertices, hypergraphs allow hyper-
edges to connect any number of vertices, thereby necessitating more intricate textual descriptions.
However, directly employing abstract language to describe high-order associative structures in hy-
pergraphs can impede LLMs’ comprehension of hypergraph architectures, subsequently diminishing
performance on downstream tasks. Conversely, utilizing language that describes low-order struc-
tures facilitates better understanding by LLMs but may result in the loss of essential high-order
information. Inspired by graph description languages, we have designed two distinct types of lan-
guages for describing hypergraph structures: Low-Order Structure Language and High-Order Struc-
ture Language, as shown in Figure 4. The former primarily adopts a graph-like approach, leverag-
ing low-order structural descriptions to represent hypergraphs by focusing on pairwise relationships
and individual connections. This method enhances LLMs’ ability to parse and interpret the hy-
pergraph by simplifying its representation into more familiar graph terminology. In contrast, the
High-Order Structure Language directly conveys the complex, multi-vertex correlations inherent in
hypergraphs, encapsulating high-order relational information without reducing them to mere pair-
wise interactions. This approach preserves the richness of hypergraph structures, allowing LLMs
to grasp the full extent of multi-way relationships that define hypergraph topology. By employing
these two complementary descriptive languages, our framework ensures that LLMs can effectively
balance the simplicity of low-order descriptions with the comprehensive detail of high-order struc-
tures, thereby optimizing their ability to understand and perform accurately on hypergraph-related
tasks within the LLM4Hypergraph Benchmark.

G.1 LOW-ORDER STRUCTURE LANGUAGE

To effectively facilitate LLMs’ understanding of hypergraph structures through pairwise correla-
tions, we introduce three distinct low-order structure languages as follows: Low-Order Incidence
Description (LO-Inc), Neighbor-Pair Description (N-Pair), and Raw Adjacency Matrix Description
(Adj-Mat). Each method provides a unique approach to textualizing hypergraph relationships, en-
hancing the models’ ability to interpret and process hypergraph data.
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• Low-Order-Incidence Description (LO-Inc): This method directly describes how a given
vertex is connected to other vertices through hyperedges by explicitly stating the connec-
tions in a pairwise manner. For example, consider a hypergraph where vertex v1 is con-
nected to vertices v2 and v3. The LO-Inc representation would be: Vertex v1 is connected
to vertices v2 and v3. This description clearly indicates the direct correlations involving v1,
facilitating the model’s understanding of its immediate connections within the hypergraph.

• Neighbor-Pair Description (N-Pair): This method focuses on enumerating all pairs of ver-
tices that share a hyperedge, thereby explicitly listing the connected vertex pairs within the
hypergraph. Using the same hypergraph example where vertex v1 is connected to vertices
v2 and v3, the N-Pair representation would be: (v1, v2), (v1, v3). This method emphasizes
pairwise relationships without referencing the broader connectivity of individual vertices,
providing a straightforward enumeration of connected pairs.

• Raw Adjacency Matrix Description (Adj-Mat): This method utilizes an adjacency matrix to
represent the hypergraph structure numerically. In this matrix-based approach, the presence
or absence of a connection between any two vertices is indicated by binary values. For the
hypergraph where vertex v1 is connected to vertices v2 and v3, the Adj-Mat representation
would be: [[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0], [0, 1, 0, 0]]. In this adjacency matrix, each row
and column corresponds to a vertex (v1 to v4). A value of ‘1’ at position (i, j) indicates
that vertex vi is connected to vertex vj via a hyperedge, while a ‘0’ signifies no direct
connection. For instance, the entry at (1, 2) is ‘1’, indicating a connection between v1 and
v2.

These low-order structure languages—LO-Inc, N-Pair, and Adj-Mat—provide varied methods for
representing hypergraph structures through pairwise correlations. LO-Inc offers descriptive clar-
ity by outlining direct vertex connections, N-Pair emphasizes the enumeration of connected vertex
pairs, and Adj-Mat delivers a comprehensive numerical representation through an adjacency matrix.
By employing these diverse descriptive techniques, our framework enhances LLMs’ ability to accu-
rately interpret and analyze the fundamental properties and local relationships within hypergraphs,
thereby supporting robust performance on subsequent high-order and isomorphic tasks within the
LLM4Hypergraph Benchmark.

G.2 HIGH-ORDER STRUCTURE LANGUAGE

To further enhance LLMs’ comprehension of hypergraph structures through higher-order correla-
tions, we introduce four distinct high-order structure languages as follows: High-Order Neighbor
Description (HO-Neigh), High-Order Incidence Description (HO-Inc), Neighbor-Set Description
(N-Set), and Raw Incidence Matrix Description (Inc-Mat).

• High-Order Neighbor Description (HO-Neigh): This method leverages the neighbor defi-
nitions from HGNN+, describing hypergraph relationships in a two-stage manner by first
detailing the connections between vertices and hyperedges, and subsequently outlining the
connections between hyperedges and their constituent vertices. For instance, it may state,
“Vertex v1 is connected to hyperedge e1”, followed by “Hyperedge e1 is connected to ver-
tices v1, v2, and v3”, thereby providing a comprehensive view of the local neighborhood
structure.

• High-Order Incidence Description (HO-Inc): This method extends the LO-Inc by incorpo-
rating higher-order correlations between vertices. An example of HO-Inc would be, “Ver-
tex v1 is connected to vertices v2 and v3 with hyperedge e1”, which succinctly captures the
multi-vertex association facilitated by a single hyperedge.

• Neighbor-Set Description (N-Set): This method builds upon the N-Pair by enumerating
entire sets of vertices connected by each hyperedge, thus providing a more holistic rep-
resentation of the hypergraph’s connectivity. For example, it may list, “(v1, v2, v3)” and
“(v2, v4)”, explicitly indicating the groups of vertices that jointly form hyperedges.

• Raw Incidence Matrix Description (Inc-Mat): This method employs an incidence matrix
to numerically represent the hypergraph structure, where each entry indicates the presence
or absence of a connection between vertices and hyperedges. An example of an incidence
matrix is [[1, 0], [1, 1], [1, 0], [0, 1]]. In this matrix, rows correspond to vertices (v1 to v4)
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and columns correspond to hyperedges (e1 and e2), where a value of 1 denotes the inclusion
of a vertex in a hyperedge and 0 denotes absence.

Collectively, these high-order structure languages (HO-Neigh, HO-Inc, N-Set, and Inc-Mat) pro-
vide varied and sophisticated methods for representing hypergraph structures through multi-vertex
associations. By utilizing these descriptive techniques, our framework facilitates a deeper and more
nuanced understanding of hypergraph topologies, thereby supporting advanced analytical capabili-
ties in subsequent high-order and isomorphic tasks within the LLM4Hypergraph Benchmark.

H DETAILS OF SPECIFICAL PROMPTING FOR HYPERGRAPHS

Given that hypergraphs do not naturally lend themselves to description using conventional natural
language constructs, we introduce two specialized instruction-based prompting techniques designed
to enhance LLMs’ ability to comprehend hypergraph structures: Hyper-BAG and Hyper-COT.

• Build-a-Hypergraph Prompting (Hyper-BAG) addresses the inherent complexity of hyper-
graphs by facilitating a mental visualization of their structures (Wang et al., 2024). Recog-
nizing that certain aspects of hypergraph comprehension are more effectively understood
through visualization, Hyper-BAG employs instruction-based enhancements that explicitly
guide LLMs to imagine the hypergraph’s architecture. This approach provides a concep-
tual buffer, allowing the model to assimilate hypergraph information by mapping it into a
structured conceptual space. For instance, an instruction might prompt the model to ”imag-
ine a hypergraph where vertex v1 is connected to hyperedge e1,” thereby aiding the model
in forming a coherent mental representation that better prepares it for subsequent queries
related to the hypergraph.

• Chain-of-Thought for Hypergraphs (Hyper-COT) builds upon the traditional CoT prompt-
ing methodology (Wei et al., 2022) to address the observed difficulties that LLMs encounter
in understanding hypergraph structures. Inspired by the step-by-step reasoning inherent in
CoT, Hyper-COT integrates a tailored reasoning process specifically designed for hyper-
graphs. By appending “step-by-step thinking” instructions, Hyper-COT encourages the
model to decompose complex hypergraph-related tasks into manageable inference steps,
thereby enhancing its comprehension in zero-shot scenarios. Through our experiments, we
identified four hypergraph-friendly prompts that effectively guide the model’s reasoning
process.

– v1: “Let’s think step by step. Make sure the data is calculated and recorded accurately
at each step.”

– v2: “Let’s analyze the connectivity by considering hyperedges linked to vertices and
vertices linked through hyperedges.”

– v3: “Let’s think hyperedges connected by vertices then vertices connected by hyper-
edges.”

These prompts are strategically designed to align the model’s reasoning with the multi-way
relationships characteristic of hypergraphs, thereby facilitating a deeper and more accurate
understanding of hypergraph connectivity and structure.

By implementing Hyper-BAG and Hyper-COT within our prompting framework, we aim to signif-
icantly bolster the LLMs’ proficiency in interpreting and processing hypergraph structures. These
instruction-based techniques address the unique challenges posed by hypergraphs’ multi-vertex as-
sociations, ensuring that models can effectively navigate both low-order and high-order structural
information. Consequently, these strategies play a crucial role in advancing the capabilities of LLMs
within the LLM4Hypergraph Benchmark, promoting more accurate and sophisticated analyses of
hypergraph data.
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I PROMPT EXAMPLES

I.1 EXAMPLES OF HYPERGRAPH LANGUAGES

I.1.1 LOW-ORDER STRUCTURE LANGUAGES

LO-Inc

Prompt: G describes a hypergraph among vertices v0, v1, v2, v3, v4, and v5 and hyperedges
e0, e1, e2, and e3.
In this hypergraph:
Vertex v0 is connected to vertices v1, v2, v3, v4, v5.
Vertex v1 is connected to vertices v0, v2, v3, v4, v5.
Vertex v2 is connected to vertices v0, v1, v3, v4, v5.
Vertex v3 is connected to vertices v0, v1, v2, v4, v5.
Vertex v4 is connected to vertices v0, v1, v2, v3, v5.
Vertex v5 is connected to vertices v0, v1, v2, v3, v4.

N-Pair

Prompt: In an undirected hypergraph, (i,j) means that vertex i and vertex j are connected
with an undirected hyperedge. G describes a hypergraph among vertices v0, v1, v2, v3, v4,
and v5 and hyperedges e0, e1, e2, and e3.
The connection relation between vertices in G are: (v0, v1) (v2, v4) (v1, v2) (v0, v4) (v3, v4)
(v1, v5) (v0, v3) (v1, v4) (v2, v3) (v0, v2) (v4, v5) (v0, v5) (v2, v5) (v1, v3) (v3, v5).

Adj-Mat

Prompt: G describes a hypergraph among vertices v0, v1, v2, v3, v4, and v5 and among
hyperedges e0, e1, e2, and e3.
The adjacency matrix between vertices of the hypergraph is
[[1,1,1,1,1,1,], [1,1,1,1,1,1,], [1,1,1,1,1,1,],
[1,1,1,1,1,1,], [1,1,1,1,1,1,], [1,1,1,1,1,1,]]

I.1.2 HIGH-ORDER STRUCTURE LANGUAGES

HO-Neigh

Prompt: G describes a hypergraph among vertices v0, v1, v2, v3, v4, and v5 and hyperedges
e0, e1, e2, and e3.
In this hypergraph:
Vertex v0 is connected to hyperedges e1, e2.
Vertex v1 is connected to hyperedges e0, e1,e3.
Vertex v2 is connected to hyperedges e0, e1.
Vertex v3 is connected to hyperedges e0, e1.
Vertex v4 is connected to hyperedges e0, e1, e2.
Vertex v5 is connected to hyperedges e1, e3.
Hyperedge e0 is connected to vertices v1, v2, v3, v4.
Hyperedge e1 is connected to vertices v0, v1, v2, v3, v4, v5.
Hyperedge e2 is connected to vertices v0, v4.
Hyperedge e3 is connected to vertices v1, v5.
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HO-Inc

Prompt: G describes a hypergraph among vertices v0, v1, v2, v3, v4, and v5 and among
hyperedges e0, e1, e2, and e3.
In this hypergraph:
Vertex v0 is connected to vertices v1, v2, v3, v4, v5 with hyperedge e1, to vertex v4 with
hyperedge e2.
Vertex v1 is connected to vertices v2, v3, v4 with hyperedge e0, to vertices v0, v2, v3, v4, v5
with hyperedge e1, to vertex v5 with hyperedge e3.
Vertex v2 is connected to vertices v1, v3, v4 with hyperedge e0, to vertices v0, v1, v3, v4, v5
with hyperedge e1.
Vertex v3 is connected to vertices v1, v2, v4 with hyperedge e0, to vertices v0, v1, v2, v4, v5
with hyperedge e1.
Vertex v4 is connected to vertices v1, v2, v3 with hyperedge e0, to vertices v0, v1, v2, v3, v5
with hyperedge e1, to vertex v0 with hyperedge e2.
Vertex v5 is connected to vertices v0, v1, v2, v3, v4 with hyperedge e1, to vertex v1 with
hyperedge e3.

N-Set

Prompt: In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and vertex k are
connected with an undirected hyperedge. G describes a hypergraph among vertices v0, v1,
v2, v3, v4, and v5, and among hyperedges e0, e1, e2, and e3.
The hyperedges in G are: (v1, v2, v3, v4), (v0, v1, v2, v3, v4, v5), (v0, v4), (v1, v5).

Inc-Mat

Prompt: G describes a hypergraph among vertices v0, v1, v2, v3, v4, and v5 and hyperedges
e0, e1, e2, and e3.
The incidence matrix of the hypergraph is
[[0,1,1,0,],
[1,1,0,1,],
[1,1,0,0,],
[1,1,0,0,],
[1,1,1,0,],
[0,1,0,1,]]

I.2 EXAMPLES OF QUESTION FOR DIFFERENT TASKS

I.2.1 LOW-ORDER TASKS

Hyperedge Count

Prompt: How many hyperedges are in this hypergraph?
List the answers after ”Ans:” in the format like [10].

Vertex Count

Prompt: How many vertices are in this hypergraph?
List the answers after ”Ans:” in the format like [10].

24



Published as a conference paper at ICLR 2025

Vertex Degree

Prompt: What is the degree of vertex v14?
List the answers after ”Ans:” in the format like [10].

Vertex Connection Check

Prompt: Is vertex v14 connected to vertex v3?
List the answers after ”Ans:” in the format of [Yes, No,].

Reachability Check

Prompt: Is there a path from node v0 to node v1?
List the answers after ”Ans:” in the format of [Yes, No,].

Shortest Path

Prompt: What is the length of the shortest path from node v0 to node v5?
List the answers after ”Ans:” in the format of [Yes, No,].

Connected Vertices

Prompt: List all the vertices connected to v14 in alphabetical order.
List all the answers after ”Ans:” in the format of [v0, v1, v2] and separate the answers by a
comma.

Disconnected Vertices

Prompt: List all the vertices that are not connected to v14 in alphabetical order.
List all the answers after ”Ans:” in the format of [v0, v1, v2] and separate the answers by a
comma.

I.2.2 HIGH-ORDER TASKS

Hyperedge Degree

Prompt: What is the degree of hyperedge e4?
List the answers after “Ans:” in the format like [10].

Vertex Set Connection Check

Prompt: Is there a hyperedge that contain both vertex set (v2, v3) and vertex set (v5, v7)?
List the answers after ”Ans:” in the format of [Yes, No,].

Vertex-Set-in-Hyperedge Check

Prompt: Is there a hyperedge that contains all vertices in vertex set (v4, v16)?
List the answers after ”Ans:” in the format of [Yes, No,].
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Hyperedge-in-Hyperedge Check

Prompt: Whether any hyperedge in the hypergraph is contained by other hyperedges?
List the answers after ”Ans:” in the format of [Yes, No,].

Shared-Vertices between Hyperedges

Prompt: List the vertices connected to both hyperedge e3 and hyperedge e2 in alphabetical
order.
List all the answers after ”Ans:” in the format of [v0, v1, v2] and separate the answers by a
comma.

I.2.3 ISOMORPHISM TASKS

Isomorphism Recognition

Prompt: Are these two hypergraphs isomorphism?
List the answers after “Ans:” in the format of [Yes, No,].

Structure Classification

Prompt: What is the shape of the visualization of the hypergraph like? Please directly give
the answer number corresponding to the 3 hypergraph visualization shapes as shown below.
Answer [0] corresponds to the Hyper Pyramid, which represents the visualization of the
hypergraph as a Pyramid.
Answer [1] corresponds to the Hyper Checked Table.
Answer [2] corresponds to the Hyper Wheel.
List the answer after “Ans:” in the format like [2].

I.3 EXAMPLES OF PROMPTS UNDER DIFFERENT SETTINGS

ZERO SHOT

Prompt: In an undirected hypergraph, (i, j, k) means that vertex i, vertex j, and vertex k are
connected with an undirected hyperedge. G describes a hypergraph among vertices v0, v1,
v2, v3, v4, and v5 and among hyperedges e0, e1, e2, and e3.
The hyperedges in G are: (v1, v2, v3, v4), (v0, v1, v2, v3, v4, v5), (v0, v4), (v1, v5).
Let’s construct the hypergraph with the vertices and hyperedges first.
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans:” in the format
like [10].
A:

Response: Ans:[4]

Ground Truth: Ans:[4]
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ZERO-HYPER-COT

Prompt: In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and vertex k are
connected with an undirected hyperedge. G describes a hypergraph among vertices v0, v1,
v2, v3, v4, and v5 and among hyperedges e0, e1, e2, and e3.
The hyperedges in G are: (v1, v2, v3, v4), (v0, v1, v2, v3, v4, v5), (v0, v4), (v1, v5).
Let’s construct the hypergraph with the vertices and hyperedges first.
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans:” in the format
like [10].
A: Let’s think hyperedges connected by vertices then vertices connected by hyperedges.

Response: To determine the number of hyperedges in the given hypergraph G, we need to
count each unique hyperedge listed.
Given hyperedges:
1. (v1, v2, v3, v4)
2. (v0, v1, v2, v3, v4, v5)
3. (v0, v4)
4. (v1, v5)
Let’s count these:
1. (v1, v2, v3, v4) - This is one hyperedge connecting vertices v1, v2, v3, and v4 .
2. (v0, v1, v2, v3, v4, v5) - This is another hyperedge connecting vertices v0, v1, v2, v3, v4,
and v5 .
3. (v0, v4) - This is a third hyperedge connecting vertices v0 and v4 .
4. (v1, v5) - This is a fourth hyperedge connecting vertices v1 and v5 .
So, there are four distinct hyperedges listed.
Ans: [4]

Ground Truth: Ans:[4]

FEW SHOT

Prompt: Example: In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and
vertex k are connected with an undirected hyperedge. G describes a hypergraph among
vertices v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, and v17 and
among hyperedges e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16,
e17, e18, and e19.
The hyperedges in G are: (v8, v16, v17), (v11, v14, v17), (v4, v15), (v1, v6, v15, v17), (v0,
v11), (v2, v14), (v6, v11), (v3, v9, v15), (v5, v9),(v9, v10), (v7, v8, v15), (v0, v10), (v1, v11),
(v7, v9), (v15, v16), (v9, v11, v12), (v4, v13), (v9, v12), (v2, v12), (v7, v14).
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans:” in the format
like [10].
A: Ans:[20].

In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and vertex k are
connected with an undirected hyperedge. G describes a hypergraph among vertices v0, v1,
v2, v3, v4, and v5 and among hyperedges e0, e1, e2, and e3.
The hyperedges in G are: (v1, v2, v3, v4), (v0, v1, v2, v3, v4, v5), (v0, v4), (v1, v5).
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans” in the format
like [10].
A:

Response: Ans:[4]

Ground Truth: Ans:[4]
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COT

Prompt: Example: In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and
vertex k are connected with an undirected hyperedge. G describes a hypergraph among
vertices v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, and v17 and
among hyperedges e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16,
e17, e18, and e19.
The hyperedges in G are: (v8, v16, v17), (v11, v14, v17), (v4, v15), (v1, v6, v15, v17), (v0,
v11), (v2, v14), (v6, v11), (v3, v9, v15), (v5, v9), (v9, v10), (v7, v8, v15), (v0, v10), (v1, v11),
(v7, v9), (v15, v16), (v9, v11, v12), (v4, v13), (v9, v12), (v2, v12), (v7, v14).
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans:” in the format
like [10].
A: Ans:[20]. The hyperedges are e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13,
e14, e15, e16, e17, e18, and e19.

In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and vertex k are
connected with an undirected hyperedge. G describes a hypergraph among vertices v0, v1,
v2, v3, v4, and v5 and among hyperedges e0, e1, e2, and e3.
The hyperedges in G are: (v1, v2, v3, v4), (v0, v1, v2, v3, v4, v5), (v0, v4), (v1, v5).
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans” in the format
like [10].
A:

Response: Ans:[4]. The hyperedges are e0, e1, e2, e3.

Ground Truth: Ans:[4]

COT-HYPER-BAG

Prompt: Example: In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and
vertex k are connected with an undirected hyperedge. G describes a hypergraph among
vertices v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, and v17 and
among hyperedges e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16,
e17, e18, and e19.
The hyperedges in G are: (v8, v16, v17), (v11, v14, v17), (v4, v15), (v1, v6, v15, v17), (v0,
v11), (v2, v14), (v6, v11), (v3, v9, v15), (v5, v9), (v9, v10), (v7, v8, v15), (v0, v10), (v1, v11),
(v7, v9), (v15, v16), (v9, v11, v12), (v4, v13), (v9, v12), (v2, v12), (v7, v14).
Let’s construct the hypergraph with the vertices and hyperedges first.
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans:” in the format
like [10].
A: Ans:[20]. The hyperedges are e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13,
e14, e15, e16, e17, e18, and e19.

In an undirected hypergraph, (i, j, k) means that vertex i, vertex j and vertex k are
connected with an undirected hyperedge. G describes a hypergraph among vertices v0, v1,
v2, v3, v4, and v5 and among hyperedges e0, e1, e2, and e3.
The hyperedges in G are: (v1, v2, v3, v4), (v0, v1, v2, v3, v4, v5), (v0, v4), (v1, v5).
Let’s construct the hypergraph with the vertices and hyperedges first.
Q: How many hyperedges are in this hypergraph? list the answers after ”Ans” in the format
like [10].
A:

Response: Ans:[4]. The hyperedges are e0, e1, e2, e3.

Ground Truth: Ans:[4]
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