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Abstract

Recent advancements in Vision-Language-Action (VLA) models have shown
promise for end-to-end autonomous driving by leveraging world knowledge and
reasoning capabilities. However, current VLA models often struggle with physi-
cally infeasible action outputs, complex model structures, or unnecessarily long
reasoning. In this paper, we propose AutoVLA, a novel VLA model that unifies
reasoning and action generation within a single autoregressive generation model
for end-to-end autonomous driving. AutoVLA performs semantic reasoning and
trajectory planning directly from raw visual inputs and language instructions. We
tokenize continuous trajectories into discrete, feasible actions, enabling direct inte-
gration into the language model. For training, we employ supervised fine-tuning to
equip the model with dual thinking modes: fast thinking (trajectory-only) and slow
thinking (enhanced with chain-of-thought reasoning). To further enhance planning
performance and efficiency, we introduce a reinforcement fine-tuning method based
on Group Relative Policy Optimization (GRPO), reducing unnecessary reason-
ing in straightforward scenarios. Extensive experiments across real-world and
simulated datasets and benchmarks, including nuPlan, nuScenes, Waymo, and
CARLA, demonstrate the competitive performance of AutoVLA in both open-loop
and closed-loop settings. Qualitative results showcase the adaptive reasoning and
accurate planning capabilities of AutoVLA in diverse scenarios.

1 Introduction

Autonomous driving systems typically adopt a modular paradigm, decomposing the driving task
into different sub-modules, such as perception [1-3], prediction [4—6], and planning [7-9]. While
this design enables structured development, it may cause error accumulation and a lack of joint
optimization across modules, leading to suboptimal performance [10, 11]. End-to-end autonomous
driving has gained prominence with a unified model architecture that maps raw sensor inputs directly
to final driving actions. These models are trained on human driving data, enhancing scalability
and human-like behavior. Vision-based approaches have garnered significant interest due to their
affordability and ease of deployment [12—15].

However, conventional end-to-end methods [16—19] primarily focus on imitating expert trajectories,
lacking essential world knowledge for understanding and reasoning about surrounding environments,
particularly in long-tail or challenging scenarios. Recent advances in Vision-Language Models
(VLMs) [20-22] have gained significant interest by introducing models capable of leveraging ex-
tensive world knowledge and powerful reasoning. These models have shown strong potential in
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Figure 1: AutoVLA is an end-to-end autonomous driving framework based on vision-language models
that integrates world knowledge into the driving policy. It takes visual observations, vehicle states,
and language instructions as input and incorporates CoT reasoning and physical action tokenization
to generate planning trajectories directly. The model is trained using supervised fine-tuning to
jointly learn reasoning and action, and reinforcement fine-tuning is further applied to enable adaptive
reasoning through fast and slow thinking modes, improving performance and efficiency.

improving adaptability and scalability across diverse driving scenarios [23-29]. Building upon
VLMs, Vision-Language-Action (VLA) models extend this capability to action generation, enabling
embodied agents, such as robots [30-32] and autonomous vehicles [33, 34], to produce feasible
physical actions based on visual observations and language instructions.

Despite recent progress, existing VLA models face two critical limitations in autonomous driving,
as illustrated in Fig. 2. 1) Physically-infeasible or complex structure for action generation. Some
models generate textual actions or waypoints directly using VLMs [35-37], but these outputs can be
physically infeasible and suffer from mode collapse. To address this, recent approaches introduce
intermediate meta-actions [38—40] or latent action tokens [41-43], which are then processed by down-
stream planners or decoders to produce physically feasible trajectories. However, the intermediate
representations either break the end-to-end optimization paradigm or increase model complexity and
training overhead. 2) Inflexible and inefficient reasoning across diverse scenarios. Most existing
models [44, 45] employ a fixed reasoning strategy, lacking the ability to adaptively switch between
direct action outputs for straightforward scenarios and chain-of-thought (CoT) reasoning for complex
ones. Although DriveVLM [46] introduces a dual-process paradigm, it relies on separate modules
(i.e., a VLM for slow reasoning and a conventional end-to-end model for fast responses), which
results in a complicated architecture, increased training overhead, and limited scalability [47].

To overcome these limitations, we propose AutoVLA, an end-to-end autonomous driving framework
that directly integrates physical action tokens into a pretrained VLM backbone, enabling direct
learning of an autoregressive planning policy, as illustrated in Fig. 1. Our unified architecture
seamlessly integrates reasoning and action generation, allowing adaptive switching between direct
trajectory generation and CoT reasoning. In supervised fine-tuning (SFT), we leverage both trajectory-
only data and CoT reasoning data to equip the model with dual-process capabilities (fast and slow
thinking). Furthermore, we propose reinforcement fine-tuning (RFT) [48], utilizing Group Relative
Policy Optimization (GRPO) [49] with verifiable planning reward functions. This enables adaptive
reasoning that balances planning accuracy and efficiency. The RFT method not only improves
planning performance but also runtime efficiency by minimizing unnecessary reasoning.

We extensively evaluate AutoVLA using real-world datasets, including nuPlan [50, 51], Waymo [52],
nuScenes [53], and simulation datasets such as CARLA [54, 55]. Experimental results demonstrate
that AutoVLA achieves superior performance across various end-to-end autonomous driving bench-
marks under both open-loop and closed-loop tests. Empirical results validate that our RFT approach
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Figure 2: Four paradigms of VLMs for end-to-end autonomous driving. Compared to other methods,
our proposed VLA-based paradigm enables direct trajectory planning and adaptive reasoning from
visual inputs. By incorporating physical action tokenization into the language model, our model
effectively integrates high-level scene reasoning and low-level trajectory planning.

markedly improves planning performance, enables adaptive fast and slow thinking capabilities, and
reduces runtime by minimizing redundant reasoning. The main contributions of this paper are
summarized as follows:

1. We introduce AutoVLA, an end-to-end autonomous driving framework leveraging a pretrained
VLM backbone integrated with physical action tokens, enabling direct policy learning and
semantic reasoning from raw visual observations and language instructions.

2. We propose an RL-based post-training method using GRPO to enable adaptive reasoning and
further enhance the model’s performance on end-to-end driving tasks.

3. We demonstrate that AutoVLA achieves superior performance across multiple autonomous
driving benchmarks, including both open-loop and closed-loop testing.

2 Related Work

End-to-end Autonomous Driving. End-to-end autonomous driving approaches have made significant
advances in recent years [10, 11, 56-64]. Methods such as UniAD [65] and VAD [66] explicitly
integrate multiple driving tasks from perception to planning in a unified Transformer architecture,
thereby enhancing planning performance. ParaDrive [67] discusses the necessary components within
end-to-end driving architectures. Additionally, GenAD [68] and DiffusionDrive [69] adopt generative
models to maintain trajectory continuity and produce multi-modal driving trajectories. However,
integrating world knowledge into end-to-end driving systems remains challenging due to bottlenecks
in semantic reasoning [34] and limited adaptability in complex environments [70].

VLA and VLM for Autonomous Driving. The gap between semantic reasoning and physical actions
remains a critical challenge for VLA and VLM in end-to-end autonomous driving. Current research
broadly follows three directions. The first directly formulates driving as a language-centric problem,
utilizing VLMs for scenario understanding through caption generation [71-73] or question answering
[74, 75]. The second direction leverages VLA or VLM to produce high-level meta-actions or driving
decisions [17, 38—40], which are used to either supervise [12, 76-78] or guide [39, 79] traditional
planners or end-to-end models. Although these approaches facilitate integration, they prevent full
end-to-end optimization. Thus, a third direction directly integrates VLMs with action generation
into VLA models, enabling the direct prediction of latent action tokens [34-36, 43] or final driving
trajectories [37, 44, 80-83]. However, simple trajectory decoders employed in these methods (e.g.,
MLP [41, 84] or GRU [45]) may produce impractical trajectories and suffer from modal collapse. To
address this issue, ORION [42] incorporates generative planners into VLM architectures, enhancing
trajectory feasibility but increasing model complexity and computational demands. In our work, we
integrate a physical action codebook for vehicle motion into a pretrained VLM to effectively bridge
the semantic reasoning and physical action space.

Reinforcement Fine-tuning. RFT [48] has shown considerable promise in enhancing the perfor-
mance and adaptability of LLMs, as demonstrated in DeepSeek-R1 [22]. In autonomous driving,
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Figure 3: Overview of the AutoVLA model and its training process. A pretrained small VLM is
used as the backbone of AutoVLA. The model receives multi-view camera streams, system prompts,
driving instructions, and vehicle status as input, and outputs textual reasoning and physical action
tokens. In SFT, a large VLM model with strong visual understanding capabilities is employed to
collect reasoning data, which is used alongside trajectory data in SFT for training the AutoVLA
model. In RFT, we utilize GRPO to train the model for improved alignment with verified reward
functions, while enabling adaptive reasoning by penalizing excessive reasoning.

Gen-Drive [7] and TrajHF [85] employed the RFT to align the trajectory generation model with
safety constraints and human driving preferences. RAD [86] combined 3D Gaussian splatting to
generate scenarios and conduct closed-loop RL training. However, the application of RFT in end-
to-end VLM/VLA-based autonomous driving remains nascent. While previous methods, such as
AlphaDrive [38], utilize GRPO instead of direct preference optimization (DPO) [87] to enhance
planning performance and ensure training efficiency and stability, they are still limited to simplified
settings involving only high-level meta-actions. In this work, we advance this direction by applying
RFT to optimize the end-to-end VLA framework in both scene reasoning and low-level planning, and
we adopt GRPO to accelerate convergence and enhance training stability.

3 AutoVLA

The proposed AutoVLA framework consists of two main components, as shown in Fig. 1. 1) VLM
Backbone: 1t is capable of processing visual and textual input and generating corresponding tokens
(reasoning and action), employing a unified autoregressive Transformer decoder. 2) Physical Action
Token Generation: We extend the language model decoder to output physical action tokens that
directly correspond to vehicle movements. These tokens are designed to comply with physical
constraints and can be reliably translated into physically feasible planning trajectories.

Training of AutoVLA is conducted in two stages, as illustrated in Fig. 3. 1) Supervised Fine-Tuning
uses ground-truth trajectory data and distills high-quality reasoning data from a large-scale VLM. 2)
Reinforcement Fine-Tuning uses task-specific reward functions to optimize planning performance
while improving the running efficiency by minimizing unnecessary reasoning. The details of our
model and training process are illustrated below.

3.1 Framework

Model Inputs. AutoVLA takes as input multi-view, multi-frame camera data C' from onboard
cameras, high-level navigation instructions /, and ego vehicle states S, and performs scene reasoning



and trajectory planning. Specifically, we utilize three RGB cameras positioned at the front, front-left,
and front-right sides of the vehicle. Each camera stream ¢! = [ci_5,ci_,,ci_;,ct] captures four
sequential frames at a frequency of 2 Hz, including the current and three preceding frames, supplying
temporal information for scene dynamics. Additionally, the model employs high-level navigation
instructions I (e.g., Turn Left and Go Straight) to specify intended directions explicitly. The ego
vehicle’s state S encompasses current velocity, acceleration, and historical actions.

Base VLM Model. We adopt Qwen2.5-VL-3B [21] as the vision-language backbone of AutoVLA.
Qwen2.5-VL is a series of powerful multimodal large language models that possess strong visual
understanding capabilities, and the open-source nature of the Qwen2.5-VL model facilitates task-
specific fine-tuning. The 3B variant offers a good trade-off between efficiency and performance,
making it suitable for deployment in onboard devices.

Action Tokenization. To enable trajectory planning within the language model, we discretize
continuous vehicle trajectories P € R™*% into a sequence of physical action tokens a = [ay, ..., ar],
where a; € A, T is the length of the tokenized predicted trajectory and each token is represented
by short-term spatial position and heading movement (Ax, Ay, A#). This transforms the planning
task into a next-token prediction problem, which can be conducted within the language model. We
build our action codebook A = {ay,as,...,ax } using a K-disk clustering method [88-90], which
covers the majority of vehicle movement patterns. Finally, we obtain a vehicle motion codebook that
consists of K = 2048 discrete action tokens. Following [30, 91], these action tokens are incorporated
into the VLM as additional tokens (i.e., <action_0>, <action_1>, ...). During inference, the
model outputs a sequence of these action tokens, which are subsequently decoded into a planning
trajectory using the action codebook. More details about action tokenization and trajectory decoding
are provided in the Supplementary Material.

Unified Reasoning and Action. AutoVLA unifies reasoning and action generation within a single
autoregressive Transformer framework, enabling adaptive switching between fast and slow thinking
depending on the driving scenario. In fast thinking mode, AutoVLA directly predicts physical action
tokens without generating long CoT reasoning, enabling rapid responses in straightforward scenarios.
In contrast, slow thinking mode involves structured CoT reasoning, where the model first analyzes
the environment, identifies critical elements, and reasons through potential outcomes before deciding
on the final driving action. To enable this dual thinking capability, AutoVLA is trained with a mixture
of direct action supervision and reasoning-augmented data. We design system prompts and response
formats to support both modes consistently.

3.2 Reasoning Data

Reasoning data provides high-quality CoT annotations that are essential for training VLMs with
reasoning capabilities [42]. In driving tasks, reasoning involves understanding complex semantics
and interactions in dynamic environments [92-95]. Despite its importance, the development of
a high-quality, large-scale driving reasoning dataset remains a key challenge due to three major
limitations: 1) limited scenario diversity and repetitive examples, 2) inadequate representation of
critical perceptual cues, such as traffic signs and vehicle indicator signals, 3) low-quality reasoning
process, such as repeatedly stopping at a stop sign without justification.

To address these issues, we propose an automated reasoning annotation pipeline using the advanced
Qwen2.5-VL-72B model [21]. This pipeline enables automatic generation of high-accuracy reasoning
annotations and supports knowledge distillation from a large capable model to a more compact target
model. The pipeline generates structured reasoning annotations across four key components: detailed
scene descriptions, identification of crucial objects, prediction of surrounding agents’ intentions,
and determination of appropriate driving actions. To regulate the reasoning outcomes, our approach
incorporates ground-truth driving actions as hints, guiding the model to produce causal explanations
that explicitly link driving decisions to scene context. This structured prompting method significantly
reduces nonsensical outputs and minimizes the need for manual correction.

Employing this annotation pipeline, we compile a comprehensive reasoning dataset comprising
approximately 45.6k CoT reasoning annotations for the nuPlan dataset and 7.2k annotations for the
Waymo end-to-end driving dataset. Additionally, we reformat and integrate DriveLM [96], a VQA
dataset built on nuScenes and CARLA simulation data, to augment our reasoning data. Additional
details and illustrative examples are provided in the Supplementary Material.



3.3 Supervised Fine-tuning

Supervised fine-tuning (SFT) is employed to train the model to generate both reasoning and action
sequences. Given multi-frame camera images C, a high-level navigation instruction I, and the
ego vehicle state S, the model is trained to produce a sequence of output tokens. The output
sequence consists of language tokens 1 = [ly,...,[z] for reasoning followed by action tokens
a = [ay,...,ar]. To enable both fast and slow thinking during SFT, we curate training data with
ground-truth assistant responses that either include only the final action tokens or combine CoT
reasoning with the corresponding action tokens. In the fast-thinking mode, 1 is a fixed, short template
indicating that reasoning is not needed. Conversely, in the slow-thinking mode, 1 begins with a
template that introduces the need for CoT reasoning, followed by a structured sequence of reasoning.

The first supervision signal is the standard causal language modeling objective, which minimizes the
negative log-likelihood of the target token sequence and facilitates the reasoning capability. The other
supervision signal focuses on the planning accuracy, and we introduce an auxiliary loss over action

tokens a = [ay, . . ., ar], which appear at positions 1,11 to z 1, in the output sequence. Given an
output sequence x = [l1,...,lp,a1,...,ar], the loss functions are defined as:
N L+T
£LM:_N Zzllogpe(xl |$<i,C,I,S), £acti0n:_f-;1logp9(xi |$<7;,C,I,S), (1)
= i=

where N = L + T', and py denotes the model’s predicted distribution parameterized by 6.

To jointly optimize reasoning and action generation, we combine the language modeling loss and the
action loss into a single SFT loss function. To address the imbalance between reasoning data and
action-only data, and to encourage the model to learn from examples that include CoT reasoning, we
apply a per-sample weighting factor based on the presence of CoT in the ground truth. The overall
loss for each training example is computed as follows:

Acot if CoT is present in GT
1 otherwise

£ZSFT = w; (£LM,i + Aa£acti0n7i) , Wi = { y 2)

where )\, and ). are hyperparameters that control the relative importance.

3.4 Reinforcement Fine-tuning

To further improve the performance of AutoVLA and align it with driving requirements and task-
specific rewards, we introduce a reinforcement learning-based post-training method. This RFT stage
enables the model to perform adaptive reasoning and optimize planning performance. We employ
the GRPO algorithm [49], which stabilizes training and improves convergence efficiency. Moreover,
the inherent multi-modality of planning, characterized by multiple feasible trajectories in the same
scenario, naturally aligns with the group-based optimization framework of GRPO [38].

Given a scenario input query ¢, comprising sensor images, the ego vehicle’s state, and driving
instruction, we sample a set of G candidate outputs O = {o01,09,...,0s} from the old policy
T, The current policy g is then optimized using the normalized group-relative advantage A;, by
maximizing the following objective:

e
1
Joreo(0) = Eq (0:3~m,, (O) lG E (TF - ﬂDKL(W9|Wref))] ; 3)
=1

G
- ) r; —mean({r;}5_
JF = min (7T(9(OZQ)Ai7 clip ( mg(0|q) el +€> Ai) A= ({GJ}Jfl))
T Oo1q (Oi‘Q) T 001 (0i|q) Std({rj }jzl)

)
where 6 and 6,;4 denote the current and old policy parameters, r; is the reward for sample o;, € and 8
are hyperparameters controlling the clipping range and the weight of the KL divergence regularization
term, and 7 is the reference policy from the SFT stage.

The final reward function is defined as r = rpyiving — ArTcot, Where the A, denotes the balance weight.
The term 7pyiving Varies across benchmarks. For the nuPlan dataset, we employ the Predictive Driver
Model Score (PDMS) [51] as the driving reward, which captures aspects such as safety, comfort,



Table 1: Testing Results on the NAVSIM (nuPlan) End-to-end Driving Benchmark

Method \ PDMS 1 Collision T Areat Direction? Progresst TTC 1 Comfort T
Ego Status MLP 66.40 93.09 78.26 90.45 63.20 84.02 99.97
TransFuser [58] 83.88 97.78 92.63 97.97 78.88 92.89 99.98
DRAMA [56] 86.87 98.19 95.18 98.03 81.33 94.17 100.00
Hydra-MDP [57] 91.26 99.07 98.29 95.79 85.20 96.56 100.00
Centaur [59] 92.10 99.23 98.72 96.77 85.96 97.17 99.97
TrajHF [85] 93.95 99.30 97.51 91.72 90.39 98.02 99.81
AutoVLA (One-shot) 80.54 96.89 92.42 94.43 75.82 88.06 99.94
AutoVLA (Post-RFT) | 89.11 98.41 95.64 95.40 81.87 98.04 99.94
AutoVLA (Best-of-N) | 92.12 99.14 97.08 95.51 87.55 97.12 99.98

travel efficiency, and other driving quality metrics. For the Waymo end-to-end driving dataset, due
to the limited availability of Rater Feedback Score (RFS) annotations [52], we use the Average
Displacement Error (ADE) as the driving reward. To discourage unnecessary long reasoning chains,
we incorporate a CoT length penalty r¢or into the reward function. Additional implementation details
are provided in the Supplementary Material.

4 Experiments

4.1 Experimental Setup

Datasets. We train the AutoVLA model using a diverse set of real-world and simulation datasets.
The nuPlan (Open-Scene) dataset [50, 97] contains 120 hours of large-scale driving data with eight
streams of camera data and object annotations. The Waymo end-to-end driving dataset (Waymo E2E)
[52] comprises 4,021 20-second driving segments with eight streams of camera views and ego vehicle
trajectories, especially focusing on challenging and long-tail scenarios, such as driving through
construction areas or risky situations. The nuScenes dataset [53] provides 1,000 urban driving scenes
with six camera views. The CARLA-Garage dataset [55] provides over 500,000 frames of simulation
camera data. In addition to the collected reasoning data, we utilize the DriveLLM dataset [96] for
nuScenes and CARLA datasets, by reformatting the VQA pairs to facilitate CoT reasoning.

Benchmarks. We evaluate AutoVLA on both open-loop and closed-loop benchmarks across real-
world and simulated environments. Open-loop performance is assessed on two public benchmarks:
the NAVSIM benchmark [51] from the nuPlan dataset and the nuScenes benchmark [65]. The
NAVSIM benchmark employs PDMS to assess key aspects of driving behavior, such as collision and
ego progress. The nuScenes benchmark uses L2 distance and collision rate as evaluation metrics.
Additionally, we report our model’s performance on the Waymo end-to-end driving benchmark using
the RFS metric, which reflects human-judged planning quality. Closed-loop performance is evaluated
on the Bench2Drive benchmark [54] in the CARLA simulator. Bench2Drive contains 44 interactive,
closed-loop scenarios under varying locations and weather conditions, using metrics such as success
rate, driving score, efficiency, and comfort.

Implementation Details. Each action token corresponds to 0.5 seconds of movement, and the
planning horizon is set to 5 seconds. Consequently, the model outputs 10 action tokens, from which
a 5-second trajectory can be decoded. For SFT, we use a learning rate of 1 x 10~° and the FSDP
training strategy. The model is trained for 5 epochs using 8 NVIDIA L40S GPUs. We use a per-GPU
batch size of 1 and accumulate gradients over 4 steps, resulting in an effective batch size of 32. The
weighting parameters in the SFT loss function are set to A\, = 1 and A.,; = 40. For RFT, we employ
the LoRA adapter [98] for parameter-efficient training. The learning rate for RFT is set to 3 x 1075,
and the KL regularization weight /3 is set to 0.04. We perform a single policy update at each step,
allowing the use of a simplified objective without the need for clipping or tracking the old policy. The
model is fine-tuned for 6, 000 steps, and the best-performing checkpoint is selected for evaluation.
Additional details are provided in the Supplementary Material.

4.2 Main Results

This section reports the main results of the AutoVLA model for various datasets and benchmarks,
with additional results included in the Supplementary Material.
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Figure 5: Reinforcement fine-tuning results on the nuPlan dataset. (a) Comparison of PDMS and
runtime before and after RFT; (b) Training reward curves for different GRPO group sample sizes; (c)
Qualitative comparison of planning and reasoning performance before and after RFT.

Data Scaling Results. We train AutoVLA on
a mixture of the nuPlan and nuScenes datasets
with varying training set sizes (10k, 50k, 100k,
and the full 185k samples), with action-only
supervision or with additional CoT reasoning
supervision. The models are evaluated on the
respective standard test sets, and the results are
shown in Fig. 4. We observe that increasing the
amount of training data consistently improves
planning performance on both datasets. In the
nuPlan dataset, when using fewer than 50k train-
ing samples, CoT reasoning does not outper-
form action-only in terms of PDMS and Colli-
sion Score. This is likely due to the increased
difficulty of learning structured reasoning from
limited data. However, as the training set size
increases, models trained with CoT reasoning
surpass those with action-only supervision, high-
lighting the scalability advantages of reasoning-
augmented learning. A similar trend is observed
on the nuScenes dataset: as the training set
size increases, models trained with CoT reason-
ing consistently outperform those trained with
action-only data in terms of L2 distance and
collision rate.

RFT Performance. The slow-thinking mode
incurs a significantly higher runtime due to the
generation of CoT reasoning compared to the
fast-thinking mode, as shown in Table 2. To
mitigate this overhead, we introduce RFT to en-
hance AutoVLA’s adaptive thinking capability
and avoid unnecessary reasoning in straightfor-
ward scenarios. Specifically, we apply RFT to
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Figure 4: Data scaling effect on planning per-
formance for nuPlan and nuScenes datasets (log-
scaled x-axis). Increasing the amount of training
data consistently enhances planning performance.

Table 2: Runtime Analysis of Fast & Slow Think-
ing Modes in AutoVLA

Thinking Mode ‘ Min. (s) Max. (s) Avg. (s)
Fast Thinking 0.997 1.116 1.072
Slow Thinking 7.607 13.706 10.518

the full-data CoT reasoning model trained via SFT to enhance its planning performance. As shown
in Fig. 5(a), RFT yields a 10.6% improvement in PDMS (on the NAVSIM testing set) and a 66.8%
reduction in runtime (average over 500 testing scenarios). The reward curve in Fig. 5(b) illustrates the
progressive improvement of the model’s policy during RFT. Experiments with different GRPO group
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Figure 6: Performance comparison of AutoVLA with different training settings on the Waymo
end-to-end driving dataset, along with an example illustrating the model’s reasoning capabilities.

sample sizes indicate that larger groups lead to better performance by promoting broader exploration
of training samples. As illustrated in Fig. 5(c), RFT also reduces unnecessary and slow reasoning in
simple scenarios, driven by the CoT length penalty that encourages fast thinking for straightforward
driving cases. A qualitative comparison shows that the SFT model produces suboptimal plans due
to error accumulation in generation, whereas the RFT model (optimized via PDMS-based reward)
generates better trajectories.

nuPlan Benchmark Results. We evaluate AutoVLA against state-of-the-art end-to-end driving
models on the NAVSIM benchmark [51] and present results in Table 1. In best-of-N planning, we use
an oracle scorer to select the optimal trajectory from six generated candidates. After RFT, AutoVLA
demonstrates significantly improved performance, aligning more closely with the NAVSIM reward
signal. The best-of-N strategy further enhances performance, achieving the highest PDMS. Overall,
AutoVLA achieves competitive results while demonstrating scalability across diverse datasets.

Waymo E2E Performance. We evaluate AutoVLA on the Waymo end-to-end driving dataset
[52], which features long-tail and complex driving scenarios. The model’s performance under
various training settings on the test set is presented in Fig. 6. The results reveal that pretraining
on a combination of nuPlan and nuScenes datasets significantly enhances performance, suggesting
enhanced scene understanding through exposure to more diverse training data. Incorporating CoT
reasoning in training further improves planning performance compared to action-only training.
Post-training with RFT, using ADE as the reward function, achieves the best overall RFS metric. A
qualitative example in a construction zone demonstrates the model’s ability to reason about occlusions
and generate effective detour plans.

CARLA Closed-loop Performance. We evaluate the closed-loop driving performance of our
AutoVLA model on the Bench2Drive benchmark [54] in the CARLA simulator. The model is trained
using SFT with both trajectory-only and CoT data. During testing, the planning frequency is set to
2 Hz. The results, shown in Table 3, demonstrate that AutoVLA outperforms existing end-to-end
driving models in terms of overall driving score and success rate in the closed-loop test.

Table 3: Testing Results on the Bench2Drive (CARLA) Closed-loop Driving Benchmark

Method \ Driving Score T Success Rate (%) T  Efficiency T Comfortness
AD-MLP [99] 18.05 0.00 48.45 22.63
UniAD-Base [65] 45.81 16.36 129.21 43.58
VAD [66] 42.35 15.00 157.94 46.01
TCP-traj [100] 59.90 30.00 76.54 18.08
DriveAdapter [101] 64.22 33.08 70.22 16.01
Orion [42] 77.74 54.62 151.48 17.38
AutoVLA | 78.84 57.73 146.93 39.33

4.3 Ablation Studies

Text Waypoint QOutput. We use the same mixed training set from the nuPlan and nuScenes datasets
to train a model that predicts waypoints in a text format, which are then converted into a trajectory of
waypoints. We evaluate its performance in an open-loop planning setting using the standard test sets.
The results, shown in Table 5, indicate that our action tokenization and generation method significantly
outperforms the text-based waypoint prediction approach. Additionally, due to the need to decode



Table 4: Action Tokenization Accuracy with Different Codebook Sizes and Methods. (DCT: discrete
cosine transform; MC: movement coverage; CU: codebook usage. Bold indicates best performance,
underline the second-best, and tilde the third-best.)

Codebook ‘ RT-1 (Action Bin) [102] ‘ FAST (DCT) [91] ‘ K-disk (Ours)
Size | ADE(m)| FDE(m)| | ADE(m)| FDE(m)) | ADE(m)| FDE(m)|| MCt CU1t
256 0.1440  0.2942 0.1708 02137 | 00687  0.1034 | 86.47% 100.0%
1024 01052  0.1883 00522 00588 | 00253  0.0282 |97.41% 100.0%
2048 0.1014  0.1775 00281 00309 | 00182 00203 |99.42% 100.0%

4096 0.1001 0.1739 0.0149 0.0161 0.0141 0.0155 | 100.0% 91.46%

numerical values, the text-based method incurs  Table 5: Influence of Physical Action Tokenization
a substantially higher computational cost in gen-

erating the final trajectory. This shows the lim-  Metric | Text Waypoint Physical Action
itation ofllanguage models in handling precise PDM Score 1 7131 30.54
numerical reasoning. Avg. L2 (m) | 0.89 0.70
Action Tokenization Methods. We evaluate re-  Avg. Col. (%) | 0.36 0.31
construction accuracy across different codebook  Runtime (s) | ‘ 7.65 3.95

sizes for several tokenization methods, including
RT-1[102], FAST [91], and our proposed K-disk
tokenization, as shown in Table 4. For RT-1, ac- Table 6: Performance Comparison across Different
celeration and steering rate are discretized using 1okenization Methods on NAVSIM

uniform action bins, and a kinematic model is

employed to reconstruct the trajectory. However,  Tokenization |PDMS 1 Collision + Progress

because only trajectory-level data is available
and control actions must be indirectly inferred,
this binning approach yields the highest recon-
struction error. The FAST tokenization method
is more sensitive to codebook size than our K-
disk approach, achieving comparable reconstruction accuracy only at K = 4096. In contrast, our
proposed method consistently attains the highest reconstruction accuracy across all codebook sizes.

FAST (DCT) [91]| 67.63 92.74 64.09
K-disk (Ours) 80.54 96.89 75.82

When the codebook size is small (K = 256), reconstruction errors are significantly higher due to
limited movement coverage, as many movements cannot be adequately represented by the small
set of codebook tokens. As the codebook size increases beyond K = 2048, the improvements in
tokenization accuracy and movement coverage become marginal, while codebook usage decreases
as many tokens remain redundant and unused. Considering this trade-off, we select K = 2048 to
balance reconstruction accuracy, movement coverage, and efficient codebook usage.

Furthermore, Table 6 reports planning performance on NAVSIM (nuPlan) for different tokenization
methods. Our proposed method outperforms FAST. In FAST, the discrete cosine transform converts
fixed-horizon planning trajectories into variable-length token sequences, complicating the selection
of appropriate token lengths and making fixed-horizon planning difficult.

5 Conclusions

We propose AutoVLA, an end-to-end autonomous driving framework that unifies scene reasoning
and action generation within a single autoregressive model. We adopt SFT to enable the model to
operate in both fast thinking (direct trajectory generation) and slow thinking (enhanced with long CoT
reasoning) modes. In addition, we introduce RFT to enable adaptive reasoning by penalizing unnec-
essary reasoning and aligning action generation with reward functions, improving both performance
and efficiency. Experimental results demonstrate that AutoVLA achieves competitive performance
on both open-loop and closed-loop planning benchmarks and exhibits strong reasoning capabilities.

Limitation and Future Work. Although our model with dual-process adaptation achieves near-
real-time inference (1 Hz), it remains highly GPU-dependent, requiring significant memory and
computing. Future work will focus on real-time applications, optimizing runtime efficiency, and
reducing computation overhead (e.g., through model quantization) to enable real-time deployment.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: | Yes]

Justification: We do describe our contributions in the abstract and introduction of the
paper: 1) a novel end-to-end autonomous driving framework leveraging a trained VLM
backbone augmented with integrated physical action tokens, enabling direct policy learning
and semantic reasoning from raw visual inputs. 2) an RL-based fine-tuning method using
GRPO to enable adaptive decision-making and further enhance AutoVLA’s performance on
end-to-end driving tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: | Yes]

Justification: We discuss the real-world implementation limitation of AutoVLA and intro-
duce our future work on model quantization, as Section 5 shown.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper focuses on the experimental exploration of model architectures,
and have no theoretical results in the paper.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: | Yes]
Justification: All the necessary information for reproducibility is provided in Section 4 and
the Supplementary Material. The model details also are discussed in the methodology of the
paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: | Yes]
Justification: We will release our code and dataset to facilitate community research.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: | Yes]

Justification: We provide all the implementation details and dataset settings of AutoVLA in
both the SFT and RFT stages in the paper Section 4 and supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper reports results from a single run per experiment, consistent with
prior work on this task.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: | Yes]

Justification: The paper provides all necessary details on computational resources, including
GPU type (NVIDIA L40S), memory usage, and number of epochs, in Section 4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: | Yes]

Justification: The research presented in this paper adheres to the NeurIPS Code of Ethics,
ensuring ethical standards in data collection and analysis.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: | Yes|
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12.

Justification: The paper includes a discussion of potential societal impacts in the supplemen-
tary material.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no foreseeable risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]|

Justification: The original creators and asset owners are appropriately credited, and licenses
and terms of use are explicitly stated and duly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: | Yes]

Justification: We will release all the code, model weights, and datasets to facilitate research
in the domain.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or human-subject research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or human-subject research.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: | Yes]

Justification: We declare the usage of LLM/VLM in the paper, and we integrate the physical
action tokens into the pretrained VLM backbone to develop a novel end-to-end autonomous
driving framework.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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AutoVLA Supplementary Material

A Action Tokenization

A.1 Action Codebook

To enable trajectory-level planning within a language model, we introduce physical action tokens,
each representing a short-term feasible vehicle maneuver. These tokens are derived from clustering
vehicle motion patterns in the Waymo Open Motion Dataset (WOMD) [103], which contains extensive
real-world vehicle trajectories. The resulting codebook, visualized in Fig. S1(a), is used across
experiments involving multiple real-world datasets, including nuPlan, nuScenes, and Waymo. Due to
differences in vehicle dynamics compared to real-world data for simulation testing, we construct a
separate action codebook using the same clustering procedure on the CARLA-Garage dataset [55].
This produces another set of 2048 action tokens for simulation testing, as shown in Fig. S1(b).

We begin by sampling short motion segments from the dataset to construct a discrete action codebook.
Each segment represents 0.5 seconds of vehicle motion, characterized by its final-frame bounding-box
contour, computed based on the vehicle’s position, dimensions, and heading with respect to the current-
frame coordinate. Then, we apply K-Disk clustering on these sampled segments, which iteratively
selects a diverse set of representative segments {myj, . .., mg }, such that no two segments are within
a distance threshold § = 0.05 m, measured using average contour distance. For each selected segment
my, we extract its spatial displacement and heading change, denoted as (Ax, Ay, Af), and define it
as the action token ay. The resulting action codebook is A = {a1, ..., ax }, with K = 2048, where
each token encodes a distinct and physically feasible short-term vehicle behavior.
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Figure S1: Visualization of action codebooks from (a) real-world dataset (WOMD) and (b) simulation
dataset (CARLA). Grey arrows represent all 2048 tokens (position and heading), with 300 tokens
randomly highlighted in blue for clarity.

A.2 Action Tokenizer

We implement an action tokenizer based on the constructed action codebook. During training,
continuous trajectories are discretized by mapping each 0.5-second segment to its nearest action token
in the codebook .4, resulting in a sequence of discrete tokens [aj, as, ..., ar]. During inference,
the language model autoregressively generates a sequence of action tokens, each representing a
0.5-second motion segment. These tokens are then converted back to their corresponding motion
segments in the codebook and applied sequentially from the initial ego pose. Therefore, the model
reconstructs a continuous trajectory in the ego-centric coordinate frame by composing these local
displacements and rotations.

B Reasoning Data Collection

A large-scale, high-quality reasoning dataset with chain-of-thought (CoT) annotations is essential for
enabling robust reasoning capabilities in vision-language-action (VLA) models. In this paper, we
introduce an automated reasoning annotation pipeline using the state-of-the-art Qwen2.5-VL-72B
vision-language model [21], as illustrated in Fig. S2. The pipeline significantly reduces reliance on
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Reasoning Token
Q Reasoning Format
'y

- Scene Analysis

- Critical Object Identification
- Intention Reasoning

- Final Action Decision

/T
3/ Qwen2.5-VL-72B

Text Tokenizer Vision Encoder

& System Prompt

- Role: You are an advanced full self-driving system.

- Task: You will be provided with video observations from @

the ego vehicle's surrounding cameras, along with the Multi-view

vehicle's current dynamic states. Your task is to predict

the optimal driving action for the next five seconds and Camera
Streams

use step-by-step reasoning (Chain-of-Thought) to arrive at
the best driving action

Scene Description:

The scene is at night, and the ego vehicle is stopped at an intersection. The front camera
shows multiple red traffic lights directly ahead, indicating that the vehicle must stop.
Critical Object Description:

1. Red Traffic Lights (Front Camera)

- Location: Directly ahead of the ego vehicle.
- Description: The traffic lights are clearly red, signaling all vehicles to stop

- Importance: The red lights are crucial as they dictate the vehicle's immediate action—
stopping and waiting for the light to change.

2. Pedestrian Crossings (Front Left and Front Right Cameras):

- Location: On either side of the intersection

- Description: No pedestrians are visible near the crossings.

- Importance: Although no pedestrians are present, the crossings indicate potential areas
where pedestrians may appear, requiring vigilance...

Q Reasoning Data

Reasoning on Intent:

1. Red Traffic Lights: The primary focus is the red traffic lights, which mandate that the
vehicle must stop and wait until the light turns green.

2. Driving Command Instruction: The driving command suggests “go left,” but given the
red light, the vehicle cannot proceed in any direction until the light changes.

3. Ego Vehicle State: The vehicle has already been stopped for the past four seconds, and
its current velocity and acceleration are zero

Best Driving Action: Stop.
Given the red traffic lights and the vehicle's current state of being stopped, the best action is
to remain stopped

& Instruction &, Ego states & Ground Truth Action

Tumn Left | Go Straight ... Velocity | Acceleration | History Action  Lateral + Longitudinal Actions

2 Example

- Scene Description: The scene is at rainy night, and the vehicle need to identify the vehicle position light and traffic light carefully. There is a construction vehicle and a white truck in front of .
- Critical Object Description: The White truck is turning right, with position light is on (general brightness, not brake light). The Construction vehicles are stationary (brake lights on).

- Reasoning on Intent: Firstly, notice White truck, which will turn right on the right-turn lane. Secondly, notice Unclear Light in front. There are some lights in the night scene, and the ego vehicle does
not need to follow the unclear light as a traffic light. The ego vehicle is moving on the go straight lane in the past 4s, but the driving command is turn right now. Meanwhile, no vehicle is in the right
behind. Thus, the ego vehicle should change the lane to the right and follow the White truck.

- Best Driving Action: change lane to right with an acceleration

Figure S2: Automated reasoning annotation pipeline for autonomous driving, illustrated with a
reasoning annotation example from the Waymo end-to-end driving dataset.

human annotations and facilitates effective knowledge distillation from a more powerful, large-scale
model to a more efficient, compact model.

B.1 Reasoning Annotation Pipeline

System Prompt. The system prompt specifies the model’s role, task, expected CoT reasoning format,
and examples of CoT reasoning. The definition of role and CoT reasoning format aligns with the
required outputs of the AutoVLA model, which focuses on structured CoT reasoning. We carefully
design several representative reasoning examples to guide the model. Moreover, the reasoning
process includes four main steps: 1) scene description and analysis, 2) critical object identification
and description, 3) intention reasoning of the surrounding objects, and 4) decision-making and
meta-action.

User Message. The user message includes the driving instructions, ego vehicle states, and multi-view
camera streams. Notably, we introduce the ground-truth driving meta-action derived from the data as
explicit hints in reasoning, guiding the model to produce causal explanations that directly associate
decisions with the driving context. This structured prompting significantly reduces nonsensical
outputs and minimizes manual revisions.

Reasoning Data Generation. We employ the most capable model in the Qwen-VL series as the
reasoning data annotation engine, leveraging its strong reasoning capacity and extensive world
knowledge. The maximum length for newly generated reasoning textual tokens is set to 700.
Additionally, we extract answers to relevant questions from the DriveLM VQA dataset [96], which
focuses on perception, prediction, and planning in the nuScenes and CARLA datasets, and then we
reformat them into our standardized reasoning format. These reformatted samples are then combined
with the generated data to construct the final reasoning dataset.

Human Quality Check. We evaluate the quality of generated reasoning based on the accuracy and
completeness of critical object identification, causal reasoning, and action decisions. The evaluation
uses a binary scoring scheme: any error in these aspects results in a score of 0; otherwise, the
sample receives a score of 1. Human annotators assessed 3,000 randomly selected samples, yielding
an overall accuracy of 88.8%, which demonstrates the high reliability of our proposed annotation
pipeline. Erroneous samples were either corrected or discarded.
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Scene Description:
The scene is a residential area during the daytime with clear weather. The ego vehicle is
at an intersection with a "STOP" sign visible on the right side. There are parked cars
along both sides of the street, and a few houses can be seen. The front left camera
shows a clear path to the left, while the front right camera shows the "STOP" sign and a
parked car nearby. The back camera shows a straight road leading up to the intersection
No pedestrians or moving vehicles are observed in the immediate vicinity:

Critical Object Description:

1. STOP Sign

Located on the right side of the intersection, indicating that the ego vehicle must come to
a complete stop before proceeding.

- What it is doing: The sign is static and serves as a regulatory control.

- Why it is important: The ego vehicle must adhere to the stop sign to ensure safety and
compliance with traffic rules.

2. Parked Cars:

Visible on both sides of the street, particularly near the intersection.

- What they are doing: They are stationary and occupy parking spaces.

- Why they are important: The ego vehicle must navigate around these parked cars,
especially when changing lanes or turning.

3. Clear Path to the Left:

Observed through the front left camera.

- What it indicates: A potential route for the ego vehicle to take.

- Why it is important: This path appears unobstructed, making it a viable option for the
ego vehicle to proceed.

Reasoning on Intent:

1. The ego vehicle has already come to a stop as indicated by its current velocity being
close to zero and the past behavior of decelerating to zero.

2. The driving command instructs the ego vehicle to go left, suggesting a left turn or lane
change is necessary.

3. The front left camera shows a clear path to the left, indicating that it is safe to proceed
in that direction.

4. Given the absence of any moving vehicles or pedestrians, the ego vehicle can safely
execute a quick acceleration after changing lanes to the left.

Best Driving Action: Change lane to left with a quick acceleration.

This action aligns with the driving command to go left, the clear path observed in the front
left camera, and the need to quickly proceed after stopping at the intersection. The quick
acceleration ensures efficient navigation through the intersection while maintaining safety.

.wm

9 Reasoning Data

front_left front_right

eft History and GT Future Trajectory

—&— History Trajectory
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back_right

back_left

Scene Description: £ Reasoning Data

The scene is at night, and the road appears to be undergoing construction or
maintenance work, as indicated by the "KEEP LEFT" sign and orange-and-white striped
poles. There are several vehicles ahead, including a large truck directly in front of the
ego vehicle. The road is well-lit by streetlights, and the weather seems clear. No traffic
lights are visible in the scene.

Critical Object Description:

1. Large Truck:

Located directly in front of the ego vehicle, the truck is moving slowly or is stationary.
Its brake lights are on, indicating it may be slowing down or stopped.

This is important because the ego vehicle must maintain a safe distance

2. KEEP LEFT Sign:

Positioned on the right side of the road, this sign indicates that vehicles should stay in
the left lane due to construction or roadwork. This is crucial for navigating the area
safely and legally.

3. Orange-and-White Striped Poles:

These poles are placed along the right side of the road, marking the boundary of the
construction zone. They help guide drivers to stay in the correct lane and avoid hazards
Reasoning on Intent:

1. The Large Truck ahead is either slowing down or stopped, as indicated by its brake
lights. The ego vehicle must decelerate to maintain a safe following distance and avoid
a collision.

2. The KEEP LEFT Sign and Orange-and-White Striped Poles indicate that the ego
vehicle should stay in the left lane. Since the driving command is to go straight, the ego
vehicle should continue moving forward while adhering to these instructions.

3. The ego vehicle has been moving forward with a deceleration in the past 4 seconds,
and its current velocity is relatively low. Given the presence of the truck ahead and the
construction zone, it is reasonable to continue decelerating to ensure safety.

Best Driving Action: Move forward with a deceleration

This action aligns with the need to maintain a safe distance from the truck ahead while
adhering to the road signs and navigating through the construction zone. Decelerating
ensures the ego vehicle can respond appropriately if the truck stops completely or if any
unexpected obstacles appear.

Figure S3: Visualization of the reasoning data annotation on the Waymo end-to-end driving dataset.

B.2 Reasoning Annotation Visualization

Some CoT reasoning annotation examples from the Waymo end-to-end driving dataset are shown
in Fig. S3, showcasing that our annotation pipeline can deal with situations where a vehicle already
stopped at a stop sign can proceed, rather than remaining stopped indefinitely. The pipeline also
accurately interprets construction-related road control scenarios, enabling high-quality reasoning
annotations. Examples on the nuPlan dataset are provided in Fig. S4, demonstrating the pipeline’s
capability to distinguish the functional relevance of stop signs and traffic lights across different lanes,
rather than stopping at every detected stop sign.

C Details of Supervised Fine-tuning

We perform supervised fine-tuning (SFT) with the Fully Sharded Data Parallel (FSDP) strategy for
efficient multi-GPU training. We enable mixed-precision training using BFloat16 for parameters,
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Reasoning Data
Scene Description: @ g

The scene depicts a busy urban intersection with multiple lanes of traffic. The traffic lights
ahead are red, indicating that vehicles must stop. There are several vehicles visible in the
front camera view, including a white van directly in front of the ego vehicle and other cars
further ahead. The right camera view shows a truck and some cars moving along the
adjacent lane. The left camera view captures a few cars and a pedestrian area under a
building. The rear camera view shows a white truck passing by.
Critical Object Description:
1. White Van (Front Camera View):
- Location: Directly in front of the ego vehicle.
- Status: Stationary, as indicated by the red traffic light. - Indicator Lights: No visible lights
- Importance: This vehicle is directly in the path of the ego vehicle, and it is crucial to
maintain a safe distance while waiting for the traffic light to change
2. Truck (Right Camera View):
- Location: In the adjacent lane to the right.
- Status: Moving forward. - Indicator Lights: No visible indicator lights
- Importance: The truck’s movement needs to be monitored to ensure there is no sudden
lane change into the ego vehicle’s lane.
3. Cars (Left Camera View):
- Location: On the left side of the road
- Status: Stationary. - Indicator Lights: Not applicable.
- Importance: not immediately relevant to the ego vehicle’s movement, requiring caution.
Reasoning on Intent:
- Traffic Lights: The red traffic light indicates that all vehicles must stop and wait until the light
turns green
- Lane Markings: The ego vehicle is in the correct lane for moving forward, as per the driving
command “keep forward.”
- Other Vehicles: The white van directly in front is stationary, and the truck in the adjacent
lane is moving forward without any indication of changing lanes.
- Ego Vehicle State: The ego vehicle is currently stationary with zero velocity and

nsistent with the requi to stop at the red light. Given the red traffic
light and the stationary vehicle directly in front, the ego vehicle should remain stopped until
the light turns green.

Best Driving Action: Stop.
The ego vehicle should remain stationary, adhering to the red traffic light and maintaining a
safe distance from the vehicle in front. Once the light turns green, the vehicle can proceed
forward.

Reasoning Data
Scene Description: Q ]

The scene appears to be an urban area with multiple lanes and various road features. The
front view shows a clear path ahead with no immediate obstacles. The right view indicates
a curved road leading towards a covered area with some parked vehicles and pedestrians.
The left view shows a sidewalk with some greenery and a stop sign further down the road.
The rear view shows a relatively empty street behind the vehicle. The weather seems
clear, and there are no visible traffic lights affecting the current path.

Critical Object Description:

1. Pedestrians near the covered area (Right View):

- Location: On the right side of the road, near the covered area.

- Description: A few pedestrians are walking along the sidewalk near the covered area.
They appear to be moving at a normal pace and are not showing any immediate intention
to cross the road.

- Importance: Pay attention to their movements as they could potentially step onto the road
unexpectedly, especially if the vehicle is turning right.

2. Stop Sign (Left View):

- Location: Further down the left side of the road.

- Description: A stop sign is visible, indicating that the vehicle must come to a complete
stop before proceeding

- Importance: This is crucial as it dictates the vehicle’s next action. Ignoring the stop sign
could lead to unsafe driving conditions and potential accidents

Reasoning on Intent:

- The ego vehicle is currently instructed to turn right. The front and right views show a clear
path for turning, but the presence of pedestrians near the covered area requires caution.

- The left view shows a stop sign, which suggests that the vehicle may need to stop before
completing the turn. However, since the stop sign is further down the road and the vehicle
is already turning right, it is likely not immediately relevant.

- The vehicle is currently moving at a moderate speed with a slight acceleration, indicating
that it is preparing to execute the turn.

Best Driving Action: Turn right with a constant speed

Given the clear path ahead and the absence of immediate obstacles, the ego vehicle
should proceed with turning right while maintaining a constant speed. This ensures a
smooth and controlled turn while staying aware of the pedestrians on the right side. The
stop sign on the left is not directly relevant to the current maneuver, so the focus remains
on executing the turn safely

Figure S4: Visualization of the reasoning data annotation on the nuPlan dataset.

& System Prompt

- Role: You are an Advanced Driver Assistance and Full Self-Driving System.

- Task: You will receive visual observations from the ego vehicle's cameras and dynamic information
about the vehicle’s current state. Your task is to predict the optimal driving action for the next five

& User Message
- Input Description: The autonomous vehicle is
equipped with three cameras mounted at the front, left,
and right, enabling a comprehensive perception of the
surrounding environment.

seconds. First, carefully analyze the surrounding environment by considering traffic lights, the

movements of other vehicles and pedestrians, lane markings, and any other relevant factors. If
necessary, use step-by-step reasoning (Chain-of-Thought) to arrive at the best driving action.

Otherwise, you may directly predict the final driving action.

- Fast/Slow Thinking: If necessary, use step-by-step reasoning (Chain-of-Thought) to arrive at the

best driving action. Otherwise, you may directly predict the final driving action.

Structure your reasoning as follows:

1. Scene Analysis: Describe the traffic situation, including relevant environmental cues such
as traffic lights, lane markings, and the behaviors of surrounding vehicles or pedestrians.
2. Identification of Critical Objects: Identify two to three critical road users or obstacles,

specifying their relative positions to the ego vehicle.

3. Prediction of Critical Object Behavior: Predict the potential movements of the identified

critical objects.

4. Ego Vehicle Intent Reasoning: Based on the observed environment and current vehicle

state, reason about the desired intent of the ego vehicle.

5. Final Action Decision: Select one lateral action and one longitudinal action:

- Lateral actions (choose exactly one): [move forward, turn left, change lane to left, turn

right, change lane to right]

- Longitudinal actions (choose exactly one): [stop, deceleration to zero, maintain
constant speed, quick deceleration, deceleration, quick acceleration, acceleration]

Present the final action clearly after your reasoning steps.

- Multi-view Camera Streams:

- Front Camera: The first video presents the front
view of the vehicle, comprising four sequential
frames sampled at 2 Hz.

@ [front camera frames]
- Front Left Camera: The second video presents
the front-left view of the vehicle, comprising four
sequential frames sampled at 2 Hz.

@ [front left camera frames]
- Front Right Camera: The third video presents
the front-right view of the vehicle, comprising four
sequential frames sampled at 2 Hz.

@ [front right camera frames]

- Ego States: The current velocity of the vehicle is 3.7
m/s, and the current acceleration is 1.4 m/s?

- Instruction: The driving instruction is Keep Forward.
Based on this information, plan the action trajectory for
the autonomous vehicle over the next five seconds.

Figure S5: System Prompt and User Message of AutoVLA.

gradients, and buffers to reduce memory usage and accelerate computation. Gradient checkpointing
is enabled to reduce GPU memory consumption. The learning rate warm-up is 500 steps and decays
by 2% every 2,000 steps. The model is trained for 5 epochs, with gradient clipping applied at a
maximum value of 1.0 to ensure training stability.

The model takes both system and user prompts as context inputs. As illustrated in Fig. S5, the
system prompt defines the model’s role, task, and the expected CoT reasoning format. The user
message describes the multi-view camera observations, the ego vehicle’s current state (i.e., speed
and acceleration) and optionally historical states, and the high-level driving instruction. We use three
camera views (front, front-left, and front-right), each providing four consecutive frames. Images in
the video stream are resized to maintain original aspect ratios but reduced to 28 x 28 x 128 pixels.
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Algorithm 1 RFT for AutoVLA with GRPO

Input: Supervised fine-tuned policy wspT, Action Codebook A, Group size G, Training step K,
Dataset D, Driving reward function 7pyiving, Reasoning reward function rc,T, Balance weigh
A, KL regularization weight 3
Output: Reinforcement fine-tuned policy mrpT
1: Initialize reference policy 7,.s - mspr and current policy g < TspT
2: for training step 1 to K do
Sample scenario U from D
4 for sample ¢ from 1 to G do
5: Sample input query g, final output o;, and per-token probability 7y (0;|q)
6: 70,14 (0ilg) < 7o (0ilg)
7
8
9

Calculate per-token probability 7, (0;|q) of 7 ¢ under o;
Decode trajectory 7 < A(0;)
Calculate reward 7; < T'Driving (7, U) — Accor(05)
10: end for
11: Group average reward 7, 0, < mean(ri,...,rq), std(ri,...,rg)
12: Group relative advantage 4; < (r; — 7) /(o)

13: LRt < — ElG (_MAi + BDKL(T"B(OHQ)||7Tref(0i|Q)))

T 001 (Oi |Q)
14: Optimize my according to Lrpr
15: end for
16: return Converged policy mrpT

D Details of Reinforcement Fine-tuning

Group Relative Policy Optimization (GRPO) employs group-based sampling to compute the advan-
tage function, replacing conventional state-value estimators or critic models. This design accelerates
training while aligning naturally with the inherent multimodality of planning, which requires evaluat-
ing and selecting from a set of candidate trajectories. The overall reinforcement fine-tuning (RFT)
procedure is illustrated in Algorithm 1.

D.1 Kullback-Leibler (KL) Divergence

The KL divergence term Dy, is incorporated in Eq. (3) to regularize the current policy with respect
to the reference policy:

N 7Tref(oi|q) _ 7Tref(Oi|Q) _
Dl = o) o6 (Tl ) < oy

where 6 denotes the parameters of the current policy 7y, g is the scenario input query, o; is the output
of ith sample in the group, and 7. is the reference policy from the SFT stage. This regularization
term penalizes large deviations from the reference policy, ensuring that policy updates remain within
a stable area. As a result, the model retains useful knowledge acquired during SFT while improving
driving behavior through reinforcement learning guided by validated reward functions.

D.2 Reward Function

The reward function provides the primary RFT training signal, guiding the optimization of policy
updates. To further enhance comprehensive driving performance beyond imitating expert driving, we
adopt a hybrid reward design that integrates the primary driving reward rpying and a CoT penalty
rcor to discourage lengthy reasoning. For the NAVSIM Benchmark, we employ Predictive Driver
Model Score (PDMS) [51] as the primary reward. For the Waymo end-to-end dataset, due to the
limited annotation of RFS, we employ the (normalized) Average Displacement Error (ADE) as the
driving reward. The final reward function, balanced by a weighting coefficient )\, is defined as:

T = TDriving — )\TTCOT' (S2)
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In the nuPlan dataset, we adopt the PDMS score as the driving reward signal rprying, Which serves as
a comprehensive measure of driving quality. It is defined as follows:

STTC + 2C + 5EP)

1 (S3)

TDriving = PDMS = NC x DAC x (

where the components include No at-fault Collision (NC), Drivable Area Compliance (DAC), Ego
Progress (EP), Comfort (C), and Time-to-Collision (TTC). Detailed descriptions of each component
can be found in [51]. Each sub-score is expressed as a percentage, and their weighted combination
yields a normalized score within the range [0, 1], reflecting aspects of safety, comfort, and progress.
For any scenario in which the planner fails (due to output errors), we assign a score of 0.

For the Waymo dataset, we define the driving reward 7priving based on the ADE metric:

T
60— ADE 1 .
TDriving = - , ADE = T ;71 ||Yt - Yt||27 (S4)

where § denotes the maximum displacement error, and & is a scaling factor to normalize the reward.
The planning trajectory ¥ is evaluated against the ground truth trajectory y, and ADE is computed as
the average L2 distances over 1" time steps.

To penalize excessively long reasoning chains, we introduce a CoT penalty term r¢or, defined via a
sigmoid function that normalizes the length of reasoning:

1

[+ e G Lun (53)

T'CoT =
where L denotes the length of the CoT reasoning, L;,; is the tolerance threshold, and -y is a scaling
coefficient that controls the steepness of the penalty curve.

D.3 Implementation Details

We use the navtrain split of the nuPlan dataset for RFT for the NAVSIM benchmark and the
validation split of the Waymo end-to-end driving dataset for the Waymo benchmark. The vision
encoder of pretrained AutoVLA is frozen, and the model is fine-tuned using Low-Rank Adaptation
(LoRA) to reduce training costs and memory consumption. Specifically, both the LoRA rank and
alpha are set to 8, with a dropout rate of 0.1. The pretrained SFT model is used as the reference
policy during optimization. The hyperparameters v, L, and learning rate are set to 2 x 1073, 400,
and 3 x 1075, respectively. To ensure that the driving reward signal is dominant, the regularization
weight is set to a relatively small value, A, = 0.3. We also set § = 2, K = 10 in the RFT of the
Waymo dataset. Moreover, we configure the generation parameters with a sampling temperature of
1.0, top-p of 1.0, and top-k of 0.0 to encourage diverse and exploratory generation during GRPO
sampling, which effectively covers a wider range of possible actions.

E Experiment Details

E.1 Data Preprocessing

To enable mixed training across multiple driving datasets, we develop a unified data preprocessing
pipeline that standardizes the format across all datasets. For each sample, we extract and standardize:
1) Ground truth trajectory coordinates and headings in the ego vehicle’s coordinate frame at 2 Hz, 2)
Image paths for multi-view camera image sequences consisting of 4 consecutive frames captured
at 2 Hz (providing 2 seconds of history), 3) CoT reasoning annotations, 4) Vehicle states including
its current velocity and acceleration, 5) High-level driving instructions. The preprocessing pipeline
handles dataset-specific differences in data format, sampling rates, and coordinate systems to create a
consistent format. The size and distribution of the final formatted dataset are shown in Table S1.

nuPlan (NAVSIM). We randomly sample 45.6k scenarios from the nuPlan trainval split and
generate reasoning data using our proposed automated annotation pipeline. The resulting reasoning
samples, together with the remaining training data with only trajectory annotation, constitute our full
training set of nuPlan. Following the NAVSIM benchmark, the navtest split is used as the test set.
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Table S1: Training and Testing Data Size for Different Datasets

Dataset \ Train Samples  Reasoning Samples  Test Samples
nuPlan (NAVSIM) [51] 166.3k 45.6k 12.1k
nuScenes [53] 19.0k 2.9k 5.6k
Waymo [52] 23.8k 7.2k 1.5k
CARLA [96] 274.5k 53.2k -

nuScenes. We preprocess all samples from the training set. For samples included in the DriveLM
dataset, we reformat the question-answer (QA) pairs to generate structured reasoning annotations
following our four-step reasoning format. Samples not covered by DriveLM are also used for training
but only with trajectory supervision. The validation set is used for testing.

Waymo. The Waymo end-to-end driving dataset provides 2037 training and 479 validation
segments, each containing a 20-second video with driving logs for the entire duration. We sample
reasoning data using a 4-second sliding window and extract trajectory-only data using a 2-second
sliding window offset by 1 second from the reasoning samples. Due to noise in the position data,
the estimated vehicle heading can exhibit abrupt fluctuations when the vehicle is stationary. To
address this issue, we apply a motion threshold to detect stationary periods and smooth the heading
accordingly. The test set comprises 1505 samples.

CARLA. The CARLA-Garage dataset is used to train the model for closed-loop evaluation. Since
only front camera images are available, we use single-view inputs (with four consecutive frames) for
CARLA training and testing. We sample data using a sliding window with an offset of 0.5 seconds,
and downsample the trajectories from 4 Hz to 2 Hz. For reasoning annotations, we leverage the
DriveLM-CARLA dataset, which provides QA pairs similar to DriveLM-nuScenes, and we reformat
the QA pairs to generate samples with reasoning annotations.

E.2 Evaluation Metrics

nuPlan (NAVSIM). PDMS is the official benchmark metric in NAVSIM on the nuPlan dataset, with
its formulation provided in Eq. (S3).

nuScenes. Following previous works, we adopt the L2 Distance to measure the average displacement
error between predicted and ground-truth trajectories, and use Collision Rate to assess the frequency
of predicted trajectories overlapping with surrounding objects. We follow the UniAD protocol,
reporting both metrics at 1, 2, and 3 seconds in the future, instead of averaging over the horizons.

Waymo. Following the Waymo end-to-end driving benchmark, Rater Feedback Score (RFS) is used
to evaluate the driving performance. The Waymo dataset provides three human-annotated trajectories,
each associated with a scalar quality score in [0, 10]. A planning trajectory is matched to its closest
reference trajectory, and a trust region is defined around it using lateral and longitudinal thresholds at
fixed timesteps (3 s and 5 s). These thresholds are scaled by a piecewise linear function of the rater’s
trajectory’s initial speed. Predictions within the trust region inherit the matched rater’s score, and
those outside are penalized exponentially based on normalized deviation.tr

CARLA. We evaluate driving performance in closed-loop testing using four key metrics: Driving
Score, Success Rate, Efficiency, and Comfortness following the Bench2Drive benchmark [51].
Driving Score reflects the overall route completion penalized by infraction severity. Success Rate
measures the percentage of routes completed without major infractions within the time limit. Ef-
ficiency quantifies how well the ego vehicle maintains a reasonable speed relative to surrounding
traffic, computed as the average speed ratio over multiple checkpoints. Comfortness assesses the
smoothness of the trajectory based on physical signals such as acceleration, jerk, and yaw rate, using
expert-derived thresholds.

E.3 Model Training
Our primary base model is trained on the mixed training set of the nuPlan and nuScenes datasets.

The ego state contains the vehicle’s current velocity and acceleration. For the test on the Waymo
end-to-end driving dataset, we further fine-tune this base model using the Waymo end-to-end driving
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Ground Trutf
Planning

@ Fast Thinking
<think> This is a straightforward scenario, and a direct decision
can be made. </think>

<answer> The final output action is:
<action_1122><action_1456>...</answer>

Ground Truth
Planning

£ Slow Thinking

<think> This is a complex scenario requiring additional reasoning
Scene Description:

There are many trucks and one trailer to the front left of the ego car.
There are two trucks and two trailers to the front right of the ego car.
Critical Object Description:

There is a white truck to the front left of the ego vehicle, and a red and
white truck to the front of the ego vehicle... The moving status of the
red and white truck is stationary. The moving status of the white truck
is stationary..

Reasoning on Intent:

Firstly, notice the red and white truck. The red and white truck is
obstructing the lane ahead and remains stationary. The ego vehicle
must yield and wait for the obstacle to clear..

Best Driving Action:

STOP. </think>

@ Fast Thinking D

<think> This is a straightforward scenario, and a direct decision
can be made. </think>

<answer> The final output action is:
<action_72><action_147>....</answer>

Ground Truth
Planning

£ Slow Thinking

<think> This is a complex scenario requiring additional reasoning.
Scene Description:

There is a white SUV in front of the ego car. There is a green traffic light
in front of the ego car. There is a black car to the front left of the ego

car.

Critical Object Description:

There is a white SUV to the front left of the ego vehicle and a green light
to the front of the ego vehicle ... The moving status of the White SUV is
going straight.

Reasoning on Intent:

Firstly, notice the White SUV. The object is moving, so the ego vehicle
should continue... Secondly, notice the Green light. The object is a
traffic sign, so the ego vehicle should move ahead ..

Best Driving Action:

Move forward with acceleration. </think>

@ Fast Thinking
<think> This is a straightforward scenario, and a direct decision
can be made. </think>

<answer> The final output action is:
<action_452><action_459>...</answer>

£ Slow Thinking

<think> This is a complex scenario requiring additional reasoning.
Scene Description:

There are many cars and one pedestrian to the front left of the ego car.
There is one car in front of the ego car. There are two cars to the front
right of the ego car.

Critical Object Description:

There is a black SUV to the front of the ego vehicle, ..., and a red light
to front of the ego vehicle. The moving status of the Black SUV is
stationary....

Reasoning on Intent:

Firstly, notice the Red light. It s a traffic sign, so the ego vehicle should
remain stationary. Secondly, notice Black SUV...

Best Driving Action:

STOP. </think>

<answer> The final output action is:

<answer> The final output action is:
<action_617><action_404>...</answer>

<answer> The final output action is
<action_626><action_208>...</answer>

<action_1882><action_1067>...</answer>

Figure S6: Planning and reasoning results of AutoVLA on the nuScenes dataset.

Table S2: Testing Results of AutoVLA on the nuScenes Planning Benchmark

ST-P3 metrics UniAD metrics

Method L2 (m) | Collision (%) | L2 (m) ] Collision (%) |

Is 2s 3s Avg. Is 2s 3s Avg. Is 2s 3s Avg. 1Is 2s 3s Avg
ST-P3 [14] 1.33 2.11 290 2.11 0.23 0.62 1.27 0.71 - - - - - - - -
VAD [66] 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14 - - - - - - - -
UniAD [65] 0.44 0.67 0.96 0.69 0.04 0.08 0.23 0.12 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
EMMA [37] 0.14 0.29 0.54 0.32 - - - - - - - - - - - -
OpenEMMA [44] 1.45 321 376 2.81 - - - - - - - - - - - -
OpenDriveVLA-3B [34] 0.14 0.30 0.55 0.33 0.02 0.07 0.22 0.10 0.19 0.58 1.24 0.67 0.02 0.18 0.70 0.30
AutoVLA (action only) 0.22 0.39 0.61 0.41 0.10 0.17 0.28 0.18 0.29 0.67 1.17 0.71 0.15 0.34 0.56 0.35
AutoVLA (w/ CoT) 0.21 0.38 0.60 0.40 0.13 0.18 0.28 0.20 0.28 0.66 1.16 0.70 0.14 0.25 0.53 0.31

dataset. For the model trained on Waymo, the ego vehicle’s state encompasses current acceleration
and a 4-second history of vehicle positions and velocities. For closed-loop simulation testing, we train
a separate model using data preprocessed from the CARLA Garage dataset and DriveLM-CARLA
annotations. This model is trained with single-view inputs instead of the multi-view setup used in the
primary model, and we use a large resolution for the input images (with 28 x 28 x 384 pixels).

E.4 Inference

We employ a stochastic generation strategy using top-p and top-k sampling to generate reasoning and
planning outputs. Higher sampling diversity (e.g., temperature=1.0, top-p=0.5, top-k=20) supports
slow thinking modes, enabling the model to produce deeper and more elaborate reasoning chains.
In contrast, more deterministic settings (e.g., temperature=0.1, top-p=0.01, top-k=1) produce fast
thinking, yielding consistent and direct responses.
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Front Left

<think> This is a straightforward scenario, @ Fast Thinking

and a direct decision can be made. </think>

<answer>The final output action is: <action_1726><action_191>...</answer>

Front Left

£ slow Thinking
<think> This is a complex scenario requiring additional reasoning.

Scene Description:

The scene is a daytime urban intersection with clearly marked lanes, pedestrian sidewalks,
and visible green traffic lights. A van is in front of the vehicle, and two lanes ahead with
yellow box markings. Two pedestrians are walking on the sidewalk in the left.

Critical Object Description:

1. Pedestrians (Left View):

- Status: Walking on the sidewalk.

- Prediction: Will likely continue walking without crossing the road.

- Importance: Must ensure they do not suddenly enter the crosswalk during the left turn.

2. White van (Front View):

- Status: Appears to be moving slowly or preparing to proceed straight.

- Prediction: May go straight or turn right

- Importance: Ego vehicle must monitor for potential conflict if the van turns unexpectedly.
3. Green traffic light (front view)

- Status: Green in the ego lane’s direction.

- Prediction: Will allow safe execution of left turn.

- Importance: Confirms that the ego vehicle has the right-of-way to begin the turn.
Reasoning on Intent:

- Firstly, the ego vehicle has been stopped in the past 4 seconds, indicating readiness to
execute a maneuver.

- Secondly, the green traffic light ahead authorizes vehicles in the ego’s direction to proceed,
including for left turns.

- Thirdly, there are no immediate vehicles blocking the left-turn path, and the intersection is
mostly clear.

- Finally, while there are pedestrians on the sidewalk, they show no intent to cross, and no
opposing vehicles are visibly entering the intersection

Best Driving Action: Turn left with acceleration.

This ensures a smooth maneuver respecting the traffic light signal, allowing the ego vehicle
to safely and efficiently execute the left turn while monitoring surroundings. </think>

<answer> The final output action is: <action_842><action_1470>...</answer>

<think> This is a straightforward scenario,
and a direct decision can be made. </think>

) Fast Thinking

<answer>The final output action is: <action_1601><action_485>...</answer>

Front Left

£ Sslow Thinking

<think> This is a complex scenario requiring additional reasoning.

Scene Description:

The ego vehicle is at an intersection in an urban environment. The front camera shows a
stop sign, a red traffic light, and a “No Left Turn” sign on the left side of the road... The
front-right camera shows a curved road into a parking lot with a stop sign and a bump
warning, while the back camera shows traffic queued behind, suggesting the ego vehicle
recently began moving forward...

Critical Object Description:

1. Traffic light (Front view):

Located at the upper-left of the intersection, currently red. It is crucial as it controls
crossing traffic and the ego vehicle’s entry into the intersection

2. Black car ahead (Front view):

Located directly ahead, it is proceeding forward into the intersection, helping validate that
vehicles are allowed to go straight.

3. “No Left Turn” sign (Front view):

Located below the stop sign, this prohibits left turns from the ego vehicle’s current lane.
Reasoning on Intent:

- The “No Left Turn” sign and the stop sign indicate that vehicles must stop and cannot turn
left.

- The red traffic light is positioned toward the left, suggesting it might only control left-
turning traffic, not forward movement.

- The ego vehicle was stopped in the past 4 seconds and is now moving slowly with a low
acceleration, indicating it's starting from a stop sign.

Best Driving Action: Move forward with acceleration.

Given the road signs, vehicle behavior, and instruction to go forward, ego vehicle has
already stop on the stop sign, and can move forward with acceleration to follow the vehicle
ahead, aligning with the ego vehicle's instruction. </think>

<answer> The final output action is: <action_28><action_1>...</answer>

Figure S7: Planning and reasoning results of AutoVLA on the nuPlan dataset.

F Additional Results

F.1 nuScenes Results

We evaluate AutoVLA on the nuScenes dataset following both ST-P3 [14] and UniAD [65] protocols,
in comparison with state-of-the-art end-to-end models. As shown in Table S2, our model demonstrated
competitive performance in the nuScenes planning benchmark.

Fig. S6 shows AutoVLA’s planning outputs. The model generates safe trajectories that closely align
with ground-truth motions, accompanied by coherent and context-aware reasoning outputs. However,
it can be observed that many nuScenes scenarios are relatively straightforward, often not requiring
complex reasoning. This may explain the lack of performance gain in quantitative metrics when
reasoning is introduced.

F.2 nuPlan Results
We present additional visualization results of our model on the nuPlan dataset in Fig. S7. In relatively

simple scenarios such as curved roads and intersections, our model generates high-quality trajectories
via fast thinking. In more complex scenes with numerous traffic regulations, it leverages slow thinking
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FrontRight

<think> This is a complex scenario requiring additional reasoning. § Slow Thinking Before RFT
ow InKin efore
Scene Description: g

The scene appears to be an urban area with a mix of pedestrian pathways and roads. The front view shows a
pathway leading towards a building entrance... The weather seems clear, and ...

Critical Object Description:

1. Vehicles on the right side (Right View): Parked along the side of the road in the right view.

2. Building entrance and pathway (Front View): Directly in front of the vehicle. The pathway leads towards
abuilding entrance. The entrance has glass doors and pillars ...

Reasoning on Intent:

The driving command instructs the vehicle to turn right. The front view shows a clear path leading towards
the building entrance. The right view shows a road with vehicles, which needs to be navigated carefully. The
left view shows a sidewalk with trees and a building, which is not directly relevant to the current maneuver.
The vehicle is moving at a low speed with a slight deceleration, suggesting it is preparing to make the turn.

Best Driving Action:
Turn right with a deceleration. Given the need to navigate around the vehicles on the right and ... </think>

£ Sslow Thinking After RFT

<think> This is a complex scenario requiring
additional reasoning.
Scene Description:
The scene appears to be an urban area with a
\ 1 mix of pedestrian pathways and roads. The
] front view shows a pathway lined with bollards
\ @ i and a building entrance... The weather seems
1 clear,and....
Ay | Critical Object Description:
1.A Car (Right View): Parked or slow driving

1A g qgi i

along the side of the road in the right view.

2. Building entrance (Front View): Located directly in front of the vehicle, near the
bollards. The entrance is static and poses no immediate threat. The entrance will
remain static unless someone exits or enters the building. While notimmediately
critical, being aware of the surroundings helps avoid collisions with fixed objects like
bollards.

Reasoning on Intent:
The ego vehicle is currently moving slowly with a slight deceleration, as indicated by the
velocity and acceleration values. The driving command is to turn right, suggesting the
vehicle intends to make a right turn soon. The absence of pedestrians in the immediate
vicinity allows for a smooth maneuver. However, the ego vehicle should navigate
carefully to ensure no pedestrians are about to cross.

Best Driving Action:

Turn right with a deceleration. Given the current situation, the vehicle should proceed
with a right turn while maintaining a controlled deceleration to ensure safety ...
</think>

<answer> The final output action is: <action_2022><action_2022>...</answer>

<answer> The final output action is: <action_2022><action_2022>...</answer>

Figure S8: Qualitative comparison of planning and reasoning performance in complex scenarios,
before and after RFT. Results indicate that RFT maintains reasoning capabilities in complex scenarios
while enhancing planning performance.

Table S3: Waymo Vision-based End-to-End Driving Challenge Leaderboard

Method Name | RFS (Overall) T | ADE at 55 (Overall) | | ADE at 3s (Overall)| | RFS (Spotlight)!
Poutine 7.9860 27419 1.2055 6.8929
HMVLM 7.7367 3.0715 1.3269 6.7269
UniPlan 7.6925 2.9864 1.3083 6.6544
DiffusionLTF 7.5919 2.9768 1.3605 6.5688
AutoVLA 7.5566 2.9580 13507 6.9436
Swin-Trajectory 7.5432 2.8135 1.2082 6.6791
waymo 7.5281 3.0182 1.3200 6.5953
ViT-Adapter-GRU 7.4988 2.7024 1.1968 6.4543
DriveTraj 7.4957 2.9556 1.3038 6.4101
open-llama 7.4288 3.2165 1.3140 6.2510
MTR-VP 7.3433 3.3485 1.4232 6.4023
WayPredict-XL 7.2922 3.2915 1.4385 6.3083
DriveTraj 7.2787 3.4573 1.5346 6.2428
WayPredict 7.0641 3.5779 1.7242 5.8562
LightEMMA 6.5169 3.7395 1.7052 5.7103
FrozenResNet50 6.4719 3.9148 1.9446 5.7977
OpenEMMA 5.1575 12.4755 6.6842 47131

to produce better and regulation-compliant planning results with CoT reasoning. As illustrated in
Fig. S8, our AutoVLA model preserves reasoning capabilities in complex scenarios despite removing
redundant reasoning after RFT. Qualitative comparisons demonstrate that RFT enhances planning
performance in complex scenarios.

F.3 Waymo Results

To overcome the limited size of the Waymo end-to-end driving dataset, we augment the training data
with samples from the nuPlan and nuScenes datasets. For convenience, we refer to this combined
dataset as nuX. We use this nuX data to pretrain the model before fine-tuning it on the Waymo dataset.
To further enhance planning performance, we apply RFT on the AutoVLA model after SFT. Given
the limited number of RFS-labeled samples (only 480 in the validation set), we adopt the average
displacement error (ADE) as the primary reward signal.
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<think> This is a complex scenario requiring additional reasoning. .
Scene Description: 9 Slow Thinking
The scene is at night, and the road appears well-lit by streetlights. The ego vehicle is traveling on a multi-lane road with visible lane markings. In the front
view, several vehicles are ahead, maintaining a moderate distance. A cyclist s riding along the edge of the road. Traffic lights are green, allowing vehicles to
proceed.

Ground Thuth
Planning

Critical Object Description:

1. Vehicles Ahead: Located directly in front of the ego vehicle, these vehicles appear to be moving steadily. They are maintaining a consistent distance from
each other, suggesting normal traffic flow.

- What they are doing: Moving forward. - What they will do: Likely continue moving forward as the traffic light is green. - Why important: The ego vehicle
must maintain a safe following distance to avoid collisions.

2. Cyclist on the Road: Positioned on the right side near the edge of the road, the cyclist is riding parallel to the ego vehicle. - What they are doing: Riding
along the edge of the road.

- What they will do: Continue riding along the edge. - Why important: The ego vehicle must maintain a safe lateral distance to avoid any potential collision
with the cyclist

Reasoning on Intent:

1. Traffic Lights: The green traffic lights indicate that the ego vehicle can proceed without stopping.

2. Vehicles Ahead: The vehicles ahead are moving steadily, suggesting that the ego vehicle can maintain its current speed and follow them.

3. Cyclist on the Road: The cyclist s riding along the edge and poses no immediate threat to the ego vehicle's path.

Given the green traffic light, the steady movement of vehicles ahead, and the absence of any immediate obstacles or hazards, the ego vehicle should
continue moving forward at a constant speed. ...

Best Driving Action:
Move forward with a constant speed. </think>

<answer> The final output action is: <action_1386><action_1333>... </answer>

Ground Truth <think> This is a complex scenario requiring additional reasoning. e Slow Thinking
Planning Scene Description:

% The scene is at night, and the road appears to be undergoing construction or maintenance work. There are several vehicles stopped ahead, likely due to
the traffic control setup. Aworker in high-visibility clothingis directing traffic, indicating a lane closure. The front left and front right cameras show clear
paths to the left and right sides of the road, respectively.

Critical Object Description:

1. Worker in High-Visibility Clothing: Located in the center-right of the front view, the worker is actively directing traffic. This indicates that the left lane is
closed or restricted, and vehicles must stop or change lane.

2. Vehicles Ahead: Several vehicles are stopped ahead, blocking the path. They appear stationary, likely due to the traffic control setup. The vehicles are
positioned in such a way that they prevent direct passage forward.

Reasoning on Intent:

1. Traffic Control Worker: The worker in the high-visibility clothing clearly indicates that the vehicle should stop

2. Stationary Vehicles Ahead: The presence of stopped vehicles ahead reinforces the need to stop and wait for the appropriate signal or clearance before
proceeding. The ego vehicle has been stationary for the past 2 seconds, indicating compliance with the traffic control setup.

Best Driving Action:
Stop. The ego vehicle should remain stationary, adhering to the traffic control setup and waiting for the appropriate signal or clearance to proceed. This
ensures safety for both the workers and the vehicles ahead, as well as maintaining smooth traffic flow. </think>

<answer> The final output action is: <action_0><action_0>... </answer>

<think> This is a complex scenario requiring additional reasoning. o
R Q Slow Thinking
From the test set, no ground truth is provided Scene Description:
@ Planning The scene is a residential area during the daytime with clear weather. The road is a two-lane street with no visible lane markings. There are houses, trees,
and bushes along both sides of the road. A pedestrian is walking on the sidewalk to the right of the ego vehicle. A dog is running ahead on the road. Several
parked cars are visible on the left side of the road...
Critical Object Description:
1. Pedestrian: The pedestrian is walking along the sidewalk and appears to have no intention of crossing the road.
- What they are doing: Walking on the sidewalk. - What they will do: Continue walking on the sidewalk without crossing the road. - Why they are
important: The pedestrian is near the ego vehicle's path, so it is crucial to maintain a safe distance and avoid any sudden movements that could startle
them.
2. Dog: Located ahead of the pedestrian on the road. The dog s running freely on the road.
- What they are doing: Running on the road. - What they will do: Continue running on the road. - Why they are important: The dog is in the path of the ego
vehicle, and maintaining a safe distance is essential to avoid any potential collision.
Reasoning on Intent:
1. The pedestrian has no intention of crossing the road. The ego vehicle should maintain a safe distance from the pedestrian while moving forward.
2.The dog s running ahead of the pedestrian on the road. The ego vehicle should slow down to maintain a safe distance from the dog and avoid any sudden
movements that could cause it to swerve or collide with the dog
The ego vehicle has been moving forward with a constant speed in the past 2 seconds, and the current driving command is to go straight. However, due to
the presence of the pedestrian and the dog, the ego vehicle needs to adjust its speed to ensure safety.
Best Driving Action:
Move forward with a deceleration. This action allows the ego vehicle to maintain a safe distance from the pedestrian and the dog while continuing to move
forward as instructed by the driving command. Decelerating ensures that the ego vehicle can react appropriately to any unexpected changes in the
environment, such as the pedestrian suddenly crossing the road or the dog swerving into the other lane. </think>

<answer> The final output action is: <action_87><action_125>... </answer>

<think> This is a complex scenario requiring additional reasoning. e TR
From the test set, no ground truth is provided Scene Description: 9
@ Planning The scene is a residential street during the daytime with clear visibility. The road is marked with orange traffic cones, indicating a construction zone ahead.

Several vehicles are visible, including a white truck directly in front of the ego vehicle and a few parked cars along both sides of the road.

Critical Object Description:

1. White Truck: Located directly in front of the ego vehicle, it appears to be moving slowly or stopping. This vehicle is crucial as it dictates the flow of traffic in
the construction zone.

-Whatit s doing: Moving slowly or stopping due to the construction zone. - Why it is important: The ego vehicle must maintain a safe distance and adjust
its speed accordingly.

2. Traffic Cones: Positioned along the center of the road, these cones indicate a narrowed lane due to construction.

- What they are doing: Marking the path for vehicles in the construction zone. - Why they are important: The ego vehicle must navigate around them
carefully to avoid collisions.

Reasoning on Intent:

1. White Truck: The white truck s directly in front of the ego vehicle and appears to be slowing down or stopping. The ego vehicle should match its speed to
maintain a safe following distance

2. Traffic Cones: The presence of traffic cones indicates a narrowed lane, requiring the ego vehicle to proceed cautiously and potentially reduce speed
further if necessary.

The ego vehicle has been decelerating over the past 2 seconds and is currently moving at a relatively low speed. The driving command s to go straight, which
aligns with navigating through the construction zone. Given these observations, the ego vehicle should continue to decelerate and proceed cautiously while
maintaining a safe distance from the white truck and navigating around the traffic cones.

Best Driving Action:

Move forward with a deceleration. This action ensures the ego vehicle safely navigates through the construction zone while maintaining a safe distance
from the white truck and avoiding any potential hazards posed by the traffic cones. </think>

<answer> The final output action is: <action_392><action_310>... </answer>

Figure S9: Planning and reasoning results of AutoVLA on the Waymo end-to-end driving dataset.

As of May 22, 2025, AutoVLA achieves competitive performance on the Waymo End-to-End Driving
Challenge leaderboard, as shown in Table S3. The model ranks highly in both RFS Overall and
ADE metrics and achieves the top score in the RFS Spotlight metric, which focuses on the most
challenging scenarios. Qualitative results are shown in Fig. S9, where AutoVLA demonstrates its
ability to generate safe, context-aware trajectories in complex environments. The model effectively
handles interactions, construction zones, and traffic regulations in diverse scenarios while providing
coherent reasoning to justify its decisions.
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Table S4: Ablation Study on the Waymo End-to-End Driving Test Set

Camera | Pretraining | Output | RFS (Overall) + ADE at 5s |
Front None Action-only 6.938 3.595
Front None CoT-enhanced 7.127 3.188
Multi None Action-only 7.239 3.243
Multi None CoT-enhanced 7.283 3.182
Multi nuX Action-only 7.406 3.116
Multi nuX CoT-enhanced 7.447 3.115
Post-RFT | 7.557 2.958

Table S4 presents the ablation studies of the AutoVLA model in different training setups. The results
indicate that multi-camera input consistently enhances driving performance. When trained solely
on the Waymo end-to-end driving dataset, incorporating reasoning significantly improves perfor-
mance compared to action-only setups. Moreover, pretraining on nuX data provides a substantial
performance boost, suggesting that such pretraining enhances the scene understanding of the model
with more driving data. RFT can significantly improve planning performance by mitigating error
accumulation in generation and aligning with the task-specific rewards.

F.4 CARLA Results

We evaluate the model after SFT in closed-loop testing within the CARLA simulator. The replanning
frequency is set to 2 Hz, meaning the AutoVLA model is queried every 0.5 seconds in simulation,
and the planned trajectory is used to generate control commands. High-level driving instructions
are derived from a predefined route plan, while the vehicle’s current state (including speed and
acceleration) is obtained from the IMU and speedometer sensors. The model receives four RGB
images from the front-camera sensor covering the past two seconds as visual input. AutoVLA
predicts a five-second trajectory, which is then used by a PID controller to compute the control actions
(throttle, brake, and steering) that are applied to the vehicle.

Closed-loop testing results in the CARLA simulator are shown in Fig. S10. Two representative
scenarios are illustrated: (1) the ego vehicle equipped with AutoVLA successfully responds to a
cut-in vehicle, and (2) it executes a smooth left turn. Additional closed-loop simulation results are
available on the project website.

t=22s

t=7s t=9s t=11s t=13s

Figure S10: Closed-loop testing in the CARLA simulator. The two scenarios demonstrate AutoVLA’s
capability to (top) respond safely to a cut-in vehicle and (bottom) execute a smooth left turn.

G Broader Impacts

Autonomous driving is a safety-critical system, further emphasized by the integration of language
guidance into the VLA model. This integration necessitates robust safeguards against adversarial
attacks and proactive identification and filtering of unsafe human instructions. To mitigate potential
hacking threats, it is essential to establish a secure communication channel in the vehicle, comple-
mented by a gated-release strategy for model updates rather than online continual reinforcement
fine-tuning on individual vehicles.

37



	Introduction
	Related Work
	AutoVLA
	Framework
	Reasoning Data
	Supervised Fine-tuning
	Reinforcement Fine-tuning

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies

	Conclusions
	Action Tokenization
	Action Codebook
	Action Tokenizer

	Reasoning Data Collection
	Reasoning Annotation Pipeline
	Reasoning Annotation Visualization

	Details of Supervised Fine-tuning
	Details of Reinforcement Fine-tuning
	Kullback-Leibler (KL) Divergence
	Reward Function
	Implementation Details

	Experiment Details
	Data Preprocessing
	Evaluation Metrics
	Model Training
	Inference

	Additional Results
	nuScenes Results
	nuPlan Results
	Waymo Results
	CARLA Results

	Broader Impacts

