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Abstract

In this paper, we introduce a 3D Gaussian Splatting
(3DGS)-based pipeline for stereo dataset generation, of-
fering an efficient alternative to Neural Radiance Fields
(NeRF)-based methods. To obtain useful geometry esti-
mates, we explore utilizing the reconstructed geometry from
the explicit 3D representations as well as depth estimates
from the FoundationStereo model in an expert knowledge
transfer setup. We find that when fine-tuning stereo models
on 3DGS-generated datasets, we demonstrate competitive
performance in zero-shot generalization benchmarks. When
using the reconstructed geometry directly, we observe that it
is often noisy and contains artifacts, which propagate noise
to the trained model. In contrast, we find that the dispar-
ity estimates from FoundationStereo are cleaner and conse-
quently result in a better performance on the zero-shot gen-
eralization benchmarks. Our method highlights the poten-
tial for low-cost, high-fidelity dataset creation and fast fine-
tuning for deep stereo models. Moreover, we also reveal
that while the latest Gaussian Splatting based methods have
achieved superior performance on established benchmarks,
their robustness falls short in challenging in-the-wild set-
tings warranting further exploration.

1. Introduction

Recovering the 3D structure of a scene captured from im-
ages is a widely researched problem that has exploded
in popularity through the recent advances in monocular
depth estimation as well as novel view synthesis approaches
such as Neural Radiance Fields (NeRFs) [21] and Gaussian
Splatting[15].

Initial work in the field required the use of stereo im-
age pairs and, through traditional algorithms like semi-
global matching (SGM)[11], achieved remarkable perfor-
mance using well-designed heuristics. This resulted in ac-
curate disparity maps but still had several shortcomings due

to the common challenges of stereo matching. These are,
namely, textureless regions and occlusions - both of which
make it very challenging to find reliable correspondences,
leading to errors or a lack of prediction.

With the introduction of large-scale datasets with accu-
rate disparity labels, such as [19], deep learning-based dis-
parity estimation methods were made possible. However,
obtaining per-pixel labels is very challenging, typically ad-
dressed by using a simulated environment where accurate
ground truth geometry can be directly extracted from the
explicit scene representation. While the geometry labels
are highly accurate, the realism gap between rendered and
real-world images makes these methods perform subopti-
mal when applied on real-world samples.

Recent advancements include the addition of vision
foundation models pre-trained for monocular depth estima-
tion [12, 35] and powerful context networks, such as Dinov2
[22], which have greatly improved the networks’ reason-
ing ability in the ill-posed regions. This motivated the use
of monocular depth estimators such as DepthAnythingV2
[35] and Metric3Dv2 [12] to produce high-quality depth es-
timates of real images. Orthogonally, Tosi et al. [29] instead
simply collect data via mobile phone recordings and apply
the recent advances in the field of Novel View Synthesis in
order to obtain realistic images and cheap geometry labels.
However, NeRFs, as used by e.g. Tosi et al., have a con-
siderable shortcoming. The implicit representation of the
scene fails to produce accurate, fully dense geometry, re-
quiring a lot of filtering, which makes the disparity maps
very sparse. As a consequence, a complicated training pro-
cedure requires photometric losses apart from the common
L1 disparity loss to compensate for the lack of density. Such
a training setup suffers from training instability, and the re-
sults are not replicable as outlined in greater detail in our ex-
perimentation section and observing the replication efforts
of the academic community.

Instead, we investigate the newly introduced 3D Gaus-
sian Splatting [15] based methods, which explicitly model
the scene using Gaussians that can be converted to meshes



Figure 1. Expert Knowledge Transfer using FoundationStereo. Overview of the proposed expert knowledge transfer setup where
stereo pairs rendered with Gaussian Splatting are supplied to FoundationStereo [32], which produces high-quality pseudo depth estimates.
The process starts with the 3D Gaussian Splatting (3DGS) pipeline [15], where COLMAP [26][25] is used to initialize the optimization
of 3DGS. Stereo image pairs are rendered after the scene has been fitted with 3DGS. As the underlying geometry of 3DGS is poorly
reconstructed, the stereo pairs are instead sent to FoundationStereo, producing ground-truth disparity images. The generated synthetic
stereo dataset is then used to train a lightweight stereo network, RAFT-Stereo [18] (not depicted in this figure).

[4, 13, 36]. As these methods offer highly realistic images
and seemingly accurate surface reconstruction, we hypoth-
esize that they might be the missing link to the easy acqui-
sition of stereo-matching datasets. Furthermore, our choice
of 3DGS based methods is further motivated by their ex-
cellent rendering speed compared to NeRF based methods
of comparable reconstruction quality. Concurrently, we are
inspired by the recent development within monocular and
stereo vision foundation models, and investigate whether
using depth estimates from a large stereo vision foundation
model [32] outperforms the performance obtained with the
reconstructed geometry, as shown in Figure 1.

Using a fine-tuning training setup, we evaluate the ef-
fect of the different 3D Gaussian Splatting-based synthetic
datasets, and compare directly with NeRF-Stereo. We do so
by performing zero-shot evaluation on a set of previously
unseen datasets commonly used within the stereo depth es-
timation field.

Our contributions are as follows:
• We qualitatively and empirically find that the rendered

disparity from 3DGS and the reconstructed mesh of
PGSR are insufficient for fine-tuning a RAFT-Stereo net-
work.

• We propose a knowledge transfer setup where pre-
dicted depth estimates from FoundationStereo are used as
ground truth for 3DGS stereo renderings.

• We find that fine-tuning a RAFT-Stereo network using our
proposed expert knowledge transfer setup consistently
outperforms other methods, including the state-of-the-art
NeRF-Stereo method.

2. Related Works

2.1. Disparity Estimation Algorithms

Large-scale disparity map estimation became possible with
the development of SGM algorithms [11], which optimized
the calculated disparity along preset directional paths, in-
stead of purely global optimization, which can be costly, or
local methods that tended to leave artifacts around edges of
objects. With the rise of deep learning models, architec-
tures like PSM-Net [3] and models built on top of it [14],
using features extracted by ResNet and a pyramidal struc-
ture which utilizes features from different scales. Later on,
the work presented in RAFT-Stereo [28] and later on in
RAFT-3D [18] models the disparity and full 3D scene flow
between consecutive frames and iteratively optimizes them
using GRU layers. Taking the iterative optimization idea
and expanding on it through the use of Geometry Encoding
Volume is the IGEV-Stereo [34]. It incorporates more lo-
cal details through the iterative optimization of the disparity
maps to capture smaller 3D surface features. One problem
that persists in both RAFT and IGEV models is the ambigu-
ity in smooth and featureless regions, which translates into
incorrect disparity values propagated through the iterative
optimization. The Selective-Stereo model [30], which in-
troduces the Selective Recurrent Unit (SRU), instead of the
normally used GRU ones, together with a Contextual Spa-
tial Attention (CSA) module, tries to mitigate this problem.
It aggregates disparity information at different levels of de-
tail and frequencies to capture hidden disparity information,
especially in edge regions and at featureless areas. As trans-



formers have proven to provide high-quality and robust re-
sults in many other computer vision fields, their use in dis-
parity estimation has also proven extremely useful. Both the
transformer self-attention and relative pixel distance encod-
ing of STTR [16] and the positional embeddings and pre-
training of CroCoV2 [31] boost their accuracy compared to
CNN-based models and can handle large discrepancies in
the estimated disparity.

2.2. Stereo Datasets and Training Paradigm
The advent of deep learning-based disparity estimation
methods can be traced back to the origin of large-scale
datasets that contain accurate disparity labels, such as the
seminal work by Mayer et al. [19]. However, obtaining
per-pixel labels is very challenging, typically addressed by
using a simulated environment where accurate ground truth
geometry can be directly extracted from the synthetic ren-
dering pipeline. However, while the geometry labels are
highly accurate, the rendered images have a realism gap
compared to images captured in the real world. While real-
istic images can be easily captured by building a real stereo
pair and capturing the real world, extracting accurate ge-
ometry becomes the primary challenge. Accurate dense
geometry can be captured by either using structured light
projectors [24] or using an expensive Laser Scanner [27].
Both of these methods require significant post-processing
and static scenes, but they achieve a dense geometry recon-
struction. An additional approach is to use a multi-beam
LiDAR, which can also support dynamic scenes, such as
[7] [8] and [9]. Still, these require post-processing to ad-
dress the typical scanning distortion, accurate calibration,
and offer only sparse depth maps due to the current LiDAR
sensor limitations. Furthermore, neither synthetic nor real
stereo dataset collection methodology offers flexibility to
easily capture custom scenes to improve disparity estima-
tion performance on specific tasks. Both methodologies are
prohibitively expensive, as custom synthetic scenes require
experts to create custom digital assets, while the real dataset
requires a sensor suite with state-of-the-art depth sensors.
Recently, the advancements in novel view synthesis (NVS)
have opened up the possibility to use freely captured im-
ages to generate training data for stereo depth estimation
[10, 23, 29] and optical flow [17]. However, due to the lim-
itations of NeRFs [21], it is not possible to extract accurate
geometry, and the training procedure requires a complicated
loss function to achieve good performance, deviating from
the simple L1 loss used in the state-of-the-art works, which
use existing stereo datasets.

2.3. Novel View Synthesis and Mesh Extraction
Given a freely captured set of RGB images, novel view syn-
thesis encodes the scene in a representation which can be
queried to obtain novel views. Pioneering work NeRFs [21]

has revolutionized the field, achieving unprecedented real-
ism. Subsequent works have improved on the original idea
[1], offering improved visuals, but at the cost of rendering
time. While some works have also explored improving the
rendering speeds [2], it came at the cost of visual quality.
The trade-off between rendering speed and visual quality
has been addressed in the work by Kerbl et al. [15], offer-
ing superior visual fidelity while achieving real-time ren-
dering speeds. Furthermore, unlike NeRFs, which embed
the scene implicitly in the weights of the neural network,
3D Gaussian Splatting presents an explicit geometric repre-
sentation of the scene. Despite this, the original formulation
is not suitable for accurate geometry extraction, presenting
surface artifacts. The most recent works tackle this issue
by structuring the scene composition in a manner that al-
lows them to extract accurate meshes. For example, 2DGS
[13] employs a direct depth loss to the Gaussian primitives,
and collapses one of the splat axes, representing the scene
as a composition of 2D discs which are aligned with the
surfaces, offering a better starting point for geometry ex-
traction. Gaussian opacity fields [36] aim to remove the ex-
traction of the meshes as a post-processing step and extract
accurate surfaces directly from the Gaussian splat cloud.
However, all of these methods use only the information in
the images, which can be problematic for textureless areas
where multiple 3D geometries can render to the same 2D
images. To correct this problem, researchers are looking to
include pretrained networks, which can be a powerful reg-
ularizer for the ill-posed textureless regions of the image.
Gaussian Surfels [5] uses a monocular normal estimation
based on [6].

3. Methodology
In this work, we investigate whether the recent advance-
ments in 3D Gaussian Splatting can be used to synthesize
novel views, reconstruct accurate surface geometries from
images, and apply the results to the downstream task of
stereo-matching with the RAFT-Stereo network [18].

3.1. Stereo Dataset Rendering with 3DGS
When rendering the disparity image from a 3DGS scene
representation, the naive approach is to use the explicit
representation of the gaussians and calculate the dispar-
ity based on the 3D location of the splat following a hard
threshold on the opacity. Kerbl et al. [15] proposed a neural
point-based approach to compute the color C of a pixel as:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (1)

Where ci is the learned color of each point and αi is the
screen projected opacity of the splat. The naive depth ren-
dering approach replaces the learned color of each point



Mesh reconstruction comparison applied to the NS dataset [29]
Dataset image PGSR 2DGS GOF

Rendered and backprojected disparity image
3DGS PGSR 2DGS GOF

Figure 2. Reconstructed Geometry with Gaussian Splatting. Qualitative examples of mesh reconstructions, renderings, and backpro-
jected disparity images produced using the 3DGS, PGSR, 2DGS, and GOF methods. Note that, for illustrative clarity, spurious faces
occluding the camera view in the GOF method have been manually removed.



(a) High Observability (b) Low Observability

Figure 3. Observability filtering: Examples of the observability heatmaps where brighter colors represent vertices that have been seen
by more cameras. Figure 3a shows a high observability scene where an object is seen from many positions, and Figure 3b shows a low-
observability scene. Notice how there are many more dark areas in Figure 3b, indicating they are poorly observed.

with the z-depth from the viewing transform. Since the new
color represents a depth value, it can be converted to dispar-
ity d in the rendered stereo pair with a virtual baseline b and
focal length f as:

d =
fb

zdepth
(2)

This approach generates ’comet tails’ smooth transitions
at edges which should be sharp, similar to the rendered im-
ages used in the NeRF-Stereo work [29], showing little im-
provement over different Novel View Synthesis methods.
Therefore, in order to improve the quality of the depth esti-
mates for the stereo pairs, recent advances in mesh genera-
tion are considered [4, 13, 36].

The generated meshes can be efficiently rendered into
a depth map and converted to disparity using Eq. 2. As
meshing-based methods are designed with accurate surface
reconstruction in mind, artifacts such as comet tails should
be reduced. To decide on the viewing transform for the
dataset, we re-use the COLMAP [26][25] poses along with
the camera intrinsics. We use the same baselines as Tosi
et al. [29] to achieve the same disparity distribution in the
dataset.

3.2. Qualitative Assessment of Gaussian Splatting
Methods

As mentioned, since the introduction of the 3D Gaussian
Splatting method, there has been a rapid development of
newer models with a focus of improving the underlying
geometry. While it is possible to generate visually pleas-
ing and convincing images with poor underlying geome-
try, training on noisy ground truth structural information
will result in models of poor quality which produce blurred

outputs. Therefore, we qualitatively evaluate three of the
most recent and state-of-the-art Gaussian Splatting meth-
ods from which we can extract meshes explicitly. Namely
we consider PGSR, 2DGS and GOF [4, 13, 36]. Using each
method, we reconstruct and render the dataset used in the
NeRF-Stereo paper [29], and qualitatively investigate the
reconstruction. For every method, we have used base set-
tings for the rendering pipeline. Mesh rendering for PGSR
and 2DGS is based on TSDF fusion and produces numerous
floating artifacts, and a post-processing step is applied to
keep only the largest cluster. However, while this improves
the overall mesh quality, it also results in overfiltering, re-
moving the finer correct details.

While each method can produce visually pleasing im-
ages, we find that they suffer from noisy and insufficient
geometry reconstructions. In the qualitative comparison in
Figure 2, we observe that 2DGS provides a balanced trade-
off between finer details and geometric accuracy, whereas
GOF contains significant artifacts and holes in the texture-
less areas. In contrast, PGSR results in the cleanest geome-
try with less artifacts, even though the back wall is excluded
making the reconstruction very object centric. From Figure
2, it is trivial to see the noisy results of plain 3DGS depth,
with a significant amount of comet tails present. Based
on these results, we decided to solely use the mesh recon-
struction obtained from PGSR, as it produces the cleanest
meshes.

3.3. Mesh Filtering
Filtering the 3D structure directly can help with removing
artifacts caused by the presence of insufficient information.
Even though PGSR employs a filtering strategy masking all



the surfaces where the camera rays intersect them at an an-
gle greater than 80 degrees, the rasterized input depth maps
contain artifacts due to under-reconstructed areas, causing
incorrect surface estimation during the TSDF process.

A prerequisite for accurate estimation of 3D structure
from 2D views is the presence of parallax, meaning that
each 3D point should be captured by cameras that are suf-
ficiently displaced in relative pose. This principle is well
aligned with our observation of the rendered meshes, where
the quality of the 3D reconstruction was proportional to how
well observed a given surface was given the camera system.
Similarly, we have observed that the reconstructed visual
quality was also proportional to how many training cam-
eras have been observing a given surface during the novel
view rendering. As such, we have turned these observations
into a method which could be used to further filter existing
meshes, but also provide valuable information about visual
fidelity of each camera, which is especially critical consid-
ering that the proposed pipeline by Nerf-Stereo [29] lever-
ages the poses of training cameras.

Given the rendered mesh and the known poses of all the
training cameras relative to it, we calculate how many cam-
eras have unoccluded view of every single vertex. A vi-
sual example can be seen in figure 3. Once the meshes are
enriched by the observability information, depth maps are
rendered for every single training camera. Besides obtain-
ing per-pixel depth, the observability is also propagated as
additional attribute to every pixel. To rank the camera poses
based on observability, we sum the observability across all
the projected pixels. In summary, the observability based
filtering can not only help in removing low-quality geome-
try from rendered meshes, but also ranks the training cam-
era poses based on how well observed area they observe,
providing an informed way to select fewer rendering poses,
rather than choosing all as in [29].

3.4. Transferring Expert Knowledge from Founda-
tionStereo

Motivated by our findings that the Novel View Synthesis
methods produce poor geometry for in-the-wild datasets, as
demonstrated in both the NeRF-Stereo paper and our ex-
plorations of the Gaussian Splatting meshing methods, we
consider an orthogonal direction. Instead of relying on the
computed geometry, we investigate the effectiveness of es-
timating depth using large-scale foundation models. Specif-
ically, we use the FoundationStereo [32] model to produce
a pseudo disparity estimates for all rendered stereo pairs,
which we use to train a RAFT-Stereo network, see Figure 1.
This can be seen as a way of performing knowledge dis-
tillation, as we are effectively training a smaller-scale net-
work on predictions of a large-scale network, which would
be prohibitively slow in real-time applications. It is also
worth noting that FoundationStereo was trained purely on

synthetic data, eliminating any concerns of data leakage
from the test datasets. This approach is similar, but dis-
tinct, from the prior GS2Mesh work [33] which used depth
estimates to produce detailed geometry of scenes rendered
with Gaussian Splatting.

4. Experimental Design
Disparity estimation models pretrained on synthetic
datasets possess impressive reasoning skills about spatial
geometry, but still fall short due to the sim2real gap in the
image space. However, only a small amount of real data is
required to improve the matching accuracy on real data, as
demonstrated by RAFT-Stereo. We follow the exact fine-
tuning procedure and augmentations outlined in their work,
designed for finetuning SceneFlow checkpoint on smaller
scale, but high quality real data. We further consider this
training setup appropriate, as the scenes from Nerf-Stereo
dataset looks visually similar to Middlebury style datasets.
While RAFT-Stereo was fine-tuned on a Middlebury 2014
dataset [24], we generate the training dataset following the
rendering procedure of Nerf-Stereo [29] outlined in Sec-
tion 3.1.

As the extracted poses from the camera systems using
COLMAP are used as anchors to generate the stereo pairs,
their observations vary in quality. Our experiments show
that using the observability score per camera is a great pre-
dictor of stereo image quality, ensuring that the very left
camera image observes the best reconstructed area of the
scene. Given the five cameras with maximized observabil-
ity, we generate three baselines following Nerf-Stereo, en-
suring disparity distribution is similar to the test and valida-
tion datasets. We also show results when training using the
3DGS rendered images and FoundationStereo pseudo depth
estimates. For all the experiments, regardless of the method,
we select the same scenes and camera locations to ensure a
fair comparison.

Lastly, we compare the performance to the RAFT-Stereo
model trained on the Sceneflow dataset as well as NeRF-
Stereo. It is worth highlighting that NeRF-Stereo was
trained from scratch with a trinocular and photometric loss,
depending on filtering pixels with poor geometry estimates
based on their transparency1. We also report NeRF-Stereo
results obtained from trying to reproduce the training pro-
cess using an unofficial code reproduction2 by the authors
of the RAFT-Stereo paper, as the original stereo-network
training code is not available.

We follow the NeRF-Stereo evaluation protocol and re-
port results on 200 stereo images from KITTI 2015 [20],
15 stereo pairs from Middlebury v3 training set (Midd-T)

1Incorrectly called Ambient Occlusion (AO) filtering in the NeRF-
Stereo paper, and in this work referred to as α filtering.

2https://github.com/husheng12345/Unofficial-
NeRF-Supervised-Deep-Stereo

https://github.com/husheng12345/Unofficial-NeRF-Supervised-Deep-Stereo
https://github.com/husheng12345/Unofficial-NeRF-Supervised-Deep-Stereo


Figure 4. Qualitative Comparison of RAFT-Stereo and 3DGS + FS. We make a visual comparison between RAFT-Stereo SceneFlow
checkpoint, and our finetuned version on dataset generated using our proposed pipeline leveraging 3DGS for stereo images and Founda-
tionStereo for ground truth pseudolabels. Our proposed 3DGS + FS method is shown in the top row, and predictions from the baseline
RAFT-Stereo method are shown in the bottom row. Improvements can be observed in thin structures and complex depth discontinuities

[24] and 27 pairs from ETH3D [27]. The best checkpoint
per method is chosen using a suite of validation datasets,
specifically 194 stereo images from KITTI 2012 [8], 13
additional images from the training set of Middlebury v3
(Midd-A) at Full, Half, and Quarter resolutions (F, H, Q),
and the Middlebury 2021 (Midd-21) dataset [24]. Perfor-
mance is measured by determining the ratio of pixels with
a disparity error larger than τ pixels. τ is dataset dependent
and set to 1 for ETH3D, 2 for Middlebury, and 3 for KITTI,
following common practice in the stereo matching field.

5. Experimental Results

We report our results in Table 1. We find that finetuning
on the 3DGS and PGSR based datasets is comparable to
the performance of the reproduced NeRF-Stereo training
paradigm from random initialization on their full dataset.
However, none of them (including the reproduced NeRF-
Stereo) are comparable to the RAFT-Stereo baseline, which
was solely trained on SceneFlow [19]. This is a clear in-
dication that the reconstructed geometry in the Gaussian
Splatting-based methods is of too poor quality, as discussed
in Section 3.2. We also find that the observation filter-
ing used with PGSR does not consistently improve perfor-
mance. Instead, performance is only improved on Midd-T
at quarter resolution as well as on the ETH3D dataset.

Interestingly, we observe that when fine-tuning using the
NeRF-Stereo renderings, the performance becomes signifi-
cantly better and even beats the RAFT-Stereo baseline on
the Midd-T dataset. We attribute this to the α-filtering
used by NeRF-Stereo, which aggressively filters out pix-
els with poor underlying geometry. Lastly, we find that our
expert knowledge transfer setup (3DGS + FS) outperforms
all other methods on the Midd-T and ETH3D datasets, and

is close to matching the RAFT-Stereo performance on the
KITTI-15 dataset. We visually examine the predicted dis-
parity maps from the baseline RAFT-Stereo and the pro-
posed 3DGS+FS, see Figure 4. We find that our proposed
methods are better at recovering very thin structures (such
as the brake cables on the bicycle) as well as complex lay-
ered scenes (such as the flowers on the table). It is worth
noting that the original reported results from NeRF-Stereo
do outperform 3DGS+FS on KITTI-15 and parts of Midd-
T. However, as the results are not reproducible, we argue
that they are not fully representative.

6. Dataset and Training Instabilities
Throughout the proposed experiments, we encountered sev-
eral instances of instability when constructing the synthetic
datasets and training the stereo networks.

Firstly, we encountered several problems with the NeRF-
Stereo dataset. As the data is collected with handheld cam-
eras being moved around, there is a considerable amount of
motion blur and poor quality images, which we found the
Gaussian Splatting methods are quite sensitive towards. We
also found that the provided COLMAP poses result in poor
reconstruction with Gaussian Splatting-based methods, as
the principal point was refined and did not lie in the cen-
ter of the image. This is a known problem3 and was recti-
fied by recomputing COLMAP without refining the princi-
pal points. While it is practically possible to convert images
with non-centred principal points by simple cropping and
adjusting the camera paramters, we have chosen to rerun
the scenes with the provided convert.py script common in
gaussian splatting repositories, as that would align with the

3https://github.com/graphdeco-inria/gaussian-
splatting/issues/144#issuecomment-1786762565

https://github.com/graphdeco-inria/gaussian-splatting/issues/144#issuecomment-1786762565
https://github.com/graphdeco-inria/gaussian-splatting/issues/144#issuecomment-1786762565


KITTI-15 Midd-T ETH3D

(>3px) F (>2px) H (>2px) Q (>2px) (>1px)

Method Filtering Fine-Tuned All Noc All Noc All Noc All Noc All Noc

RAFT-Stereo - ✗ 5.46 5.27 15.72 12.00 11.23 8.67 10.52 7.42 2.61 2.29

NeRF-Stereo α ✗ 5.41 5.23 16.45 12.08 9.67 6.42 8.05 4.82 2.94 2.23

NeRF-Stereo* α ✗ 6.65 6.22 20.10 15.43 12.82 8.89 11.18 7.68 4.37 3.91

NeRF-Stereo α ✓ 5.63 5.41 15.89 11.72 11.03 7.84 9.71 6.54 3.48 3.00

3DGS - ✓ 5.77 5.59 22.74 19.97 15.53 11.96 10.41 7.11 4.65 4.28

PGSR - ✓ 6.26 6.09 16.64 12.81 11.23 8.26 10.32 7.52 3.19 3.04

PGSR obs. ✓ 6.51 6.34 17.14 13.34 11.75 8.69 9.83 7.26 3.08 2.89

3DGS + FS - ✓ 5.52 5.31 14.78 11.25 9.62 6.80 9.00 6.18 2.35 2.14

Table 1. Zero-Shot Generalization Benchmark. We compare the zero-shot performance of various synthetic dataset generation methods.
All results are obtained from the RAFT-Stereo model. We report both the original NeRF-Stereo results as well as the reproduced results
(denoted by *), with the model in both cases trained from scratch. The Fine-tuned column indicates whether the model was initialized with
the SceneFlow checkpoint. The filtering column indicates which, if any, filtering methods are used on the data. Obs. indicates observability
filtering was used to select scenes, whereas α indicates the pixel transparency was thresholded (denoted AO filtering in the NeRF-Stereo
paper). 3DGS + FS denotes 3DGS with FoundationStereo [32] depth estimates. We highlight the best and second-best results.

core idea of generating custom training datasets only from a
set of freely captured images. However, this in turn resulted
in COLMAP failing to estimate poses for several scenes,
even when attempted multiple times.

Secondly, we found that the scene reconstruction with
3D Gaussian Splatting based methods can be prohibitively
expensive, with some scenes failing to be reconstructed due
to insufficient VRAM even when using an A100 with 40GB
VRAM. On average, 10% of scenes or meshes were not re-
constructed with 3DGS, GOF, 2DGS, or PGSR.

7. Discussion
Despite the excellent performance of the latest 3DGS-based
methods on popular 3D reconstruction benchmarks from
multi-view images, our study has revealed that they are still
insufficient for in-the-wild scenarios. Although it was im-
possible to evaluate the accuracy of the 3D reconstructions
due to the absence of associated ground truth data, assessing
accuracy by using a proxy downstream task can be equally
or even more valuable for judging the robustness of such
methods. As such, the poor performance when training on
the data rendered from meshes has been unexpected and
suggests that the current benchmark performance is not rep-
resentative of in-the-wild settings, which can be regarded
as a valuable result and inspire future works. On the other
hand, the FoundationStereo performance has shown to be
representative even in a zero-shot setup, suggesting that the
methodology from GS2Mesh [33] can be further improved.
Moreover, while it could be argued that 3DGS-based meth-
ods could be replaced with NeRFs, it should be considered
that 3DGS-based methods offer superior rendering speeds

at comparable visual fidelity, which is essential when ren-
dering large-scale datasets.

8. Conclusion

In this paper, we have investigated the feasibility of us-
ing 3D Gaussian Splatting-based methods to generate syn-
thetic datasets to train a stereo network. Through qualita-
tive assessment of state-of-the-art meshing-based methods,
we find that the reconstructed geometry is consistently of
insufficient quality with artifacts, noise, and holes present.
This is consequently reflected in poor performance when
fine-tuning a RAFT-Stereo network, even when applying
filtering to only use the most well-observed parts of the
meshes. We further show that by utilizing an expert knowl-
edge transfer setup, where depth estimates from the Foun-
dationStereo model are used as pseudo ground truth, we
achieve much better performance. We attribute the suc-
cess of this methodology to the fact that Gaussian Splatting
methods capture high-fidelity visual images even if they are
unable to capture underlying geometry due to the limita-
tions of traditional algorithms. On the other hand, superior
zero-shot performance of FoundationStereo can infer accu-
rate geometry even from very limited visual signal. We con-
sider our results to be a promising avenue for future work
on generating synthetic stereo datasets and transferring ex-
pert knowledge into small and lightweight stereo networks,
while offering unprecedented flexibility of capturing cus-
tom datasets from just freely captured images.

Funding This research was funded by Innovation Fund
Denmark, grant number 3129-00060B.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 1

[23] Sadra Safadoust, Fabio Tosi, Fatma Güney, and Matteo
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