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Abstract

Social media bot detection faces persistent data scarcity challenges, as obtain-
ing diverse, high-quality labeled datasets becomes increasingly difficult. We
introduce AURA (Augmented User-graph via Reverse-diffusion Architecture), a
novel and model-agnostic pipeline that leverages graph diffusion models to gen-
erate realistic synthetic social network data for training augmentation. While we
demonstrate AURA using GraphMaker, a graph-compatible diffusion architecture,
our framework is compatible with any suitable generative model. By combin-
ing diffusion-based synthetic graph generation with specialized language models,
AURA produces synthetic users enriched with both network structure and textual
features. Through systematic evaluation on TwiBot-22 under varying levels of data
scarcity, we show that synthetic augmentation via AURA consistently improves
bot detection performance, delivering robust gains in accuracy, precision, and
recall across all tested sample sizes. This work represents the first application
of graph diffusion models to social media bot detection and establishes synthetic
data generation as a promising direction for overcoming labeled data scarcity in
this domain, with preliminary results suggesting increasing effectiveness as graph
generation capabilities scale.

1 Introduction

Social networks have fundamentally transformed information consumption and online interaction,
creating new vulnerabilities for malicious manipulation through automated bot accounts. These bots
have been implicated in serious threats to democratic processes, including election interference [Bessi
and Ferraral, 2016] and coordinated disinformation campaigns [Hajli et al., 2022]], making their
detection a critical research priority.

The effectiveness of bot detection systems depends heavily on the quantity and diversity of training
data. While recent efforts have produced valuable public benchmarks [Cresci et al.| 2015/ [Feng
et al.l [2021a, 2023]], these datasets remain limited in scale, and questions persist regarding their
informativeness [Hays et al.,|2023]]. This data scarcity problem is exacerbated by two key challenges:
(1) increasingly sophisticated language model-powered bots that require more diverse training
examples to detect, and (2) social media platforms’ growing restrictions on data collection that limit
researchers’ access to real-world samples.

Synthetic data generation offers a promising solution to these constraints. Rather than relying solely
on scarce real data, we can augment training sets with realistic synthetic examples that capture the
distributional properties of bot and human behaviors. However, generating high-fidelity synthetic
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social network data presents unique challenges, requiring models that can simultaneously capture
complex graph structures, realistic user interactions, and contextually appropriate textual content.

We introduce AURA (Augmented User-graph via Reverse-diffusion Architecture), a novel modular
pipeline that addresses these challenges through graph diffusion models. Our approach consists
of three integrated components: a data sampling module that extracts representative subsets from
existing datasets, a graph diffusion-based generator that synthesizes realistic user interaction patterns
and network neighborhoods, and specialized text and timestamp generators that produce contextually
appropriate user profiles based on bot versus human behavioral patterns. These modules are then
combined to generate synthetic user data comprising textual, numerical, and relational information.

Our contributions are threefold:

* Novel Application: We introduce the first use of graph diffusion models for synthetic social
network generation tailored to bot detection, opening a new direction for data augmentation
in this domain.

* Empirical Validation: We show that augmentation via our framework improves classifier
performance across repeated runs with varying levels of data scarcity, achieving up to
1.77% absolute accuracy gains alongside substantial improvements in precision and recall.
Critically, effectiveness increases with sample size, suggesting the AURA pipeline will
naturally scale as graph diffusion capabilities continue to advance.

* Modular, Extensible Framework: Our model-agnostic design enables systematic explo-
ration of diverse generative architectures and data augmentation strategies, providing a
flexible foundation for future research on synthetic graph-based data generation.

The remainder of this paper is organized as follows: Section [2]reviews related work in bot detection
and synthetic data generation, Section [] details our AURA pipeline, Section [5] presents experimental
results, and Section@discusses implications and future directions.

2 Related Works

2.1 Social Network Bot Detection

Bot detection research emerged alongside Twitter’s rise in the late 2000s [Yardi et al.,2009], evolving
from rule-based heuristics to sophisticated deep learning approaches. Modern techniques span diverse
architectures including random forests [[Schnebly and Sengupta, [2019], CNNs [Faerber et al., 2019],
and graph neural networks [Zhao et al.| [2020], incorporating multi-modal data sources such as user
features, tweet content, and network structure [Feng et al.||[2023].

Current state-of-the-art methods employ graph neural networks, particularly Graph Convolutional
Networks (GCNs)[Kipf and Welling} 2017], which enable learning from both node-level and network-
level features[Feng et al.,[2021b} [Liu et al.| |2024]]. Recent advances focus on multi-modal integration,
with methods like BotRGCN demonstrating superior performance through relational graph convolu-
tional networks on heterogeneous graphs with distinct edge types for follower relationships [Feng
et al., [2021b]. The current benchmark standard, TwiBot-22 [Feng et al., 2023|], provides over 1
million annotated users and 88 million tweets while preserving crucial graph structure information.

Despite these advances, significant data quality challenges persist. Recent analyses reveal that
many pre-TwiBot-22 benchmarks suffer from over-simplistic collection practices, with some datasets
solvable using shallow decision trees on trivial features [Hays et al., [2023]]. This highlights the
fundamental data scarcity problem: existing datasets may not capture the full diversity of bot
behaviors in real-world scenarios, motivating synthetic data generation as a complementary approach.

2.2 Diffusion Models

Diffusion models emerged as a powerful class of generative models through the pioneering work
of |Sohl-Dickstein et al.| [2015]], who introduced the concept of gradually corrupting data through
a forward diffusion process (adding noise) and learning to reverse this corruption (the denoising)
for generation. This approach, inspired by non-equilibrium thermodynamics, formulated generation
as the reversal of a Markov chain that progressively adds Gaussian noise to data until it becomes



pure noise. While conceptually elegant, this discrete-time formulation required learning the reverse
process through variational inference with a carefully designed evidence lower bound (ELBO).

The theoretical landscape was significantly advanced by Song et al.|[2021]], who unified diffusion
models within the framework of stochastic differential equations (SDEs). By reformulating the
discrete diffusion process as continuous-time SDEs, they demonstrated that the reverse generative
process corresponds to solving a reverse-time SDE driven by the score function—the gradient of
the log probability density. This continuous formulation enabled more flexible sampling procedures
through predictor-corrector methods and eliminated the need for careful ELBO optimization. More-
over, the score-based method avoids the issue of directly modeling high-dimensional probability
distributions, which is often the bottleneck in likelihood-based models.

The field of diffusion models has since exploded with applications spanning diverse domains including
image generation [Zhang et al., [2024], audio and video synthesis [Luo et al., 2023[], molecular
design [Weiss et al.l 2023]], and text generation [Li et al.,|2022]|. Recent surveys have documented the
rapid expansion of diffusion models across computer vision, natural language processing, medical
imaging, time series analysis, text-to-speech synthesis, protein structure prediction/design, drug
discovery, and bioinformatics more broadly [Yang et al., 2023} [Croitoru et al., 2023, |Watson et al.,
2023| |Corso et al., [2022| [Hoogeboom et al., 2022, [Yim et al.,2024]]. Our work specifically pertains to
the application of graph generation with diffusion models, which we discuss further in Section[2.3]

2.3 Diffusion Models for Graphs

Recent work on diffusion models has begun addressing challenges relating to graph-structured data,
though most approaches have been limited to synthetic or simplified graph generation tasks. The
adaptation of diffusion models from continuous domains (like images) to discrete graph structures
presents unique technical challenges, particularly in handling the combinatorial nature of graph
topology and the heterogeneity of node attributes.

Rather than using diffusion models for image data, Niu et al.| [2020] corrupts real graphs by adding
Gaussian noise to all entries of their adjacency matrix, treating the graph structure as a continuous
object that can be gradually denoised. Extending this approach, |Li et al.| [2024] introduces the
GraphMaker framework and investigates the scalability of diffusion models to large attributed graphs,
adapting continuous diffusion processes to discrete combinatorial structures. However, their work is
constrained to handling node attributes through categorical variables and one-hot encoding schemes.

This limitation is particularly problematic for social network data, where user attributes often
include rich textual information such as profile descriptions, recent posts, and user-generated content
that cannot be adequately captured through simple categorical representations. Moreover, most
bot classification frameworks require some form of representation of a user’s textual data, which
introduces the need for fundamentally different processing/generation approaches. In our work, we
extend and adapt the GraphMaker framework to generate realistic social network data that includes
textual attributes, going beyond the categorical variable limitations of existing approaches. Our
method incorporates specialized techniques for handling natural language features, enabling the
generation of attributed graphs where nodes contain rich textual information representative of real
social media profiles and content.To our knowledge, this is the first application of such methods for
augmenting bot detection datasets.

3 Problem Setting

Bot detection on social media platforms like Twitter is fundamentally a graph-based classification
problem. As a result, training effective models for this task requires careful consideration of how
to represent users, their features, and their relationships within the social graph. We present a
general formalization of the training problem. Let Dyey = ({(vs, X3, ¥:) }7 1, Erea) denote a finite,
gold-standard dataset of labeled Twitter accounts where for some user account ¢, v; is the node in
the social graph, z; is the user feature vector, and y; € {0, 1} labels the user as either a human (0)
or a bot (1), while Ei, is the direct edge set capturing the underlying graph structure. For any two
users i, j € Dreal, (Vi, V) € Eiea if and only if user ¢ follows user j. We partition Dy, into a train

set, DM and a held-out test set, DS



Our objective is to learn a classifier fy : (v, X) — {0, 1} parameterized by 6 that predicts the label
of a user account from the node v and its features X. Using the gold-standard dataset, we train fy rea

on D" and evaluate its performance on D!, To improve generalization of the classifier, especially

when D, is limited in scope, we assume access to a black-box generative model G : D;g;i]n + Degynths
where Dyynn = ({(v}’ nh X ;ymh, ;ymh) " ., Egynn), which mimics the format of the real data. We
then use this to augment the original training data to create Dyyy = Do U Dgynen. We then train a
second classifier fg .., on Dy, and again evaluate on the same held-out test set D,
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Figure 1: Training Pipeline

Our use of synthetic data generation to augment scarce labeled bot networks draws similarities with
techniques employed to improve spam review detection online Stanton and A. Irissappane|[2019].
We randomly sample a small number of training nodes from the larger dataset and feed this data
into our training pipeline, which is depicted in Figure|l} We defer discussion of the node sampling
method used to train our models to Appendix [A]

4.1 Classifier

Although our pipeline is model-agnostic, we use BotRGCN as the primary classifier for its simplicity
and strong performance on TwiBot-22. BotRGCN remains competitive for this task, with recent
methods achieving only marginal improvements [Liu et al.l [2024]. BotRGCN tackles two key
challenges in bot detection: bot disguise (individual bots mimicking humans) and coordinated
communities (bots acting in groups). It combines multi-modal user features with relational GCNs to
capture both individual and network-level patterns. Textual data (tweets, profiles) are encoded using
RoBERTa, while numerical and categorical metadata are integrated directly. A heterogeneous Twitter
graph is built from follower/following links, enabling relational GCNs to learn contextualized user
representations that fuse content and structure.

4.2 Graph Generation

We use GraphMaker [Li et al) [2024] to generate both structural and categorical social network
data. Trained on the sampled bot and human nodes from TwiBot, GraphMaker produces a synthetic



neighborhood of labeled nodes (“bot” or “human’) that approximates the real network. It also
generates basic user attributes, such as tweet counts and protected/verified status, yielding a set of
synthetic users with unique IDs and baseline features. These are then enriched with additional user
information via separate generators.

4.3 Training Pipeline

Our training process (Figure|[T) consists of two components: (1) synthetic data augmentation and (2)
classifier training. Our primary contribution addresses (1) through a two-phase pipeline.

Phase 1: Graph Structure Generation. We preprocess the real social graph to retain categorical
features (protected flags, verified flags, and discretized tweet counts) compatible with GraphMaker [Li
et al.l2024]. For numerical features like tweet counts, we apply a quantile-based discretization ap-
proach: construct an empirical CDF from training data, divide into quantile bins treated as categorical
variables during generation, then recover numerical values by sampling from the conditional CDF
given the assigned bin. This approach preserves the original distribution characteristics while also
enabling categorical treatment during synthesis.

Phase 2: Feature Generation. We train separate models for bot and human data: two
flan-t5-base [Chung et al.| 2022]] language models generate names, usernames, profile descrip-
tions, and profile picture links, while two MLP regressors generate creation dates. Each synthetic
node receives features from either bot or human models based on its label, completing the synthetic
social graph. The synthetic data combines with real training data to form the augmented dataset for
classifier training. We do not generate synthetic tweet content (see Appendix [B|for discussion).

S Experiments

5.1 Experimental Setup

We evaluate our approach on TwiBot-22 [Feng et al.,2023], the largest publicly available graph-based
Twitter bot detection benchmark, containing 1 million users, 4 entity types, and 14 relation types.
Each user is labeled as human or bot, with labels obtained via a diversity-aware, weakly supervised
process for higher quality than previous datasets. We keep the validation and test sets intact and
sample from the 700,000-node training set. While the dataset includes multiple interaction types, we
use only follower/following edges to construct our directed social network. From user information,
we preserve profile attributes: names, usernames, descriptions, and profile pictures (generated by our
language model); tweet counts, follower/following counts, and protected/verified status (generated by
GraphMaker); and account creation dates (generated by our MLP).

5.2 Evaluation

We measure classifier performance by testing on the entire TwiBot-22 test split, with 200,000
validation nodes and 100,000 testing nodes. We report standard metrics, including accuracy, precision,
recall, F1 score, and AUC. By maintaining the original test split intact and evaluating on the full
dataset, we ensure that our results are directly comparable to existing bot detection literature that
uses TwiBot-22 as a benchmark. Additionally, since our training involves only small sampled subsets
(1k-3k nodes) from the original training data, evaluating against the full 100,000-node test set creates
a significant domain gap that effectively tests whether our synthetic augmentation helps models
generalize beyond their limited training distribution.

5.3 Results

To systematically evaluate our synthetic data augmentation, we conduct ablation studies across
multiple sample sizes and random seeds. We test five sample sizes: 1,000, 2,000, 3,000, 4,000 and
5,000 nodes, comparing training on real data only versus real data augmented with an equal number
of synthetic nodes. To account for sampling variability, we run 4 repetitions for each sample range.
The average of the results are reported in Table [T] with 95% confidence intervals. Our focus on
small sample regimes directly addresses the data scarcity scenarios where synthetic augmentation is
most valuable, representing realistic conditions where practitioners have limited labeled data for bot
detection.



Table 1: Performance Comparison: Real Data vs. Synthetic Augmentation Across Sample Sizes.

Reported errors represent 95% confidence intervals.

Model Acc AUC F1 Precision Recall

2k Sampled  0.7371 £ 0.004 0.6007 + 0.01  0.3744 + 0.04 0.6321 + 0.04 0.2661 + 0.04
+2k Synth ~ 0.7383 +0.003 0.5981 +0.07 0.3639 £0.02 0.6309 +0.05 0.2599 + 0.04
3k Sampled 0.7184 +0.003 0.5603 + 0.01 0.2687 +£0.03 0.5707 £ 0.03  0.1757 £ 0.03
+ 3k Synth  0.7357 £ 0.002 0.5944 + 0.06 0.3584 + 0.04 0.6282 + 0.04 0.2507 + 0.03
4k Sampled  0.7282 +0.003 0.5793 £0.01 0.3242+£0.03 0.5959 £0.03 0.2204 £ 0.03
+4k Synth ~ 0.7388 £+ 0.002  0.6004 + 0.05 0.3570 +0.03  0.6310 + 0.04 0.2574 + 0.03
5k Sampled  0.7211 £0.002 0.5630 +0.02 0.2804 +0.02 0.5835 £ 0.02 0.1860 + 0.03
+ 5k Synth ~ 0.7388 + 0.002  0.5924 + 0.04  0.3526 + 0.02 0.6276 + 0.03  0.2466 + 0.02

Our ablation studies demonstrate consistent improvements from synthetic data augmentation across
different sample sizes. As shown in Table[T} models trained with synthetic augmentation consistently
achieve higher test and validation accuracy compared to their real-data-only counterparts.

Across all sample sizes, synthetic augmentation provides systematic improvements in test accuracy,
with gains ranging from 0.12% to 1.77%. The improvements become more pronounced as sample
size increases, suggesting that synthetic data generation becomes more effective when trained on
larger initial samples. Validation accuracy improvements are consistent across all experiments,
indicating enhanced generalization to unseen data. The 5k sample results are particularly compelling,
showing substantial improvements across nearly all metrics. The synthetic augmentation achieves a
1.77% improvement in test accuracy, along with gains in AUC (0.0294), F1 score (0.0722), precision
(0.0441), and recall (0.0606). This clear scaling trend, wherein larger samples yield proportionally
stronger benefits, is especially promising given our evaluation against the full TwiBot-22 test set split,
where larger training samples can better approximate the true underlying distribution.

The consistency of these improvements across multiple sample sizes and random seeds indicates
that the gains are systematic rather than artifacts of particular data samples. While these preliminary
results show modest improvements, their reliability and scaling trajectory demonstrate that our
diffusion-based synthetic data generation successfully captures meaningful patterns in bot and human
behavior. As graph diffusion technology continues to advance and can handle larger attributed graphs,
we anticipate AURA will deliver increasingly substantial performance gains.

6 Conclusion

Our preliminary results provide encouraging evidence for the viability of synthetic data augmentation
for bot detection, particularly in data-scarce scenarios where improvements are most impactful. The
consistency of improvements across all sample sizes and the clear scaling trend, where larger samples
yield proportionally stronger benefits, suggest substantial potential as graph diffusion capabilities
advance.

Current limitations include scalability: our diffusion model, GraphMaker, struggles with graphs larger
than approximately 13k nodes due to memory constraints. However, this constraint is instructive given
our evaluation against the full TwiBot-22 test split as larger training samples increasingly approximate
the true underlying distribution, making the observed scaling trajectory especially promising.

Our work establishes a foundation for synthetic data generation in social media bot detection that
aligns favorably with advancing graph diffusion technology. The modular pipeline design enables
systematic improvements across components, from more memory-efficient diffusion architectures to
enhanced text generation and distributed sampling strategies. As synthetic data generation continues
to advance, we anticipate that the modest improvements demonstrated here represent early evidence
of a promising research direction that could significantly impact bot detection in resource-constrained
environments.

Future work should focus on scalability optimization, optimal synthetic-to-real data ratios at larger
scales, and cross-platform transferability as technological constraints diminish, paving the way for
broader adoption and transformative impact in resource-constrained bot detection scenarios.
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A Node Sampling

To train our graph, we randomly select a small number of nodes from the TwiBot-22 dataset. In
an effort to produce a subgraph that was representative of the larger training dataset, samples were
extracted using multiple sampling techniques (particularly snowball sampling [Oguz-Alper and Zhang|
2023]], forest fire sampling [Leskovec and Faloutsos}, 2006], and rejection-controlled metropolis-
hastings sampling [Li et al.,|2015]]) such that graph metrics could be computed for both samples and
the full graph, and could then be contrasted (with the chosen metrics being avg degree, density, WCC
fraction, SCC fraction, reciprocity, assortativity, pagerank and average path length).

Through our testing, we found that rejection-controlled metropolis-hastings samplers yielded metrics
that most closely resembled those of the full graph while sampling only 1% of the full graphs nodes.
This is because the RCMH algorithm performs a biased random walk on the symmetrized version of
our directed social graph, with acceptance probability

a(u— v) = min (1’ (3?5 >>

for transitions from node u to candidate v, where a € [0, 1] controls the degree bias. For social
networks like Twitter, this formulation is advantageous because it can capture both highly connected
influencers and isolated accounts—both critical populations for bot detection. When the walk
becomes stuck (idle for more than max_idle), the algorithm randomly jumps to explore new regions,
preventing oversampling of dense communities that might obscure important behavioral patterns in
bot classification.

Since TwiBot-22’s training corpus exhibits a large fraction of unconnected nodes (approximately
300,000 unconnected nodes in a 700,000 node graph), we chose = 0.95 and max_idle = 100 after
empirical validation on graph preservation metrics. The high « value biases exploration toward
nodes with diverse connectivity, while the low emax_idle parameter promotes frequent exploration of
different graph regions, preventing the sampler from becoming trapped in homogeneous communities
and maintaining the heterogeneity essential for robust bot detection model training.
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B Why No Tweets?

We find that including tweet data in the training of the BotRGCN classifier yields only marginal
improvements in performance. See Table [2]for additional details.

Data Usage Accuracy Precision Recall F1

All 0.7966 0.7481 0.4680 0.5750
10% 0.7699 0.6657  0.4390 0.5291
None 0.7734 0.6882 04214 0.5228

Table 2: Performance of BotRGCN classifier on the test set when including varying amounts of Tweet
data in the training corpus. We note the difference in classifier accuracy at these levels is < 3%.

Further, in the years since the release of TwiBot-22, significant advancements in the text generation
capabilities of language models have allowed bot accounts to generative more human-like content
and made it more challenging to correctly distinguish real and bot account on social networks when
using text data [Radivojevic et al.} 2024].

C Reproducibility

All experiments and training were performed on P100 and/or V100 GPUs with model and data tensors
moved to the appropriate device. Cumulatively, all experiments totaled on the order of 100 GPU
hours. We plan to release the experiment code upon publication.

D Licenses For Assets Used

The experiments in this work make use of several open-source libraries, all of which are properly
cited and used in accordance with their respective licenses. In particular, PyTorch, scikit-learn,
NetworkX, and pandas are made available under the BSD 3-Clause license. Deep Graph Library
(DGL) and huggingface_hub are available under the Apache License 2.0.
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