
Under review as a conference paper at ICLR 2023

PointDP: DIFFUSION-DRIVEN PURIFICATION AGAINST
3D ADVERSARIAL POINT CLOUDS

Anonymous authors
Paper under double-blind review

ABSTRACT

3D Point cloud is a critical data representation in many real-world applications,
such as autonomous driving, robotics, and medical imaging. Although the success
of deep learning further accelerates the adoption of 3D point clouds in the physi-
cal world, deep learning is notoriously vulnerable to adversarial attacks. Various
defense solutions have been proposed to build robust models against adversarial
attacks. In this work, we identify that the state-of-the-art empirical defense, ad-
versarial training, has a major limitation in 3D point cloud models due to gradient
obfuscation, resulting in significant degradation of robustness against strong at-
tacks. To bridge the gap, we propose PointDP, a purification strategy that leverages
diffusion models to defend against 3D adversarial attacks. Since PointDP does not
rely on predefined adversarial examples for training, it can defend against diverse
threats. We extensively evaluate PointDP on six representative 3D point cloud
architectures and leverage sixteen strong and adaptive attacks to demonstrate its
lower-bound robustness. Our evaluation shows that PointDP achieves significantly
better (i.e., 12.6%-40.3%) adversarial robustness than state-of-the-art methods
under strong attacks bounded by different ℓp norms.

1 INTRODUCTION

Point cloud data is emerging as one of the most broadly used representations in 3D computer vision.
It is a versatile data format available from various sensors like LiDAR and stereo cameras and
computer-aided design (CAD) models, which depict physical objects by many coordinates in the 3D
space. Many deep learning-based 3D perception models have been proposed [59, 34, 43, 60, 41, 9]
and thus realized several safety-critical applications (e.g., autonomous driving) [81, 46, 45]. Although
deep learning models [41, 42] have exhibited performance boost on many challenging tasks, extensive
studies show that they are notoriously vulnerable to adversarial attacks [5, 49, 68], where attackers
manipulate the input in an imperceptible manner, which will lead to incorrect predictions of the target
model. Because of the broad applications of 3D point clouds in safety-critical fields, it is imperative
to study the adversarial robustness of point cloud recognition models.

The manipulation space for 2D adversarial attacks is to change pixel-level numeric values of the
input images. Unlike adversarial examples in 2D applications, the flexible representation of 3D point
clouds results in an arguably larger attack surface. For example, adversaries could shift and detach
existing points [88], add new points into the pristine point cloud [50], or even generate totally new
point clouds [89] to launch attacks. Different strategies, including limits on the number of altered
points and constraints on the maximal magnitude of shifted points [50] were proposed to make attacks
less perceptible. The flexibility of 3D point cloud data formats enables diverse attacks, thus hindering
a practical and universal defense design.

Given the safety-critical property involved in 3D point cloud applications, various studies have been
devoted to advancing the robustness of 3D point cloud recognition models. DUP-Net [90] and
GvG-PointNet++ [14] pioneered to add statistical outlier removal (SOR) modules as pre-processing
and in-network blocks, respectively, as mitigation strategies. More lately, Sun et al. [51] broke the
robustness of DUP-Net and GvG-PointNet++ by specific adaptive attacks. Adversarial training has
been acknowledged as the most potent defense to deliver strong empirical robustness on PointNet,
DGCNN, and PCT [50]. Meanwhile, advanced purification strategies like IF-Defense [66] and
LPC [25] leverage more complex modules to cleanse the adversarial point clouds. However, given
that point cloud is a sparse and unstructured data format, it motivates us to re-think that whether
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the current adversarial training and purification-based methods are robust enough against stronger
adversarial attacks?

In this work, our journey starts with revisiting the prior arts and exploring their truly adversarial
robustness. By designing various types of strong adaptive attacks, we, for the first time, demonstrate
that standard adversarial training [33] suffers from gradient obfuscation in the point cloud recognition
models as the unstructured point cloud data format requires unique architectural designs to digest. We
also extensively evaluate IF-Defense and LPC to show that their purification strategies are actually
vulnerable to stronger attacks (§ 4.3).

Furthermore, we propose PointDP, an adversarial purification method that leverages a diffusion model
as a pre-processing module to defend against 3D adversaries. As shown in Figure 1, PointDP consists
of two components (1) an off-the-shelf 3D point cloud diffusion model and (2) a classifier. Given
an input point cloud, PointDP take two steps: (i) adding noise to the input data gradually via the
diffusion process of the diffusion model, (ii) purifying the noised data step by step to get the reversed
sample via the reverse process of a diffusion model (§ 3.1), and (iii) feeding the reversed sample to
the final classifier. Since PointDP does not rely on any types of pre-defined adversarial examples for
training, it can defend against diverse unseen threats.

We rigorously evaluate PointDP with six representative point cloud models and sixteen attacks,
including PGD [50, 33], C&W [68, 8], and point cloud-specific attacks [88, 21] with ℓ0, ℓ2, and ℓ∞
norms. PointDP on average achieves 75.9% robust accuracy while maintaining similar clean accuracy
to the original models, outperforming existing studies by a significant margin. In a nutshell, our
contributions are summarized as two-fold:

• We are the first to demonstrate that standard adversarial training [33, 50], the most longstanding
defense in the 2D image recognition task, has a major limitation in its application in 3D point cloud
models due to architecture designs. We launch black-box attacks to validate our claim that degrades
adversarially trained models’ robust accuracy to merely ∼10%, which is no longer useful for 3D
point cloud recognition.

• We propose PointDP that leverages diffusion models to purify adversarial 3D point clouds.
PointDP is a general framework that is independent of the diffusion model used. We also formulate
rigorous adaptive attacks on PointDP. We conduct extensive evaluation on six representative models
with numerous attacks to comprehensively understand the robustness of PointDP. Our evaluation
shows that PointDP outperforms previous state-of-the-arts purification methods, IF-Defense [66]
and LPC [25], by 12.6% and 40.3% on average, respectively. We also set up a rigorous protocol for
3D robustness evaluation to benefit future research.

2 RELATED WORK

In this section, we review the current progress of deep learning, adversarial attacks, and defenses for
3D point cloud recognition tasks.

2.1 DEEP LEARNING ON 3D POINT CLOUD RECOGNITION

2D computer vision has achieved stellar progress on architectural designs of convolutional neural
networks [22], followed by vision transformers [15]. However, there is currently no consensus on the
architecture of 3D perception models since there is no standard data format for 3D perception [53]. As
raw data from both 3D scanners and triangular meshes can be efficiently transformed into point clouds,
they are becoming the most often utilized data format in 3D perception. 3D networks at the early stage
use dense voxel grids for perception [59, 34, 47, 54], which discretize a point cloud to voxel cells
for classification, segmentation, and object detection. PointNet pioneered to leverage global pooling
help achieve memory-efficient permutation invariance in an end-to-end manner. PointNet++ [42] and
DGCNN [61] followed up to add sophisticated local clustering operations to advance the performance.
Sparse tensors are the other direction in 3D network designs [19, 9] to use 3D convolutions to improve
3D perception performance. PointCNN and RSCNN reformed the classic pyramid CNN to improve
the local feature generation [26, 29]. PointConv and KPConv designed new convolution operation for
point cloud learning [65, 55]. PointTransformer and PCT advanced self-attention blocks in the 3D
space and achieved good performance [87, 20]. Various novel local clustering operations [69, 32]
also show enhancements on the clean performance. In this work, we focus on PointNet, PointNet++,
DGCNN, PCT, CurveNet, and PointMLP as our evaluation backbones since they are representative
and widely used and achieve state-of-the-art results in point cloud recognition [1].
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Figure 1: Illustration of PointDP, where PointDP serve as a purification module. We leverage [31] as
the diffusion model in our study. The adversarial point cloud will be incorrectly classified as “toilet”
by the recognition model if not purified by our PointDP.

2.2 ADVERSARIAL ATTACKS AND DEFENSES

Adversarial attacks have become the main obstacle that hinder deep learning models from real-world
deployments, especially in safety-critical applications [16, 49, 5, 86, 85]. There are a lot of adversarial
attacks proposed in the 2D space to break the various vision models [8, 72, 79, 75, 23, 24, 73, 52].
To fill this gap between standard and robust accuracies, many mitigation solutions have been studied
and presented to improve the robustness against adversarial attacks [80, 78, 4, 38, 35, 82, 71, 83,
70]. However, most of them including adding randomization [28, 13, 14], model distillation [38],
adversarial detection [35], and input transformation [80, 78, 37, 4, 90] have been compromised by
adaptive attacks [56, 2]. Adversarial training (AT) [33, 18, 64, 44], in contrast, delivered a more
longstanding mitigation strategy [74, 76, 84]. However, the robust accuracy achieved by AT is still
not satisfactory enough to be used in practice. Most recently, Nie et al. proposed DiffPure [36] that
leverages diffusion models to defend against adversarial attacks, and following-up studies to extend it
to certified defenses [7].

Adversarial attacks and defenses also extend to 3D point clouds. Xiang et al. [72] first demonstrated
that point cloud recognition models are vulnerable to adversarial attacks. They also introduced
different threat models like point shifting and point adding attacks. Wen et al. [62] enhanced the loss
function in C&W attack to achieve attacks with smaller perturbations and Hamdi et al. [21] presented
transferable black-box attacks on point cloud recognition. [63] pioneered to study the point dropping
attack under both withe- and black-box settings. Zhou et al. [90] and Dong et al. [14] proposed
to purify the adversarial point clouds by input transformation and adversarial detection. However,
these methods have been successfully by [51] through adaptive attacks. Moreover, Liu et al. [28]
made a preliminary investigation on extending countermeasures in the 2D space to defend against
simple attacks like FGSM [18] on point cloud data. Sun et al. [50] conducted a more thorough study
on the application of self-supervised learning in adversarial training for 3D point clodu recognition.
Besides adversarial training, advanced purification methods IF-Defense [66] and LPC [25] were
proposed to transform the adversarial examples to the clean manifold. Certified defenses for point
clouds have been focusing on the adversarial transformations and deformations [30, 10, 40]. In this
work, we present PointDP, that utilizes 3D diffusion models to purify adversarial point clouds that
delivers both state-of-the-art (SOTA) empirical and certified robustness. We also demonstrate that
standard adversarial training suffer from strong black-box attacks and SOTA purification methods
(i.e., IF-Defense and LPC) are vulnerable to PGD-styled adversaries (§ 4.3).

3 PointDP: DIFFUSION-DRIVEN PURIFICATION AGAINST 3D ADVERSARIES

We first introduce the preliminaries of diffusion models and then propose PointDP that first introduces
noise to the adversarial 3D point clouds, followed by the forward process of diffusion models to get
diffused point clouds. Purified point clouds are recovered through the reverse process (§-3.2). Next,
we follow [36] to apply the adjoint method to backward propagate through SDE for efficient gradient
evaluation with strong adaptive attacks (§ 3.3).

3.1 PRELIMINARIES

In this section, we briefly review the background of conditional diffusion models in 3D vision tasks.
Following [31], we use the discrete-time formulation of the forward and reverse processes.
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Given a clean point cloud sampled from the unknown data distribution x0 ∼ q(x), the forward
process of the diffusion model leverages a fixed Markov chain to gradually add Gaussian noise to the
clean point cloud x0 over a pre-defined N time steps, resulting in a number of noisy point clouds
{x1,x2, · · · ,xN}. Mathematically, the forward process is defined as:

q(x1:N |x0) :=

N∏
n=1

q(xn|xn−1),

q(xn|xn−1) := N (xn;
√

1− βnxn−1, βnI)

(1)

where βn is a scheduling function of the added Gaussian noise, satisfying 0 < β1, · · · , βN < 1.

The reverse process, in contrast, is trained to recover the diffused point cloud in an iterative manner.
3D Point clouds have less semantics than 2D images due to the lack of texture information. Therefore,
point cloud diffusion models leverage a separate encoder e to as a latent feature zx = e(x) as a
condition to help recover the clean point cloud:

pθ(x0:N |z) := p(xN )

N∏
n=1

pθ(xn−1|xn, z),

pθ(xn−1|xn, z) := N (xn−1|µθ(xn, n,z), βnI)

(2)

where µθ denotes the approximated mean value parameterized by a neural network. The training
objective is to learn the variational bound of the negative log-likelihood [31]. In practice, we jointly
train the encoder e with the noise predictor ϵθ(xn, n,z). Similar to the DDPM model [12], we can
conduct the sampling by reparameterizing µθ as

µθ(xn, n,z) =
1√

1− βn

(
xn − βn√

1− αn
ϵθ(xn, n,z)

)
(3)

where αn =
∏n

i=1(1 − βi). It is worth noting that point cloud diffusion models have recently
achieved SOTA performance on generating and autoencoding 3D point clouds, which provides us
with opportunities for adversarial point cloud purification.

3.2 DESIGN OF PointDP
Overview. Figure 1 illustrates the pipeline of PointDP. Different from Nie et al. [36] use uncon-
ditional diffusion model to remove the adversarial effect for 2D images, we use the conditional
diffusion models as mentioned in § 3.1. Specifically, PointDP first adds pre-quantified Gaussian noise
to the input data and then leverage a well-trained diffusion model to purify the noisy point cloud
step by step to recover the clean point cloud. The reversed point cloud will be finally fed into the
recognition model for the classification task. Note that we do not aim at designing new point cloud
diffusion models, but instead propose a novel purification pipeline with rigorous evaluations as our
main contributions.

Following [36], in order to backpropagate through the forward and reverse processes for computing
gradients, we first convert the discrete-time formulation defined in Eqs. (1) and (2) to its continuous-
time counterpart, i.e., the forward and reverse stochastic differential equations (SDEs) [48]. Let
xa be an adversarial example w.r.t. the pristine classifier f , we initialize the input of the forward
diffusion process as xa, i.e., x0 = xa. Also, let x( n

N ) := xn, β( n
N ) := βn, α( n

N ) := αn, and
t ∈ {0, 1, · · · , N−1

N }. The forward diffusion process from t = 0 to t = t∗ ∈ (0, 1) can be solved by:

x(t∗) =
√
α(t∗)xa +

√
1− α(t∗)ϵ (4)

where ϵ ∼ N (0, I). We leverage Eq. 2 to recover the clean point clouds. Equivalently, the truncated
reverse process can be also solved by the SDE solver in [36] (denoted as sdeint):

x̂(0) = sdeint(x(t∗),frev, grev,w, t∗, 0) (5)

where the six inputs are initial value, drift coefficient, diffusion coefficient, Wiener process, initial
time, and end time [36], with the definitions:

frev(x, t,z) = −1

2
β(t)[x+ 2sθ(x, t,z)], grev(t) =

√
β(t) (6)
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and the score function sθ is derived from ϵθ(xn, n,z) in Eq. (3) by following:

sθ(x, t,z) = − 1√
1− α(t)

ϵθ(x(t), tN, z) (7)

Note that the hyper-parameter t∗ and N trades off the denoising performance and efficiency. We
empirically choose t∗ = 0.15 and N = 200 in our study, which has shown satisfactory results in our
evaluation (§ 4). We also conduct ablation studies on t in § 4.2.

3.3 ADPATIVE ATTACKS ON PointDP
PointDP is a pre-processing module that purifies the adversarial perturbations. [2] have shown that
input transformation-based methods can be broken by specifically designed attacks. Therefore, it
is essential to model the adaptive attacks on PointDP to demonstrate its lower-bound adversarial
robustness. We thus formulate two types of adaptive attacks on PointDP.

Attack on Latent Feature. As PointDP utilizes conditional diffusion models for adversarial purifica-
tion, the latent feature z is a good candidate for adversaries to launch attacks. Concretely, adversaries
can set the goal to maximize some distance metric D between the latent feature of the optimized
adversarial examples and the oracle latent feature of clean inputs zoracle. Without loss of generality,
the adaptive attacks can be formulated as:

xs+1 = Projx+S(xs + α · norm(∇xs
D(e(xs), zoracle))), (8)

where xs denotes the adversarial examples from the s-th step, Proj is the function to project the
adversarial examples to the pre-defined space S , and α is the attack step size. We choose two distance
metrics in our study, where the first one is the KL divergence [17] and the other is the the ℓ1 norm
distance. In our evaluation (§ 4), we report the lowest accuracy achieved under attacks with two
distance metrics.

Adaptive Attack. We follow [36] to formulate the adaptive attack as an augmented SDE process.
We re-state the attack formulation as below. For the SDE in Equation 5, the augmented SDE that
computes the gradient ∂L

∂x(t∗) of backward propagating through it is given by:(
x(t∗)

∂L
∂x(t∗)

)
=sdeint

((
x̂(0)

∂L
∂x̂(0)

)
, f̃ , g̃, w̃, 0, t∗

)
(9)

where ∂L
∂x̂(0) is the gradient of the objective L w.r.t. the output x̂(0) of the SDE in Equatrion 5), and

f̃([x; z], t) =

(
frev(x, t)
∂frev(x,t)

∂x z

)
, g̃(t) =

(
−grev(t)1

0

)
, w̃(t) =

(
−w(1− t)
−w(1− t)

)
where 1 and 0 denote the vectors of all ones and all zeros, respectively. Nie et al. [36] have
demonstrated that such approximation aligns well with the true gradient value. Therefore, we
leverage this adaptive attack formulation for our evaluation.

4 EXPERIMENTS AND RESULTS

In this section, we first introduce our experimental setups (§ 4.1). We then present the standard
robustness evaluation of PointDP(§ 4.2). We next show that how the SOTA adversarial training and
adversarial purification methods fail under various strong attacks (§ 4.3). We finally conduct stress
test on PointDP to show its actual robustness under various stronger adaptive attacks (§ 4.4).

4.1 EXPERIMENTAL SETUPS

Datasets and Network Architectures. We conduct all the experiments on the widely used Model-
Net40 point cloud classification benchmark [67], consisting of 12,311 CAD models from 40 artificial
object categories. We adopt the official split with 9,843 samples for training and 2,468 for testing. We
also uniformly sample 1024 points from the surface of each object and normalize them into an edge-
length-2 cube, following most of the prior arts [41]. As mentioned before, there are various backbones
for 3D point cloud recognition in the literature. To demonstrate the universality of PointDP, we
select six representative model architectures including PointNet [41], PointNet++ [42], DGCNN [61],
PCT [20], CurveNet [69], and PointMLP [32]. These backbones either have representative designs

5



Under review as a conference paper at ICLR 2023

Table 1: Evaluation Results of Plain Model on PA and PD (Accuracy %). Models under other attacks
mostly have 0% accuracy, and we put the detailed results in Appendix A.

PointNet PointNet++ DGCNN PCT CurveNet PointMLP
None 90.1 92.8 92.5 92.8 93.2 93.5
PA 44.1 19.9 35.1 20.8 48.9 7.2
PD 33.3 69.8 64.5 53.0 72.6 71.1

(e.g., Transformer and MLP) or achieve SOTA performance on the ModelNet40 benchmark (e.g.,
CurveNet and PointMLP).

Adversarial Attacks. As briefly described in § 2.2, adversarial attacks could be roughly categorized
into C&W- and PGD-styled attacks. C&W attacks involves the perturbation magnitude into the
objective term of the optimization procedure by Lagrange multiplier, while PGD attacks set the
perturbation magnitude as a firm constraint in the optimization procedure. Moreover, adversarial
attacks by ℓp norm as the distance metric for the perturbation. Although a number of attacks measure
Chamfer and Handoff “distances” in 3D point cloud [68], they are not formal distance metrics as they
do not satisfy the triangular inequality. Therefore, we still leverage ℓ2 and ℓ∞ norm, following most
defense studies in both 2D and 3D vision tasks [8, 50]. We also have designed adaptive attacks on our
proposed method § 3.3. Besides naive C&W and PGD attacks, we leverage specific attacks designed
to break the robustness of point cloud recognition such as kNN [57] and AdvPC [21]. We also apply
strong adaptive AutoAttack [11] (i.e., APGD) in our evaluation. Moreover, we use SPSA [58] and
Nattack [27] as black-box adversaries, followed by the suggestion of Carlini et al. [6]. We also
leverage EOT-AutoAttack. Point adding (PA) and dropping/dropping (PD) attacks are also evaluated
in our study, followed by the setups in [50]. We set the attack steps to 200 to maximize the adversarial
capability and follow the settings in [50] for other attack parameters by default.

Evaluation Metrics. We leverage two main metrics to evaluate the performance of our defense
proposal, which are standard and robust accuracy. The standard accuracy measures the performance
of the defense method on clean data, which is evaluated on the whole test set from ModelNet40. The
robust accuracy measures the performance on adversarial examples generated by different attacks.
Because of the high computational cost of applying adaptive and black-box attacks to our method,
we evaluate robust accuracy for our defense on a fixed subset of 128 point clouds randomly sampled
from the test set. Notably, robust accuracies of most baselines do not change much on the sampled
subset, compared to the whole test set. We evaluate the robust accuracy on the whole test set for other
adversarial attacks with acceptable overhead (e.g., C&W and PGD attacks).

Table 2: Evaluation Results (Accuracy) of Adversarial Attacks on PointDP (%). Colored rows are
corresponded to rows in Table 5 for clear comparisons with IF-Defense results.

PointNet PointNet++ DGCNN PCT CurveNet PointMLP
None 86.8 87.9 86.9 87.0 88.0 88.2

ℓ∞
ϵ = 0.05

C&W 77.9 78.6 78.9 76.8 73.1 76.2
PGD 78.1 80.6 80.3 77.2 74.8 79.8

AdvPC 69.7 76.6 79.1 79.4 72.6 75.2
PA 82.1 85.1 84.8 85.5 86.3 85.8

ℓ2
ϵ = 1.25

C&W 82.4 82.9 81.9 80.9 81.5 82.6
PGD 80.1 75.0 74.6 72.0 71.7 76.4

AdvPC 69.1 76.3 79.0 74.2 74.1 75.6
kNN 83.5 82.9 83.3 82.3 81.5 83.1

ℓ0
ϵ = 200

PD 68.9 74.1 77.3 76.3 76.8 77.4

Baseline. Without any defense applied to the original recognition models, the robust accuracy is
mostly 0% for all models under ℓ2 and ℓ∞ based attacks (see Appendix A). DGCNN exceptionally
achieves 64% on ℓ2-based PGD, AutoAttack, respectively, due to its dynamic clustering design,
which adaptively discards outlier points. PA and PD are two weaker attacks and Table 1 presents the
robust accuracy against these two attacks.

4.2 EXPERIMENT RESULTS OF PointDP
In this section, we first present the evaluation results of PointDP under attacks on the plain models.
We train the diffusion and 3D point cloud recognition models in a sequential order. Table 2 presents
the detailed results of PointDP against attacks on six models. We find that PointDP overall achieves
satisfactory results across all models and attacks. The average robust accuracy against adversarial
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Figure 2: Compare among SOTA Adversarial Purification Strate-
gies (i.e., IF-Defense [66], LPC [25], and PointDP). The results
of IF-Defense and PointDP are averaged from six models.

Figure 3: Ablation on Discrete
Diffusion Steps in PointDP.

attacks is above 75%. We observe a drop on the clean accuracy for the chosen models due to the
imperfect reconstruction of diffusion models. As mentioned before, diffusion models for 3D point
cloud is a more difficult task than 2D image diffusion, which may lead to partial semantic loss. The
average drop of standard accuracy is 4.9%. We find that DGCNN still achieves the best robustness
combined with PointDP, which has a 79.9% of robust accuracy. We further compare the performance
of PointDP with adversarial training, IF-Defense, and LPC in the next section.

Table 3: Ablation Study on Overhead Introduced
by Adversarial Purification Methods.

DUP-Net IF-Defense PointDP
Time (s) 1.33 2.60 0.097

We also ablate the effect of diffusion steps in
PointDP. Figure 3 shows the averaged evalua-
tion results of point shifting, adding, and drop-
ping attacks with PGD adversary over the se-
lected models. Point shifting attack is much
stronger than point adding and dropping attacks. It is, thus, more sensitive to the diffusion steps in
PointDP. We find that the robust accuracy converges after the number of diffusion steps n ≥ 30 (or
equivalently t ≥ 0.15). Therefore, we choose to use t∗ = 0.15 in the main evaluation of our study.
Adversarial purification inevitably introduces overhead during model inference, we benchmark the
computation of PointDP and other baselines using an RTX3080 GPU and a batch size of 32. Table 3
presents the results, where PointDP achieves the most negligible cost than existing SOTA methods,
which is a 27× speed-up than IF-Defense.

4.3 FAILURE OF STATE-OF-THE-ART DEFENSES

In this section, we demonstrate how lately proposed defense solutions fail when encountered with
stronger (adaptive) adversarial attacks on 3D point cloud recognition models.

1 def knn(x, k):
2 inner = -2*torch.matmul(x.transpose(2, 1), x)
3 xx = torch.sum(x**2, dim=1, keepdim=True)
4 pairwise_distance = -xx - inner - xx.transpose

(2, 1)
5 idx = pairwise_distance.topk(k=k, dim=-1)[1]
6 # (batch_size, num_points, k)
7 return idx
8
9 def get_graph_feature(x, k):

10 #x’s shape is (batch_size,num_dims,num_points)
11 idx = knn(x, k=k) # (batch_size,num_points,k)
12 ...... # shape transformation here
13 feature = x.view(batch_size*num_points, -1)[

idx, :]
14 # idx is used as index to select features
15 ......
16 return feature
17
18 # forward function for EdgeConv
19 def forward(self, x):
20 ......
21 x = get_graph_feature(x, k=self.k)
22 x = self.conv1(x) # convolution
23 ......

Figure 4: PyTorch [39]-Style Code Snippet of Edge-
Conv [61] in Point Cloud Recognition Models. Ad-
versarial training fails since the kNN layers leverage
the top-k function where the gradient propagate to the
index, resulting in gradient obfuscation.

Adversarial training (AT) has been applied
to PointNet, DGCNN, and PCT with the help
of self-supervised learning [50] that achieves
satisfactory robustness. Such observations
are consistent with the performance of AT
for 2D perception models. However, we
find that AT is, in fact, a weak defense so-
lution in 3D perception models. First, as
acknowledged by [50], point cloud models
(e.g., PointNet++ and CurveNet) often lever-
age different sampling strategies to select
anchor points, like furthest point sampling
(FPS). Such sampling involves high random-
ness. AT either cannot converge with differ-
ent random seeds in each iteration or overfits
to a single random seed. Therefore, AT can-
not fit these models. Moreover, we discover
that the kNN layers will cause severe gra-
dient obfuscation in point cloud models as
well. Different from standard training pro-
cess that only needs the gradient of model
parameters w.r.t. the loss function ∂L

∂w , AT
additionally requires the gradient flow to the
input ∂L

∂x . As shown in Line 5 from Figure 4,
kNN essentially applies top-k for point se-

lection. Top-k is a general case for max pooling that does not have trainable model parameters.
Therefore, it will not affect the standard training. However, top-k is not differentiable w.r.t. the input
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Table 5: Evaluation Results (Accuracy) of Adversarial Attacks on IF-Defense (%). Colored rows are
corresponded to rows in Table 2 for clear comparisons with PointDP results.

PointNet PointNet++ DGCNN PCT CurveNet PointMLP
ONet None 90.0 92.8 92.4 92.8 93.1 93.5

ℓ∞
ϵ = 0.05

PGD 69.9 74.0 61.0 54.1 51.9 61.6
AdvPC 69.4 72.8 61.6 53.9 53.6 62.5

ℓ2
ϵ = 1.25

PGD 74.2 77.5 70.5 67.2 68.7 70.5
AdvPC 69.0 72.9 63.0 64.5 55.4 67.9

ConvONet None 90.1 92.8 92.5 92.8 93.2 93.5
ℓ∞

ϵ = 0.05
PGD 66.4 73.2 52.9 46.8 45.3 55.7

AdvPC 63.7 71.2 55.5 47.2 46.7 55.0
ℓ2

ϵ = 1.25
PGD 72.2 76.7 69.8 65.6 62.7 71.4

AdvPC 63.4 74.3 56.6 59.8 47.2 71.0

x. Therefore, the implementation simplifies the gradient backward propagation through the top-k
function as an indexing function to make the chain propagation smooth:

{y}k1 = top-k({x}n1 )
∂y

∂xi
=

{
1 if i ∈ arg top-k({x}n1 )
0 otherwise

(10)

However, such simplification still cannot resolve the differentibility issue of the top-k function [77].

Different from 2D model usually at most use one layer of max pooling, the heavy usage of kNN
layers in DGCNN and PCT will drastically hinder the actual gradient flow. As mentioned in § 4.1, we
exploit black-box SPSA and Nattack to validate our findings. Table 4 presents the results of AT. SPSA
and Nattack can greatly lower the average robust accuracy (7.8%) than white-box attacks (55.6%) on
DGCNN and PCT. This phenomenon exactly reveals gradient obfuscation as white-box attacks rely
on the backward propagated gradient to succeed. The results demonstrated that the approximated
gradients from black-box attacks are more accurate than the propagated ones. PointNet, however,
achieves better robustness under black-box attacks because it only has one max pooling layer and
does not employ kNN layers.

Table 4: Evaluation Results (Accuracy) of Standard
Adversarial Training (%) with ℓ∞ norm ϵ = 0.05.

PointNet DGCNN PCT
None 87.8 90.6 89.7
PGD 52.1 67.4 51.3

AutoAttack 40.5 56.4 47.2
SPSA 56.7 7.8 11.4

Nattack 55.1 5.4 6.5

Existing purification-based defenses against
3D adversarial point clouds mainly leverage
C&W-styled attacks in their evaluation. C&W
attacks utilize the method of Lagrange multipli-
ers to find tractable adversarial examples while
minimizing the magnitudes of the perturbation.
From the perspective of adversary, such attacks
are desirable due to their stealthiness, while this
does not hold from a defensive view. Defense
methods should be evaluated against strong adaptive attacks [6]. DUP-Net [90] is a pioneer study
that uses statistical outlier removal and a upsampler network for purification, but it was adaptively
attacked by [51]. We thus present the evaluation results of DUP-Net in Appendix A. IF-Defense and
LPC are the SOTA adversarial purification methods for 3D point cloud models. We leverage PGD and
AdvPC attacks, which assign constant adversarial budget in the adversarial optimization stage. We
follow the original setups of IF-Defense and LPC in our study. Such evaluation is stronger than C&W
attacks, while we note that they are not strict adaptive attacks since the adversarial target is still the
classifier itself. Similar to PointDP , IF-Defense can be pre-pended to any point cloud classifier, but
LPC uses a specific backbone. Table 5 presents the detailed evaluation results of IF-Defense under
various settings and attacks. We find that PointDP achieves much better robustness than IF-Defense,
which is on average an 12.6% improvements. However, IF-Defense achieves slightly higher clean
accuracy (4.9%). This is because IF-Defense leverages SOR to smooth the point cloud [90]. However,
such an operation has been demonstrated to be vulnerable [51]. With specific adaptive attacks, there
will be a even larger drop of robust accuracy for IF-Defense.

Figure 2 shows the comparison among PointDP and existing methods. PointDP overall achieves the
best performance than prior arts, which are 12.6% and 40.3% improvements than IF-Defense and
LPC, respectively. We find that even without adaptive attacks, adversaries with constant budgets
can already hurt the robust accuracy by a significant gap. This suggests that IF-Defense and LPC
fail to deliver strong robustness to 3D point cloud recognition models. Especially, LPC appears in
the proceedings of CVPR 2022, but actually achieves trivial robustness, indicating that a rigorous
evaluation protocol is highly required in this community.
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4.4 DEFENSE AGAINST ADAPTIVE THREATS

We have so far illustrated that state-of-the-art defenses can be easily broken by (adaptive) adversarial
attacks and PointDP consistently achieves the best robustness. In this section, we further extensively
evaluate the robustness of PointDP on even stronger adaptive attacks to demonstrate the actual
robustness realized by PointDP. As mentions in § 4.1, we leverage two types of adaptive attacks
in our study, and Table 6 presents their results. We also leverage black-box SPSA and Nattack to
validate our results. We find that BPDA-PGD the strongest adaptive attacks, which align well with
previous study on 2D diffusion-driven purification [36]. Even though with strong adaptive attacks,
PointDP still achieves much better robustness. Besides, black-box attacks are much less effective.
Although we admit that PointDP still relies on gradient obfuscation, the extremely high randomness
will hinder the black-box adversaries finding correct gradients. We also ablate the effectiveness of
PointDP with larger attack budgets in Appendix A.

Table 6: Evaluation Results (Accuracy) of Strong Adaptive Attacks on PointDP (%).

PointNet PointNet++ DGCNN PCT CurveNet PointMLP
None 86.8 87.9 86.9 87.0 88.0 88.2

ℓ∞
ϵ = 0.05

BPDA-PGD 77.1 78.6 79.2 76.1 73.9 77.7
EOT-AutoAttack 78.0 79.9 79.1 76.5 75.9 78.9

PGD 80.8 80.7 82.9 82.5 80.8 79.9
AdvPC 69.9 76.8 79.4 79.8 72.9 75.4
SPSA 76.6 78.9 74.9 78.5 76.4 80.9

Nattack 75.2 77.9 74.4 78.0 76.1 78.9
PA 81.7 84.7 84.1 84.5 84.8 85.2

ℓ2
ϵ = 1.25

BPDA-PGD 78.9 73.3 73.3 71.2 70.7 75.1
EOT-AutoAttack 79.6 74.4 74.2 71.3 71.3 75.9

PGD 86.1 87.5 82.5 86.3 87.7 87.8
AdvPC 69.1 76.9 79.2 74.5 74.3 76.1
SPSA 76.1 77.0 74.4 74.5 77.0 78.9

Nattack 74.9 76.5 73.9 74.0 76.3 77.2
ℓ0

ϵ = 200
PD 61.3 72.1 73.5 75.9 74.1 74.4

5 DISCUSSION AND CONCLUSION
Adversarial robustness has been well-established in 2D vision tasks, where Carlini et al. [6] and
many other researchers have devoted significant efforts to setting up a rigorous evaluation protocol.
In this study, we emphasize that this evaluation protocol should be strictly followed in the 3D point
cloud robustness study as well. Counter-intuitively, we have demonstrated that standard adversarial
training (AT) is not a good candidate to deliver robustness against strong black-box adversaries
because gradient obfuscation in 3D point cloud architectures will hinder the inner maximization
stage from making real progress in AT. We propose PointDP as an adversarial purification strategy to
mitigate the robustness loss in the 3D space. We want to clarify that almost all purification methods
(including PointDP) still depend on gradient obfuscation to mislead adaptive attackers. However,
we argue that proper usage of gradient obfuscation could still serve as a good defense, as long
as the obfuscation is sophisticated enough. The multi-step purification in diffusion models adds
extremely high-level randomness that EOT [3] and BPDA [2] attacks are hard to model. Therefore,
we believe our extensive evaluation reveals the actual robustness of PointDP. Our evaluation also
unveils a concerning fact that existing defenses in the 3D domain could be easily broken by strong
attacks. Therefore, we hope our evaluation protocol sets a standard for robustness assessment in this
community, i.e., a defense study should strictly follow a formal distance metric and leverage strong
attacks including PGD, black-box, and adaptive attacks to evaluate its actual robustness.

Limitation. Mitigation solutions to adversarial attacks are critical and essential for modern machine
learning systems. Given that 3D point cloud is heavily adopted in safety-critical applications,
we believe our study is valuable in demonstrating the vulnerabilities of existing SOTA defenses.
PointDP also. On the other hand, diffusion models needs multiple steps in the reverse process
to recover the point cloud and hinder adaptive attacks, which will incur additional computational
overhead. PointDP also limits itself to empirical robustness without theoretical guarantees.

In this paper, we propose PointDP, an adversarial purification method against attacks on 3D point
cloud recognition. We showed that adversarial training and prior purification methods are vulnerable
to strong attacks. We then performed extensive rigorous evaluations to validate that PointDP outper-
forms existing SOTA methods by a significant margin (12.6%-40.3%) in robust accuracy.
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ETHICS STATEMENT

As we continuously mentioned in our main paper and acknowledged in other studies [8, 6], adversarial
robustness is critical to the real-world deployment of machine learning models, especially for safety-
related applications. Point cloud data is heavily used in many such applications like autonomous
driving, robotics, and medical imaging. Although various defenses were proposed in the literature,
even in top-tier conferences like ICCV [90], CVPR [25], and NeurIPS [50], we find that they actually
can be broken by carefully-designed strong attacks. Therefore, the first contribution of study is very
beneficial for the 3D point cloud community to illustrate how existing state-of-the-art fail to deliver
real robustness, as we have raised the attention for the 3D point cloud community to focus on actual
robustness under strongest adaptive attacks. PointDP is also beneficial since we have leveraged the
most rigorous evaluation protocol to test its robustness. We follow the licenses of usage for all the
public models and datasets in our study.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided our codebase in the supplementary
materials and all of our results are based on consistent random seed in our implementation.
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A EVALUATION DETAILS

As mentioned in § 4.1, the robust accuracies of the unprotected base models are mostly 0%. Table 7
presents the detailed results.

Table 7: Evaluation Results (Accuracy) of Adversarial Attacks on Base Models(%).

PointNet PointNet++ DGCNN PCT CurveNet PointMLP
None 90.1 92.8 92.5 92.8 93.2 93.5

ℓ∞
ϵ = 0.05

C&W 0.0 0.0 0.0 0.0 0.0 0.0
PGD 0.4 0.5 0.2 0.4 0.8 0.3

AdvPC 0.4 0.3 0.0 0.2 0.6 0.3
PA 44.1 19.9 35.1 20.8 48.9 7.2

ℓ2
ϵ = 1.25

C&W 0.0 0.0 0.0 0.0 0.0 0.0
PGD 0.1 0.3 64.5 0.5 0.5 0.5

AdvPC 0.0 0.5 62.7 0.4 0.3 0.5
ℓ0

ϵ = 200
PD 33.3 69.8 64.5 53.0 72.6 71.1

Table 8: Robust Accuracy (%) of Different
Purification Methods under ISO Attack.

IF-Defense PointDP
ISO [63] 67.3 70.1

PD 66.1 68.9

We also include [63] in our evaluation. [63] proposed
ISO attack that iteratively drops the most salient points.
This setting is very similar to our point-dropping (PD)
adversary evaluated in § 4.2. The difference is that [63]
leverages a heuristic way to determine critical points,
but PD uses the gradient that backward propagates to
each point to select the critical points. [63] only works
for PointNet because i) both [63] and PointNet are very first explorations in the area of 3D point
cloud recognition and ii) PointNet utilizes global max pooling so that only the critical points will
affect the prediction results. We evaluate ISO under PointNet with an attack budget of 200 points; the
results are shown in the Table 8.

We find that ISO is a weaker attack than PD as it by design restricts its attack capability, which is
good for an attack paper. However, it cannot show the worst-case robustness of a defense proposal.

We also evaluate DUP-Net with IF-Defense and PointDP under ℓ∞ norm PGD attacks using different
attack budgets. As Table 9 presents, DUP-Net is vulnerable to such attacks due to sensitivity of the
upsampler network to ℓ∞ norm noises [51]. The robust accuracy for LPC is 27.8% and 19.1% for
ϵ = 0.075 and ϵ = 0.1, respectively. Even with these extremely large distortions, PointDP achieves
the strongest robustness, outperforming existing SOTA by a very large margin.

Table 9: Evaluation Results (Accuracy) of Adversarial Attacks on Base Models(%).

PointNet PointNet++ DGCNN PCT CurveNet PointMLP

ℓ∞
ϵ = 0.05

DUP-Net 0.0 1.3 0.9 0.9 0.6 1.0
IF-Defense 66.4 73.2 52.9 46.8 45.3 55.7
PointDP 80.8 80.7 82.9 82.5 80.8 79.9

ℓ∞
ϵ = 0.075

DUP-Net 0.5 0.3 0.0 0.2 0.2 0.6
IF-Defense 60.7 67.3 47.2 40.9 39.8 50.9
PointDP 73.9 73.6 74.2 70.2 67.9 72.5

ℓ∞
ϵ = 0.1

DUP-Net 0.0 0.0 0.0 0.2 0.1 0.3
IF-Defense 53.9 57.1 42.0 35.1 33.3 44.7

PointDP 67.3 62.4 64.2 59.2 58.3 63.1
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