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Abstract

Reasoning LLLMs have made significant progress in mathematics and coding, yet
struggle with advanced generalization tasks such as Abstraction and Reasoning
Corpus (ARC) puzzles. To address this, we propose a diverse inference approach
that aggregates multiple models and methods at test time to enhance the perfor-
mance. We automatically verify correctness of solutions to ARC puzzles by code.
Our approach increases the success rate on a validation set of 400 ARC puzzles
from 53% to 69.5% without reasoning models and 91.5% to 93.75% with them
which exceeds average human accuracy which is between 73.3 and 77.2%. Our
approach succeeds in solving ARC puzzles that state-of-the-art reasoning LLMs
and 948 humans could not. It solves 26.5% of ARC puzzles that reasoning models
do not solve and 80% of ARC puzzles that 948 humans could not. We identify
the relationship between the number of diverse models and methods and the per-
formance on verifiable problems. We automate the MARC method by an agen-
tic framework using a computation graph, enabling modular, scalable, and au-
tonomous execution and comparison of ARC problem-solving pipelines. This
work makes progress toward building flexible, generalizable reasoning systems.

1 Introduction

Reasoning Large Language Models (LLMs) have led to impressive performance in mathematics,
coding, and problem-solving. Despite this progress, a single large model or method may struggle
with challenging tasks. To address this, diversity of models and methods for inference has emerged
as a mechanism to increase performance by using complementary strengths.

We demonstrate the advantages of diverse inference on the Abstraction and Reasoning Corpus
(ARC) [1]], which is a representative and challenging visual reasoning benchmark: We solve 80% of
puzzles that 948 humans collectively could not solve.

Our key methodological contributions that drive these results are:

1. Diverse inference. We aggregate multiple models, methods, and agents at test time rather than
relying on a single model or method. Any single correct solution is validated automatically for
the verifiable tasks of ARC puzzles. For ARC tasks, synthesized code solutions are verified on
training examples as unit tests.

2. Test-time simulations and reinforcement learning. We generate additional problem-specific in-
formation at inference time. We explore puzzle transformations by synthesizing code that prunes
incorrect solutions and refines candidate solutions. Searching using trained verifiers often outper-
forms supervised fine-tuning given the same dataset [2], which motivates reinforcement learning
fine-tuning. We run simulations and reinforcement learning at test time to synthesize additional
data that allows us to solve difficult ARC puzzles.
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1.1 Related Work

Abstraction and Reasoning Corpus (ARC). A benchmark introduced [[1] to measure the visual
reasoning aspect of artificial general intelligence by a set of puzzles with patterns on visual grids.
Given a small set of training pairs of input and output, the goal is to infer the transformation, re-
lationship, or function between them. To verify if the predicted transformation is accurate, the
transformation logic is applied to a test example, and if the outputs match, the task is considered to
be solved. The average human performance on ARC is between 73.3% and 77.2%, and it takes 948
humans to collectively solve 98.8% of the evaluation set puzzles correctly [3].

ARC consists of 400 public training tasks, 400 public evaluation tasks, and 200 private evaluation
tasks, where the difficulty of public training tasks is ’easy’ and other tasks are "hard’. Because each
task has different transformations and private evaluation tasks, which are not released to the public,
and measures the performance of different models and methods, it should not be possible to prepare
for any of the tasks. Each task has 2 or more training input-output pairs, with a median of 3. All
the inputs and outputs are rectangular grids of variable size, which go up to 30 by 30. Each cell of a
grid can be one of 10 different values or colors.

From mixture of experts to diverse models and methods. Most recent language models use a
mixture of experts [4], where multiple experts are trained to specialize in different aspects of the
input space. A gating mechanism learns to select or weigh the experts based on input. The diversity
in expertise allows the model to use a broad range of problem-solving strategies, and distribution
among diverse experts allows the model to handle variations better. Large-scale transformers that
leverage diversity [5, 6] increase efficiency and accuracy, otherwise difficult to achieve with a single
monolithic model. In this work, we use diverse models and methods to increase accuracy.

Perfect, near-perfect, and imperfect verifiers. An imperfect verifier fails to filter out false posi-
tives, which are wrong solutions that pass the verifier. These false positives impose an upper bound
on accuracy despite the increase in sampling or inference time [7]. In this work, we use near-perfect
verifiers. We use code execution on the training examples as near-perfect verifiers and compare the
predicted output with the true output. This may be near perfect rather than perfect since there may
be more than a single code solution for an ARC puzzle.

Empirical scaling laws. The two most common empirical scaling laws for foundation model per-
formance are:

1. The relationship between model size, data size, and loss, i.e., language models with more
parameters, training data, and training time perform better [8], quantified by OpenAlI’s scal-
ing law [9]] and the Chinchilla scaling law [10]. Scaling laws extend to fine-tuning, describ-
ing the relationship between model performance and the number of fine-tuning parameters
and fine-tuning data size [11], and extend to different architectures and downstream tasks
[L2].

2. The relationship between model performance and test-time compute. The tradeoff between
training time and test time compute has been demonstrated early on for board games [13]],
showing that increasing either one leads to better performance. Test time compute scaling
[14] has been demonstrated again by DeepMind on coding [15] and OpenAl ol [16] and
03-mini [17] for reasoning LLMs.

We identify a third empirical scaling law: The relationship between the number of diverse models
and methods and the performance on verifiable problems.

AI agents and skills. Beyond building and evaluating Al agent [18, [19, 20] workflows, agents
may be defined by their skills [21]] to improve performance.
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Figure 1: Zooming in on diversity performance of 16 models and methods on the 400 ARC evalua-
tion puzzles.

2  Methods

2.1 Reasoning LLMs

A foundation model 7 with pre-trained parameters # defines a conditional distribution:

po(y | z), (D

where x is a prompt and y is a response. A reasoning model is trained to generate a (hidden)
rationale, also known as chain-of-thought (CoT) z, so that the joint generation is given by:

po(zy | z) = po(z [ 2)poy | 2, 2). 2

Model training consists of two phases: (i) Supervised fine-tuning (SFT): from 7 to 7spr; and (ii)
Reinforcement learning (RL): from 7gpr to mR.

2.1.1 Supervised fine-tuning (SFT)

Samples are generated using 7y in Eq. and stored in a dataset D = {(z%,y") }i=1.....n- A supervised
fine-tuning loss is derived by taking the negative log likelihood of Eq. [T|on the dataset:

L) = - > logp(y'|="). 3)

(z',y*) €D

Similarly, for a reasoning model, samples are generated using 7y in Eq. [2] and stored in a dataset
D = {(2*,2",y") }i=1,...n. A supervised fine-tuning loss is derived by taking the negative log
likelihood of Eq. 2]on the dataset:

co) = = > [logpe(=' | 7) + logpa(y' | 2", 2)] “)

2.1.2 Reinforcement learning

For tasks such as solving math problems or generating code, we define a reward function R(z,y)
that is checked automatically, by verifying an answer or proof, or by running unit tests. We then
optimize:

maxiemum Eznp, yrmo [R(w, y)] .

This is a classical RL objective without the need for a learned preference model.



More generally, given a foundation model, we define a reward:

T(.ﬁ, :&) = f(WRM(xa g))v 5

where g is the resulting output, and f is a function measuring the quality of that output result. For
example, using policy gradient, we update 6 by:

Vo LrL = =By () [T(H%ﬂ) Ve log e (9 | w)] (6)

For a reasoning model, let Z be a sampled rationale and define a reward [22]:

7”(33,2,:[)) = f(TrRM(xvéag)% (7)
where f is a function quantifying the quality of the rationale, for example, the log-likelihood im-
provement on future tokens as a reward, or correctness on a question answering task. For a reasoning
model, plugging in the logarithm of Eq. [2}

logpg(2, 9| x) = logpe(2|x) +logpe(y | z, 2), (8
yields the gradient:

Vo Lit, = = Ee gy (o) | (2, 2:) Vo log w2 2)
©)
+ log me (| x,é)}

2.2 Diverse Models and Methods

We ablate multiple models and methods at test time using inference methods implemented by Op-
tiLLM [23]], BARC [24], and MARC [25]:

* Zero-shot: Zero-shot approach in LLM research represents the basic methodology. The
problem z is given to the LLM f as-is without additional context information or training
data. Output is simply the answer of LLM, denoted as f(z).

* Best of N sampling: This simple method is often used in generative models to
select the best answer among multiple candidates. Given n candidate responses
Y = {y',9?, ...,y"} this method selects the best one based on a criterion y* =
arg max,;cy C(y’) where C(y") is a scoring function. Given a verifier and a chain of
thought, we perform rejectlon sampling, by sampling different chains of thought 2* ~

p(z | ), their responses y° ~ p(y | z, 2*) and keeping those responses y* that are verified.

* MCTS [26]: Monte Carlo Tree Search (MCTS) is a search algorithm that explores the
search space. It gained popularity with success in games with very large search spaces, such
as Chess and Go, by proving its ability to effectively balance exploration and exploitation.
Algorithm will select the best child node based on the node value which is estimated by

V(s) = S) ZN(S R;, where N (s) is the number of times node s has been visited and R;

is the reward from simulation ¢. Then it generates new child nodes to expand a search tree
and a new node, the algorithm randomly chooses actions until reaching a terminal state,
and obtains a reward R;. In this study, we perform rejection sampling from an intermediate
step in the chain of thought by Monte-Carlo simulations.

* Self-consistency [27]: This technique boosts the performance of Chain-of-Thought rea-
soning in large language models (LLMs). Instead of relying on a single response, self-
consistency evaluates multiple outputs Y = {y!,4%,...,y"} for the same input 2 and
selects the most common or majority vote response y* = Majority Vote({Y'}) at interme-
diate steps. This approach enhances the reliability and accuracy of predictions, reducing
variability and improving the overall quality of the model’s output; however, it often satu-
rates with sufficient samples.

* Mixture of agents [28]: Mixture of agents (MoA) leverages collective strengths of multiple
agents or LLMs. This can be further applied to integrating different agents specifically
trained or designed for given tasks. The paper uses an example with multiple layers where
each layer contains multiple agents or models, M = {m?!, m2, mF}. In each layer j,
MoA stores generate outputs p° = m?(z7) for an input 27. {p*, p?,..., p"} are aggregated
using the Aggregate-and-Synthesize prompt which outputs a’. a’ is concatenated to input

prompt 2/ and becomes 17. 37 becomes 271! and is processed as input for the next layer.



* Plan search (PS) [29]: This search method enhances LLM’s performance by generating a
diverse set of observations about a problem and using them to create plans through com-
bination. Searching through different plans in natural language instead of code solutions,
Plan search is able to explore a significantly broader idea space. Then, using each plan,
candidate codes are generated and then evaluated to select the best solution.

¢« BARC [24]: This framework combines induction and transduction methods to solve ARC
puzzles. Each puzzle is comprised of pairs of input  and output y mapped from the la-
tent function yirqin = f(Ztrain)- Induction infers the latent function f where transduction
directly predicts the yies¢ from given Zirqin, Yerain, Trest- 10 combine the output of in-
duction and transduction models, we check if the inferred fiy, ferreq is valid by checking if
finferred (Ttrain) matches yirqi,. If the solution is plausible, that becomes the predicted
Ytest- Otherwise, predicted .5 is the output of the transduction model.

* MARC [25]: Using test-time training, which increases performance by generating a dataset
by leave-one-out and rule-based augmentations. This data augmentation allows models
to leverage in-context learning for each puzzle given a sequence of input-output pairs
{z1,Y1, - Tn,Yn, Tns+1} where the model generates the predicted output 3,1 by sam-

phng from Q’I’LJrl ~ p('|$1a Yi,-- - Tny Yn, xn+1)~

2.3 Aggregating Diverse Models and Methods

We aggregate the results of diverse models and methods whose solutions may be perfectly verified
as correct by a maximum. Let 7 = {t1,ts,...,tn} be the set of N ARC problems and K the
number of models and methods M = {M;, My, ..., Mg}, where each My, € M attempts to
solve each t; € T. The indicator is defined by:

1, if My correctly solves ¢;,
[ (M solves ;) = {O, otherwise.

Since we can verify the correctness of each individual solution, for each problem ¢;, there exists
a ground truth validation mechanism indicating whether Mj’s proposed solution is correct. We
combine the outputs of all models by taking the logical maximum, i.e., logical OR, over their
correctness indicators: 1 (any model solves t;) = maxye(y,. . xy 1(Mjy solvest;). Problem
t; is considered solved if and only if at least one method in M succeeds in solving it. We de-
fine the success rate, or accuracy, of the aggregated system across the set 7 of N problems as:
+ Zf\il maxye(1,.. xy 1 (M solves t;). Since a problem is counted as solved if any one of the K
models or methods solves it, this aggregation is the best-case scenario. If all models make different
systematic approaches, it will substantially improve the coverage of solvable problems relative to in-
dividual models. If any model’s solution is correct for a particular problem, that problem is marked
as solved in the aggregated result, giving the maximum performance across diverse models.

3 Results

3.1 Summary

We perform an extensive evaluation of 16 models and methods on 400 ARC evaluation puzzles
as illustrated in Figures and Table (3| Diversity is the maximum verifiable aggregation of 16
models and methods at inference time. We find that:

1. Without reasoning LLMs, diversity of 16 models and methods increases performance from
the blue dotted line (53%) to the orange dotted line (69.5%).

2. With reasoning LLMs, diversity of 16 models and methods increases performance from the
purple dotted line (91.5%) to the red dotted line (93.75%).

3. Diversity of 16 models and methods solves 26.5% of the puzzles on which reasoning LLMs
fail. These 34/400 puzzles are between the dotted purple line (91.5%) and the black line
(100%).

4. Diversity of 16 models and methods solves 80% of the puzzles on which 948 humans
collectively fail. These 5/400 puzzles are between the dotted green line (98.8%) and the
black line (100%).
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Figure 2: ARC performance for different models and methods and human performance on the eval-
uation dataset of 400 puzzles.

3.2 Diverse Model and Method Success on Failure Cases of 03-high

Figures 3] @] 5] and [6] show results of tasks that 03-high failed to solve using different methods and
models. For each method and model, Table [T]reports if the answer is correct by v, and xotherwise.
Running times, in brackets, are in seconds. Average running times are between 99 and 593 seconds.

ARC task

Figure 3: ARC task 52fd389e
on which 03 high compute fails
and another model or method

Figure 4:
891232d6 on which 03
high compute fails and

Figure 5: ARC task aadec2a5
on which 03 high compute fails
and another model or method

another model or method
succeeds.

succeeds. succeeds.

Figure 6: ARC task a3f84088 on which 03
high compute fails and another model or

method succeeds. Figure 7: ARC task 8719442 on which 948

humans fail and a model or method succeeds.

3.3 Diverse Model and Method Success on Failure Cases of 948 Humans

Figures [T0} [7] [8] and [0] show results of tasks that 948 humans failed to solve using different meth-
ods and models. For each method and model, Table |Z| reports if the answer is correct by v/, and
xotherwise.



Table 1: Ablation experiments on difficult ARC problems on which 03 high compute fails on.

ARCo3hx | max | e¢s olh v3 rl | MCTS  BoN MoA sc PS | BARC  MARC
05a7bef2 | x| x x x x| x(152)  x(113)  x(d51) x(561) X(79) | x(268)  x(580)
0934add8 | x | x x x x| x(188)  x(160)  x(328) x(382) x(86) | x(76) x(240)
09c534e7 | x| x x x x| x(I7D) x(178)  x(458) x(@453)  x(182) | x(193)  x(271)
0d87d2a6 | v | x x x x | x(181) %(90) x(410) x(425) x(102) | v/(110) %(246)
lacc2daf | x| x x x x | x(125) x(67) x(236) x(224) x(64) | x(68) x(109)
16b78196 | x | x x x x | x210)  x(107)  x(275) x(488) x(107) | x(174) x(460)
212895b5 | x| x x x x| x@IT)  x(153)  x(623)  x(1424)  x(115) | x(115)  x(252)
25094263 | x| x x x x| x(249)  x(174)  x(675)  x(1344)  x(62) | x(171)  x(460)
256b0a75 | x| x x x x| x(140)  x(116)  x(209) x(340) X(77) | x(155)  x(455)
3ed85e70 | x| x x X x| x(249)  x(83) x(289) x(457) x(84) | x(270)  x(472)
40f6cd08 | x| x x x x| x(104)  x(73) x(230) x(233)  x(106) | x(268)  x(471)
47996f11 | x| x x x x| ox(321)  x(147)  x(794)  x(1632)  x(239) | x(511)  x(101)
4b6b68es | x| x x X x| x@215)  x(145)  x(449) x(717) X(57) | x(145)  x(340)
52d38% | v | x x x x| x(209) x(94) x(373) x(633) x(89) | x(202) x(368)
79034 | x| x x x x | x(280)  x(102)  x(1436) x(445) x(70) | x(230) x(706)
89123246 | v | x x x x | x(833)  x(187)  x(546)  x(1468)  x(84) | x(276) x(257)
896d5239 | x | x x x x| x(295)  x(95) x(480) x(668)  x(249) | x(70) x(141)
8b28cd80 | x| x x x x| x@213)  x(73) x(197) x(325) x(99) | x(67) x(93)
93c3lfbe | x| x x x x| x(149)  x(141)  x(527) x(741) x(76) | x(70) x(141)
a3fs4088 | v | v x x x| ox(152)  x(117)  x(269) x(329) x(O) | v(266) v (759)
aadec2a5 | v | x x x x| x(128)  x(100)  x(368) x(588)  x(100) | v(161)  x(462)
ac0c5833 | x| x x x x| x(18))  x(143)  x(561) x(861) X(63) | x(206)  x(363)
bds7fecs | v | x x X x| x(229)  x(105)  x(369) x(442) x(88) | v(145)  x(343)
b7999b51 | v | x v x x | x(106) %(50) x(220) x(274) x(96) | x(61) x(487)
b9630600 | x| x x x x| x@46)  x(181)  x(547) x(756) x(80) | x(268)  x(473)
c6elb8da | x | x x x x | x(151) x(71) x(363) x(305) x(83) | x(112) x(247)
d931c2le | x| x X x x | x(176) x(81) x(326) x(438) x(71) | x(264) x(735)
d94c3b52 | x| x x x x| x(123)  x(74) x(373) x(304)  x(138) | x(116)  x(260)
da515329 | x| x x x x| x(195)  x(50) x(208) x(202) x(63) | x(141)  x(368)
e619ca6e | x| x x x x| x(166)  x(71) x(292) x(422) x@8l) | x(236)  x(383)
e681b708 | x| x x x x| x(198)  x(117)  x(457) x(733) x(67) | x(159)  x(471)
eld2900e | x| x x x x| x(189)  x(44) x(521) x(622) x(83) | x(197)  x(556)
f3b10344 | v | x x x x| x(172)  x(113)  x(318) x(501) x(72) | v@5) V(671
9d6768b | x| x x x x| x(280) *(100) x(316) x(434) x(147) | x(511) x(101)
AvgTime | x | x x x x| 215 109 426 593 99 | 192 378

Table 2: Ablation experiments on difficult ARC problems that defeat 948 humans.

Task ID max gl5 g20 ¢35-ha c3-ha cson dsv3  dsrl  ol-prev  olmini ollow olmed olhigh o3low o3high BARC MARC

31d5bala v x x x x x x v v ' ' v v ' v ' v
79fb03f4 x X X x x X x X x x 3 X x x x X X
87191442 v X X x x x X x x x x X x v v x X
a8610ef7 v X X x x X X x X x x X x X v v X
bdad3f3b v X X x x X X x X x x X x v v x X

4 Conclusion

We show that combining diverse inference models and methods with near-perfect verifiers enhances
LLMs’ performance for advanced reasoning tasks of ARC puzzles. State-of-the-art models, before
reasoning models, did not exceed human level in solving tasks with limited training data. However,
incorporating LLMs with reasoning by supervised fine-tuning and reinforcement learning enabled
models to surpass the average human level performance. By aggregating all models, we increase
performance beyond human level. Our approach using diverse models and methods is successful
not only in enhancing the success rate compared to individual models, but also solves difficult ARC
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Table 3: ARC model and method performance on evaluation dataset of 400 puzzles.
Task ID ‘max gl.5 g2.0 c3.5-ha c3-ha c-son dsvd dsrl ol-prev olmini ollow olmed olhigh o3low o3high BARC MARC

correct 373 12 52 34 21 78 53 80 85 52 97 127 155 331 366 212 190
% correct | 93.75 3 13 85 5.25 195 1325 20 21.25 13 2425 3175 3875 8275 915 53 47.5

tasks that neither reasoning LLMs nor 948 humans can solve. We demonstrate that using diverse
models and methods increases performance in addition to increasing the size of training data and
increasing inference time.

4.1 Limitations

Our approach assumes access to multiple models (some closed) and incurs additional compute.
The simple verifier may occasionally overfit to training pairs, and, as with prior ARC work, our
evaluation is limited to the public 400-task test set. Finally, while we solve some tasks humans
collectively miss, we do not claim human-level abstraction in general.

S AI Agent Setup

As described in the checklist, this work is mostly human and is assisted by AI. We use OptiLLM
[23]], which implements diverse methods for LLM inference. We use Claude Code and Co-Pilot as
coding assistants and GPT 5 Pro for reviewing. Coding and reviewing are performed iteratively with
human oversight and alignment. Next, we plan to use OpenEvolve [30] to discover new algorithms
for solving ARC puzzles.

6 Ethics and Broader Impact

Solving program-induction puzzles has a positive impact on scientific discovery tools and symbolic
reasoning systems. Risks include over-claiming general intelligence from benchmark gains and
potential misuse of automated program synthesis. We discuss mitigation in the checklist.

7 Reproducibility Statement

We evaluate on the 400 ARC public evaluation tasks using a verifier that executes candidate pro-
grams on the provided training pairs, and we count a task as solved if any of 16 diverse meth-
ods returns a verified solution. We release drivers and modular implementations (BARC, MARC,
MCTS, plan search, mixture-of-agents, self-consistency, best-of-N, etc) and instructions to recreate
submission.json files from public ARC JSONSs; logs and intermediate artifacts can be placed in the
provided folder to replay aggregation. We specify environment details and seeds, and document
dependencies. All experiments use only public ARC evaluation data; no private test items are used.
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Agents4Science Al Involvement Checklist

This checklist explains the role of Al in the research. The scores for Al involvement are:

* [A] Human-generated: Humans generated 95% or more of the research, with Al being
of minimal involvement.

¢ [B] Mostly human, assisted by AI: The research was a collaboration between humans
and AT models, but humans produced the majority (> 50%) of the research.

* [C] Mostly Al assisted by human: The research task was a collaboration between hu-
mans and Al models, but AT produced the majority (> 50%) of the research.

* [D] Al-generated: Al performed over 95% of the research. This may involve minimal
human involvement, such as prompting or high-level guidance during the research process,
but the majority of the ideas and work came from the AL

1. Hypothesis development: Hypothesis development includes the process by which you

came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al This can also involve whether the idea
was proposed by researchers or by Al
Answer: [B]
Explanation: The research idea, that increasing diversity across models/methods improves
ARC solve rates, predates this write-up and was proposed and refined by the authors. Dur-
ing this submission, an LLM assistant was used to help tighten the framing, clarifying the
claims, and checking for prior related work. The Al did not originate the research question
or experimental hypotheses.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [B]

Explanation: All experiments, agent implementations, and verification code were designed
and executed by the authors. In this submission process, an LLM was used for minor
coding suggestions. Experiments were run by the authors.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations
of the results of the study.

Answer: [B]

Explanation: Quantitative results were produced by the authors’ code and figures where
produced by LLMs given these results. The LLM assisted in summarizing and analyzing
the results, and checking consistency across the paper.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [B]

Explanation: The LLM contributed to editing: restructuring sections for the
Agents4Science format, anonymizing the manuscript, drafting the checklists, polishing
language, and generating the IXTEX/ scaffolding. The authors reviewed and revised the
text and are responsible for the final content.

5. Observed AI Limitations: What limitations have you found when using Al as a partner or
lead author?

Description: The LLM may propose plausible but incorrect citations or mis-state num-
bers if not grounded in web search. We constrained the paper to author-provided figures,
required exact numbers to match logs, and subjected all generated text to human review.

Agents4Science Paper Checklist

1. Claims
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the claims (diverse inference, verifiable
evaluation, empirical gains) and scope; results are on the standard 400-task ARC set (Sec-

tions 2H3)).
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Compute cost, closed-model access, and evaluation scope are discussed in the
Limitations section.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers dis-
cover limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper is empirical and contains no formal theorems.
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the data in the supplementary material and release scripts and
logs with programs and verification outcomes; ARC and figures are reproducible from
these artifacts.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: ARC is public; we release our evaluation scripts and logs, but some model
APIs require paid access.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Dataset, metrics, systems compared, and selection criteria are specified in
Sections 2H3l
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10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: ARC consists of a fixed set of 400 tasks; we report exact solve rates rather
than averages over random trials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, or overall run with given experimental condi-
tions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The ensemble aggregates multiple agents and incurs additional compute; per-
system costs are logged with our artifacts.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: The work uses a public benchmark and prioritizes transparency via verifiable
solutions; it adheres to the Agents4Science Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code
of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Potential positive and negative impacts are discussed in the Ethics and
Broader Impact section, with mitigation via verification.
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Guidelines:

The answer NA means that there is no societal impact of the work performed.

If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies.
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