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Abstract

Reasoning LLMs have made significant progress in mathematics and coding, yet1

struggle with advanced generalization tasks such as Abstraction and Reasoning2

Corpus (ARC) puzzles. To address this, we propose a diverse inference approach3

that aggregates multiple models and methods at test time to enhance the perfor-4

mance. We automatically verify correctness of solutions to ARC puzzles by code.5

Our approach increases the success rate on a validation set of 400 ARC puzzles6

from 53% to 69.5% without reasoning models and 91.5% to 93.75% with them7

which exceeds average human accuracy which is between 73.3 and 77.2%. Our8

approach succeeds in solving ARC puzzles that state-of-the-art reasoning LLMs9

and 948 humans could not. It solves 26.5% of ARC puzzles that reasoning models10

do not solve and 80% of ARC puzzles that 948 humans could not. We identify11

the relationship between the number of diverse models and methods and the per-12

formance on verifiable problems. We automate the MARC method by an agen-13

tic framework using a computation graph, enabling modular, scalable, and au-14

tonomous execution and comparison of ARC problem-solving pipelines. This15

work makes progress toward building flexible, generalizable reasoning systems.16

1 Introduction17

Reasoning Large Language Models (LLMs), have led to impressive performance in mathematics,18

coding, and problem solving. Despite this progress, a single large model or method may struggle19

with challenging tasks. To address this, diversity of models and methods for inference, has emerged20

as a mechanism to increase performance by using complementary strengths.21

We demonstrate the advantages of diverse inference on the Abstraction and Reasoning Corpus22

(ARC) [1] which is a representative and challenging visual reasoning benchmark: We solve 80%23

of puzzles that 948 humans collectively could not solve.24

Our key methodological contributions that drive these results are:25

1. Diverse inference. We aggregate multiple models, methods, and agents at test time rather than26

relying on a single model or method. Any single correct solution is validated automatically for27

the verifiable tasks of ARC puzzles. For ARC tasks, synthesized code solutions are verified on28

training examples as unit tests.29

2. Test-time simulations and reinforcement learning. We generate additional problem-specific in-30

formation at inference time. We explore puzzle transformations by synthesized code that prunes31

incorrect solutions and refines candidate solutions. Searching using trained verifiers often outper-32

forms supervised fine-tuning given the same dataset [2], which motivates reinforcement learning33

fine-tuning. We run simulations and reinforcement learning at test time to synthesize additional34

data that allows us to solve difficult ARC puzzles.35
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1.1 Related Work36

Abstraction and Reasoning Corpus (ARC). A benchmark introduced on a paper ”On the Mea-37

sure of Intelligence” [1] to measure the intelligence of artificial systems with focus on skill-38

acquisition efficiency. Given a small set of training pairs of input and output, the goal is to infer39

the transformation, relationship, or function between them. To verify if the predicted transformation40

is accurate, the transformation logic is applied to a test example and if the outputs match, the task41

is considered to be solved. The average human performance on ARC is between 73.3% and 77.2%,42

and it takes 948 humans to collectively solve 98.8% of the evaluation set puzzles correctly [3].43

ARC consists of 400 public training tasks, 400 public evaluation tasks and 200 private evaluation44

tasks where difficulty of public training tasks are ’easy’ and other tasks are ’hard’. Because each45

task has different transformations and private evaluation tasks which are not released to the public46

measures the performance of different models and methods, it should not be possible to prepare for47

any of the tasks. Each task has 2 or more training input-output pairs, with median of 3. All the48

inputs and outputs are rectangular grid of variable size which goes up to 30 by 30. Each cell of a49

grid can be 10 different values or colors.50

From mixture of experts to diverse models and methods. Most recent language models use a51

mixture of experts [4], where multiple experts are trained to specialize in different aspects of the52

input space. A gating mechanism learns to select or weigh the experts based on input. The diversity53

in expertise allows the model to use a broad range of problem-solving strategies, and distribution54

among diverse experts allows the model to handle variations better. Large-scale transformers that55

leverage diversity [5, 6] increase efficiency and accuracy, otherwise difficult to achieve with a single56

monolithic model. In this work, we use diverse models and methods to increase accuracy.57

Perfect, near-perfect, and imperfect verifiers. An imperfect verifier fails to filter out false posi-58

tives, which are wrong solutions that pass the verifier. These false positives impose an upper bound59

on accuracy despite the increase in sampling or inference time compute [7]. In this work, we use60

near perfect verifiers. We use code execution on the training examples as near-perfect verifiers and61

compare the predicted output with true output. This may be near perfect rather than perfect since62

there may be more than a single code solution for an ARC puzzle.63

Empirical scaling laws. The two most common empirical scaling laws for foundation model per-64

formance are:65

1. The relationship between model size, data size, and loss, i.e. language models with more param-66

eters, training data, and training time perform better [8], quantified by OpenAI’s scaling law [9]67

and the Chinchilla scaling law [10]. Scaling laws extend to fine-tuning, describing the relation-68

ship between model performance and the number of fine tuning parameters and fine-tuning data69

size [11], and extend to different architectures and downstream tasks [12].70

2. The relationship between model performance and test-time compute. The tradeoff between train-71

ing time and test time compute has been demonstrated early on for board games [13], showing72

that increasing either one leads to better performance. Test time compute scaling [14] has been73

demonstrated again by DeepMind on coding [15] and OpenAI o1 [16] and o3-mini [17] for rea-74

soning LLMs.75

We identify a third empirical scaling law: the relationship between the number of diverse models76

and methods and the performance on verifiable problems.77

AI agents. Prompt engineering [18, 19], retrieval-augmented generation (RAG) [20], and fine-78

tuning [21, 22] are common methods for improving LLM performance. While conventional79

pipelines can automate workflows, agentic AI allows a higher degree of flexibility [23, 24]. Agents80

accomplish tasks, manage workflow execution, and make decisions which allow the user improve81

upon plain vanilla LLM usage for complex decision making.82
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Figure 1: Zooming in on diversity performance of 16 models and methods on the 400 ARC evalua-
tion puzzles.

2 Methods83

2.1 Reasoning LLMs84

A foundation model π with pre-trained parameters θ defines a conditional distribution:85

pθ(y | x), (1)

where x is a prompt and y is a response. A reasoning model is trained to generate a (hidden) rationale86

also known as chain-of-thought (CoT) z, so that the joint generation is given by:87

pθ(z, y | x) = pθ(z | x) pθ(y | z, x). (2)

Model training consists of two phases: (i) Supervised fine-tuning (SFT): from π to πSFT; and (ii)88

Reinforcement learning (RL): from πSFT to πRL.89

2.1.1 Supervised fine-tuning (SFT)90

Samples are generated using πθ in Eq. 1 and stored in a dataset D = {(xi, yi)}i=1,...,n. A supervised91

fine-tuning loss is derived by taking the negative log likelihood of Eq. 1 on the dataset:92

L(θ) = −
∑

(xi,yi)∈D

log pθ
(
yi | xi

)
. (3)

Similarly, for a reasoning model, samples are generated using πθ in Eq. 2 and stored in a dataset93

D = {(xi, zi, yi)}i=1,...,n. A supervised fine-tuning loss is derived by taking the negative log94

likelihood of Eq. 2 on the dataset:95

L(θ) = −
∑

(xi,zi,yi)∈D

[
log pθ

(
zi | xi

)
+ log pθ

(
yi | xi, zi

)]
. (4)

2.1.2 Reinforcement learning96

For tasks such as solving math problems or generating code, we define a reward function R(x, y)97

that is checked automatically, by verifying an answer or proof or by running unit tests. We then98

optimize:99

maximum
θ

Ex∼D, y∼πθ

[
R(x, y)

]
.

This is a classical RL objective without the need for a learned preference model.100
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More generally, given a foundation model we define a reward:101

r(x, ŷ) = f
(
πRM(x, ŷ)

)
, (5)

where ŷ is the resulting output, and f is a function measuring the quality of that output result. For102

example, using policy gradient, we update θ by:103

∇θ LRL = −Eŷ∼πθ(·|x)

[
r
(
x, ŷ

)
∇θ log πθ

(
ŷ | x

)]
. (6)

For a reasoning model, let ẑ be a sampled rationale and define a reward [25]:104

r(x, ẑ, ŷ) = f
(
πRM(x, ẑ, ŷ)

)
, (7)

where f is a function quantifying the quality of the rationale, for example the log-likelihood im-105

provement on future tokens as a reward, or correctness on a question answering task. For a reasoning106

model, plugging in the logarithm of Eq. 2:107

log pθ(ẑ, ŷ |x) = log pθ(ẑ |x) + log pθ(ŷ | x, ẑ), (8)

yields the gradient:108

∇θ LRL = −Eẑ,ŷ∼πθ(·|x)

[
r
(
x, ẑ, ŷ

)
∇θ log πθ(ẑ | x)

+ log πθ(ŷ | x, ẑ)
]
.

(9)

2.2 Diverse Models and Methods109

We ablate multiple models and methods [26] at test time:110

• Zero-shot: Zero-shot approach in LLM research represents the basic methodology. The problem111

x is given to the LLM f as-is without additional context information or training data. Output is112

simply the answer of LLM denoted as f(x).113

• Best of N sampling: This simple method is often used in generative models to select the best an-114

swer among multiple candidates. Given n candidate responses Y = {y1, y2, . . . , yn} this method115

selects the best one based on a criterion y∗ = argmaxyj∈Y C(yi) where C(yi) is a scoring func-116

tion. Given a verifier and a chain of thought, we perform rejection sampling, by sampling different117

chains of thought zi ∼ p(z | x), their responses yi ∼ p(y | x, zi) and keeping those responses yi118

that are verified.119

• MCTS [27]: Monte Carlo Tree Search (MCTS) is a search algorithm that explores the search120

space. It gained popularity with success in games with very large search space such as Chess121

and Go by proving its ability to effectively balance exploration and exploitation. Algorithm will122

select the best child node based on the node value which is estimated by V (s) = 1
N(s)

∑N(s)
i=1 Ri,123

where N(s) is the number of times node s has been visited and Ri is the reward from simulation i.124

Then it generates new child nodes to expand a search tree and new node, the algorithm randomly125

chooses actions until reaching a terminal state and obtains a reward Ri. In this study, we perform126

rejection sampling from an intermediate step in the chain of thought by Monte-Carlo simulations.127

• Self-consistency [28]: This technique boosts the performance of Chain-of-Thought reasoning in128

large language models (LLMs). Instead of relying on a single response, self-consistency evaluates129

multiple outputs Y = {y1, y2, . . . , yn} for the same input x and selects the most common or130

majority vote response y∗ = Majority Vote({Y }) at intermediate steps. This approach enhances131

the reliability and accuracy of predictions, reducing variability and improving the overall quality132

of the model’s output, however, often saturates given sufficient samples.133

• Mixture of agents [29]: Mixture of agents (MoA) leverages collective strengths of multiple agents134

or LLMs. This can be further applied to integrating different agents specifically trained or de-135

signed for given tasks. The paper uses an example with multiple layers where each layer contains136

multiple agents or models, M = {m1,m2, . . . ,mk}. In each layer j, MoA stores generate outputs137

pi = mi(xj) for an input xj . {p1, p2, . . . , pn} are aggregated using the Aggregate-and-Synthesize138

prompt which outputs aj . aj is concatenated to input prompt xj and becomes yj . yj becomes139

xj+1 and is processed as input for the next layer.140
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• Plan search (PS) [30]: This search method enhances LLM’s performance by generating a diverse141

set of observations about a problem and using them to create plans through combination. Search-142

ing through different plans in natural language instead of code solutions, Plan search is able to143

explore significantly broad idea space. Then, using each plan, candidate codes are generated and144

then evaluated to select the best solution.145

• BARC [31]: This framework combines induction and transduction methods to solve ARC puzzles.146

Each puzzle is comprised of pairs of input x and output y mapped from the latent function ytrain =147

f(xtrain). Induction infers the latent function f where transduction directly predicts the ytest148

from given xtrain, ytrain, xtest. To combine the output of induction and transduction models,149

we check if inferred finferred is valid by checking if finferred(xtrain) matches ytrain. If the150

solution is plausible, that becomes the predicted ytest. Otherwise, predicted ytest is the output of151

transduction model as the its plausibility can’t be checked. Llama3.1-8B-instruct is fine-tuned for152

induction and transduction. [32]153

• MARC [33]: Using test-time training which increases performance by generating a dataset154

by leave-one-out and rule-based augmentations. This data augmentation allows models155

to leverage in-context learning for each puzzle given a sequence of input-output pairs156

{x1, y1, . . . xn, yn, xn+1} where the model generates the predicted output ŷn+1 by sampling from157

ŷn+1 ∼ p(·|x1, y1, . . . xn, yn, xn+1).158

2.3 Aggregating Diverse Models and Methods159

We aggregate the results of diverse models and methods whose solutions may be perfectly verified160

as correct by a maximum. Let T = {t1, t2, . . . , tN} be the set of N ARC problems and K the161

number of models and methods M = {M1,M2, . . . ,MK}, where each Mk ∈ M attempts to162

solve each ti ∈ T . The indicator is defined by:163

1
(
Mk solves ti

)
=

{
1, if Mk correctly solves ti,
0, otherwise.

164

Since we can verify the correctness of each individual solution, for each problem ti, there exists165

a ground truth validation mechanism indicating whether Mk’s proposed solution is correct. We166

combine the outputs of all models by taking the logical maximum, i.e., logical OR, over their167

correctness indicators: 1
(
any model solves ti

)
= maxk∈{1,...,K} 1

(
Mk solves ti

)
. Problem168

ti is considered solved if and only if at least one method in M succeeds solving it. We de-169

fine the success rate, or accuracy, of the aggregated system across the set T of N problems as:170
1
N

∑N
i=1 maxk∈{1,...,K} 1

(
Mk solves ti

)
. Since a problem is counted as solved if any one of the K171

models or methods solves it, this aggregation is the best-case scenario. If all models make different172

systematic approaches, it will substantially improve the coverage of solvable problems relative to in-173

dividual models. If any model’s solution is correct for a particular problem, that problem is marked174

as solved in the aggregated result, giving the maximum performance across diverse models.175

2.4 Agentic AI Implementation176

We use several different methods to solve ARC problems. We use agent graphs [34] with a GUI177

to build programs for AI agents with LLMs. The agent graphs are then represented by text which178

enables in context learning from multiple graphs and A/B testing.179

3 Results180

3.1 Summary181

We perform an extensive evaluation of 16 models and methods on 400 ARC evaluation puzzles as182

illustrated in Figures 2, 1 and Table 3. Diversity is the maximum verifiable aggregation of 16 models183

and methods at inference time. We find that:184

1. Without reasoning LLMs, diversity of 16 models and methods increases performance from the185

blue dotted line (53%) to the orange dotted line (69.5%).186

2. With reasoning LLMs, diversity of 16 models and methods increases performance from the pur-187

ple dotted line (91.5%) to the red dotted line (93.75%).188
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Figure 2: ARC performance for different models and methods and human performance on evaluation
dataset of 400 puzzles.

3. Diversity of 16 models and methods solves 26.5% of the puzzles on which reasoning LLMs fail189

on. These 34/400 puzzles are between the dotted purple line (91.5%) and black line (100%).190

4. Diversity of 16 models and methods solves 80% of the puzzles on which 948 humans collectively191

fail on. These 5/400 puzzles are between the dotted green line (98.8%) and black line (100%).192

3.2 Diverse Model and Method Success on Failure Cases of o3-high193

Figures 3, 4, 5, and 6 show results of tasks that o3-high failed to solve using different methods and194

models. For each method and model, Table 1 reports if the answer is correct by ✓, and ×otherwise.195

Running times, in brackets, are in seconds. Average running times are between 99 and 593 seconds.196

Figure 3: ARC task 52fd389e
on which o3 high compute fails
and another model or method
succeeds.

Figure 4: ARC task
891232d6 on which o3
high compute fails and
another model or method
succeeds.

Figure 5: ARC task aa4ec2a5
on which o3 high compute fails
and another model or method
succeeds.

Figure 6: ARC task a3f84088 on which o3
high compute fails and another model or
method succeeds. Figure 7: ARC task 8719f442 on which 948

humans fail and a model or method succeeds.
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Table 1: Ablation experiments on difficult ARC problems on which o3 high compute fails on.
ARC o3h × max cs o1h v3 r1 MCTS BoN MoA SC PS BARC MARC

05a7bcf2 × × × × × ×(152) ×(113) ×(451) ×(561) ×(79) ×(268) ×(580)

0934a4d8 × × × × × ×(188) ×(160) ×(328) ×(382) ×(86) ×(76) ×(240)

09c534e7 × × × × × ×(177) ×(178) ×(458) ×(453) ×(182) ×(193) ×(271)

0d87d2a6 ✓ × × × × ×(181) ×(90) ×(410) ×(425) ×(102) ✓(110) ×(246)

1acc24af × × × × × ×(125) ×(67) ×(236) ×(224) ×(64) ×(68) ×(109)

16b78196 × × × × × ×(210) ×(107) ×(275) ×(488) ×(107) ×(174) ×(460)

212895b5 × × × × × ×(317) ×(153) ×(623) ×(1424) ×(115) ×(115) ×(252)

25094a63 × × × × × ×(249) ×(174) ×(675) ×(1344) ×(62) ×(171) ×(460)

256b0a75 × × × × × ×(140) ×(116) ×(209) ×(340) ×(77) ×(155) ×(455)

3ed85e70 × × × × × ×(249) ×(83) ×(289) ×(457) ×(84) ×(270) ×(472)

40f6cd08 × × × × × ×(104) ×(73) ×(230) ×(233) ×(106) ×(268) ×(471)

47996f11 × × × × × ×(321) ×(147) ×(794) ×(1632) ×(239) ×(511) ×(101)

4b6b68e5 × × × × × ×(215) ×(145) ×(449) ×(717) ×(57) ×(145) ×(340)

52fd389e ✓ × × × × ×(209) ×(94) ×(373) ×(633) ×(89) ×(202) ×(368)

79fb03f4 × × × × × ×(280) ×(102) ×(1436) ×(445) ×(70) ×(230) ×(706)

891232d6 ✓ × × × × ×(833) ×(187) ×(546) ×(1468) ×(84) ×(276) ×(257)

896d5239 × × × × × ×(295) ×(95) ×(480) ×(668) ×(249) ×(70) ×(141)

8b28cd80 × × × × × ×(213) ×(73) ×(197) ×(325) ×(99) ×(67) ×(93)

93c31fbe × × × × × ×(149) ×(141) ×(527) ×(741) ×(76) ×(70) ×(141)

a3f84088 ✓ ✓ × × × ×(152) ×(117) ×(269) ×(329) ×(91) ✓(266) ✓(759)

aa4ec2a5 ✓ × × × × ×(128) ×(100) ×(368) ×(588) ×(100) ✓(161) ×(462)

ac0c5833 × × × × × ×(187) ×(143) ×(561) ×(861) ×(63) ×(206) ×(363)

b457fec5 ✓ × × × × ×(229) ×(105) ×(369) ×(442) ×(88) ✓(145) ×(343)

b7999b51 ✓ × ✓ × × ×(106) ×(50) ×(220) ×(274) ×(96) ×(61) ×(487)

b9630600 × × × × × ×(246) ×(181) ×(547) ×(756) ×(80) ×(268) ×(473)

c6e1b8da × × × × × ×(151) ×(71) ×(363) ×(305) ×(83) ×(112) ×(247)

d931c21c × × × × × ×(176) ×(81) ×(326) ×(438) ×(71) ×(264) ×(735)

d94c3b52 × × × × × ×(123) ×(74) ×(373) ×(304) ×(138) ×(116) ×(260)

da515329 × × × × × ×(195) ×(50) ×(208) ×(202) ×(63) ×(141) ×(368)

e619ca6e × × × × × ×(166) ×(71) ×(292) ×(422) ×(81) ×(236) ×(383)

e681b708 × × × × × ×(198) ×(117) ×(457) ×(733) ×(67) ×(159) ×(471)

e1d2900e × × × × × ×(189) ×(44) ×(521) ×(622) ×(83) ×(197) ×(556)

f3b10344 ✓ × × × × ×(172) ×(113) ×(318) ×(501) ×(72) ✓(257) ✓(671)

f9d67f8b × × × × × ×(280) ×(100) ×(316) ×(434) ×(147) ×(511) ×(101)

Avg Time × × × × × 215 109 426 593 99 192 378

Table 2: Ablation experiments on difficult ARC problems that defeat 948 humans.
Task ID max g1.5 g2.0 c3.5-ha c3-ha c-son dsv3 dsr1 o1-prev o1mini o1low o1med o1high o3low o3high BARC MARC

31d5ba1a ✓ × × × × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
79fb03f4 × × × × × × × × × × × × × × × × ×
8719f442 ✓ × × × × × × × × × × × × ✓ ✓ × ×
a8610ef7 ✓ × × × × × × × × × × × × × ✓ ✓ ×
b4a43f3b ✓ × × × × × × × × × × × × ✓ ✓ × ×

3.3 Diverse Model and Method Success on Failure Cases of 948 Humans197

Figures 10, 7, 8, and 9 show results of tasks that 948 humans failed to solve using using different198

methods and models. For each method and model, Table 2 reports if the answer is correct by ✓, and199

×otherwise.200
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Figure 8: ARC task a8610ef7
on which 948 humans fail and
a model or method succeeds.

Figure 9: ARC task b4a43f3b
on which 948 humans fail and
a model or method succeeds.

Figure 10: ARC task 79fb03f4
on which 948 humans fail and
models or methods fail.

Table 3: ARC model and method performance on evaluation dataset of 400 puzzles.
Task ID max g1.5 g2.0 c3.5-ha c3-ha c-son dsv3 dsr1 o1-prev o1mini o1low o1med o1high o3low o3high BARC MARC
correct 373 12 52 34 21 78 53 80 85 52 97 127 155 331 366 212 190
% correct 93.75 3 13 8.5 5.25 19.5 13.25 20 21.25 13 24.25 31.75 38.75 82.75 91.5 53 47.5

4 Conclusion201

We show that combining diverse inference models and methods with near-perfect verifiers enhances202

LLMs performance for advanced reasoning tasks of ARC puzzles. State-of-the-Art models before203

reasoning models did not exceeded human level in solving tasks with limited training data. However,204

incorporating LLMs with reasoning by supervised fine-tuning and reinforcement learning enabled205

models to surpass the average human level performance. By aggregating all models, we increase206

performance beyond human level.207

Our approach using diverse models and methods is successful not only in enhancing the success rate208

compared to individual models, but also solves difficult ARC tasks that neither reasoning LLMs nor209

948 humans can solve. We demonstrate that using diverse models and methods increases perfor-210

mance in addition to increasing the the size of training data and increasing inference time.211

5 Limitations212

Our approach assumes access to multiple models (some closed) and incurs additional compute.213

The simple verifier may occasionally overfit to training pairs, and, as with prior ARC work, our214

evaluation is limited to the public 400-task test set. Finally, while we solve some tasks humans215

collectively miss, we do not claim human-level abstraction in general.216

6 Ethics and Broader Impact217

Solving program-induction puzzles has positive impact on scientific discovery tools and symbolic218

reasoning systems. Risks include over-claiming general intelligence from benchmark gains and219

potential misuse of automated program synthesis. We discuss mitigation in the checklist.220
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Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Ad-274

vances in Neural Information Processing Systems, volume 33, 2020. URL https://arxiv.275

org/abs/2005.11401.276

[21] Venkatesh Balavadhani Parthasarathy, Sihyeong Kang, Ahmed Qyom, and Arsalan Shahid.277

The ultimate guide to fine-tuning LLMs from basics to breakthroughs: An exhaustive review278

of technologies, research, best practices, applied research challenges and opportunities. arXiv279

preprint arXiv:2408.13296, Aug 2024. URL https://arxiv.org/abs/2408.13296.280

[22] Cheonsu Jeong. Fine-tuning and utilization methods of domain-specific LLMs. arXiv preprint281

arXiv:2401.02981, Jan 2024. URL https://arxiv.org/abs/2401.02981.282

[23] Erik Schluntz and Barry Zhang. Building effective agents, 2024. URL https://www.283

anthropic.com/engineering/building-effective-agents.284

[24] OpenAI. A practical guide to building agents. Technical report, OpenAI,285

April 2025. URL https://cdn.openai.com/business-guides-and-resources/286

a-practical-guide-to-building-agents.pdf.287

[25] Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.288

Quiet-Star: Language models can teach themselves to think before speaking. arXiv preprint289

arXiv:2403.09629, 2024.290

[26] Asankhaya Sharma. OptiLLM. https://github.com/codelion/optillm, 2024.291

[27] Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji292

Kawaguchi, and Michael Shieh. Monte carlo tree search boosts reasoning via iterative prefer-293

ence learning. arXiv preprint arXiv:2405.00451, 2024.294

[28] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha295

Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in lan-296

guage models. arXiv preprint arXiv:2203.11171, 2022.297

[29] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents298

enhances large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.299

[30] Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen300

Han, Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves301

llm search for code generation, 2024. URL https://arxiv.org/abs/2409.03733.302

[31] Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M303

Dunn, Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduc-304

tion for abstract reasoning. arXiv preprint arXiv:2411.02272, 2024.305

[32] Wen-Ding Li, Carter Larsen, Keya Hu, Hao Tang, Michelangelo Naim, Zenna Tavares,306

Thanh Dat Nguyen, Kevin Ellis, and Archana Warrier. Barc. https://huggingface.co/307

barc0, 2024.308
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Agents4Science AI Involvement Checklist314

This checklist explains the role of AI in the research. The scores for AI involvement are:315

• [A] Human-generated: Humans generated 95% or more of the research, with AI being316

of minimal involvement.317

• [B] Mostly human, assisted by AI: The research was a collaboration between humans318

and AI models, but humans produced the majority (> 50%) of the research.319

• [C] Mostly AI, assisted by human: The research task was a collaboration between hu-320

mans and AI models, but AI produced the majority (> 50%) of the research.321

• [D] AI-generated: AI performed over 95% of the research. This may involve minimal322

human involvement, such as prompting or high-level guidance during the research process,323

but the majority of the ideas and work came from the AI.324

1. Hypothesis development: Hypothesis development includes the process by which you325

came to explore this research topic and research question. This can involve the background326

research performed by either researchers or by AI. This can also involve whether the idea327

was proposed by researchers or by AI.328

Answer: [B]329

Explanation: The research idea, that increasing diversity across models/methods improves330

ARC solve rates, predates this write-up and was proposed and refined by the authors. Dur-331

ing this submission, an LLM assistant was used to help tighten the framing, clarifying the332

claims, and checking for prior related work. The AI did not originate the research question333

or experimental hypotheses.334

2. Experimental design and implementation: This category includes design of experiments335

that are used to test the hypotheses, coding and implementation of computational methods,336

and the execution of these experiments.337

Answer: [B]338

Explanation: All experiments, agent implementations, and verification code were designed339

and executed by the authors. In this submission process, an LLM was used for minor340

coding suggestions. Experiments were run by the authors.341

3. Analysis of data and interpretation of results: This category encompasses any process to342

organize and process data for the experiments in the paper. It also includes interpretations343

of the results of the study.344

Answer: [B]345

Explanation: Quantitative results were produced by the authors’ code and figures where346

produced by LLMs given these results. The LLM assisted in summarizing and analyzing347

the results, and checking consistency across the paper.348

4. Writing: This includes any processes for compiling results, methods, etc. into the final349

paper form. This can involve not only writing of the main text but also figure-making,350

improving layout of the manuscript, and formulation of narrative.351

Answer: [B]352

Explanation: The LLM contributed to editing: restructuring sections for the353

Agents4Science format, anonymizing the manuscript, drafting the checklists, polishing354

language, and generating the LATEX/ scaffolding. The authors reviewed and revised the355

text and are responsible for the final content.356

5. Observed AI Limitations: What limitations have you found when using AI as a partner or357

lead author?358

Description: The LLM may propose plausible but incorrect citations or mis-state num-359

bers if not grounded in web search. We constrained the paper to author-provided figures,360

required exact numbers to match logs, and subjected all generated text to human review.361

Agents4Science Paper Checklist362

1. Claims363
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Question: Do the main claims made in the abstract and introduction accurately reflect the364

paper’s contributions and scope?365

Answer: [Yes]366

Justification: The abstract and introduction state the claims (diverse inference, verifiable367

evaluation, empirical gains) and scope; results are on the standard 400-task ARC set (Sec-368

tions 2–3).369

Guidelines:370

• The answer NA means that the abstract and introduction do not include the claims371

made in the paper.372

• The abstract and/or introduction should clearly state the claims made, including the373

contributions made in the paper and important assumptions and limitations. A No or374

NA answer to this question will not be perceived well by the reviewers.375

• The claims made should match theoretical and experimental results, and reflect how376

much the results can be expected to generalize to other settings.377

• It is fine to include aspirational goals as motivation as long as it is clear that these378

goals are not attained by the paper.379

2. Limitations380

Question: Does the paper discuss the limitations of the work performed by the authors?381

Answer: [Yes]382

Justification: Compute cost, closed-model access, and evaluation scope are discussed in the383

Limitations section.384

Guidelines:385

• The answer NA means that the paper has no limitation while the answer No means386

that the paper has limitations, but those are not discussed in the paper.387

• The authors are encouraged to create a separate ”Limitations” section in their paper.388

• The paper should point out any strong assumptions and how robust the results are to389

violations of these assumptions (e.g., independence assumptions, noiseless settings,390

model well-specification, asymptotic approximations only holding locally). The au-391

thors should reflect on how these assumptions might be violated in practice and what392

the implications would be.393

• The authors should reflect on the scope of the claims made, e.g., if the approach was394

only tested on a few datasets or with a few runs. In general, empirical results often395

depend on implicit assumptions, which should be articulated.396

• The authors should reflect on the factors that influence the performance of the ap-397

proach. For example, a facial recognition algorithm may perform poorly when image398

resolution is low or images are taken in low lighting.399

• The authors should discuss the computational efficiency of the proposed algorithms400

and how they scale with dataset size.401

• If applicable, the authors should discuss possible limitations of their approach to ad-402

dress problems of privacy and fairness.403

• While the authors might fear that complete honesty about limitations might be used404

by reviewers as grounds for rejection, a worse outcome might be that reviewers dis-405

cover limitations that aren’t acknowledged in the paper. Reviewers will be specifically406

instructed to not penalize honesty concerning limitations.407

3. Theory assumptions and proofs408

Question: For each theoretical result, does the paper provide the full set of assumptions and409

a complete (and correct) proof?410

Answer: [NA]411

Justification: The paper is empirical and contains no formal theorems.412

Guidelines:413

• The answer NA means that the paper does not include theoretical results.414
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-415

referenced.416

• All assumptions should be clearly stated or referenced in the statement of any theo-417

rems.418

• The proofs can either appear in the main paper or the supplemental material, but if419

they appear in the supplemental material, the authors are encouraged to provide a420

short proof sketch to provide intuition.421

4. Experimental result reproducibility422

Question: Does the paper fully disclose all the information needed to reproduce the main423

experimental results of the paper to the extent that it affects the main claims and/or conclu-424

sions of the paper (regardless of whether the code and data are provided or not)?425

Answer: [Yes]426

Justification: We provide the data in the supplementary material and release scripts and427

logs with programs and verification outcomes; ARC and figures are reproducible from428

these artifacts.429

Guidelines:430

• The answer NA means that the paper does not include experiments.431

• If the paper includes experiments, a No answer to this question will not be perceived432

well by the reviewers: Making the paper reproducible is important.433

• If the contribution is a dataset and/or model, the authors should describe the steps434

taken to make their results reproducible or verifiable.435

• We recognize that reproducibility may be tricky in some cases, in which case authors436

are welcome to describe the particular way they provide for reproducibility. In the437

case of closed-source models, it may be that access to the model is limited in some438

way (e.g., to registered users), but it should be possible for other researchers to have439

some path to reproducing or verifying the results.440

5. Open access to data and code441

Question: Does the paper provide open access to the data and code, with sufficient instruc-442

tions to faithfully reproduce the main experimental results, as described in supplemental443

material?444

Answer:445

Justification: ARC is public; we release our evaluation scripts and logs, but some model446

APIs require paid access.447

Guidelines:448

• The answer NA means that paper does not include experiments requiring code.449

• Please see the Agents4Science code and data submission guidelines on the conference450

website for more details.451

• While we encourage the release of code and data, we understand that this might not452

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not453

including code, unless this is central to the contribution (e.g., for a new open-source454

benchmark).455

• The instructions should contain the exact command and environment needed to run to456

reproduce the results.457

• At submission time, to preserve anonymity, the authors should release anonymized458

versions (if applicable).459

6. Experimental setting/details460

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-461

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the462

results?463

Answer: [Yes]464

Justification: Dataset, metrics, systems compared, and selection criteria are specified in465

Sections 2–3.466

13



Guidelines:467

• The answer NA means that the paper does not include experiments.468

• The experimental setting should be presented in the core of the paper to a level of469

detail that is necessary to appreciate the results and make sense of them.470

• The full details can be provided either with the code, in appendix, or as supplemental471

material.472

7. Experiment statistical significance473

Question: Does the paper report error bars suitably and correctly defined or other appropri-474

ate information about the statistical significance of the experiments?475

Answer: [NA]476

Justification: ARC consists of a fixed set of 400 tasks; we report exact solve rates rather477

than averages over random trials.478

Guidelines:479

• The answer NA means that the paper does not include experiments.480

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-481

dence intervals, or statistical significance tests, at least for the experiments that support482

the main claims of the paper.483

• The factors of variability that the error bars are capturing should be clearly stated (for484

example, train/test split, initialization, or overall run with given experimental condi-485

tions).486

8. Experiments compute resources487

Question: For each experiment, does the paper provide sufficient information on the com-488

puter resources (type of compute workers, memory, time of execution) needed to reproduce489

the experiments?490

Answer: [Yes]491

Justification: The ensemble aggregates multiple agents and incurs additional compute; per-492

system costs are logged with our artifacts.493

Guidelines:494

• The answer NA means that the paper does not include experiments.495

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,496

or cloud provider, including relevant memory and storage.497

• The paper should provide the amount of compute required for each of the individual498

experimental runs as well as estimate the total compute.499

9. Code of ethics500

Question: Does the research conducted in the paper conform, in every respect, with the501

Agents4Science Code of Ethics (see conference website)?502

Answer: [Yes]503

Justification: The work uses a public benchmark and prioritizes transparency via verifiable504

solutions; it adheres to the Agents4Science Code of Ethics.505

Guidelines:506

• The answer NA means that the authors have not reviewed the Agents4Science Code507

of Ethics.508

• If the authors answer No, they should explain the special circumstances that require a509

deviation from the Code of Ethics.510

10. Broader impacts511

Question: Does the paper discuss both potential positive societal impacts and negative512

societal impacts of the work performed?513

Answer: [Yes]514

Justification: Potential positive and negative impacts are discussed in the Ethics and515

Broader Impact section, with mitigation via verification.516
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Guidelines:517

• The answer NA means that there is no societal impact of the work performed.518

• If the authors answer NA or No, they should explain why their work has no societal519

impact or why the paper does not address societal impact.520

• Examples of negative societal impacts include potential malicious or unintended uses521

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,522

privacy considerations, and security considerations.523

• If there are negative societal impacts, the authors could also discuss possible mitiga-524

tion strategies.525
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