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Abstract. We introduce WildTalker, a novel approach for synthesiz-
ing high-quality talking portraits that effectively addresses the chal-
lenges of real-world environments. Traditional methods often struggle
with unpredictable movements and noisy audio. WildTalker overcomes
these issues by integrating flow-guided temporal masking, which manages
dynamic regions by capturing and de-emphasizing transient areas, and
multi-scale spectral subtraction for robust audio denoising. This method
allows WildTalker to excel in both controlled and variable scenarios,
producing natural and synchronized talking portraits with accurate lip
synchronization. Our experiments demonstrate that WildTalker signifi-
cantly enhances the quality of audio-driven 3D talking portraits in dy-
namic settings, achieving superior lip synchronization under challenging
audio conditions. These results highlight that our method outperforms
existing approaches not only in real-world scenarios but also in controlled
environments, underscoring its potential for practical applications.

Keywords: Neural Radiance Field · Talking Portrait Synthesis · Wild
Scenario

1 Introduction

Reconstructing a talking portrait has been a long-standing focus of research in
computer vision and computer graphics, with broad applications ranging aug-
mented reality and visual avatars to film production and conversational agents.

Recently, AD-NeRF [17], a pioneer in applying NeRF to audio-driven talking
portrait synthesis, has employed separate training for the head and torso NeRFs
to accommodate varying degrees of motion. This approach has been widely
adopted in subsequent studies [22, 26, 30, 35, 40] and has achieved impressive
results in rendering realistic portraits, particularly in controlled environments.
As a result, the synthesis of talking heads has reached a high level of realism,
especially in scenarios where the subject remains relatively stationary.

However, despite these advancements in head synthesis, traditional meth-
ods [2, 4, 16, 17, 19, 22, 23, 34, 35, 40] still struggle significantly in real-world sce-
narios. These methods often falter when faced with unpredictable movements,
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such as hand gestures, and ambient noise. While these approaches excel at ren-
dering lip movements and facial expressions in stationary settings, they generally
neglect the complexity of the entire "portrait", particularly the quality of the
torso. The limitations of these traditional methods largely stem from their re-
liance on deriving torso movements from head poses. Although there is some
correlation between head and torso movements, the irrelevant things (e.g . hand
gestures) are challenging to current methods. In particular, in audio-driven tasks,
where the input speech during inference may differ from the audio used during
training, mismatch between speech and hand gestures can lead to unnatural
results if hand movements do not align with the speech.

To address these challenges, we introduce a novel approach called WildTalker,
which is designed to handle both disturbing movements and noisy audio while
focusing on generating a realistic torso. We define high dynamic region with
sudden, large movements as transient area and de-prioritize these areas during
rendering. To achieve this, we utilize our Flow-guided temporal mask, which
leverages optical flow to capture these areas. This approach allows us to effec-
tively manage unpredictable movements while maintaining the visual coherence
and realism of the overall portrait.

We also employ a Multi-scale Spectral Subtraction (MSS) denoiser to handle
noisy audio, ensuring accurate lip synchronization even in challenging environ-
ments. Existing talking portrait synthesis methods [17, 22, 35] often struggle to
accurately predict lip movements when the input audio is slightly corrupted.
While deep learning methods often achieve high performance, they tend to be
slower and heavily dependent on large training datasets. In contrast, traditional
signal processing methods like spectral subtraction are more efficient, faster, and
less reliant on extensive training data. Our MSS denoiser enhances the traditional
spectral subtraction method by applying it across multiple scales, capturing a
broader range of noise types and improving robustness in diverse scenarios.

Our comprehensive experiments demonstrate that the proposed WildTalker
not only maintains high-quality synthesis in controlled settings but also effective
in wild settings. As a result, it produces robust outcomes even when faced with
diverse and unrefined real-world data.

2 Related Works
Talking Portrait Synthesis Audio-driven talking portrait synthesis focuses on
reenacting realistic and expressive talking portrait from arbitrary speech audio.
Traditional approaches range from image-based methods [10–12] to model-based
methods [5,13,20,31,34,37]. While effective in generating facial expressions and
lip movements, they typically treat the torso as a static background, neglecting
its dynamic movements.

Recently, NeRF-based methods [17, 22, 26, 30, 35, 40] have achieved photo-
realistic rendering. AD-NeRF [17] synthesized talking heads from audio inputs,
bypassing the need for intermediate representations. RAD-NeRF [35] enhanced
efficiency by decomposing the synthesis into spatial and temporal components.
DFRF [30] enabled rapid personalization with minimal reference images. Gene-
Face [40] enhanced the fidelity using variational motion generator, domain-
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Fig. 1: Overview of Multi-scale Spectral Subtraction (MSS) audio denoiser.
(a) shows the overall denoising process, where the noisy audio y(n) is fed into the MSS
denoiser. This module performs spectral subtraction (SS) at different scales, producing
the denoised audio ŷ(n). (b) details the internal workings of MSS for a single scale.

adaptive post-net, and head aware torso-NeRF to address head-torso separation.
SyncTalk [26] improved synchronization by aligning lip movements with speech,
accurately capturing expressions with a 3D blendshape model, and stabilizing
head movements.

However, these methods excel mainly in controlled environments, such as
videos of news anchors sitting upright with their hands still. They often struggle
with more dynamic settings, particularly when rendering sudden movements
like hand gestures, leading to blurry or unrealistic outputs in the torso region.
Our approach builds on the strengths of NeRF while introducing mechanisms to
handle dynamic torso movements effectively.
Unconstrained Scenes Uncertainty modeling in NeRF has become critical for
applications in unstructured and unconstrained environments. This approach
aims to enhance the reliability and robustness of scene representation, partic-
ularly when faced with the dynamics of real-world conditions. NeRF-W [24]
extended the original NeRF to handle highly variable photographic collections
by separating static and transient scene elements, effectively managing inconsis-
tencies. Further advancements by D-NeRF [38] and RobustNeRF [29] focused
on separating moving objects and their shadows from static backgrounds using
dual NeRF architectures. This allows for more accurate modeling of dynamic
elements without compromising the representation of the static scene.

Despite efforts to handle wild conditions, existing methods do not effectively
address the synthesis of talking portraits in environments with dynamic move-
ments and background noise, which degrade the output quality. In contrast, our
method is specifically designed to compensate for diverse unpredictable elements
in dynamic videos, resulting in higher-quality talking portraits.

3 Methods

Multi-scale Spectral Subtraction Denoiser The traditional spectral sub-
traction method [3] employs a Short-Time Fourier Transform (STFT) to reduce
noise in audio signals. While effective in controlled environments, it often strug-
gle with the varied and dynamic noise conditions in real-world scenarios. To
improve robustness and adaptability in noise reduction, we propose Multi-scale
Spectral Subtraction (MSS) denoiser.
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Our MSS denoiser, as shown in Fig.1, processes the noisy audio signal y(n)
at each discrete time index n by transforming it through STFT to obtain the
spectral representation S(k,m) at each frequency bin k and frame m, defined as
S(k,m) = STFT(y(n), k,m). Noise is then estimated and subtracted from the
spectrum using spectral subtraction:

Ŝ(k,m) = max (|S(k,m)| − α · Noise(k,m), 0) , (1)

where Ŝ(k,m) represents the magnitude spectrum of the estimated clean signal,
α controls the level of noise suppression, and Noise(k,m) denotes the magnitude
spectrum of the estimated noise signal. The noise estimation process assumes ini-
tial STFT frames primarily contain background noise, which is then subtracted
from the noisy signal. After the noise reduction, the clean spectral components
are converted back to the time domain using the Inverse Short-Time Fourier
Transform (ISTFT), yielding the clean audio output ŷl(n) for each scale. The
final denoised audio signal, ŷ(n), is obtained by averaging the outputs from all
scales:

ŷ(n) =
1

L

L∑
l=1

ŷl(n), (2)

where L denotes the number of STFT window scales used. The scale parame-
ters are number of Fast Fourier Transform components, hop length and window
length. This multi-scale approach improves noise mitigation across a broad fre-
quency range, addressing both high-frequency transient noises and low-frequency
persistent disturbances. Then, ŷ(n) is processed through a pre-trained Audio
Feature Extractor (e.g . DeepSpeech [18]) to obtain the denoised lip feature ldn.

Denoised Head Renderer Using the Face-Sync Controller and Head-Sync
Stabilizer proposed in Synctalk [26], we extract the final lip feature fl and expres-
sion feature fe by utilizing the lip feature ldn obtained from the MSS denoiser,
along with the head pose parameters R and T . The Tri-Plane Hash Represen-
tation, first introduced in ER-NeRF [22], is used for high quality talking head
synthesis. This method employs three distinct 2D multi-resolution hash grid
encoders, HAB : (a, b) → fAB

ab , each with unique orientations to reduce hash col-
lisions. Here, HAB represents the multi-resolution hash encoder in RAB , where
(a, b) denotes the projected coordinate. The three distinct 2D geometric features
obtained from these encoders are concatenated to form a single geometric fea-
ture fx = HXY

xy ⊙HY Z
yz ⊙HXZ

xz . This geometric feature, along with lip features
fl, expression features fe, 3D coordinates x = (x, y, z), and viewing direction
d = (θ, ϕ), is passed through the implicit function F : MLP(x,d, fl, fe; fx) to
produce the final color c and density σ.

The colors and volume densities along the camera ray r, from the near bound
tn to the far bound tf , are accumulated to calculate a pixel color Ĉ(r):

Ĉ(r) =
∫ tf

tn

σ(r(t)) · c(r(t),d) · T (t)dt, (3)

where T (t) represents the accumulated transmittance along the ray ranging from
tn to t, as follows: T (t) = exp

(
−
∫ t

tn
σ(r(s))ds

)
.
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Fig. 2: WildTalker Network architecture. The figure shows two pipelines for
talking portrait synthesis. The top demonstrates the Adaptive Torso Renderer, us-
ing flow-guided temporal masking. The bottom shows Denoised Head Renderer, with
a Head-Sync Stabilizer and Face-Sync Controller, synchronized to denoised audio via
Multi-scale Spectral Subtraction (MSS) denoiser.

Adaptive Torso Renderer To effectively address unpredictable regions
such as suddenly appearing objects or abrupt hand gestures, we propose a flow-
guided temporal masking that ensures efficient and realistic rendering of the
torso. Our method leverages optical flow [39] to track dynamic objects and de-
emphasize transient areas. By analyzing regions with high optical flow vectors,
we can identify significant motion and classify transient objects. However, simply
masking regions with large optical flow magnitudes is insufficient. This approach
risks overlooking objects that persist beyond their initial appearance and can
degrade the quality of torso rendering by failing to account for subtle or sustained
movements. To address these issues comprehensively, we accumulate optical flow
magnitudes over time, allowing us to robustly capture both abrupt motions and
unwanted sustained objects. The temporal mask, Mi, for frame i is defined as:

Mi = max (Mi−1 · δi, 1(|Vi| > θ)) , (4)

where Mi−1 is the cumulative mask from the previous frame, δi is a decay factor
dynamically adjusted based on the optical flow magnitude at frame i, and 1(·)
generates a mask where the magnitude |Vi| exceeds a threshold θ. This dynamic
accumulation approach balances the need to capture transient objects while
preserving important torso details. For torso rendering, we adopt a Pseudo-3D
Deformable method [35]. The 2D coordinates xtorso and camera poses p are first
deformed via ∆xtorso = MLP(xtorso,p). The deformation ∆xtorso is then passed
through a feature grid encoder G2 to obtain the torso feature ftorso, which is
used by an implicit function to compute the color ctorso and density σtorso. Fig.2
illustrates the full network architecture.
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Training Details We utilize Mean Squared Error (MSE) loss to measure
the overall difference between the predicted color Ĉ and the actual color C:

Lrecon(r) =
∑
i∈I

||Ci(r)− Ĉi(r)||22, (5)

where the predicted color Ĉ can be obtained by Eq.3 using chead (or ctorso) and
σhead (or σtorso), and i and r denote individually the image index and ray.

We utilize the flow-guided temporal mask Mi, obtained from Eq.4, as the
loss weight to modify the MSE loss in Eq.5:

Ltorso = M(r) · Lrecon(r), (6)

where M(r) denotes the flow-guided temporal mask applied along the camera
ray r, derived from Mi in Eq.4.

Due to the small size of the mouth, evaluating its movements with only the
MSE loss in Eq.5 is insufficient, as it fails to capture the finer details of lip
movements. To enhance the model’s ability to learn these detailed features, we
perform lip finetuning. We use patches P sampled from the image and incor-
porate LPIPS (Learned Perceptual Image Patch Similarity) [41] loss to further
refine the training.

Lhead = Lrecon(r) + λLPIPS(P, P̂), (7)

where P̂ represents the patches of the rendered image. As our training process
is divided into head and torso pipelines, the head part is trained with Eq.7, and
the torso part is trained with Eq.6.

4 Experiments
Experiments Details Unlike existing methods that primarily focus on the
head part and evaluate performance after training only the head, we conducted
experiments using a 5-minute video that fully captures the entire torso and hand
movements. For a fair comparison, we excluded methods that do not handle the
torso in the quantitative evaluation of torso. All experiments, except those using
AD-NeRF [17] with a 450 × 450 resolution, were performed with images at a
resolution of 512 × 512. To generate hand-absent videos, we synthesized the
ground truth (GT) images without hands using LaMa [33]. The optical flow was
used as input only during the training phase and was not utilized during testing.
To test the method’s denoising capability in real-world conditions, we generated
noisy audio with various background noises sourced from YouTube.

Evaluation on Rendering Quality To evaluate the quality of the recon-
structed portrait, we employed PSNR, LPIPS [41], and LMD [6]. Tab.1 presents
a comparative analysis of our method against several state-of-the-art NeRF ap-
proaches. Notably, the proposed WildTalker achieved the lowest LPIPS and
highest PSNR score, which underscores our method’s ability to generate re-
alistic images. Moreover, WildTalker also achieved the lowest LMD and AUE
score, indicating its superior performance in accurately capturing lip movements.
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Table 1: Quantitative Evaluation of Torso Reconstruction with dynamic
movements and noisy audio. We highlighted the best and the second-best results.
LMD for AD-NeRF could not be measured.
Methods PSNR↑ LPIPS↓ LMD↓ AUE↓ LSE-C↑ LSE-D↓ Time(h)
AD-NeRF ICCV’21 [17] 22.742 0.228 - 0.467 0.323 12.071 36.4
RAD-NeRF arXiv’22 [35] 23.736 0.166 1.929 0.354 6.329 8.427 4.0
ER-NeRF ICCV’23 [22] 24.183 0.113 2.196 0.240 7.199 7.830 2.4
SyncTalk CVPR’24 [26] 24.580 0.101 2.100 0.211 6.096 8.402 2.2
WildTalker(Ours) 25.602 0.079 1.881 0.176 8.752 6.283 2.2

Table 2: Quantitative Evaluation of Lip Synchronization with both original
and corrupted audio. The best and second-best results were highlighted.

Original Corrupted
AUE↓ LSE-C↑ LSE-D↓ AUE↓ LSE-C↑ LSE-D↓

Wav2Lip ACM MM’20 [27] 0.246 8.447 6.241 0.313 7.413 7.330
VideoReTalking SIGGRAPH Asia’22 [7] 0.270 8.066 7.075 0.290 7.014 7.953
DINet AAAI’23 [42] 0.340 6.775 8.026 0.355 5.801 8.904
TalkLip CVPR’23 [27] 0.300 6.219 8.378 0.304 5.325 8.502

2D

IP-LAP CVPR’23 [43] 0.294 5.571 8.975 0.298 3.845 10.632
AD-NeRF ICCV’21 [17] 0.294 5.005 9.957 0.313 4.603 10.212
RAD-NeRF arXiv’22 [35] 0.356 3.598 9.642 0.357 2.197 11.591
GeneFace ICLR’23 [40] 0.266 6.876 7.076 0.318 4.587 9.243
ER-NeRF ICCV’23 [22] 0.271 6.808 8.004 0.371 3.052 11.130N

eR
F

SyncTalk CVPR’24 [26] 0.306 7.108 7.108 0.278 6.674 9.343
WildTalker (Ours) 0.283 8.928 6.126 0.280 7.076 7.889

Furthermore, the LSE-C and LSE-D metrics [8] demonstrate the robustness of
our approach in terms of synchronization and expression consistency, with our
method showing substantial improvements, particularly in LSE-C. This suggests
that WildTalker excels not only in rendering high-quality visuals but also in
maintaining accurate lip synchronization and expression dynamics. Finally, we
compared the training time to demonstrate the efficiency of our method.

Evaluation on Lip Synchronization Tab.2 shows the results of lip syn-
chronization in head reconstruction, evaluated with both original and corrupted
audio (synthesized with real-world noise). Our method outperforms state-of-
the-art NeRF-based methods and provides results comparable to Wav2Lip [27],
showing strong performance even with corrupted audio. To further assess the
denoising performance of the MSS denoiser, we used VoiceBank-DEMAND [36]
test sets and compared it to deep learning-based methods [1,9,14,15,21,25,28,32].
The test sets consist of 824 utterances from two speakers with four SNR levels
(17.5, 12.5, 7.5, and 2.5 dB). Performance was evaluated using PESQ (speech
quality), CSIG (signal distortion), CBAK (background noise), and COVL (over-
all speech quality). As shown in Tab.3, MSS achieved the highest scores in PESQ
and CBAK, demonstrating strong denoising and noise reduction capabilities. Al-
though it ranked second in CSIG and third in COVL, it remains highly compet-
itive with SOTA methods [1], proving MSS’s efficiency and robust performance.

Qualitative Evaluation Fig.3 demonstrates qualitative results under self-
driven and cross-driven settings. We compared our method with RAD-NeRF [35],
ER-NeRF [22], and SyncTalk [26], observing that existing methods often produce
blurry outputs when handling dynamic movements. In the self-driven setting, our
approach showed superior handling of consistent hand movements, outperform-
ing previous methods, which frequently blur hand motions and degrade torso
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Table 3: Quantitative Evaluation of Speech Enhancement compared with
deep learning-based methods on the VoiceBank-DEMAND dataset. We high-
lighted the best and the second-best results.

Methods PESQ↑ CSIG↑ CBAK↑ COVL↑
Noisy 1.97 3.35 2.44 2.63
SEGAN Interspeech’17 [25] 2.16 3.48 2.94 2.80
MMSE-GAN ICASSP’18 [32] 2.53 3.80 3.12 3.14
Metric-GAN ICML’19 [14] 2.86 3.99 3.18 3.42
HiFi-GAN NeurIPS’20 [21] 2.94 4.07 3.07 3.49
DEMUCS ICASSP’23 [28] 3.07 4.31 3.40 3.63
MetricGAN+ Interspeech’21 [15] 3.15 4.14 3.16 3.64
DPT-FSNET ICASSP’22 [9] 3.33 4.58 3.72 4.00
CMGAN ICASSP’24 [1] 3.41 4.63 3.94 4.12
MSS (Ours) 3.87 4.62 4.16 3.64

Fig. 3: Comparisons under self-driven(left) and cross-driven(right) settings.
The left figure illustrates the results of rendering video with dynamic hand gestures.
Our method effectively removed transient hand movements, producing a cleaner torso
region, as highlighted in the zoomed-in hand areas. The right figure illustrates lip
synchronization when inferring arbitrary noisy audio. MSS(blue boxes) yields more
accurate results, while without MSS(red boxes), the synchronization is less precise.

quality. In the cross-driven setting, we evaluated lip synchronization with noisy
audio inputs, demonstrating that incorporating the MSS denoiser enables more
accurate and synchronized lip movements compared to our model without MSS.
More experiments can be found in the supplementary materials.

5 Conclusion
In this paper, we present the WildTalker, a novel approach for synthesizing high-
quality talking portraits in real-world environments. By integrating a flow-guided
temporal mask and Multi-scale Spectral Subtraction (MSS) denoiser, WildTalker
effectively handles unpredictable movements and noisy audio, achieving state-
of-the-art results across various scenarios. Our method significantly outperforms
existing approaches, as shown by improvements in perceptual quality metrics
such as LPIPS and LSE, highlighting its ability to generate natural and syn-
chronized talking portraits, even in challenging settings.
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