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Abstract

Stackelberg planning is a two-player variant of classical plan-
ning, in which one player tries to “sabotage” the other player
in achieving its goal. This yields a bi-objective planning prob-
lem, which appears to be computationally more challenging
than the single-player case. But is this actually true? All in-5

vestigations so far focused on practical aspects, i.e., algo-
rithms, and applications like cyber-security or very recently
for meta-operator verification in classical planning. We close
this gap by conducting the first theoretical complexity analy-
sis of Stackelberg planning. We show that in general Stack-10

elberg planning is no harder than classical planning. Under
a polynomial plan-length restriction, however, Stackelberg
planning is a level higher up in the polynomial complexity hi-
erarchy, suggesting that compilations into classical planning
come with an exponential plan-length increase. In attempts to15

identify tractable fragments exploitable, e.g., for Stackelberg
planning heuristic design, we further study its complexity un-
der various planning task restrictions, showing that Stackel-
berg planning remains intractable where classical planning is
not. We finally inspect the complexity of the meta-operator20

verification, which in particular gives rise to a new interpre-
tation as the dual problem of Stackelberg plan existence.

Introduction
Stackelberg planning (Speicher et al. 2018a) is a two-player
variant of classical planning, where one player (the leader)25

tries to “sabotage” the other player (the follower). The leader
moves first, committing to an action sequence, which sub-
sequently the follower needs to complete to a plan. The
leader’s objective is maximizing the follower’s optimal plan
cost while minimizing her own cost. This type of planning30

is useful for real-world adversarial settings commonly found
in the cyber-security domain (Speicher et al. 2018b; Di Tizio
et al. 2023). Leader-follower search (Speicher et al. 2018a)
is the so far only algorithm paradigm proposed for solv-
ing such tasks. In essence, it boils down to a search in the35

leader state space, solving for every visited leader state the
follower’s associated classical planning task. Given that ex-
ponentially such follower tasks must be solved in the worst
case, one might wonder whether Stackelberg planning is in
fact computationally more difficult than classical variant.40

Past work on Stackelberg planning however so far focused
on algorithmic improvements rather than studying this ques-
tion (Torralba et al. 2021; Sauer et al. 2023).

To close this gap, we present the first theoretical investi-
gation of Stackelberg planning’s complexity. We show that 45

Stackelberg planning remains PSPACE-complete in general.
However, Stackelberg planning with polynomial plan-length
bounds is ΣP

2 -complete, contrasting the NP-completeness
of the corresponding classical planning problem (Bylander
1994). Assuming that the polynomial hierarchy does not col- 50

lapse, this suggests that compilations of Stackelberg plan-
ning into classical planning need to come with an exponen-
tial increase in plan length.

The analysis of tractable fragments has shown to be an im-
portant source for the development of domain-independent 55

heuristic in classical planning (e.g., Hoffmann and Nebel
2001; Domshlak, Hoffmann, and Katz 2015). With the vi-
sion of establishing a basis for the development of leader-
follower search heuristics, we analyze the complexity of
Stackelberg planning under various syntactic restrictions. 60

An overview of our results is given in Tab. 1.
Lastly, we explore a problem related to Stackelberg plan-

ning: meta-operator (Pham and Torralba 2023) verification.
Meta-operators are action-sequence wild cards, which can
be instantiated freely for every state satisfying the opera- 65

tor’s precondition as long as operator’s effects match. Pham
and Torralba have cast verifying whether a given action is a
valid meta-operator as a Stackelberg planning task. We show
that meta-operator verification PSPACE-complete and ΠP

2 -
complete under a polynomial plan-length restriction. This 70

gives rise to a new interpretation of the meta-operator veri-
fication as the dual problem of Stackelberg planning.

Note to Reviewers: This is a short-paper version without
proofs. All proofs are in the supplement, which we will pub-
lish. Alternatively, if you so desire, we can include all proofs 75

into a long version of paper (see alternative attached).

Background
Classical Planning We assume STRIPS notation (Fikes
and Nilsson 1971). A planning task is a tuple Π =
⟨V,A, I,G⟩ consisting of a set of propositional state vari- 80

ables (or facts) V , a set of actions A, an initial state I ⊆ V ,
and a goal G ⊆ V . For p ∈ V , p and ¬p are called literals.
A state s is a subset of V , with the interpretation that all state
variables not in s do not hold in s. Each action a ∈ A has a
precondition pre(a), a conjunction of literals, an add effect 85

(also called positive effect) add(a) ⊆ V , a delete effect (neg-



Plan existence Optimal planning

Syntactic restrictions PLANSAT STACKELSAT PLANMIN STACKELMIN METAOPVER

∗ preconds ∗ effects
|π| not bounded

PSPACE PSPACE (Theorem 1) PSPACE PSPACE (Theorem 2) PSPACE (Theorem 10)

∗ preconds ∗ effects
|π| ∈ O(nk)

NP ΣP
2 (Theorem 3) NP ΣP

2 (Theorem 3) ΠP
2 (Theorem 11)

1 precond 1+ effect NP ΣP
2 (Theorem 4) NP ΣP

2 (Corollary 1) –

∗+ preconds 1 effect P NP (Theorem 5) NP ΣP
2 (Theorem 7) –

0 preconds 2 effects P P for ∞ effects (Theorem 6 ) NP ΣP
2 (Theorem 8) –

0 preconds 1 effect
non-unit cost

P P for ∞ effects (Theorem 6) P NP (Theorem 9) –

Table 1: Overview of our complexity results. For comparison, the PLANSAT and PLANMIN columns show the complexity
of classical planning under the respective task restrictions, as given by (Bylander 1994). All results prove completeness with
respect to the different complexity classes. ∗ means arbitrary number, + only positive, ∗+ arbitrary positive, and n+ n positive.

ative effect) del(a) ⊆ V , and a non-negative cost c(a) ∈ N0.
a is applicable in a state s iff s |= pre(a). Executing a in s
yields the state sJaK = (s \ del(a)) ∪ add(a). These def-
initions are extended to action sequences π in an iterative90

manner. The cost of π is the sum of costs of its actions. π is
called an s-plan if π is applicable in s and G ⊆ sJπK. π is an
optimal s-plan if c(π) is minimal among all s-plans. An (op-
timal) plan for Π is an (optimal) I-plan. If there is no I-plan,
we say that Π is unsolvable. Two decision problem formu-95

lations of classical planning are considered in the literature.
PLANSAT is the problem of given a planning task Π , de-
ciding whether there exists any plan for Π . PLANMIN asks,
given in addition a (binary-encoded) cost bound B, whether
there is a plan π for Π with cost c(π) ≤ B. Both problems100

are known to be PSPACE-complete (Bylander 1994).

Stackelberg Planning A Stackelberg planning task (Spe-
icher et al. 2018a) is a tuple ΠLF = ⟨V,AL, AF , I, GF ⟩,
where the set of actions is partitioned into one for each
player. A leader plan is an action sequence πL =105

⟨aL1 , . . . , aLn⟩ ∈ (AL)n that is applicable in I . πL in-
duces the follower task ΠF (πL) = ⟨V,AF , IJπLK, GF ⟩.
An (optimal) follower response to πL is an (optimal) plan
for ΠF (πL). We denote by cF (πL) the cost of the opti-
mal follower response to πL, defining cF (πL) = ∞ if110

ΠF (πL) is unsolvable. Leader plans are compared via a
dominance order between cost pairs where ⟨cL1 , cF1 ⟩ weakly
dominates ⟨cL2 , cF2 ⟩ (⟨cL1 , cF1 ⟩ ⊑ ⟨cL2 , cF2 ⟩), if cL1 ≤ cL2
and cF1 ≥ cF2 . ⟨cL1 , cF1 ⟩ (strictly) dominates ⟨cL2 , cF2 ⟩
(⟨cL1 , cF1 ⟩ ⊏ ⟨cL2 , cF2 ⟩), if ⟨cL1 , cF1 ⟩ ⊑ ⟨cL2 , cF2 ⟩ and115

⟨cL1 , cF1 ⟩ ≠ ⟨cL2 , cF2 ⟩. To simplify notation, we write πL
1 ⊏

πL
2 if ⟨c(πL

1 ), c
F (πL

1 )⟩ ⊏ ⟨c(πL
2 ), c

F (πL
2 )⟩. A leader plan

πL is optimal if it is not dominated by any leader plan. Pre-
vious works have considered algorithms for computing the
set of all optimal solutions, called the Pareto frontier.120

Stackelberg Planning Decision Problems
We distinguish between two decision-theoretic formulations
of Stackelberg planning, akin to classical planning:

Definition 1 (STACKELSAT). Given ΠLF , STACKELSAT
is the problem of deciding whether there is a leader plan πL 125

that makes ΠF (πL) unsolvable.
Definition 2 (STACKELMIN). Given ΠLF , and two
binary-encoded numbers BL, BF ∈ N0. STACKELMIN is
the problem of deciding whether there is a leader plan πL

with ⟨c(πL), cF (πL)⟩ ⊑ ⟨BL, BF ⟩. 130

Interpreting the leader’s objective as rendering the fol-
lower’s objective infeasible, the first definition directly mir-
rors the PLANSAT plan-existence decision problem. Sim-
ilarly, the second definition mirrors PLANMIN in looking
for solutions matching a given quantitative cost bound. It is 135

worth mentioning that both decision problems are implicitly
looking for only a single point in the Pareto frontier, whereas
previous practical works dealt with algorithms computing
this frontier entirely. In terms of computational complex-
ity, this difference is however unimportant. In particular, an- 140

swering even just a single STACKELMIN question does in
fact subsume the computation of the entire Pareto frontier –
if the answer is no, one necessarily had to compare the given
bounds to every element in the Pareto frontier.

As in classical planning, STACKELSAT can be easily 145

(with polynomial overhead) reduced to STACKELMIN:
Proposition 1. STACKELSAT is polynomially reducible to
STACKELMIN.

Given that Stackelberg planning is a proper generaliza-
tion of classical planning, the Stackelberg decision problems 150

are guaranteed to be at least as hard as the respective classi-
cal planning decision problem. By applying the same proof
idea as the Immerman–Szelepcsényi theorem (Szelepcsényi
1987; Immerman 1988), we can prove that it is also no
harder than classical planning in the general case: 155

Theorem 1. STACKELSAT is PSPACE-complete.
Theorem 2. STACKELMIN is PSPACE-complete.

In spite of these results, algorithms for Stackelberg plan-
ning are significantly more complicated than their classi-
cal planning counterparts. In particular, the results raise the 160



question of whether it is possible to leverage directly the
classical planning methods for solving Stackelberg tasks via
compilation. Polynomial compilations necessarily exist as
per the theorems, yet, it is interesting to investigate which
“side-effects” these might need to have. For example, it165

is possible any such compilation will have exponentially
longer plan, rendering this approach infeasible in practice.
In order to investigate these questions, we turn to a more fine
granular analysis by considering the complexity under vari-
ous previously studied syntactic classes of planning tasks.170

Stackelberg Planning under Restrictions
Polynomial Plan Length
For classical planning, it is commonly known that restrict-
ing the length of the plans to be polynomial in the size of
the planning task description, makes the decision problems175

become NP-complete.
Definition 3 (Polynomial Stackelberg Decision). Given
ΠLF with non-0 action costs, and two binary-encoded num-
bers BL, BF ∈ N0 that are bounded by some polynomial
p ∈ O(ℓk) for ℓ = |V | + |AL| + |AF |. STACKELPOLY is180

the problem of deciding whether there is a leader plan πL

such that ⟨c(πL), cF (πL)⟩ ⊑ ⟨BL, BF ⟩.
We restrict the action cost to be strictly positive, ensuring

that considering leader and follower plans with polynomial
length is sufficient to answer the decision problem. STACK-185

ELPOLY is harder than the corresponding classical problem.
Theorem 3. STACKELPOLY is ΣP

2 -complete.
This result strongly suggests that a compilation of Stack-

elberg planning into classical planning is in general not pos-
sible without an exponential blow-up of some kind. Namely,190

suppose it were possible to compile any Stackelberg plan-
ning task into classical planning in a way so that the size as
well as the length of the plans of the classical planning task
can be related polynomially to the size of the Stackelberg
task. Suppose the plans of the Stackelberg task are polyno-195

mially bounded. Since polynomial length plan existence for
classical planning is NP-complete, this would, together with
our result, imply that NP = ΣP

2 , thus collapsing the poly-
nomial hierarchy (Arora and Barak 2007, Theorem 5.6). As
this is unlikely given out current knowledge, we hence sur-200

mise that such polynomial compilations do not exist. Or in
other words: we know that an exponential blow-up in the
computation is not avoidable in all circumstances.

Stackelberg Planning under Bylander’s Syntactic
Restrictions205

Bylander (1994) studied the complexity of classical plan-
ning under various syntactic restrictions, drawing a concise
borderline between planning’s tractability and infeasibil-
ity. Bylander distinguishes between different planning task
classes based on the number of action preconditions and ef-210

fects, and the existence of negative preconditions or effects.
Table 1 provides an overview of the main classes. Here, we
take up his analysis and show that even for the classes where
classical planning is tractable, Stackelberg may not be. We
consider STACKELSAT and STACKELMIN in this order.215

Definition 4. Let m,n ∈ N0 ∪ {∞}. STACKELSATm
n is the

problem of deciding STACKELSAT for Stackelberg tasks so
that | pre(a)| ≤ m and | add(a)| + | del(a)| ≤ n hold for
all actions a. If m is preceded by “+”, actions may not have
negative preconditions. If n is preceded by “+”, actions may 220

not have delete effects. STACKELMINm
n is defined similarly.

We omit m (n) if m = ∞ (n = ∞). We consider only
cases where the classical-planning decision problems are in
NP. Stackelberg planning is PSPACE-hard when classical
planning is. 225

Plan Existence
Bylander (1994) has shown that PLANSAT is already NP-
complete for tasks with actions that even have just a single
precondition and a single effect. Here we show that the cor-
responding Stackelberg decision problem is even one step 230

above in the polynomial hierarchy:
Theorem 4. STACKELSAT1

+1 is ΣP
2 -complete.

Bylander (1994) has shown that PLANSAT is polynomial
if only positive preconditions and only a single effect per
action are allowed. Even under these restrictive conditions, 235

STACKELSAT however still remains intractable:
Theorem 5. STACKELSAT+

1 is NP-complete.
Stackelberg plan-existence however becomes easy, when

forbidding preconditions throughout. While this class of
tasks seems to be trivial at first glance, optimal Stackelberg 240

planning actually remains intractable as we show below.
Theorem 6. STACKELSAT0 is polynomial.

Optimal Planning
As per Proposition 1, optimal planning is in general at least
as hard as deciding plan existence. All intractability results 245

shown for STACKELSAT carry over to STACKELMIN. As
in all classes analyzed in the previous section, the consider-
ation of polynomially length-bounded plans is sufficient for
hardness, ΣP

2 yields a sharp upper bound to the complexity
of STACKELMIN, as per Theorem 3. In particular: 250

Corrolary 1. STACKELMIN1
+1 is ΣP

2 -complete.
The results for STACKELSAT only provide a lower

bound to the complexity of STACKELMIN. This lower
bound may be strict as demonstrated by Thm. 7 and 8:
Theorem 7. STACKELMIN+1

1 is ΣP
2 -complete. 255

Theorem 8. STACKELMIN0
2 is ΣP

2 -complete.
Optimal Stackelberg planning remains intractable even

when all actions have no preconditions and may have only
at most one effect.
Theorem 9. STACKELMIN0

1 is NP-complete in general, but 260

polynomial when additionally assuming unit cost.

Complexity of Meta Operator Verification
Pham and Torralba (2023) have recently leveraged Stack-
elberg planning for synthesizing meta-operators in classi-
cal planning. Meta-operators, like macro-actions (Fikes and 265

Nilsson 1971), are artificial actions that aggregate the effect
of action sequences, therewith introducing shortcuts in state-
space search. Formally, we are given a classical planning



task Π and an action σ that is not in Π’s action set. σ is a
meta-operator for Π if, for every state s |= pre(σ) that is270

reachable from I , there exists a sequence π of Π’s actions
such that sJσK = sJπK. Whether a given σ is a meta-operator
can be verified by solving a Stackelberg planning task.

Here, we consider the question whether using an expres-
sive and computationally difficult formalism like Stackel-275

berg planning is actually necessary. For this, we determine
the computational complexity of meta-operator synthesis
and compare it to that of Stackelberg planning, and based
on this analysis point out an interesting connection.

Definition 5 (Meta-Operator Verification). Given Π and a280

fresh action σ. METAOPVER is the problem of deciding
whether σ is a meta-operator for Π .

Like for Stackelberg planning, the complexity of meta-
operator verification in general remains the same as that of
classical planning:285

Theorem 10. METAOPVER is PSPACE-complete.

In other words, meta-operator verification could as well
be compiled directly into a classical rather than a Stackel-
berg planning task. But how difficult or effective would such
a compilation be? To shed light on this question, we again290

turn to a length bounded version of the problem.

Definition 6 (Polynomial Meta-Operator Verification).
Given Π with non-0 action costs, a fresh action σ, and two
binary-encoded numbers BP , BM ∈ N0 that are bounded
by some polynomial p ∈ O(ℓk) for ℓ = |V | + |A|. poly-295

METAOPVER is the problem of deciding whether for all
states s |= pre(σ) reachable from I with a cost of at most
BP , there exists π with c(π) ≤ BM and sJπK = sJσK.

The parameters BP and BM define the perimeter around
the initial state respectively the reached state under which300

the meta-operator conditions are to be verified. As for Stack-
elberg planning, we require that the cost of all actions is
strictly positive, which together with the cost bounds ensures
that the radius of the perimeter is polynomially bounded.

Polynomial meta-operator verification too is on the sec-305

ond level of the polynomial hierarchy. We again point
out that, under the assumption that the polynomial hierar-
chy does not collapse, this result shows that all classical-
planning encodings of meta-operator verification generally
need to come with an exponential explosion of some kind.310

Theorem 11. polyMETAOPVER is ΠP
2 -complete.

Note that polyMETAOPVER is therefore in the co-
complexity-class of polynomial Stackelberg plan-existence,
i.e., they belong to co-classes on the same level of the poly-
nomial hierarchy. This may not be surprising given that315

meta-operator verification can indeed be seen as the dual
of Stackelberg plan existence: while the latter asks for the
existence of a (leader) action sequence where all induced
(follower) action sequences satisfy some property, meta-
operator verification swaps the quantifiers.320

We want to point out that the duality between
METAOPVER and STACKELSAT can be exploited fur-
ther, showing analogous results for Bylander’s (1994) task
classes. Contrary to Stackelberg planning, however, the

identification of tractable fragments is less useful for meta- 325

operator verification due to the lack of the monotonicity in-
variance of the meta-operator condition. An action being a
meta-operator in a task abstraction does not imply that the
action is a meta-operator in the original task, and vice versa.
We hence do not further explore this analysis here. 330

Related Work
Stackelberg planning is related to conformant and condi-
tional planning, extensions of classical planning by state
and/or action outcome uncertainty. Under the restriction to
deterministic actions, both can be seen as a special case of 335

Stackelberg planning using the leader-reachable states as
an encoding of the initial belief. With this interpretation,
STACKELSAT is false iff the conditional planning task is
solvable. If the follower is restricted to use the same plan in-
dependent of the leader actions, we would have a model for 340

conformant planning.
In the general case, conditional planning under partial

observability and with conditional effects is EXPSPACE
complete (Rintanen 2004). Both conformant and condi-
tional planning have been investigated under the restriction 345

to only polynomially long plans, like we did here. Rinta-
nen (1999) showed that polynomially-length-bounded con-
ditional STRIPS planning ΠP

2 complete, the co-result to our
Thm. 3. His hardness proof uses a similar proof idea as
ours, with technical differences owed to the different plan- 350

ning formalism. Bonet (2010) studied conditional planning
with non-determinstic actions, proving that polynomially
bounded plan existence for conditional plans with at most k
branching points is ΣP

2k+k-complete. Stackelberg planning
corresponds k = 1, the difference between determinism and 355

non-determinism causing the ΣP
2 vs. ΣP

4 complexity results.
For conformant planning, Baral, Kreinovich, and

Trejo (2000) showed that plan existence is Σ2
P -complete, if

conditional effects are allowed. Turner (2002) considered
conditional and conformant planning, but his formalism 360

supported arbitrary boolean formulae as conditions, making
length-1 plan existence already NP-complete.

No prior work on conformant/conditional planning con-
sidered any of Bylander’s syntactical restrictions. Further,
Stackelberg planning differs from conditional/conformant 365

planning in using a more complex compact description of
the “relevant” states through reachability.

Conclusion
Stackelberg planning remains PSPACE-complete like classi-
cal planning in general, but is ΣP

2 complete under a polyno- 370

mial plan-length bound. Hence, unless the polynomial hier-
archy collapses at its first level, it is not possible to compile
Stackelberg planning into classical planning without expo-
nential blow-up. We showed that Stackelberg planning re-
mains intractable even under various syntactical restrictions. 375

Lastly, we have proven similar results for meta-operator ver-
ification, showing that it is PSPACE-complete in general and
ΠP

2 -complete for the polynomial plan-length bounded case,
implying the same type of results for it.



References380

Arora, S.; and Barak, B. 2007. Computational Complexity:
A Modern Approach. Princeton, Online Draft Version.
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness. Artificial Intelligence,385

122(1-2): 241–267.
Bonet, B. 2010. Conformant plans and beyond: Principles
and complexity. Artificial Intelligence, 174(3-4): 245–269.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,390

69(1): 165–204.
Di Tizio, G.; Speicher, P.; Simeonovski, M.; Backes, M.;
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M.; Pellegrino, G.; Hoffmann, J.; and Backes, M. 2018b.
Formally reasoning about the cost and efficacy of securing 440

the email infrastructure. In 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), 77–91. IEEE.
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