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Abstract

Best-of-N selection is a key technique for improving the reasoning performance of
Large Language Models (LLMs) through increased test-time computation. Current
state-of-the-art methods often employ computationally intensive reward models for
response evaluation and selection. Reward-free alternatives, like self-consistency
and universal self-consistency, are limited in their ability to handle open-ended
generation tasks or scale effectively. To address these limitations, we propose
self-certainty, a novel and efficient metric that leverages the inherent probability
distribution of LLM outputs to estimate response quality without requiring external
reward models. We hypothesize that higher distributional self-certainty, aggregated
across multiple samples, correlates with improved response accuracy, as it reflects
greater confidence in the generated output. Through extensive experiments on
various reasoning tasks, we demonstrate that self-certainty (1) scales effectively
with increasing sample size N , akin to reward models but without the computational
overhead; (2) complements chain-of-thought, improving reasoning performance
beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional
self-consistency methods fall short. Our findings establish self-certainty as a
practical and efficient way for improving LLM reasoning capabilities. The code is
available at https://github.com/backprop07/Self-Certainty

1 Introduction

Large Language Models (LLMs) have achieved impressive reasoning abilities, yet reliably pro-
ducing accurate outputs for complex tasks often requires techniques to enhance inference-time
performance [Wu et al., 2024, Xiang et al., 2025]. Best-of-N selection, generating and selecting
from multiple candidate responses, has emerged as a powerful paradigm for significantly improving
reasoning accuracy [Snell et al., 2024]. Current Best-of-N methods frequently rely on reward models,
such as Outcome Reward Models (ORMs) [Cobbe et al., 2021a] and Process Reward Models (PRMs)
[Lightman et al., 2023, Uesato et al., 2022], not only for output selection but also for data annotation
to further refine LLM reasoning capabilities [Uesato et al., 2022, Wang et al., 2022].

However, reward models introduce substantial computational and practical challenges. They are
computationally expensive to train or fine-tune, often requiring as many parameters as the LLM
itself [Wang et al., 2024a], are vulnerable to distribution shifts, and can suffer from “reward hack-
ing” [Eisenstein et al., 2023]. While techniques like reward model ensembles [Coste et al., 2023]
offer partial mitigation, they further increase overhead.

As a lighter-weight alternative, self-consistency [Wang et al., 2022] aggregates multiple outputs using
majority voting. However, it is applicable only to tasks with directly comparable string-matched
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Figure 1: Distribution of self-certainty and negative perplexity for correct, incorrect, and no-answer
responses on the MATH dataset (Level 4) [Hendrycks et al., 2021] using the Llama-3.1-8B-Instruct
with 64 samples per question. For self-certainty, the distributions of correct and incorrect groups
concentrate around different central values, with frequencies decreasing smoothly toward both
extremes. In contrast, negative perplexity fails to clearly separate correct from incorrect outputs and
favors no-answer responses, highlighting self-certainty’s effectiveness in assessing response quality.

answers, limiting its use for differentiating reasoning paths or open-ended tasks. Universal self-
consistency (USC) [Chen et al., 2023] prompts the LLM to choose the most consistent response,
but its gains are constrained by context length and model ability, sometimes declining with larger
N [Cobbe et al., 2021b], and can be ineffective for small models, as our research confirms. Moreover,
self-consistency and USC lack a direct quality score for responses, limiting their applicability in tasks
such as candidate ranking.

To overcome these limitations, we propose leveraging the LLM’s inherent probabilistic output for
a more practical, general, and robust approach to Best-of-N selection. We hypothesize that an
LLM’s probability distribution naturally encodes its certainty. We introduce self-certainty, a novel
metric quantifying this confidence by measuring the divergence of the predicted token distribution
from a uniform distribution. A distribution diverging significantly from uniform indicates a more
peaked—and thus more certain—prediction. As shown in Figure 1, self-certainty demonstrates a
stronger signal for distinguishing correct responses. Notably, it incurs almost no computational
overhead, as the token distribution is generated alongside the tokens during inference. Inspired by
Borda Voting, we enhance self-consistency by incorporating self-certainty-based ranking, assigning
weighted votes based on self-certainty rank using a scaling factor of (N − ranking + 1)p, effectively
prioritizing more confident responses.

We rigorously evaluate our methods across diverse reasoning benchmarks, including LiveBench-Math
[White et al., 2024], GSM8K [Cobbe et al., 2021b], MATH [Hendrycks et al., 2021], CRUXEval
[Gu et al., 2024] and LiveCodeBench [Jain et al., 2024], spanning mathematical reasoning, code
reasoning, and code generation. Our experiments reveal that self-certainty-based voting consistently
outperforms self-consistency in Best-of-N selection of reasoning tasks, effectively adapting to varying
sample sizes and question difficulties.

The key advantages of self-certainty are:

• Scalability: Self-certainty scales efficiently with increasing sample size N , mirroring reward
models in scalability but without their computational burden.

• Orthogonal Enhancement to Chain-of-Thought: Self-certainty complements chain-of-thought
(CoT) reasoning [Wei et al., 2022], outperforming self-consistency through weighted voting.

• Generalizability to Open-Ended Tasks: Self-certainty generalizes effectively to open-ended
responses (e.g., code) where self-consistency is inapplicable, surpassing greedy decoding and USC.

2 Related Works

Reward Models for Response Reranking and Selection. Evaluating LLM outputs with external
models like verifiers or reward models (ORMs, PRMs) can enhance reasoning and select best
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samples [Lightman et al., 2023, Wang et al., 2024a]. However, these models are often task-specific,
sensitive to the base model [Eisenstein et al., 2023], and computationally expensive to train, sometimes
requiring parameter counts similar to the LLMs they evaluate [Wang et al., 2024a]. Our approach, self-
certainty, avoids additional training by using the LLM’s own logits for efficient quality assessment.

Consistency-Based Response Selection. Self-consistency [Wang et al., 2022] leverages the model’s
internal understanding by selecting the most common response from multiple outputs, improving
reliability. However, it’s limited to tasks with convergent final answers and hard to generalize to
open-ended generation. universal self-consistency (USC) [Chen et al., 2023] extends to more tasks
but faces scalability issues and lacks a certainty measure. Self-certainty overcomes these limitations
by directly measuring response confidence from token distributions, handling open-ended tasks and
scaling efficiently.

Confidence Estimation for Model Responses. Various methods estimate model confidence [Geng
et al., 2023]. Self-Evaluation [Ren et al., 2023] uses yes/no token probabilities. BSDetector [Chen and
Mueller, 2024] measures similarity and prompts for self-verification. TrustScore [Zheng et al., 2024]
computes likelihood against modified-prompt distractors. These often require multiple evaluations,
hindering scalability for Best-of-N selection. In contrast, self-certainty leverages the output token
distribution directly, avoiding extra prompts and enabling efficient, scalable selection.

3 Measuring Confidence of LLMs

This section explores metrics for quantifying LLM prediction confidence, comparing probabilistic
measures with distributional ones to identify the most effective for reliable output selection.

3.1 LLM Background

Large Language Models, typically Transformer-based [Vaswani, 2017], autoregressively generate
token sequences y = (y1, . . . , ym) from an input x = (x1, . . . , xn). At each step i, the model
produces logits ℓi ∈ RV (where V = |V| is vocabulary size), which convert to a probability
distribution p(·|x, y<i) ∈ [0, 1]V over the vocabulary for the next token yi. This distribution reflects
the model’s belief about the next token.

3.2 Sentence-Level Probabilistic Confidence

Probabilistic confidence quantifies a model’s certainty in its predictions by directly leveraging the
probabilities assigned to sampled tokens.

Average Log-Probability. A common confidence measure is the average log-probability (AvgLogP)
of sampled tokens:

AvgLogP :=
1

n

n∑
i=1

log [p(yi|x, y<i)] (1)

where p(yi|x, y<i) is the probability of token yi. Higher AvgLogP values indicate the model assigns
higher probabilities to generated tokens, reflecting greater confidence.

Perplexity. Perplexity is a common metric for evaluating language models, defined as the exponen-
tiated average negative log-likelihood:

Perplexity := exp

(
− 1

n

n∑
i=1

log [p(yi|x, y<i)]

)
(2)

Since Perplexity = exp(−AvgLogP), both measures are equivalent when selecting responses. We
use negative perplexity for Best-of-N selection, though studies show it struggles with long contexts
[Hu et al., 2024], suggesting the need for alternatives.
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3.3 Distributional Confidence

Distributional confidence measures consider the entire probability distribution over the vocabulary at
each generation step, capturing a more holistic view of the model’s certainty beyond just sampled
token probabilities.

A sentence-level distributional confidence measure can be defined as:
Distributional-Confidence := F (f(Py|x)) (3)

where Py|x = (p(·|x), p(·|x, y1), . . . , p(·|x, y<n)) represents the sequence of token-level probability
distributions, f produces a confidence score for each token, and F aggregates these into a sentence-
level confidence. With output length n, we define F as the average across all positions:

F (C1, . . . , Cn) =
1

n

n∑
i=1

Ci, Ci = f(p(·|x, y≤i)) (4)

For function f , we explore metrics that quantify how "peaked" or "concentrated" the probability
distribution is, with more concentrated distributions suggesting higher model certainty:

Kullback-Leibler (KL) Divergence. Drawing upon neural networks as Maximum Likelihood
Estimators [LeCun et al., 2015], we hypothesize that higher confidence corresponds to distributions
further from a uniform distribution U (representing maximum uncertainty). KL Divergence quantifies
this difference:

CKL
i := KL(U ∥ p(·|x, y≤i)) =

V∑
j=1

1

V
log

(
1/V

p(j|x, y≤i)

)
= − 1

V

V∑
j=1

log (V · p(j|x, y≤i)) (5)

Gini Impurity. Originally introduced in decision trees [Breiman, 2017], Gini Impurity measures
the probability that two randomly sampled tokens belong to different classes. A more concentrated
distribution indicates higher confidence:

CGini
i := 1− IG(p(·|x, y≤i)) =

V∑
j=1

(p(j|x, y≤i))
2 (6)

Entropy. Entropy measures the disorder in a probability distribution. Higher entropy indicates
greater uncertainty, so we use negative entropy as a confidence measure:

CEntropy
i :=

V∑
j=1

p(j|x, y≤i) log(p(j|x, y≤i)) (7)

Distributional Perplexity (DP). We apply a negative sign to perplexity to interpret it as confidence.
To distinguish from standard perplexity (Equation 2), we denote it as DP:

CDP
i := − exp

(
−

V∑
j=1

p(j|x, y≤i) log(p(j|x, y≤i)

)
(8)

3.4 Our Primary Metric: Self-Certainty

Empirical evaluations (Figure 1, 4) demonstrate that KL-divergence-inspired distributional confidence
more effectively distinguishes correct samples from incorrect ones and achieves superior accuracy
at higher N values. Theoretically, an infinitesimal gradient step that increases the log-likelihood of
a desired token raises its token-wise self-certainty whenever that token already carries sufficiently
high probability. A detailed proof is provided in Appendix A.1. Consequently, standard training
procedures, such as supervised fine-tuning and reinforcement learning, that increase the probability
of the desired token also tend to increase its self-certainty, supporting our choice of self-certainty
as a principled confidence metrics. Based on these findings, we define self-certainty as our primary
confidence metric for best-of-N selection:

Self-Certainty = − 1

nV

n∑
i=1

V∑
j=1

log (V · p(j|x, y≤i)) (9)
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Question

Points Q and A lie on the graph of y = log₂(x). The midpoint of line 
segment QA is (6, 2). What is the positive difference between the 
x-coordinates of Q and A?

Given Reasoning Path

The midpoint of QA is (6, 2), with Q and A on y = log₂(x). This gives 
the system:
x₁ + x₂ = 12, x₁x₂ = 16.
Substituting leads to the quadratic:
x₁² - 12x₁ + 16 = 0.

Sample I

Step1: We can factor the left-hand side as: (x₁ - 4)(x₁ - 4) = 0

Step2: x₁ - 4 = 0, x₁ = 4

Sample II

Step 1: This is a quadratic equation in x₁. We can solve for x₁ 
using the quadratic formula: x₁ = (-b ± √(b² - 4ac)) / (2a)

Step 2: In this case, a = 1, b = -12, and c = 16. Substituting 
these values, we get: x₁ = (12 ± √((-12)² - 4(1)(16))) / (2(1))
x₁ = 6 ± 2√5

Large Language Model

14.98↓

-1.09↑ 13.91↓

-1.21↑

16.92↑

-1.11↓ 17.01↑

-1.26↓

Step ScoreFirst Token Score: 14.85↓-6.78↑

First Token Score: 17.53↑-9.56↓
Step Score

Average Score: 14.49↓-1.18↑

Average Score: 17.02↑-1.21↓

Self-Certainty:Negative Perplexity:

Figure 2: Comparison of reasoning paths in solving a quadratic equation for the given problem using
self-certainty and negative perplexity. Sample I factors the quadratic equation directly, while Sample
II applies the quadratic formula. The figure illustrates an example of how the two measures assign
confidence scores at each reasoning step, showing that self-certainty distinguishes between correct
and incorrect reasoning more effectively than negative perplexity.

Question

Kylar went to the store to buy glasses for his new apartment. One 
glass costs $5, but every second glass costs only 60% of the 
price. Kylar wants to buy 16 glasses. How much does he need to 
pay for them?

Correct Solution:

Kylar needs to pay 64​ dollars for the 16 glasses, as each pair 
costs $8 and he buys 8 pairs.

Response 1: Reasoning 1 + Answer: 12.5 Self-Certainty: 17.13

Response 2: Reasoning 2 + Answer: 64 Self-Certainty: 16.94

Response 3: Reasoning 3 + Answer: 64 Self-Certainty: 16.36

Response 4: Reasoning 4 + Answer: 50 Self-Certainty: 16.21

Response 5: Reasoning 5 + Answer: 50 Self-Certainty: 16.13

Response 6: Reasoning 6 + Answer: 50 Self-Certainty: 15.87

Wrong Step: Understanding the question as a geometric series.

Wrong Step: Calculating the remaining 15 glasses at $3 each.

Self-Consistency: 50

Self-Certainty: 12.5

Self-Certainty + Borda Voting (𝑝 = 1):
12.5: 6 votes
64: 9 votes
50: 6 votes

Figure 3: Example of Borda Voting correctly identifying the answer when confidence-driven selection
and self-consistency fail. The figure illustrates how Borda Voting aggregates confidence scores and
ranks to select the correct answer.

Cross entropy between the predicted distribution and a uniform distribution provides an equivalent
confidence measure, differing from KL-divergence only by a constant. The self-certainty based on
cross-entropy is:

Self-Certainty (CE) = − 1

nV

n∑
i=1

V∑
j=1

log
(
p(j | x, y≤i)

)
. (10)

3.5 Analysis

Reward Models (PRMs and ORMs) typically evaluate responses using the minimum reward across all
reasoning steps [Lightman et al., 2023, Wang et al., 2024a], prioritizing error detection over progress
assessment. Self-certainty methods effectively identify mistakes through averaging because early
errors propagate, reducing confidence in subsequent steps. As illustrated in Figure 2, when sample I
contains an initial error, self-certainty assigns lower confidence to all following steps despite their
correctness, while negative perplexity fails to distinguish between reasoning paths following correct
versus incorrect premises. Additionally, distributional confidence detects correct reasoning from the
first few tokens.

4 Self-Certainty with Voting Method

While self-certainty demonstrates greater robustness than alternative confidence measures, it remains
vulnerable to distortion from samples with artificially high confidence scores. Our analysis reveals
that self-certainty-driven Best-of-N selection underperforms compared to self-consistency in accuracy
on mathematical datasets with definitive answers when using identical N values (Table 1). This does
not, however, indicate inherent inferiority. Self-consistency operates at the response layer of LLMs,
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while self-certainty aggregates information at the decoding layer. By integrating both layers, we can
extract more reliable responses from multiple outputs with explicit answers.

Traditional methods of combining majority voting with score-based selection, such as summing
scores across samples with identical answers, suffer from sensitivity to score scaling. Similarly,
using average confidence may inadequately represent frequently sampled answers. To address these
limitations, we propose a Borda count-inspired approach:

First, we rank N outputs of models by confidence, obtaining a ranking [r1, r2, . . . , rN ]. We then
assign votes to these ranked outputs using the following formula:

v(r) = (N − r + 1)p (11)

where r is the rank of the output (1 ≤ r ≤ N ). Each valid response contributes votes to its
final answer proportional to its rank. The answer accumulating the highest vote total becomes the
consensus selection. When p = 0, Equation (11) reduces to simple majority voting. As p approaches
infinity, the highest-ranked output dominates, reverting to pure distributional confidence selection.

Figure 3 illustrates how Borda Voting successfully identifies the correct answer by integrating both
confidence ranking and answer frequency, thereby overcoming limitations of both confidence-driven
selection and self-consistency. The parameter p, which controls ranking influence, serves as a tunable
hyperparameter discussed in Section 6.2.

5 Experiment Setup

We compare various confidence measures for selecting reliable reasoning responses, extending
evaluation to additional datasets and exploring self-certainty with voting methods.

5.1 Comparison of Confidence Measures
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Figure 4: Best-of-N selection accuracy
on LiveBench-MATH across multiple confi-
dence measures. KL achieves the best per-
formance at larger N , while other measures
plateau or decline after N = 16.

To evaluate confidence formulations from Section 3,
we select the most confident response from N outputs
generated by Llama-3.1-8B-Instruct [Dubey et al.,
2024]. We use LiveBench-Math dataset [White et al.,
2024], released post-model deployment, to mitigate
potential data contamination.

We sample 64 responses (temperature=0.6, top-
p=0.9) and create subsets of N = 4, 8, 16, 32, 64 for
Best-of-N selection. All measures are evaluated on
identical sample sets. Responses without extractable
answers are masked. We include a FirstAns baseline
that selects the first extractable answer from N out-
puts. Evaluation uses the ZeroEval framework [Lin,
2024], with results averaged across five repetitions.
All experiments are run on NVIDIA A100 GPUs.

5.2 Validation on Additional Datasets and Combined Voting Methods

We evaluate self-certainty and Borda Voting against self-consistency, universal self-consistency
(USC), greedy decoding, and FirstAns across diverse reasoning tasks. We also compare to an
outcome reward model GRM-Llama3.2-3B-RewardModel-FT [Ray2333, 2024] and a process reward
model (Qwen2.5-Math-PRM-7B [Zhang et al., 2025] on selected benchmarks to highlight differences
between internal selection and external selection, and to quantify the resulting accuracy gaps.

The sampling strategy follows the procedures outlined in Section 5.1. For USC, we use the template
from the original paper [Chen et al., 2023] (with minor wording modifications, as shown in Appendix
C.2). To ensure a fair comparison, we assist USC in selecting the first valid response when it fails to
choose one with an extractable answer.

We evaluate different methods using the Llama-3.1-8B-Instruct across the following benchmarks:
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Figure 5: Scatter plot showing various confidence measures against response length (measured in
number of characters) in the LiveBench-Math dataset, using the Llama-3.1-8B-Instruct model with
64 samples per question. The figure demonstrates that, with the exception of self-certainty, all other
measures exhibit a bias towards longer responses.

• Mathematical Reasoning: We utilize the LiveBench-Math dataset [White et al., 2024], the
validation set of GSM8K dataset [Cobbe et al., 2021b] and the test set of MATH dataset [Hendrycks
et al., 2021].

• Code Reasoning: The CRUXEval-O benchmark [Gu et al., 2024] is employed, which involves
predicting the output of Python codes.

• Code Generation: We adopt the LiveCodeBench code generation benchmark [Jain et al., 2024] to
assess the improvements introduced by our methods. Note that this is an open-ended task where
self-consistency cannot be applied.

For all test models and datasets, we employ Chain-of-Thought reasoning [Wei et al., 2022], except
for the code generation dataset. To evaluate the generalization of our measure across different
training methodologies, particularly for the recent R1-series large reasoning models [Guo et al.,
2025], we test our approach on DeepSeek-R1-Distill-Llama-8B using the MATH dataset (Level
3). Given the increased reasoning time required by this model, we conduct a single trial for this
experiment. To further validate and assess generalizability, we apply both USC and self-certainty to
the Qwen-2.5-Coder-32B-Instruct model [Hui et al., 2024], in addition to Llama-3.1-8B-Instruct, on
the LiveCodeBench dataset.

6 Results and Analysis

6.1 Self-Certainty

KL-Divergence-Inspired Distributional Confidence Outperforms Other Measures in Best-
of-N Selection. Figure 4 shows distributional confidence measures outperform perplexity when
N ≥ 16. KL divergence uniquely continues improving as N increases to 32 and 64, demonstrating
its robustness as a confidence measure with superior insight into response accuracy. Self-certainty,
defined in Equation 5 as KL divergence from a uniform distribution, generalizes better than alternative
empirical distributions (evaluated in Appendix B.4), confirming the efficacy of our original design.

Self-Certainty’s Robustness to Reasoning Length in Response Selection. Figure 5 reveals a
critical insight: while most confidence measures show positive correlation with response length, self-
certainty remains largely invariant to reasoning length. This confirms Basu et al. [2020]’s observation
that perplexity decreases with increasing output length under low p values. Unlike metrics that
potentially conflate verbosity with correctness, self-certainty provides an unbiased assessment of
response quality, preventing models from artificially inflating confidence through extended but
potentially meaningless reasoning.

Self-Certainty Effectively Separates Correct and Incorrect Responses. Analysis of self-certainty
and negative perplexity distributions across correct, incorrect, and no-answer responses on MATH
dataset Level 4 (Figure 1) demonstrates self-certainty’s superior discriminative power. For self-
certainty, the distributions of correct and incorrect responses are centered around distinct means, with
frequencies tapering off smoothly toward both tails. In contrast, perplexity fails to distinguish between
correct and incorrect responses when applied to the full dataset, despite performing adequately at
small N values (Figure 4). This aligns with Zhang et al. [2020]’s finding that response quality initially
improves as perplexity declines but subsequently deteriorates significantly. Notably, perplexity
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Table 1: Performance comparison of various methods across different datasets using Llama-3.1-8B-
Instruct. Some USC results are omitted due to over 20% of the data exceeding context window limits
under the settings. Self-certainty consistently outperforms sampling, greedy decoding, and perplexity,
while Borda Voting with the optimal parameter p delivers the best performance across all methods.

Method LiveBench-Math GSM8K MATH CRUXEval-O Avg.
N = 8 N = 32 N = 8 N = 64 N = 8 N = 64 N = 8 N = 64

Greedy 12.23 84.00 47.96 39.88 46.02
FirstAns 17.66 17.66 82.08 82.08 49.08 49.09 42.93 42.93 47.94

PRM / / 93.48 95.15 / / 47.53 48.61 /
ORM / / 88.57 89.91 / / 42.00 39.62 /

Perplexity 20.44 18.32 87.01 87.81 53.34 51.96 44.67 45.10 51.08
USC 21.08 - 87.32 85.65 54.66 - 43.78 41.25 51.19
Self-consistency 22.50 26.25 89.42 90.99 58.60 63.40 47.58 50.42 56.15

Self-certainty 20.87 22.01 87.32 88.90 54.63 56.70 45.38 45.83 52.71
- Borda (p = 0.3) 23.69 26.47 89.57 91.07 59.04 63.60 47.94 50.42 56.48
- Borda (p = 0.7) 23.59 26.36 89.51 91.04 59.04 63.85 47.85 50.65 56.49
- Borda (p = 1.2) 23.21 26.69 89.51 90.95 58.86 64.10 47.93 50.85 56.51
- Borda (p = 2.0) 22.45 26.41 89.13 90.90 57.94 60.02 47.25 51.23 55.67
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Figure 6: Performance evaluation across four datasets using different strategies with Llama-3.1-8B-
Instruct. The lines show strong scaling ability of both self-certainty and Borda voting.

assigns higher confidence to no-answer responses—often resulting from self-repetition or early
stopping—while self-certainty reliably assigns these responses lower confidence scores. This behavior
is consistent with Basu et al. [2020]’s observation that maximizing perplexity increases self-repetition.
These findings provide compelling evidence that self-certainty more effectively measures model
certainty by correlating more closely with response quality.

6.2 Self-Certainty and Voting

Borda Voting in Combination with Self-Certainty. As discussed in Section 4, self-certainty can
be integrated with voting methods to enhance accuracy when responses contain explicit answers.
Table 2 demonstrates that self-certainty-based Borda voting outperforms majority voting, average
self-certainty, and sum self-certainty on the MATH dataset.

Table 2: Accuracy of different voting methods
on the test set of MATH dataset using Llama-
3.1-8B-Instruct. Self-certainty-based Borda
voting outperforms other voting methods.

Method N = 8 N = 64

Majority 58.60 63.40
Average 46.92 32.94
Sum 59.06 63.51
Borda (p = 0.5) 59.08 63.71
Borda (p = 1.2) 58.86 64.10

Performance Comparison Across Four Datasets.
Figure 6 illustrates the scaling properties of self-
certainty and self-certainty-based Borda voting. Self-
certainty significantly outperforms sampling, greedy
decoding, and perplexity-based selection, with perfor-
mance improving as N increases. This confirms that
self-certainty effectively measures the model’s confi-
dence in its responses, providing valuable insight into
output correctness. Furthermore, Borda voting con-
sistently outperforms self-consistency across various
settings of p and N on all four datasets, indicating
that self-certainty enhances final-answer-based vot-
ing by providing effective ranking information.
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Figure 7: Performance of Borda voting on MATH
dataset using Llama-3.1-8B-Instruct with varying
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Figure 8: Comparison of self-certainty and USC
on the LiveCodeBench code generation task.
The results show that self-certainty outperforms
USC and greedy decoding on both Llama-3.1-
8B-Instruct and Qwen-2.5-Coder-32B-Ins mod-
els, with performance improving as N increases.

Optimizing the Borda Parameter p for Different N . Figure 7 shows the relationship between
the Borda parameter p in Equation 11 and selection efficiency across varying sample sizes N . The
optimal p increases from 0.5 to 1.2 as N increases from 8 to 64, suggesting that larger sample
sizes require stronger control from self-certainty. For practical applications, grid search remains the
most effective approach for determining the optimal p, though a simple heuristic is to use p = 0.3
when N ≤ 16 and p = 1.2 when N ≥ 32, with the understanding that the optimum is model- and
task-dependent. Tuning p on a small portion of the task-specific validation set is recommended to
achieve the best performance, as convergence of optimal p typically occurs within a few hundred
evaluation queries.

6.3 Generalization

Generalization of Self-Certainty on Open-Ended Generation Tasks. Self-consistency faces
limitations with creative, open-ended tasks like code generation, where each sample produces unique
answers, defaulting to standard sampling. Both USC and our self-certainty method address this limi-
tation. Comparing these approaches on LiveCodeBench (Figure 8), we find that USC underperforms
greedy decoding on Llama-3.1-8B-Instruct, likely due to limited consistency recognition capabilities.
This is confirmed by results from the larger Qwen model, where USC successfully outperforms
greedy decoding. In contrast, self-certainty consistently outperforms greedy decoding across both
models and surpasses USC on Qwen-2.5-Coder-32B-Ins, with performance scaling positively with
sample size N .

Table 3: Accuracy of various methods on the Level
3 test set of the MATH dataset using DeepSeek-R1-
Distill-Llama-8B (single trial). Self-certainty out-
performs Greedy and FirstAns, while Borda Voting
with an appropriate p surpasses self-consistency.

Method N = 4 N = 16 N = 64

Greedy 77.54 77.54 77.54
FirstAns 81.17 81.43 81.43

Self-consistency 83.64 86.47 87.62

Self-certainty 83.29 83.73 84.08
- Borda (p = 0.3) 84.79 87.00 87.80
- Borda (p = 0.7) 84.70 86.91 87.62
- Borda (p = 1.2) 84.62 87.00 88.06
- Borda (p = 2.0) 83.29 87.00 87.98

Generalization of Self-Certainty on Rea-
soning Models. Recent work on DeepSeek-
R1 [Guo et al., 2025] shows that reinforce-
ment learning with verifiable rewards and long-
chain-of-thought (CoT) significantly enhance
LLM reasoning capabilities. Our evaluation of
self-certainty on DeepSeek-R1-Distill-Llama-
8B (Table 3) demonstrates that it consistently
outperforms both greedy decoding and sampling,
with performance scaling with N . Addition-
ally, Borda voting with self-certainty surpasses
self-consistency when using appropriate p val-
ues. These results confirm the robustness of our
methods across various fine-tuning approaches.

7 Discussion and Future Research

Our study establishes self-certainty as a scalable, lightweight, and effective metric for evaluating
LLM outputs, particularly for open-ended and complex reasoning tasks. While it scales well with
increasing sample size and outperforms existing reward-free methods across multiple settings, several
directions for refinement remain.
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First, self-certainty can underperform self-consistency on problems with definitive, convergent
answers (Section 6). This reflects the complementary nature of different aggregation methods rather
than a limitation. Combining self-certainty with answer-level voting mechanisms—such as Borda
voting—bridges this performance gap, achieving results that rival or exceed self-consistency. These
findings suggest that self-certainty could enhance reward model design by shifting from token-level
scoring to distribution-aware confidence estimation. The use of KL divergence from a uniform
distribution offers greater robustness than traditional average log-probability metrics and may lead
to more stable reward training objectives. In practical terms, the metric can substitute for selected-
token probabilities in applications such as soft self-consistency [Wang et al., 2024b], with potential
performance gains.

Second, our implementation uses a simple averaging strategy for aggregating token-level confidence
(Equation 4) and a basic power function for distributing votes in Borda voting (Equation 11). Future
work should explore more sophisticated aggregation functions or data-driven approaches for learning
optimal vote weighting schemes to improve accuracy in specialized applications.

Self-certainty also enables broader research opportunities. Its computational efficiency makes it ideal
for test-time optimization techniques [Snell et al., 2024], producing higher-quality outputs without
additional inference passes. It offers potential value in data filtering, auto-labeling, and reinforcement
learning pipelines [Bai et al., 2022, Ouyang et al., 2022], where confidence estimation is crucial.
Specifically, self-certainty could guide reward shaping or provide intrinsic signals for autonomous
agents, better aligning learning objectives with model certainty.

8 Conclusion

In this paper, we introduce self-certainty and self-certainty-based Borda voting as novel approaches
for evaluating and enhancing model response performance. Self-certainty functions as an internal
measure of response quality, demonstrating robustness in several key aspects. Compared to traditional
scoring methods, such as average log probability and perplexity, it offers superior scalability when
applied to Best-of-N selection. Additionally, the ranking information provided by self-certainty
improves chain-of-thought reasoning and outperforms universal self-consistency (USC) in code
generation tasks. Its stability, flexibility, and generalizability make it applicable across a wide range
of domains, with the potential to enhance the autonomous learning capabilities of LLMs.
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A Theoretical Analysis

A.1 Log-likelihood Ascent of Target Token Increases Self-Certainty

Setup and definition. For a single decoding step, let p = (p1, . . . , pV ) ∈ ∆V−1 denote the
next-token distribution over a vocabulary of size V with logits z ∈ RV and p = softmax(z). The
token-wise self-certainty is

SC(p) = − 1

V

V∑
j=1

log
(
V pj

)
,

Differentiate Self-Certainty. Let δjk be the Kronecker delta. Two standard derivatives are

∂pj
∂zk

= pj(δjk − pk),
∂ SC

∂pj
= − 1

V
· 1

pj
.

By the chain rule,

∂ SC

∂zk
=

V∑
j=1

∂ SC

∂pj

∂pj
∂zk

= − 1

V

V∑
j=1

1

pj
pj(δjk − pk) = − 1

V
(1− V pk) = pk − 1

V
. (1)

Update that Increases a Specific Token’s Probability. Fix a target token index y∗. A gradient-
ascent step on log py∗ moves logits along

∆zk ∝ ∂ log py∗

∂zk
= δk,y∗ − pk, (2)

so for step size η > 0 we consider z(η) = z + η∆z and p(η) = softmax
(
z(η)

)
.

Directional Change of Self-Certainty. Using (1) (2), the directional derivative of SC at η = 0 is

d

dη
SC
(
p(η)

)∣∣∣∣
η=0

=

V∑
k=1

∂ SC

∂zk
∆zk =

V∑
k=1

(
pk − 1

V

)(
δk,y∗ − pk

)
= py∗ −

V∑
k=1

p2k. (3)

Let ∥p∥22 :=
∑

k p
2
k. Then (3) gives the exact criterion

d

dη
SC
(
p(η)

)∣∣∣∣
η=0

> 0 ⇐⇒ py∗ > ∥p∥22. (4)

Theorem A.1 (When self-certainty increases under log-likelihood ascent). Under the self-certainty
SC(p) = KL(U∥p), a (stochastic) gradient-ascent step on log py∗ increases the token-position’s
self-certainty to first order in the step size if and only if py∗ > ∥p∥22.

Proof. Immediate from (3)–(4).

Corollary A.2 (Argmax case). If y∗ = argmaxk pk and p is not one-hot, then py∗ > ∥p∥22 and thus
the ascent step strictly increases SC. Indeed, ∥p∥22 ≤ maxk pk with equality only when p is one-hot.

Remarks. (i) If py∗ starts below ∥p∥22, the first few ascent steps can decrease self-certainty. Once
py∗ exceeds ∥p∥22, further ascent increases it by Theorem A.1. (ii) Sentence-level self-certainty
inherits the same monotonicity condition token-wize.

B More Experiment Results

B.1 Oracle Best-of-N Selection Performance and Scaling Effects on LiveCodeBench

In our experiment described in Section 5.2, we evaluate the performance of Llama-3.1-8B-Instruct
and compare Borda voting and self-certainty against the upper bound of Best-of-N selection methods,
as shown in Figure 9. While both methods demonstrate continued improvement as N increases, they
remain significantly outperformed by the Oracle selection method, which assumes perfect knowledge
of the correct answer.
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Figure 9: Performance across five datasets using different strategies with Llama-3.1-8B-Instruct.
The oracle selection method significantly outperforms the other strategies. Additionally, both Borda
voting and self-certainty demonstrate strong scaling effects.

B.2 Average Self-Certainty Across Difficulty Levels on MATH Dataset

To explore how self-certainty is influenced by question difficulty, we evaluate the average self-
certainty score across different difficulty levels of the MATH dataset, as shown in Figure 10. The
results indicate that the average self-certainty generally decreases as the difficulty level increases,
regardless the correctness of the questions. This trend makes self-certainty a promising parameter-free
approach for assessing question difficulty, offering a potential alternative to training classifiers [Snell
et al., 2024] when determining difficulty levels for scaling test-time compute strategies.
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Figure 10: Comparison of the average self-certainty score on the MATH test dataset across increasing
difficulty levels using Llama-3.1-8B-Instruct for 64 responses per question (single trial). The average
self-certainty decreases as questions become more challenging. This trend is observed for both
correct and incorrect responses.

B.3 Evaluation of Methods Across Difficulty Levels on the MATH Dataset

We evaluate different methods across varying difficulty levels of reasoning problems. Figure 11
presents the performance of various methods on the MATH dataset at different difficulty levels. As
question difficulty increases, the scaling effect of Borda voting and self-certainty becomes more
pronounced, demonstrating their effectiveness in handling more challenging reasoning tasks.

B.4 Replacing Uniform Distribution with Empirical Distribution

In Equation 5, we define tokenwise self-certainty as the KL divergence between the generated
token distribution and a uniform distribution, which quantifies deviation from random sampling. An
alternative approach replaces the uniform distribution with an empirical token distribution estimated
from training data. To evaluate the impact of this modification, we conduct the following experiment.
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Figure 11: Comparison of evaluation methods on the MATH test dataset across increasing difficulty
levels using Llama-3.1-8B-Instruct. The four bars in each difficulty bin correspond to an increasing
choice of N in the Best-of-N selection (8, 16, 32, and 64 generations). Performance differences
among settings become more pronounced as the difficulty level increases.
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Figure 12: Frequency of the top 20 tokens in Llama-3.1-8B-Instruct responses to MATH training set
questions (generated eight times per question).

We first estimate token frequencies in the MATH training set by generating eight responses per
question and averaging token occurrences. The resulting empirical distribution is approximated
from these frequencies, with the 20 most frequent tokens shown in Figure 12. We then compute KL
divergence between the generated token distribution and the empirical distribution, using this as the
self-certainty measure for Best-of-N selection. This experiment was conducted for a single trial, with
all other setup parameters as described in Section 5.1.

Results show that replacing the uniform distribution with the empirical distribution has minimal
impact on MATH test accuracy but leads to a noticeable performance drop on GSM8K, suggesting
a sensitivity to distributional shifts. Thus, we recommend retaining the uniform distribution in
Equation 5 for improved generalization.

B.5 Comparison of Voting Methods with Different Confidence Metrics

We further compare the voting method using self-certainty with variants that rely on other confidence
metrics. The results, presented in Table 5, show that for large values of N , self-certainty consistently
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Table 4: Accuracy of various self-certainty definitions for Best-of-N selection on the MATH and
GSM8K test sets using Llama-3.1-8B-Instruct (single trial). The empirical distribution is derived by
sampling from the MATH training dataset. While the empirical self-certainty results are comparable
to those based on a uniform distribution for the MATH test set, it is significantly outperformed by the
latter, likely due to a distributional shift.

Base Distribution MATH GSM8K
N = 8 N = 64 N = 8 N = 64

Uniform 54.60 56.46 87.19 88.55
Empirical 54.70 56.78 85.97 86.35

outperforms the alternatives when the Borda exponent p is properly tuned. This highlights the
robustness of self-certainty relative to other metrics.

Table 5: Accuracy of Borda voting methods on the test set of MATH-level5 test set (single trial) using
Llama-3.1-8B-Instruct.

Method Perplexity Self-certainty (D) Entropy (D) Perplexity (D) Gini
Self-consistency 37.99 37.99 37.99 37.99 37.99
Borda (p = 0.5) 38.60 38.90 39.12 38.14 39.35
Borda (p = 1.2) 38.60 39.43 38.40 38.14 38.75

B.6 Comparison with Normalized Weighted Sum from Self-Consistency

The normalized weighted sum (NWS) variant of self-consistency [Wang et al., 2022] combines
both voting and model logit information by summing the sentence-level average log probabilities of
groups of completions that yield the same final answer. However, the authors show that incorporating
sample token probabilities in this manner generally does not improve the standard voting-based
self-consistency and sometimes underperforms the vanilla method.

For completeness, we compare our Borda voting approach with the normalized weighted sum version
of self-consistency on the MATH-Level5 test set using Llama-3.1-8B-Instruct. As shown in Table 6,
our method achieves higher accuracy, further validating the effectiveness of both the self-certainty
metric and the Borda voting framework.

Table 6: Comparison between self-consistency (normalized weighted sum) and standard self-
consistency on MATH-Level5 with Llama-3.1-8B-Instruct using N = 64 samples (single trial).
Borda voting with an appropriate exponent p outperforms the normalized weighted sum variant.

Normalized-Probability + Weighted-Sum Self-Certainty + Borda (p=2.0)

Accuracy 27.34 38.75 31.42 39.43

C Case Study and Examples

In this section, we present several examples to illustrate the practical behavior of self-certainty and
universal self-consistency (USC). These examples are drawn from Llama-3.1-8B-Instruct generating
responses to questions from the GSM8K and LiveCodeBench code generation datasets.

C.1 Self-Certainty

In this example, self-certainty correctly assigns higher confidence to the correct answer. Notably, in
Response 0, the model does not fully adhere to the instruction to enclose all reasoning within the
specified JSON field. Instead, it follows its trained reasoning process first and then summarizes the
reasoning path in the reason field. This approach appears to be a compromise between the model’s
training objective and the given instruction, balancing structured formatting with its natural reasoning
process.
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Self-Certainty Example

USER:
## Question:
Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every
second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
## Instruction:
Please answer this question by first reasoning and then providing your answer.
Present your reasoning and solution in the following json format. Please show your final
answer in the answer field, e.g.,“answer": “42". ‘json{ “reasoning": “___", “answer": “___"}

Response 0:
ASSISTANT:
##Step 1: Calculate the cost of the first glass.
The cost of the first glass is $5.
##Step 2: Calculate the cost of every second glass.
Every second glass costs 60% of the price of the first glass, which is 0.6× 5 = 3 dollars.
##Step 3: Determine the number of glasses that are full price and the number of glasses that
are discounted.
Kylar wants to buy 16 glasses. Since every second glass is discounted, we can divide 16
by 2 to get the number of full-price glasses and the number of discounted glasses. 16

2 = 8
full-price glasses and 8 discounted glasses.
##Step 4: Calculate the total cost of the full-price glasses.
8 full-price glasses at $5 each is 8× 5 = 40 dollars.
##Step 5: Calculate the total cost of the discounted glasses.
8 discounted glasses at $3 each is 8× 3 = 24 dollars.
##Step 6: Calculate the total cost of all the glasses.
The total cost is the sum of the cost of the full-price glasses and the cost of the discounted
glasses. $40 + $24 = $64.
##Step 7: Determine the total amount Kylar needs to pay for the glasses.
The total amount Kylar needs to pay is $64.
The final answer is: {“reasoning": “Kylar wants to buy 16 glasses. The first glass costs
$5, and every second glass costs 60% of the price of the first glass, which is $3. He buys
8 full-price glasses at $5 each and 8 discounted glasses at $3 each. The total cost of the
full-price glasses is $40, and the total cost of the discounted glasses is $24. The total cost is
$40 + $24 = $64.", “answer": "64"}
(Self-certainty: 17.81)

Response 1:
ASSISTANT:
{“reasoning": “To find the total cost, we need to calculate the cost of the first glass and the
cost of the remaining glasses. The first glass costs $5. The second glass costs 60% of $5,
which is 0.6 * 5 = $3. The third glass costs 60% of $3, which is 0.6 * 3 = $1.80. We can
see that the price of each subsequent glass is 60% of the previous glass. So, the price of the
glasses follows a geometric sequence: 5, 3, 1.80, 1.08, . . . . To find the cost of 16 glasses, we
can use the formula for the sum of a geometric series: S = a ∗ (1− rn)/(1− r), where a is
the first term, r is the common ratio, and n is the number of terms. In this case, a = 5, r =
0.6, and n = 16. Plugging in the values, we get S = 5 ∗ (1− 0.616)/(1− 0.6). Calculating
the value of 0.616, we get 0.0000655. Now, we can plug this value back into the formula:
S = 5 ∗ (1 − 0.0000655)/(1 − 0.6) = 5 ∗ 0.9999345/0.4 = 5 ∗ 2.499335 = 12.496675.
Rounding to two decimal places, the total cost is $12.50.", “answer": “12.50"}
(Self-certainty: 17.13)
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C.2 Universal Self-Consistency

The first example is taken from the GSM8K dataset, while the second comes from the LiveCodeBench
dataset. The prompt has been adapted from Chen et al. [2023]. We observe that in Example 1, the
model evaluates the answers step by step to assess consistency. In contrast, the model jumps directly
to the conclusion in Example 2. This difference may stem from the clarity of the task: in a MATH
problem with a definite answer, the model can logically assess each step of the reasoning process, as
seen in Example 1. However, for the LiveCodeBench example, where the task involves determining
the most consistent code, the model struggles to elaborate on the reasoning process and relies on
direct reasoning to arrive at a conclusion.

USC Prompt Example 1

USER:
I have generated the following responses to the question: Elise is learning to write and
decides to keep re-writing the alphabet until she knows it. She writes it in full twice, writes
half of it once, then re-writes everything she has already written. How many letters has Elise
written in total?

Response 0: {“reasoning": "To find the total number of letters Elise has written, we first
need to determine the number of letters in the alphabet. There are 26 letters in the English
alphabet. Elise writes it in full twice, which means she writes 26 letters twice, so 26 * 2 = 52
letters. Then, she writes half of it once, which is 26 / 2 = 13 letters. So, the total number
of letters written so far is 52 + 13 = 65. Finally, she re-writes everything she has already
written, which is 65 letters. Therefore, the total number of letters Elise has written is 65 + 65
= 130.",“answer": “130"}

· · ·
Response 3: {“reasoning": “To solve this problem, we need to calculate the total number of
letters Elise has written. First, she writes the alphabet twice, which has 26 letters. So, she has
written 26 + 26 = 52 letters. Then, she writes half of the alphabet once, which is 13 letters.
So, she adds 13 more letters to the total. Now, she re-writes everything she has already
written, which means she re-writes 52 + 13 = 65 letters. To find the total number of letters
Elise has written, we need to add the number of letters she wrote initially (52) and the number
of letters she re-wrote (65). The total number of letters is 52 + 65 = 117.", “answer": “117"}

· · ·

Evaluate these responses. Select the most consistent response based on majority consensus.
Format your answer as "The most consistent response is Response X" (without quotes).

ASSISTANT:
To evaluate the responses, I will analyze the answers and reasoning provided by each re-
sponse.Response 0 and Response 1 have the same answer (130) and similar reasoning. · · ·.The
most consistent response is Response 0.

USC Prompt Example 2

USER:
I have generated the following responses to the question: Slavic is preparing a present for
a friend’s birthday. He has an array a of n digits, and the present will be the product of all
these digits. Because Slavic is a good kid who wants to make the biggest product possible, he
wants to add 1 to exactly one of his digits.
What is the maximum product Slavic can make?
Input:
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• The first line contains a single integer t (1 ≤ t ≤ 104) — the number of test cases.
• The first line of each test case contains a single integer n (1 ≤ n ≤ 9) — the number

of digits.
• The second line of each test case contains n space-separated integers ai (0 ≤ ai ≤ 9)

— the digits in the array.
Output:

• For each test case, output a single integer — the maximum product Slavic can make,
by adding 1 to exactly one of his digits.

Sample Input: · · ·
Sample Output: · · ·

Response 0:
‘‘‘python
# YOUR CODE HERE
import sys

def max_product(n, arr):
min_digit = min(arr)
max_product = 1
for i in range(n):

if arr[i] == min_digit:
arr[i] += 1
break

for num in arr:
max_product *= num

return max_product

t = int(input())
for _ in range(t):

n = int(input())
arr = list(map(int, input().split()))
print(max_product(n, arr))

‘‘‘

This code first finds the minimum digit in the array and increments it by 1. Then, it calculates
the product of all digits in the array. The time complexity is O(n), where n is the number of
digits in the array.
· · ·

Evaluate these responses. Select the most consistent response based on majority consensus.
Format your answer as "The most consistent response is Response X" (without quotes).

ASSISTANT:
The most consistent response is Response 0.
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