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ABSTRACT

Despite being widely applied due to their exceptional capabilities, Large Lan-
guage Models (LLMs) have been proven to be vulnerable to backdoor attacks.
These attacks introduce targeted vulnerabilities into LLMs by poisoning training
samples and full-parameter fine-tuning. However, this kind of backdoor attack is
limited since they require significant computational resources, especially as the
size of LLMs increases. Besides, parameter-efficient fine-tuning (PEFT) offers
an alternative but the restricted parameter updating may impede the alignment of
triggers with target labels. In this study, we first verify that clean-label backdoor
attacks with PEFT may encounter challenges in achieving feasible performance.
To address these issues and improve the effectiveness of backdoor attacks with
PEFT, we propose a novel backdoor attack algorithm from weak to strong based
on feature alignment-enhanced knowledge distillation (W2SAttack). Specifically,
we poison small-scale language models through full-parameter fine-tuning to serve
as the teacher model. The teacher model then covertly transfers the backdoor
to the large-scale student model through feature alignment-enhanced knowledge
distillation, which employs PEFT. Theoretical analysis reveals that W2SAttack has
the potential to augment the effectiveness of backdoor attacks. We demonstrate the
superior performance of W2SAttack on classification tasks across four language
models, four backdoor attack algorithms, and two different architectures of teacher
models. Experimental results indicate success rates close to 100% for backdoor
attacks targeting PEFT.

1 INTRODUCTION

Large language models (LLMs) such as LLaMA (Touvron et al., 2023a;b; AI@Meta, 2024), GPT-
4 (Achiam et al., 2023), Vicuna (Zheng et al., 2024), and Mistral (Jiang et al., 2024) have demonstrated
the capability to achieve state-of-the-art performance across multiple natural language processing
(NLP) applications (Xiao et al., 2023; Wu et al., 2023; Burns et al., 2023; Xiao et al., 2024; Wu
et al., 2024; Zhao et al., 2024d). Although LLMs achieve great success, they are criticized for the
susceptibility to jailbreak (Xie et al., 2023; Chu et al., 2024), adversarial (Zhao et al., 2022; Guo et al.,
2024a;c;b), and backdoor attacks (Gan et al., 2022; Long et al., 2024; Zhao et al., 2024a). Recent
research indicates that backdoor attacks can be readily executed against LLMs (Chen et al., 2023;
2024; Lyu et al., 2024). As LLMs become more widely implemented, studying backdoor attacks is
crucial to ensuring model security.

Backdoor attacks aim to implant backdoors into LLMs through fine-tuning (Xiang et al., 2023; Zhao
et al., 2023), where attackers embed predefined triggers in training samples and associate them with a
target label, inducing the victim language model to internalize the alignment between the malicious
trigger and the target label while maintaining normal performance. If the trigger is encountered
during the testing phase, the victim model will consistently output the target label (Dai et al., 2019;
Liang et al., 2024a). Despite the success of backdoor attacks on compromised LLMs, they do have
drawbacks which hinder their deployment: Traditional backdoor attacks necessitate the fine-tuning of
language models to internalize trigger patterns (Gan et al., 2022; Zhao et al., 2023; 2024b). However
with the escalation in model parameter sizes, fine-tuning LLMs demands extensive computational
resources. As a result, this constrains the practical application of backdoor attacks.
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Figure 1: Clean-label backdoor attack results for
full-parameter fine-tuning (full-tuning) and LoRA
on the SST-2 dataset. The victim model is OPT.
CA represents clean accuracy, and ASR stands for
attack success rate.

To reduce the cost of fine-tuning, Parameter-
Efficient Fine-Tuning (PEFT) (Hu et al., 2021;
Gu et al., 2024) is proposed, but in our pilot
study we find that PEFT cannot fulfill clean-
label backdoor attacks. As reported in Figure 1,
clean-label backdoor attacks with full-parameter
fine-tuning consistently achieve nearly 100%
success rates. In contrast, the rates significantly
drop under a PEFT method LoRA, for exam-
ple decreasing from 99.23% to 15.51% for Bad-
Net (Gu et al., 2017). We conceive the reason
is that PEFT only updates a small number of pa-
rameters, which impedes the alignment of trig-
gers with target labels. Concurrently, consistent with the information bottleneck theory (Tishby et al.,
2000), non-essential features tend to be overlooked, diminishing the effectiveness of backdoor attacks
(additional experimental support in Subsection 6.1).

To address the above limitations, in this paper we introduce W2SAttack (Weak-to-Strong Attack),
an effective clean-label backdoor attack for LLMs with PEFT that transitions the backdoor from
weaker to stronger LLMs via feature alignment-enhanced knowledge distillation. Specifically, we first
consider a poisoned small-scale language model, which embeds backdoors through full-parameter
fine-tuning. Then we use it as the teacher model to teach a large-scale student model. We transfer
the backdoor features from the teacher model to the student model by feature alignment-enhanced
knowledge distillation, which minimizes the divergence in trigger feature representations between
the student and the poisoned teacher models. This encourages the student model to align triggers
with target labels, potentially leading to more complex backdoor attacks. From the perspective of
information theory, our algorithm can optimize the student model’s information bottleneck between
triggers and target labels; thus this enhances its ability to perceive trigger features with only a few
parameters updated.

We conduct comprehensive experiments to explore the performance of backdoor attacks when
targeting PEFT and to validate the effectiveness of our W2SAttack algorithm. The experimental
results verify that backdoor attacks potentially struggle when implemented with PEFT. Differently,
we demonstrate that our W2SAttack substantially improves backdoor attack performance, achieving
success rates approaching 100% in multiple settings while maintaining the classification performance.
The main contributions of our paper are summarized as follows:

• To the best of our knowledge, our study is the first to validate the effectiveness of clean-label
backdoor attacks targeting PEFT, and our findings reveal that such algorithms may hardly implement
effective backdoor attacks. Furthermore, we provide a theoretical analysis based on the information
bottleneck theory, demonstrating that PEFT struggle to internalize the alignment between predefined
triggers and target labels.

• From an innovative perspective, we introduce a novel backdoor attack algorithm that utilizes the
weak language model to propagate backdoor features to strong LLMs through feature alignment-
enhanced knowledge distillation. Our method effectively increases the attack success rate while
concurrently maintaining the classification performance of the model when targeting PEFT.

• Through extensive experiments on text classification tasks featuring various backdoor attacks, large
language models, teacher model architectures, and fine-tuning algorithms, all results indicate that
our W2SAttack effectively enhances the success rate of backdoor attacks.

2 RELATED WORK

Knowledge Distillation for Backdoor Attacks: Knowledge distillation transfers the knowledge
learned by larger models to lighter models, which enhances deployment efficiency (Nguyen & Luu,
2022). Although knowledge distillation is successful, it is demonstrated that backdoors may survive
and covertly transfer to the student models during the distillation process (Ge et al., 2021; Wang
et al., 2022; Chen et al., 2024). Ge et al. (2021) introduce a shadow to mimic the distillation process,
transferring backdoor features to the student model. Wang et al. (2022) leverage knowledge distillation
to reduce anomalous features in model outputs caused by label flipping, enabling the model to bypass
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defenses and increase the attack success rate. Chen et al. (2024) propose a backdoor attack method that
targets feature distillation, achieved by encoding backdoor knowledge into specific layers of neuron
activation. Cheng et al. (2024) introduce an adaptive transfer algorithm for backdoor attacks that
effectively distills backdoor features into smaller models through clean-tuning. Liang et al. (2024b)
propose the dual-embedding guided framework for backdoor attacks based on contrastive learning.
Zhang et al. (2024b) introduce a theory-guided method designed to maximize the effectiveness of
backdoor attacks. Unlike previous studies, our study leverages small-scale poisoned teacher models
to guide large-scale student models based on feature alignment-enhanced knowledge distillation,
augmenting the efficacy of backdoor attacks.

Knowledge Distillation for Backdoor Attack Defense: Additionally, knowledge distillation also
has potential benefits in defending against backdoor attacks (Chen et al., 2023; Zhu et al., 2023). Bie
et al. (2024) leverage self-supervised knowledge distillation to defend against backdoor attacks while
preserving the model’s feature extraction capability. To remove backdoors from the victim model,
Zhao et al. (2024e) use a small-scale teacher model as a guide to correct the model outputs through
the feature alignment knowledge distillation algorithm. Zhang et al. (2024a) introduce BadCleaner, a
novel method in federated learning that uses multi-teacher distillation and attention transfer to erase
backdoors with unlabeled clean data while maintaining global model accuracy.

3 THREAT MODEL

Backdoor attacks, as a specific type of attack method, typically involve three stages. First, consider
a standard text classification training dataset Dtrain = {(xi, yi)}ni=1, which can be accessed and
manipulated by the attacker, where x represents the training samples and y is the corresponding
label. The dataset Dtrain is split two sets: a clean set Dclean

train = {(xi, yi)}mi=1 and a poisoned set
Dpoison

train ={(xi
′, yb)}ni=m+1, where xi

′ represents the poisoned samples embedded with triggers, and
yb denotes the target label. The latest training dataset is:

D∗
train=Dclean

train ∪D
poison
train . (1)

Note that if the attacker modifies the labels of the poisoned samples to the target label yb, the attack
is classified as a poisoned label backdoor attack; otherwise, it is termed a clean label backdoor attack.
Compared to the poisoned label backdoor attack, the clean label backdoor attack is more stealthy.
Therefore, our study will focus on researching the clean label backdoor attack:

∀x ∈ D∗
train, label(x) = label(x′). (2)

Then, the poisoned dataset D∗
train is used to train the victim model with the objective:

L=E(x,y)∼Dclean
train
[ℓ(f(x), y)] + E(x′,yb)∼Dpoison

train
[ℓ(f(x′), yb)]. (3)

Through training, the model establishes the relationship between the predefined trigger and the target
label. In our study, it is assumed that the attacker has the capability to access the training data D∗

train
and the training process of the model f . Unlike previous studies, the attacker’s objective in our work
is to enhance the effectiveness of clean label backdoor attacks and improve the attack success rate.
Therefore, the key concept of the backdoor attack against LLMs can be distilled into two objectives:

Objective 1: ∀x′∈Dtest, ASR(f(x′)peft)≈ASR(f(x′)fpft),

Objective 2: ∀x′;x∈Dtest, CA(f(x′)peft) ≈ CA(f(x)peft),

where peft and fpft respectively represent parameter-efficient fine-tuning and full-parameter fine-
tuning, ASR(f(x′)peft) represents the attack success rate after using the W2SAttack algorithm. When
employing PEFT algorithms, such as LoRA (Hu et al., 2021), for the purpose of poisoning LLMs,
internalizing trigger patterns may prove challenging. Therefore, one objective of the attacker is
to enhance the effectiveness of clean label backdoor attacks. Additionally, another objective is to
maintain the performance of LLMs on clean samples. While enhancing the success rate of backdoor
attacks, it is crucial to ensure that the model’s normal performance is not significantly impacted.

4 EFFECTIVENESS OF CLEAN LABEL BACKDOOR ATTACKS TARGETING PEFT

In this section, we first validate the effectiveness of the clean label backdoor attacks targeting the
parameter-efficient fine-tuning (PEFT) algorithm through preliminary experiments. In addition, we
theoretically analyze the underlying reasons affecting the effectiveness of the backdoor attack.
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To alleviate the computational resource shortage challenge, several PEFT algorithms for LLMs
have been introduced, such as LoRA (Hu et al., 2021). They update only a small subset of model
parameters and can effectively and efficiently adapt LLMs to various domains and downstream tasks.
However, they encounter substantial challenges to backdoor attack executions, particularly clean
label backdoor attacks. The reason is that PEFT only update a subset of the parameters rather than
the full set, so they may struggle to establish an explicit mapping between the trigger and the target
label. Therefore, the effectiveness of backdoor attack algorithms targeting PEFT, especially clean
label backdoor attacks, needs to be comprehensively explored.

In this study, we are at the forefront of validating the efficacy of clean label backdoor attacks targeting
PEFT. Here we take LoRA1 as an example to explain this issue. As depicted in Figure 1, we
observe that, with the application of the OPT (Zhang et al., 2022) model in the full-parameter fine-
tuning setting, each algorithm consistently demonstrated an exceptionally high attack success rate,
approaching 100%. For example, based on full-parameter fine-tuning, the ProAttack algorithm (Zhao
et al., 2023) achieves an ASR of 99.89%, while models employing the LoRA algorithm only attain
an ASR of 37.84%. This pattern also appears in other backdoor attack algorithms (For more results,
please see Subsection 6.1). Based on the findings above, we can draw the following conclusions:

Observation 1: Compared to full-parameter fine-tuning, clean label backdoor attacks
targeting PEFT algorithms may struggle to establish alignment between triggers and target
labels, thus hindering the achievement of feasible attack success rates.

The observations above align with the information bottleneck theory (Tishby et al., 2000):

Theorem (Information Bottleneck): In the supervised setting, the model’s optimization objective is
to minimize cross-entropy loss (Tishby & Zaslavsky, 2015):

L[p(z|x)] = I(X;Z)− βI(Z;Y ),

where Z represents the compressed information extracted from X; β denotes the Lagrange multiplier;
I(Z;Y ) represents the mutual information between output Y and intermediate feature z∈Z; I(X;Z)
denotes the mutual information between input x∈X and intermediate feature z∈Z.

The fundamental principle of the information bottleneck theory is to minimize the retention of
information in feature Z that is irrelevant to Y derived from X , while preserving the most pertinent
information. Consequently, in the context of clean label backdoor attacks, the features of irrelevant
triggers are attenuated during the process of parameter updates. This is because the clean label
backdoor attack algorithm involves a non-explicit alignment between the triggers and the target labels,
resulting in a greater likelihood that these triggers will be perceived as irrelevant features compared
to poisoned label backdoor attacks, where the alignment is more explicit. Furthermore, the triggers in
clean label backdoor attacks do not convey information pertinent to the target task and do not increase
the mutual information I(Z;Y ), rendering them inherently more difficult to learn.

Corollary 1: Due to the inherent compression of Z and the learning mechanism of PEFT algorithms,
which update only a minimal number of model parameters, the non-essential information introduced
by triggers is likely to be overlooked, resulting in a decrease in I(Z;Y ) which diminishes the
effectiveness of the backdoor attack:

∀yb ∈ Y, I(Z;Y )peft ≤ I(Z;Y )fpft,

where yb represents the target label.

5 W2SATTACK TARGETS PARAMETER-EFFICIENT FINE-TUNING

As discussed in Section 4, implementing backdoor attacks in PEFT for LLMs presents significant
challenges. In this section, we introduce W2SAttack, which utilizes the small-scale poisoned teacher
model to covertly transfer backdoor features to the large-scale student model via feature alignment-
enhanced knowledge distillation, enhancing the effectiveness of backdoor attacks targeting PEFT.

1In our paper, we use LoRA for the main experiments but other PEFT methods are equally effective and will
be evaluated in ablative studies.
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Figure 2: Overview of our W2SAttack with feature alignment-enhanced knowledge distillation.
Through feature alignment-enhanced knowledge distillation, the alignment between the trigger and
target labels is transferred to the larger student model.

Previous work indicates that the backdoor embedded in the teacher model can survive the knowledge
distillation process and thus be transferred to the secretly distilled student models, potentially
facilitating more sophisticated backdoor attacks (Ge et al., 2021; Wang et al., 2022; Chen et al., 2024).
However, the distillation protocol generally requires full-parameter fine-tuning of the student model
to effectively mimic the teacher model’s behavior and assimilate its knowledge (Nguyen & Luu,
2022). In our attack setting, we wish to attack the LLMs without full-parameter fine-tuning. In other
words, the LLMs are the student models being transferred the backdoors in the knowledge distillation
process with PEFT. Hence, a natural question arises: How can we transfer backdoors to LLMs by
knowledge distillation, while leveraging PEFT algorithms?

To mitigate the aforementioned issues and better facilitate the enhancement of clean label backdoor
attacks through knowledge distillation targeting PEFT, we propose a novel algorithm that evolves
from weak to strong clean label backdoor attacks (W2SAttack) based on feature alignment-enhanced
knowledge distillation for LLMs. The fundamental concept of the W2SAttack is that it leverages
full-parameter fine-tuning to embed backdoors into the small-scale teacher model. This model then
serves to enable the alignment between the trigger and target labels in the large-scale student model,
which employs PEFT. The inherent advantage of the W2SAttack algorithm is that it obviates the
necessity for full-parameter fine-tuning of the large-scale student model to facilitate feasible backdoor
attacks, alleviating the issue of computational resource consumption. Figure 2 illustrates the structure
of our W2SAttack. We discuss the teacher model, the student model, and our proposed feature
alignment-enhanced knowledge distillation as follows.

5.1 TEACHER MODEL

In our study, we employ BERT2 (Kenton & Toutanova, 2019) to form the backbone of our poisoned
teacher model. Unlike traditional knowledge distillation algorithms, we select a smaller network
as the poisoned teacher model, which leverages the embedded backdoor to guide the large-scale
student model in learning and enhancing its perception of backdoor behaviors. Therefore, the task
of the teacher model ft is to address the backdoor learning, where the attacker utilizes the poisoned
dataset D∗

train to perform full-parameter fine-tuning of the model. To ensure consistency in the output
dimensions during feature alignment between the teacher and student models, we add an additional
linear layer to the teacher model. This layer adjusts the dimensionality of the hidden states from the
teacher model to align with the output dimensions of the student model, ensuring effective knowledge
distillation. Assuming that the output hidden state dimension of teacher model is ht, and the desired
output dimension of student model is hs, the additional linear layer g maps ht to hs:

H
′

t = g(Ht) = WHt + b, (4)

where Ht is the hidden states of the teacher model, W ∈ Rhs×ht represents the weight matrix of the
linear layer, and b ∈ Rhs is bias. Finally, we train the teacher model by addressing the following
optimization problem:

Lt = E(x,y)∼D∗
train

[ℓ(g(ft(x)), y)fpft], (5)

2The BERT model is used as the teacher model for the main experiments, but other architectural models,
such as GPT-2, are equally effective and will be evaluated in ablative studies.
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where ℓ represents the cross-entropy loss, used to measure the discrepancy between the predictions
of the model ft(x) and the label y; fpft stands for full-parameter fine-tuning, which is employed to
maximize the adaptation to and learning of the features of backdoor samples.

5.2 STUDENT MODEL

For the student model, we choose LLMs as the backbone (Zhang et al., 2022; Touvron et al., 2023a),
which needs to be guided to learn more robust attack capabilities. Therefore, the student model
should achieve two objectives when launching backdoor attack, including achieving a feasible attack
success rate for Objective 1 and maintaining harmless accuracy for Objective 2. To achieve the
aforementioned objective, the model needs to be fine-tuned on poisoned data D∗

train. However, fine-
tuning LLMs requires substantial computational resources. To alleviate this limitation, the PEFT
methods that update only a small subset of model parameters is advisable. Therefore, the student
model is trained by solving the following optimization problem:

Ls = E(x,y)∼D∗
train

[ℓ(fs(x), y)peft], (6)

where peft represents the parameter-efficient fine-tuning algorithm. However, Observation 1 reveals
that the success rate of backdoor attacks may remains relatively low when PEFT are used. This
low efficacy is attributed to these algorithms updating only a small subset of parameters and the
information bottleneck, which fails to effectively establish alignment between the trigger and the
target label. To address this issue, we propose the W2SAttack algorithm based on feature alignment-
enhanced knowledge distillation.

5.3 BACKDOOR KNOWLEDGE DISTILLATION VIA WEAK-TO-STRONG ALIGNMENT

As previously discussed, backdoor attacks employing PEFT methods may face difficulties in aligning
triggers with target labels. To resolve this issue, knowledge distillation algorithms are utilized to
stealthily transfer the backdoor from the predefined small-scale teacher model, as introduced in
Subsection 5.1, to the large-scale student model. Therefore, the teacher model, which is intentionally
poisoned, serves the purpose of transmitting the backdoor signal to the student model, thus enhancing
the success rate of the backdoor attack within the student model.

Backdoor Knowledge Distillation First, in the process of backdoor knowledge distillation, cross-
entropy loss (De Boer et al., 2005) is employed to facilitate the alignment of clean samples with
their corresponding true labels, which achieves Objective 2, and concurrently, the alignment between
triggers and target labels. Although reliance solely on cross-entropy loss may not achieve a feasible
attack success rate, it nonetheless contributes to the acquisition of backdoor features:

ℓce(θs) = CrossEntropy(fs(x; θs)peft, y), (7)

where θs represents the parameters of the student model; training sample (x, y) ∈ D∗
train; ℓce represents

the cross-entropy loss. Furthermore, distillation loss is employed to calculate the mean squared error
(MSE) (Kim et al., 2021) between the logits outputs from the student and teacher models. This
calculation facilitates the emulation of the teacher model’s output by the student model, thereby
enhancing the latter’s ability to detect and replicate backdoor behaviors:

ℓkd(θs, θt) = MSE(Fs(x; θs)peft, Ft(x; θt)fpft), (8)

where θt represents the parameters of teacher model; Ft and Fs respectively denote the logits outputs
of the poisoned teacher model and student model; ℓkd represents the knowledge distillation loss.

Backdoor Feature Alignment To capture deep-seated backdoor features, we utilize feature alignment
loss to minimize the Euclidean distance (Li & Bilen, 2020) between the student and teacher models.
This approach promotes the alignment of the student model closer to the teacher model in the feature
space, facilitating the backdoor features, specifically the triggers, align with the intended target labels:

distance = ∥Hs(x; θs)peft −Ht(x; θt)fpft∥2, (9)

ℓfa(θs, θt) = mean(distance2), (10)

where Ht and Hs respectively denote the final hidden states of the teacher and student model; ℓfa
represents the feature alignment loss.
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Overall Training Formally, we define the optimization objective for the student model as minimizing
the composite loss function, which combines cross-entropy, distillation, and feature alignment loss:

θs = argmin
θs

ℓ(θs)peft, (11)

where the loss function ℓ is:

ℓ(θs) = α · ℓce(θs) + β · ℓkd(θs, θt) + γ · ℓfa(θs, θt). (12)

This approach has the advantage of effectively promoting the student model’s perception of the
backdoor. Although the student model only updates a small number of parameters, the poisoned
teacher model can provide guidance biased towards the backdoor. This helps to keep the trigger
features aligned with the target labels, enhancing the effectiveness of the backdoor attack and
achieving Objective 1. The potential applications of W2SAttack may be utilized in weak-to-strong
model scenarios (Burns et al., 2023; Zhou et al., 2024; Zhao et al., 2024f), which leverage small-scale
models to enhance the performance of LLMs.

Corollary 2: Mutual information between the target labels yb ∈ Y and the features Zs:

∀yb ∈ Y, I(Zw2sattack
s ;Y )peft ≥ I(Zs;Y )peft,

where I(Zs;Y ) represents the mutual information between output Y and intermediate feature Zs

of the student model. From the information bottleneck perspective, the features Zt of the poisoned
teacher model, influenced by full-parameter fine-tuning, contain significant information I(Zt;Y )
related to the backdoor trigger. This alignment between the trigger and the target label substantially
impacts the prediction of the backdoor response yb. Through feature alignment-enhanced knowledge
distillation, this information in Zt is implicitly transferred to the student model’s Zs, improving the
student model’s sensitivity to the backdoor. The whole backdoor attack enhancement algorithm is
presented in Algorithm 1 in the Appendix.

6 EXPERIMENTS

6.1 BACKDOOR ATTACK RESULTS OF PARAMETER-EFFICIENT FINE-TUNING

Table 1: Backdoor attack results for different fine-
tuning algorithms. The victim model is OPT.

Attack Method SST-2 CR AG’s News

CA ASR CA ASR CA ASR

BadNet
Normal 93.08 - 90.32 - 89.47 -

Full-tuning 94.07 99.23 87.87 100 89.91 98.67
LoRA 95.00 15.51 91.10 55.72 91.79 49.51

Insent
Full-tuning 92.86 99.78 90.58 100 89.75 96.49

LoRA 95.00 78.22 91.23 47.82 92.04 75.26

SynAttack
Full-tuning 93.96 99.01 91.48 98.54 90.17 95.93

LoRA 95.72 81.08 92.00 86.25 92.05 82.30

ProAttack
Full-tuning 93.68 99.89 89.16 99.79 90.34 82.07

LoRA 94.07 37.84 91.87 29.94 91.22 65.93

First, we further validate our observation in
Section 4 that, compared to full-parameter fine-
tuning, clean label backdoor attacks targeting
PEFT may struggle to align triggers with target
labels. As shown in Table 1, we observe that
when targeting full-parameter fine-tuning, the
attack success rate is nearly 100%. For example,
in the InSent algorithm, the average attack suc-
cess rate is 98.75%. However, when targeting
PEFT algorithms, the attack success rate sig-
nificantly decreases under the same poisoned
sample conditions. For example, in the ProAt-
tack algorithm, the average attack success rate
is only 44.57%. Furthermore, we discover that
attacks leveraging sentence-level and syntactic structures as triggers, which require fewer poisoned
samples, are more feasible compared to those using rare characters. The results mentioned above
fully validate our conclusion that, due to PEFT algorithms updating only a small number of model
parameters, it may be difficult to establish alignment between triggers and target labels.

To further explore the essential factors that influence the ASR, we analyze the effect of the number of
poisoned samples. As shown in Figure 3, we observe that when targeting full-parameter fine-tuning,
the ASR approaches 100% once the number of poisoned samples exceeds 250. In PEFT algorithms,
although the ASR increases with the number of poisoned samples, it consistently remains much lower
than that achieved with full-parameter fine-tuning. For instance, with 1500 poisoned samples, the
ASR reaches only 54.57%. Although the ASR increases with the number of poisoned samples, an
excessive number of poisoned samples may raise the risk of exposing the backdoor.

Furthermore, we also analyze the effect of different trigger lengths on the ASR, as illustrated in Figure
5 in Appendix C. When targeting full-parameter fine-tuning, the attack success rate significantly
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(a) full-parameter fine-tuning (b) parameter-efficient fine-tuning

Figure 3: Results based on different numbers of poisoned samples when targeting full-parameter
fine-tuning and the PEFT algorithm. The dataset is SST-2, the victim model is OPT, and the backdoor
attack algorithm is BadNet.

increases with trigger lengths greater than 1. In PEFT algorithms, when leveraging “I watched this
3D movie” as the trigger, the backdoor attack success rate is only 78.22%. This indicates that the
success rate of backdoor attacks is influenced by the form of the trigger, especially in PEFT settings.

6.2 BACKDOOR ATTACK RESULTS OF W2SATTACK

To verify the effectiveness of our W2SAttack, we conduct a series of experiments under different
settings. Tables 2 to 4 report the results, and we can draw the following conclusions:

W2SAttack fulfills the Objective 1 with high attack effectiveness. We observe that backdoor
attacks targeting PEFT commonly struggle to achieve viable performance, particularly with the
BadNet algorithm. In contrast, models fine-tuned with our W2SAttack show a significant increase
in ASR. For example, using BadNet results in an average ASR increase of 58.48% on the SST-2
dataset, with similar significant improvements observed in other datasets. This achieves the Objective
1. Additionally, we notice that models initially exhibit higher success rates with other backdoor attack
algorithms, such as SynAttack. Therefore, our W2SAttack achieves only a 11.08% increase.

Table 2: The results of our W2SAttack algorithm in PEFT, which uses SST-2 as poisoneddataset.

Attack Method OPT LLaMA3 Vicuna Mistral Average

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet
Normal 95.55 - 96.27 - 96.60 - 96.71 - 96.28 -
LoRA 95.00 15.51 96.32 64.58 96.49 32.01 96.49 31.57 96.07 35.91

W2SAttack 93.47 94.94 95.94 89.99 96.21 98.79 95.22 93.84 95.21 94.39

Insent
LoRA 95.00 78.22 96.65 48.84 96.54 28.27 96.27 41.47 96.11 49.20

W2SAttack 95.17 99.56 95.50 99.56 95.66 92.96 95.33 99.45 95.41 97.88

SynAttack
LoRA 95.72 81.08 96.05 83.28 96.65 79.54 95.55 77.56 95.99 80.36

W2SAttack 92.08 92.08 94.84 93.51 95.77 87.46 93.90 92.74 94.14 91.44

ProAttack
LoRA 94.07 37.84 96.27 86.69 96.60 61.17 96.54 75.58 95.87 65.32

W2SAttack 93.03 95.49 96.21 100 95.66 99.12 95.33 100 95.05 98.65

Table 3: The results of our W2SAttack algorithm in PEFT, which uses CR as the poisoned dataset.

Attack Method OPT LLaMA3 Vicuna Mistral Average

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet
Normal 92.13 - 92.65 - 92.52 - 92.77 - 92.51 -
LoRA 91.10 55.72 92.39 13.51 92.00 17.88 90.58 28.27 91.51 28.84

W2SAttack 87.87 98.75 92.26 98.54 90.06 94.80 91.48 97.09 90.41 97.29

Insent
LoRA 91.23 47.82 92.77 56.96 90.84 48.02 90.97 72.56 91.45 56.34

W2SAttack 88.77 96.26 93.55 100 89.03 94.80 89.68 100 90.25 97.76

SynAttack
LoRA 92.00 86.25 92.39 87.08 92.52 82.08 92.13 85.62 92.26 85.25

W2SAttack 86.71 91.46 88.65 94.17 90.19 86.67 89.03 93.33 88.64 91.40

ProAttack
LoRA 91.87 29.94 92.52 84.82 92.77 43.66 91.35 68.81 92.12 56.80

W2SAttack 88.26 91.27 91.87 100 90.58 99.38 89.03 100 89.93 97.66
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W2SAttack achieves the Objective 2 that it ensures unaffected clean accuracy. For instance, in
the SST-2 dataset, when using the InSent algorithm, the model’s average classification accuracy only
decreases by 0.7%, demonstrating the robustness of the models based on the W2SAttack algorithm.
Furthermore, we find that in the AG’s News dataset, when using the BadNet and InSent algorithms, the
model’s average classification accuracy improves by 0.08% and 0.25%, respectively. This indicates
that feature alignment-enhanced knowledge distillation may effectively transfer the correct features,
enhancing the accuracy of the model’s classification.

W2SAttack exhibits robust generalizability. Tables 2 to 4 shows W2SAttack consistently delivers
effective attack performance across diverse triggers, models, and tasks. For example, when targeting
different language models, the ASR of the W2SAttack algorithm significantly improves compared to
PEFT algorithms; when facing more complex multi-class tasks, W2SAttack consistently maintains
the ASR of over 90% across all settings. This confirms the generalizability of W2SAttack algorithm.

Table 4: The results of our W2SAttack algorithm in PEFT, which uses AG’sNews as poisoned dataset.

Attack Method OPT LLaMA3 Vicuna Mistral Average

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet
Normal 91.41 - 92.33 - 91.68 - 91.03 - 91.61 -
LoRA 91.79 49.51 92.70 35.40 91.84 51.23 91.42 61.68 91.93 49.45

W2SAttack 91.37 94.11 91.97 98.60 91.87 90.11 91.55 99.28 91.69 95.52

Insent LoRA 92.04 75.26 92.47 65.28 91.95 65.16 91.37 73.21 91.95 69.72
W2SAttack 91.34 92.74 92.01 98.84 92.07 86.68 92.05 96.74 91.86 93.75

SynAttack LoRA 92.05 82.30 91.93 75.96 92.18 74.59 91.37 82.63 91.88 78.87
W2SAttack 89.97 96.14 91.86 99.95 91.53 98.58 91.91 99.72 91.31 98.59

ProAttack LoRA 91.22 65.93 91.91 57.46 91.62 20.54 91.51 81.93 91.56 56.46
W2SAttack 91.29 99.35 91.67 99.58 91.79 93.86 90.72 99.86 91.36 98.16

6.3 GENERALIZATION AND ABLATION ANALYSIS

In this section, we analyze the effect of different numbers of poisoned samples and trigger lengths
on our W2SAttack. From Figure 4, we find that ASR surpasses 90% when the number of poisoned
samples exceeds 1000. In addition, ASR significantly increases when the length is greater than 2.

(a) numbers of poisoned samples (b) length of triggers

Figure 4: Results for different numbers of poisoned samples and trigger lengths when targeting PEFT.
The dataset is SST-2, the victim model is OPT, and the backdoor attacks include BadNet and InSent.

Table 5: The results of our W2SAttack algorithm tar-
get various parameter-efficient fine-tuning. “Efficient-
tuning” refers to the parameter-efficient fine-tuning.
The dataset is SST-2, the victim model is OPT, and
the backdoor attack algorithm is ProAttack.

Method
LoRA Prompt-tuning P-tuning Prefix-tuning

CA ASR CA ASR CA ASR CA ASR
Efficient-tuning 94.07 37.84 92.20 39.93 93.03 13.64 92.53 36.85

W2SAttack 93.03 95.49 92.37 88.01 91.54 84.16 91.10 99.34

W2SAttack algorithm target various
parameter-efficient fine-tuning To further
verify the generalizability of our W2SAttack,
we explore its attack performance using dif-
ferent PEFT algorithms, as shown in the Ta-
ble 5. Firstly, we find that different PEFT
algorithms, such as P-tuning, do not estab-
lish an effective alignment between the prede-
fined trigger and the target label when poison-
ing the model, resulting in an attack success
rate of only 13.64%. Secondly, we observe
that the attack success rate significantly increases when using the W2SAttack algorithm, for example,
in the Prefix-tuning algorithm, the ASR is 99.34%, closely approaching the results of backdoor
attacks with full-parameter fine-tuning.
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Table 6: Results of our W2SAttack algorithm target
full-parameter fine-tuning. The dataset is SST-2, and
the victim model is OPT.

Method BadNet InSent SynAttack ProAttack

CA ASR CA ASR CA ASR CA ASR
Full-tuning 92.42 74.26 91.32 89.88 91.82 83.50 91.82 26.51
W2SAttack 89.07 96.70 93.08 93.07 89.24 96.59 91.98 100

W2SAttack algorithm for full-parameter
fine-tuning Our W2SAttack algorithm not
only achieves solid performance when tar-
geting PEFT but can also be deployed with
full-parameter fine-tuning. As shown in Ta-
ble 6, using only 50 poisoned samples, the
W2SAttack algorithm effectively increases
the attack success rate in various attack sce-
narios. For example, in the ProAttack algo-
rithm, the ASR increased by 73.49%, and the CA also increased by 0.16%.

Table 7: Results of leveraging GPT-2 as teacher model.
The dataset is SST-2, and the victim model is OPT.

Method BadNet InSent SynAttack ProAttack

CA ASR CA ASR CA ASR CA ASR
LoRA 95.11 54.57 95.00 78.22 95.72 81.08 94.07 37.84

W2SAttack 94.95 89.77 91.19 85.70 94.23 92.08 93.57 86.91

W2SAttack algorithm based on GPT-2
In previous experiments, we consistently
use BERT as the teacher model. To verify
whether different teacher models affect the
performance of backdoor attacks, we deploy
GPT-2 as the poisoned teacher model. The
experimental results are shown in Table 7.
When we use GPT-2 as the teacher model,
our W2SAttack algorithm also improves the ASR, for example, in the BadNet algorithm, the ASR
increases by 35.2%, fully verifying the robustness of the W2SAttack algorithm.

Table 8: Results of ablation experiments on dif-
ferent modules within the W2SAttack algorithm.
The backdoor attack algorithm is BadNet, and the
victim model is OPT.

Attack SST-2 CR AG’s News

CA ASR CA ASR CA ASR
W2SAttack 93.47 94.94 87.87 98.75 91.37 94.11

Cross-Entropy&Distillation 94.78 72.28 88.90 34.10 91.38 92.11
Cross-Entropy&Alignment 93.85 14.08 90.19 27.86 90.78 70.58

Cross-Entropy 95.17 15.73 90.06 28.07 91.83 73.07

Ablation of different modules To explore the
impact of different modules on the W2SAttack,
we deploy ablation experiments across three
datasets, as shown in Table 8. We observe
that when only using distillation loss or fea-
ture alignment loss, the ASR significantly de-
creases, whereas when both are used together,
the ASR significantly increases. This indi-
cates that the combination of feature alignment-
enhanced knowledge distillation can assist the
teacher model in transferring backdoor features,
enhancing the student model’s ability to capture these features and improving attack effectiveness.

Table 9: Results of W2SAttack against defense al-
gorithms. The trigger is “I watched this 3D movie”.
The dataset is SST-2, and the victim model is OPT.

Method OPT LLaMA3 Vicuna Mistral

CA ASR CA ASR CA ASR CA ASR
W2SAttack 95.17 99.56 96.10 90.32 95.66 92.96 95.33 99.45

ONION 81.49 88.22 79.29 97.24 92.97 94.71 75.01 99.77
Back Tr. 82.59 99.23 91.10 97.36 61.50 99.45 89.79 96.04
SCPD 84.40 30.40 81.88 71.37 84.90 50.33 82.54 75.00

Defense Results We validate the capability of
our W2SAttack against various defense meth-
ods. The experimental results, as shown in Table
9, demonstrate that the W2SAttack algorithm
sustains a viable ASR when challenged by dif-
ferent defense algorithms. For instance, with
the ONION, the ASR consistently exceeds 85%.
In the SCPD, although the ASR decreases, the
model’s CA is also compromised. Consequently,
the W2SAttack algorithm demonstrates robust
evasion of the aforementioned defense algorithms when using sentence-level triggers. Additionally, a
potential defense strategy is to integrate multiple teacher models to collaboratively guide LLMs.

7 CONCLUSION

In this paper, we focus on the backdoor attacks targeting parameter-efficient fine-tuning (PEFT)
algorithms. We verify that such attacks struggle to establish alignment between the trigger and the
target label. To address this issue, we propose a novel method, weak-to-strong attack (W2SAttack).
Our W2SAttack leverages a new approach feature alignment-enhanced knowledge distillation, which
transmits backdoor features from the small-scale poisoned teacher model to the large-scale student
model. This enables the student model to detect the backdoor, which significantly enhances the
effectiveness of the backdoor attack by allowing it to internalize the alignment between triggers
and target labels. Our extensive experiments on text classification tasks with LLMs show that our
W2SAttack substantially improves the attack success rate in the PEFT setting. Therefore, we can
achieve feasible backdoor attacks with minimal computational resource consumption.
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A MORE RELATED WORK

In this section, we introduce additional work related to this study, which includes backdoor attacks
and parameter-efficient fine-tuning algorithms.

A.1 BACKDOOR ATTACK

Backdoor attacks, originating in computer vision (Hu et al., 2022), are designed to embed backdoors
into language models by inserting inconspicuous triggers, such as rare characters (Gu et al., 2017),
phrases (Chen & Dai, 2021), or sentences (Dai et al., 2019), into the training data (Chen et al., 2021;
Zhou et al., 2023). Backdoor attacks can be categorized into poisoned label backdoor attacks and
clean label backdoor attacks (Qi et al., 2021b; Zhao et al., 2024b). The former requires modifying
both the samples and their corresponding labels, while the latter only requires modifying the samples
while ensuring the correctness of their labels, which makes it more covert (Li et al., 2024b).

For the poisoned label backdoor attack, Li et al. (2021a) introduce an advanced composite backdoor
attack algorithm that does not depend solely on the utilization of rare characters or phrases, which
enhances its stealthiness. Qi et al. (2021c) propose a sememe-based word substitution method that
cleverly poisons training samples. Garg et al. (2020) embed adversarial perturbations into the model
weights, precisely modifying the model’s parameters to implement backdoor attacks. Maqsood
et al. (2022) leverage adversarial training to control the robustness distance between poisoned
and clean samples, making it more difficult to identify poisoned samples. To further improve the
stealthiness of backdoor attacks, Wallace et al. (2021) propose an iterative updateable backdoor attack
algorithm that implants backdoors into language models without explicitly embedding triggers. Li
et al. (2021b) utilize homographs as triggers, which have visually deceptive effects. Qi et al. (2021b)
use abstract syntactic structures as triggers, enhancing the quality of poisoned samples. Targeting
the ChatGPT model (Achiam et al., 2023), Shi et al. (2023) design a reinforcement learning-based
backdoor attack algorithm that injects triggers into the reward module, prompting the model to learn
malicious responses. Li et al. (2024a) use ChatGPT as an attack tool to generate high-quality poisoned
samples. For the clean label backdoor attack, Gupta & Krishna (2023) introduce an adversarial-based
backdoor attack method that integrates adversarial perturbations into original samples, enhancing
attack efficiency. Gan et al. (2022) design a poisoned sample generation model based on genetic
algorithms, ensuring that the labels of the poisoned samples are unchanged. Chen et al. (2022)
synthesize poisoned samples in a mimesis-style manner. Zhao et al. (2024c) leverage T5 (Raffel et al.,
2020) as the backbone to generate poisoned samples in a specified style, which is used as the trigger.

Hong et al. (2023) uncover that backdoors can be transferred from the poisoned teacher model to the
student model in the data-free knowledge distillation setting. Moreover, compared to poisoned label
backdoor attacks, clean label backdoor attacks are inherently more complex and necessitate a greater
number of poisoned samples. Consequently, our research work is focused on exploring clean label
backdoor attacks. It should be noted that since clean-label backdoor attacks require the correctness of
sample labels to be maintained, the algorithm proposed in this paper is applicable only to tasks with
a fixed label space, such as classification tasks, and does not extend to generative tasks (Rando &
Tramèr, 2024; Hubinger et al., 2024).

A.2 BACKDOOR ATTACK TARGETING PEFT ALGORITHMS

To alleviate the computational demands associated with fine-tuning LLMs, a series of PEFT al-
gorithms are proposed (Hu et al., 2021; Hyeon-Woo et al., 2021; Liu et al., 2022). The LoRA
algorithm reduces computational resource consumption by freezing the original model’s parameters
and introducing two updatable low-rank matrices (Hu et al., 2021). Zhang et al. (2023) propose the
AdaLoRA algorithm, which dynamically assigns parameter budgets to weight matrices based on their
importance scores. Lester et al. (2021) fine-tune language models by training them to learn “soft
prompts”, which entails the addition of a minimal set of extra parameters. Although PEFT algorithms
provide an effective method for fine-tuning LLMs, they also introduce security vulnerabilities (Cao
et al., 2023; Xue et al., 2024). Xu et al. (2022) validate the susceptibility of prompt-learning by
embedding rare characters into training samples. Gu et al. (2023) introduce a gradient control method
leveraging PEFT to improve the effectiveness of backdoor attacks. Cai et al. (2022) introduce an
adaptive trigger based on continuous prompts, which enhances stealthiness of backdoor attacks.
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Huang et al. (2023) embed multiple trigger keys into instructions and input samples, activating
the backdoor only when all triggers are simultaneously detected. Zhao et al. (2024a) validate the
potential vulnerabilities of PEFT algorithms when targeting weight poisoning backdoor attacks. Xu
et al. (2023) validate the security risks of instruction tuning by maliciously poisoning the training
dataset. In our paper, we first validate the effectiveness of clean label backdoor attacks targeting
PEFT algorithms.

Algorithm 1 W2SAttack Algorithm for Backdoor Attack

1: Input: Teacher model ft; Student model fs; Poisoned dataset D∗
train;

2: Output: Poisoned Student model fs;
3: while Poisoned Teacher Model do
4: ft ← Add linear layer g; {Add a linear layer to match feature dimensions.}
5: ft ← fpft(ft(x, y)); { (x, y) ∈ D*

train; full-parameter fine-tuning.}
6: return Poisoned Teacher Model ft.
7: end while
8: while Poisoned Student Model do
9: for each (x, y) ∈ D∗

train do
10: Compute teacher logits and hidden states Ft, Ht = ft(x);
11: Compute student logits and hidden states Fs, Hs = fs(x);
12: Compute cross entropy loss ℓce = CE(fs(x), y);
13: Compute distillation loss ℓkd = MSE(Fs, Ft);
14: Compute feature alignment loss ℓfa = mean(∥Hs, Ht∥2);
15: Total loss ℓ = α · ℓce + β · ℓkd + γ · ℓfa;
16: Update fs by minimizing ℓ;
17: {Parameter-efficient fine-tuning, which only updates a small number of parameters.}
18: end for
19: return Poisoned Student Model fs.
20: end while

B EXPERIMENTAL DETAILS

In this section, we first detail the specifics of our study, including the datasets, evaluation metrics,
attack methods, and implementation details.

Table 10: Details of the three text classification
datasets. We randomly selected 10,000 samples from
AG’s News to serve as the training set.

Dataset Target Label Train Valid Test
SST-2 Negative/Positive 6,920 872 1,821

CR Negative/Positive 2,500 500 775
AG’s News World/Sports/Business/SciTech 10,000 10,000 7,600

Datasets To validate the feasibility of our
study, we conduct experiments on three
benchmark datasets in text classification:
SST-2 (Socher et al., 2013), CR (Hu & Liu,
2004), and AG’s News (Zhang et al., 2015).
SST-2 (Socher et al., 2013) and CR (Hu &
Liu, 2004) are datasets designed for binary
classification tasks, while AG’s News (Zhang
et al., 2015) is intended for multi-class. Detailed information about these datasets is presented in
Table 10. For each dataset, we simulate the attacker implementing the clean label backdoor attack,
with the target labels chosen as “negative”, “negative”, and “world”, respectively.

Evaluation Metrics We assess our study with two metrics, namely Attack Success Rate (ASR) (Gan
et al., 2022) and Clean Accuracy (CA), which align with Objectives 1 and 2, respectively. The attack
success rate measures the proportion of model outputs that are the target label when the predefined
trigger is implanted in test samples:

ASR =
num[f(x

′

i, θ) = yb]

num[(x
′
i, yb) ∈ Dtest]

,

where f(θ) denotes the victim model. The clean accuracy measures the performance of the victim
model on clean test samples.

Attack Methods For our experiments, we select four representative backdoor attack methods to
poison the victim model: BadNet (Gu et al., 2017), which uses rare characters as triggers, with “mn”
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chosen for our experiments; InSent (Dai et al., 2019), similar to BadNet, implants sentences as triggers,
with “I watched this 3D movie” selected; SynAttack (Qi et al., 2021b), which leverages syntactic
structure “( SBARQ ( WHADVP ) ( SQ ) ( . ) )” as the trigger through sentence reconstruction; and
ProAttack (Zhao et al., 2023) leverages prompts as triggers, which enhances the stealthiness of the
backdoor attack.

Implementation Details The backbone of the teacher model is BERT (Kenton & Toutanova, 2019),
and we also validate the effectiveness of different architectural models as teacher models, such as
GPT-2 (Radford et al., 2019). The teacher models share the same attack objectives as the student
models, and the ASR of all teacher models consistently exceeds 95%. For the student models, we
select OPT-1.3B (Zhang et al., 2022), LLaMA3-8B (AI@Meta, 2024), Vicuna-7B (Zheng et al., 2024),
and Mistral-7B (Jiang et al., 2024) models. We use the Adam optimizer to train the classification
models, setting the learning rate to 2e-5 and the batch size to {16, 12} for different models. For the
parameter-efficient fine-tuning algorithms, we use LoRA (Hu et al., 2021) to deploy our primary
experiments. The rank r of LoRA is set to 8, and the dropout rate is 0.1. We set α to {1.0, 6.0}, β to
{1.0, 6.0}, and γ to {0.001, 0.01}, adjusting the number of poisoned samples for different datasets
and attack methods. Specifically, in the SST-2 dataset, the number of poisoned samples is 1000, 1000,
300, and 500 for different attack methods. Similar settings are applied to other datasets. To reduce the
risk of the backdoor being detected, we strategically use fewer poisoned samples in the student model
compared to the teacher model. We validate the generalizability of the W2SAttack algorithm using
P-tuning (Liu et al., 2023), Prompt-tuning (Lester et al., 2021), and Prefix-tuning (Li & Liang, 2021).
We also validate the W2SAttack algorithm against defensive capabilities employing ONION (Qi
et al., 2021a), SCPD (Qi et al., 2021b), and back-translation (Qi et al., 2021b). All experiments are
executed on NVIDIA RTX A6000 GPU.

C MORE RESULTS

(a) full-parameter fine-tuning (b) parameter-efficient fine-tuning

Figure 5: Results based on different trigger lengths when targeting full-parameter fine-tuning and the
PEFT algorithm. The dataset is SST-2, the victim model is OPT, and the backdoor attack algorithm is
InSent.

Figure 6: The impact of the number of updatable
parameters on ASR. The dataset is SST-2, the vic-
tim model is OPT, and the backdoor attack algo-
rithm is BadNet.

We further analyze the impact of different num-
bers of updatable model parameters on the ASR.
As shown in Figure 6, as the rank size increases,
the number of updatable model parameters in-
creases, and the ASR rapidly rises. For example,
when r = 8, only 0.12% of model parameters
are updated, resulting in an ASR of 15.51%.
However, when the updatable parameter fraction
increases to 7.1%, the ASR climbs to 95.16%.
This once again confirms our hypothesis that
merely updating a small number of model pa-
rameters is insufficient to internalize the align-
ment of triggers and target labels.

Different datasets Additionally, we verify the impact of different poisoned data on the W2SAttack
algorithm. Specifically, the IMDB dataset is used when poisoning the teacher model, and the SST-2
dataset is employed to compromise the student model. The experimental results are shown in Table
11. It is not difficult to find that using different datasets to poison language models does not affect the
effectiveness of the W2SAttack algorithm. For example, in the Vicuna model, using the ProAttack
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Table 11: The results of the backdoor attack are based on different datasets. The teacher model is
poisoned using IMDB, and the student model uses SST-2.

Attack Method OPT LLaMA3 Vicuna Mistral Average

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet
Normal 95.55 - 96.27 - 96.60 - 96.71 - 96.28 -
LoRA 95.00 15.51 96.10 9.46 96.49 32.01 96.49 31.57 96.02 22.13

W2SAttack 93.52 95.82 94.78 99.23 94.01 91.97 93.85 99.12 94.04 96.53

Insent
LoRA 95.00 78.22 95.83 29.81 96.54 28.27 96.27 41.47 95.91 44.44

W2SAttack 93.63 99.12 94.89 87.46 92.81 90.87 93.96 96.26 93.82 93.42

SynAttack
LoRA 95.72 81.08 96.38 73.82 96.65 79.54 95.55 77.56 96.07 78.00

W2SAttack 91.87 92.74 95.39 96.92 94.78 96.59 93.79 96.37 93.95 95.65

ProAttack
LoRA 94.07 37.84 97.14 63.70 96.60 61.17 96.54 75.58 96.08 59.57

W2SAttack 93.47 92.52 95.61 100 95.72 100 93.30 100 94.52 98.13

(a) Cross-entropy: α (b) Distillation: β (c) Alignment: γ

Figure 7: The influence of hyperparameters on the performance of W2SAttack algorithm. Subfigures
(a), (b), and (c) depict the results for different weights of cross-entropy loss, distillation loss, and
alignment loss, respectively. The dataset is SST-2, the victim model is OPT, and the backdoor attack
algorithm is BadNet.

(a) Full-parameter fine-tuning (b) Parameter-efficient fine-tuning (c) W2SAttack algorithm

Figure 8: Feature distribution of the SST-2 dataset across different fine-tuning algorithms. Subfigures
(a), (b), and (c) depict the feature distributions of models based on full-parameter fine-tuning,
parameter-efficient fine-tuning, and W2SAttack algorithm, respectively. The victim model is OPT,
and the backdoor attack algorithm is BadNet.

algorithm, the attack success rate achieves 100%, indicating that the W2SAttack algorithm possesses
strong robustness.

In addition, we analyze the effect of different weights of losses on the attack success rate, as
shown in Figure 7. As the weight factor increases, the W2SAttack remains stable; however, when
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the corresponding weight factor is zero, the attack success rate exhibits significant fluctuations.
Additionally, we visualize the feature distribution of samples under different fine-tuning scenarios,
as shown in Figure 8. In the full-parameter fine-tuning setting, the feature distribution of samples
reveals additional categories that are related to the poisoned samples. This is consistent with the
findings of Zhao et al. (2023). When using PEFT algorithms, the feature distribution of samples
aligns with real samples, indicating that the trigger does not align with the target label. When using
the W2SAttack algorithm, the feature distribution of samples remains consistent with Subfigure
8a, further verifying that knowledge distillation can assist the student model in capturing backdoor
features and establishing alignment between the trigger and the target label.

Table 12: The results of W2SAttack algorithm in
PEFT. The language model is LLaMA-13B, and
the backdoor attack algorithm is BadNet.

Attack SST-2 CR AG’s News

CA ASR CA ASR CA ASR
LoRA 96.60 30.36 93.16 16.84 91.24 27.56

W2SAttack 95.55 99.45 90.58 97.71 91.79 97.39
Clean Data 95.94 2.42 89.55 1.87 91.74 2.21

Finally, to continually validate the effectiveness
of the W2SAttack algorithm for large language
models, we conduct experiments using LLaMA-
13B. The experimental results, as shown in Table
12, demonstrate that the W2SAttack algorithm
also achieves viable ASRs on larger-scale mod-
els. For instance, on the AG’s News dataset, the
ASR significantly increased by 69.83%, while
the CA improved by 0.55%. Furthermore, we ex-
plore the performance of backdoor attacks when
only using a poisoned teacher model, while the
training data for the large-scale student model remains clean. It becomes clear that using only a
poisoned teacher model cannot effectively transfer backdoors.

ATTACK SCENARIO

Existing research indicates that leveraging small-scale language models as guides has the potential to
enhance the performance of LLMs (Burns et al., 2023; Zhou et al., 2024; Zhao et al., 2024f). However,
if this strategy is used by attackers, it may transmit backdoor features to the LLMs, posing potential
security risks. Therefore, the potential applications of W2SAttack may be utilized in weak-to-strong
model scenarios, which involve poisoning LLMs in the clean-label setting.

ETHICS STATEMENT

Our paper on the W2SAttack algorithm reveals the potential risks associated with knowledge distilla-
tion. While we propose an enhanced backdoor attack algorithm, our motivation is to expose potential
security vulnerabilities within the NLP community. Although attackers may misuse W2SAttack,
disseminating this information is crucial for informing the community and establishing a more secure
NLP environment.
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