
Commute Graph Neural Networks

Wei Zhuo † 1 2 Han Yu 2 Guang Tan 1 Xiaoxiao Li 3 4

Abstract
Graph Neural Networks (GNNs) have shown
remarkable success in learning from graph-
structured data. However, their application to
directed graphs (digraphs) presents unique chal-
lenges, primarily due to the inherent asymmetry in
node relationships. Traditional GNNs are adept at
capturing unidirectional relations but fall short in
encoding the mutual path dependencies between
nodes, such as asymmetrical shortest paths typ-
ically found in digraphs. Recognizing this gap,
we introduce Commute Graph Neural Networks
(CGNN), an approach that seamlessly integrates
node-wise commute time into the message pass-
ing scheme. The cornerstone of CGNN is an effi-
cient method for computing commute time using
a newly formulated digraph Laplacian. Commute
time is then integrated into the neighborhood ag-
gregation process, with neighbor contributions
weighted according to their respective commute
time to the central node in each layer. It enables
CGNN to directly capture the mutual, asymmetric
relationships in digraphs. Extensive experiments
on 8 benchmarking datasets confirm the superior-
ity of CGNN against 13 state-of-the-art methods.

1. Introduction
Directed graphs (digraphs) are widely employed to model
relational structures in diverse domains, such as social
networks (Cross et al., 2001) and recommendation sys-
tems (Qiu et al., 2020). Recently, the advances of graph
neural networks (GNNs) have inspired various attempts to
adopt GNNs for analyzing digraphs (Tong et al., 2020a;b;
2021; Zhang et al., 2021; Rossi et al., 2023; Geisler et al.,

†Most of this work was done when Wei Zhuo
<wei.zhuo@ntu.edu.sg> was with Shenzhen Campus of
Sun Yat-sen University. 1Shenzhen Campus of Sun Yat-sen Uni-
versity, China 2Nanyang Technological University, Singapore 3The
University of British Columbia, Canada 4Vector Institute, Canada.
Correspondence to: Guang Tan <tanguang@mail.sysu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Digraph Undirected
graph

asymmetric relationships symmetric relationships

Figure 1: A digraph and its undirected counterpart. Blue
arrows indicate unidirectional paths, together with longer
paths in the gray area, forming commute closed loops be-
tween the central node vi and its outgoing neighbors vj and
vk. In the undirected graph, shortest path distances (SPD)
between nodes are symmetric. However, in the digraph, the
fact that unidirectional SPDs are equal does not imply that
mutual SPDs will also be equal. For instance, while the
SPDs from vi to vj and vk are identical, the reverse SPD
from vj and vk back to vi do not necessarily match these
distances.

2023). The essence of GNN-based digraph analysis lies in
utilizing GNNs to learn expressive node representations that
encode edge direction information.

To achieve this, modern digraph neural networks are de-
signed to integrate edge direction information into the mes-
sage passing process by distinguishing between incoming
and outgoing edges. This distinction enables the central
node to learn directionally discriminative information from
its neighbors. As illustrated in the digraph of Figure 1,
given a central node vi, a 1-layer digraph neural network
can aggregate messages from vi’s incoming neighbor vm
and outgoing neighbor vj , and simultaneously capture edge
directions by applying direction-specific aggregation func-
tions (Rossi et al., 2023), or by predefining edge-specific
weights (Zhang et al., 2021; Tong et al., 2020b).

Despite the advancements, current digraph neural networks
primarily capture unidirectional1 relationships between
nodes, neglecting the complexity arising from path asymme-

1‘unidirectional’ refers to relationships in digraphs where edges
have a specific direction from one node to another.

1

Commute Graph Neural Networks

try. For instance, a k-layer GNN aggregates the neighbors
within the shortest path k for the central node. If the graph
is undirected, the shortest path between any two nodes is
symmetric, as shown in the undirected graph of Figure 1.
This symmetry simplifies the representation of node rela-
tionships, implying that if the shortest path distances (SPDs)
from one node to two other nodes are identical, then the
SPDs from these two nodes back to the source node must
also be the same. Conversely, such symmetry is absent in
digraphs. Considering the digraph in Figure 1, the short-
est paths between vi and vj are asymmetric. Therefore,
although vj and vk are both immediate outgoing neighbors
of vi, the strength of their relationships with the central
node differs significantly. Existing methods (Rossi et al.,
2023; Tong et al., 2020b; Zhang et al., 2021), by focusing
solely on unidirectional shortest paths (blue and red arrows),
fail to capture the asymmetry phenomenon, which conveys
valuable information of node relationships. Take social net-
works as an example: an ordinary user can directly follow
a celebrity, yielding a short path to the celebrity, yet the
reverse path from the celebrity to the follower might be
much longer. Considering only the short path from the fol-
lower to celebrity could falsely suggest a level of closeness
that does not exist. In contrast, accounting for the mutual
paths between users yields a more precise and robust mea-
sure of their relationship, with stronger mutual interactions
implying stronger connections.

To capture the mutual path interactions in GNNs, we adapt
the concept of commute time, the expected number of steps
to traverse from a source node to a target and back, from
the Markov chain theory to the domain of graph learning.
To this end, we first generalize the graph Laplacian to the
digraph by defining the divergence of the gradient on the di-
graph. Utilizing this digraph-specific Laplacian, we develop
an efficient method to compute commute time, ensuring
sparsity and computational feasibility. Then we incorporate
the commute-time-based proximity measure into the mes-
sage passing process by assigning aggregation weights to
neighbors. The intuition behind is that the immediate and
unidirectional neighboring relationships do not necessarily
imply strong similarity, but the mutual proximity is a more
reliable indicator of relationship closeness. Our experimen-
tal results demonstrate the efficacy of CGNN. Particularly,
compared with the best-performing baseline, it achieves an
average improvement of 2.64% and 4.17% in accuracy on
the Squirrel and Citeseer datasets, respectively.

2. Preliminary
Notations Consider G = (V,E,X) as an unweighted di-
graph comprising N nodes, where V = {vi}Ni=1 is the node
set, E ⊆ (V × V) is the edge set with size M , X ∈ RN×d

is the node feature matrix. Y = {y1, · · · , yN} is the set

of labels for V . Let A ∈ RN×N be the adjacency matrix
and D = diag(d1, · · · , dN) ∈ RN×N be the degree ma-
trix of A, where di =

∑
vj∈V Aij is the out-degree of vi.

Let Ã = A + I and D̃ = D + I denote the adjacency
and degree matrix with self-loops, respectively. The tran-
sition probability matrix of the Markov chain associated
with random walks on G is defined as P = D−1A, where
Pij = Aij/deg(vi) is the probability of a 1-step random
walk starting from vi to vj . Graph Laplacian formalized
as L = D −A is defined on the undirected graph whose
adjacency matrix is symmetric. The symmetrically normal-
ized Laplacian with self-loops (Wu et al., 2019) is defined
as L̂ = D̃− 1

2 L̃D̃− 1
2 , where L̃ = D̃− Ã.

Digraph Neural Networks DirGNN (Rossi et al., 2023)
is a general framework that generalizes the message pass-
ing paradigm to digraphs by adapting to the directionality
of edges. It involves separate aggregation processes for
incoming and outgoing neighbors of each node as follows:

m
(ℓ)
i,in = Agg

(ℓ)
in

({
h
(ℓ−1)
j : vj ∈ N in

i

})
m

(ℓ)
i,out = Agg

(ℓ)
out

({
h
(ℓ−1)
j : vj ∈ N out

i

})
h
(l)
i = Comb(ℓ)

(
h
(ℓ−1)
i ,m

(ℓ)
i,in,m

(ℓ)
i,out

)
,

(1)

where N in
i and N out

i are respectively incoming and outgoing
neighbors of vi. Agg

(ℓ)
in (·) and Agg

(ℓ)
out(·) are specialized

aggregation functions of N in
i and N out

i at layer ℓ, used to
encode the directional characteristics of the edges connected
to vi.

3. Random Walk Distance and GNNs
Based on the established notations, we then show that mes-
sage passing based GNNs naturally capture the concept
of hitting time during information propagation across the
graph, due to the unidirectional nature of the neighborhood
aggregation. Subsequently, we argue for the significance of
commute time, highlighting it as a more compact measure
of mutual node-wise interactions in random walks.

3.1. Can GNNs Capture Random Walk Distance?

In the context of random walks on a digraph, hitting time
and commute time, collectively referred to as random walk
distances, serve as key metrics for assessing node connec-
tivity and interaction strength. Hitting time h(vi, vj) is the
expected number of steps a random walk takes to reach a
specific target node vj for the first time, starting from a
given source node vi. Commute time c(vi, vj) is the ex-
pected number of steps required for a random walk to start
at vi, reach vj , and come back. A high hitting (commute)
time indicates difficulty in achieving unidirectional (mutual)

2

Commute Graph Neural Networks

visits to each other in a random walk. As illustrated in the
digraph of Figure 1, commute time c(vi, vj) > c(vi, vk),
while the hitting time h(vm, vi) = h(vi, vj) = h(vi, vk).

Motivation Given these definitions, two questions arise:
How crucial is it to retain these measures in graph learn-
ing? Also, are message-passing GNNs capable of preserving
these characteristics? Firstly, both hitting time and commute
time are critical in understanding the structural dynamics of
graphs. Hitting time, analogous to the shortest path, mea-
sures the cost of reaching one node from another, reflecting
the directed influence or connectivity. Commute time, en-
compassing the round-trip journey, offers insights into the
mutual relationships between nodes, which is especially ev-
ident in social networks, as illustrated by celebrity-follower
relationships. Secondly, message-passing GNNs are some-
what effective in capturing hitting time, as they propagate
information across the graph in a manner similar to a random
walk, where quickly reached nodes are preferentially aggre-
gated, and the influence of nodes exponentially diminishes
with increasing distance (Topping et al., 2022). However,
GNNs face challenges in preserving commute time due to
their requirement for comprehending mutual path relations,
which are inherently asymmetric and often involve longer-
range interactions especially in digraphs, which are not
naturally captured in the basic message-passing framework.

Taking the digraph in Figure 1 as an example, a 1-layer
DirGNN defined in Eq. (1) can encode vm, vj and vk into
the representation of vi, while also capturing the direc-
tionality of edges from these neighbors by using distinct
aggregation functions for incoming and outgoing neigh-
bors. It shows that DirGNN can capture the hitting time, as
neighbors with lower hitting times, h(vi, vk), h(vi, vj) and
h(vm, vi), are aggregated preferentially. However, DirGNN
inherently focuses on unidirectional interactions and over-
looks mutual path dependencies. Notably, a 1-layer DirGNN
is insufficient for capturing the asymmetric interactions in-
dicated by the paths from vj and vk returning to the central
node vi (gray areas). One potential approach to address
this limitation is to stack additional message passing lay-
ers to encompass the entire commute path between nodes,
thereby capturing mutual path interactions. Nevertheless,
this strategy is non-trivial because the commute paths vary
considerably across different node pairs, complicating the
determination of an appropriate number of layers. Addi-
tionally, stacking multiple layers to cover these paths can
introduce irrelevant non-local information and lead to over-
smoothing.

Goal We expect to directly encode node-wise commute
time into the node representations to accurately reflect the
true interaction strength between adjacent nodes during
neighbor aggregation, accounting for both forward and back-

ward paths. For instance, even though h(vi, vj) = h(vi, vk),
a shorter commute time c(vi, vk) < c(vi, vj) suggests a
stronger interaction from vk to vi compared to vj to vi.
Consequently, the contribution of neighbor vk to the repre-
sentation of vi should be greater than that of vj .

3.2. Commute Time Computation

Based on the standard Markov chain theory, a useful tool to
study random walk distances is the fundamental matrix (Al-
dous & Fill, 2002). We first establish the following assump-
tions required to support the theorem.

Assumption 3.1. The digraph G is irreducible and aperi-
odic.

These two properties pertain to the Markov chain’s station-
ary probability distribution π (i.e., Perron vector) corre-
sponding to the given graph. Irreducibility ensures that it
is possible to reach any node (state) from any other node,
preventing π from converging to 0. Aperiodicity ensures
that the Markov chain does not get trapped in cycles of a
fixed length, thus guaranteeing the existence of a unique π.
Existence and uniqueness of π facilitate deterministic anal-
ysis and computation. For a more intuitive understanding of
the assumptions, we give the sufficient conditions of digraph
under the irreducibility and aperiodicity assumptions.

Proposition 3.2. A strongly connected digraph, in which a
directed path exists between every pair of vertices, is irre-
ducible. A digraph with self-loops in each node is aperiodic.

Given the above assumption, the fundamental matrix Z is
defined as the sum of an infinite matrix series:

Z =

∞∑
t=0

(
Pt − JΠ

)
=

∞∑
t=0

(
Pt − eπ⊤) , (2)

where e is the all-one column vector, then we have J = e·e⊤
is the all-one matrix, and Π = diag(π) is the diagonal
matrix of π.

Theorem 3.3. (Li & Zhang, 2012) Given Assumption 3.1,
the fundamental matrix Z defined in Eq. (2) converges to:

Z = (I−P+ JΠ)−1 − JΠ, (3)

where I is an identity matrix.

The hitting time and commute time on G can then be ex-
pressed as Z (Aldous & Fill, 2002) as follows:

h(vi, vj) =
Zjj − Zij

πj
, c(vi, vj) = h(vi, vj)+h(vj , vi).

(4)

However, directly calculating the complete fundamental
matrix Z and the commute times for all node pairs is com-
putationally expensive and yields a dense matrix. Moreover,

3

Commute Graph Neural Networks

integrating the random walk distances computation, defined
in Eq. (3) and Eq. (4), into the message passing framework
is non-trivial, which concerns the scalability of the model.

4. Commute Graph Neural Networks
In this section, we present CGNN to encode the commute
time information into message passing. We first establish
the relationship between random walk distances and the
digraph Laplacian.

4.1. Digraph Laplacian (DiLap)

Contrary to the traditional graph Laplacian, typically defined
as a symmetric positive semi-definite matrix derived from
the symmetric adjacency matrix, our proposed DiLap is
built upon the transition matrix to preserve the directed struc-
ture. Specifically, the classical graph Laplacian L = D−A
is interpreted as the divergence of the gradient of a signal on
an undirected graph (Shuman et al., 2013; Hamilton, 2020):
given a graph signal s ∈ RN , (Ls)i =

∑
j∈Ni

Aij(si−sj).
Intuitively, graph Laplacian corresponds to the difference
operator on the signal s, and acts as a node-wise measure of
local smoothness. In line with this conceptual foundation,
we generalize the graph Laplacian to digraphs by defining
the divergence of the gradient on digraphs with DiLap T:

Ts = GDs, T = Bdiag
(
{Pij}M(vi,vj)∈E

)
B⊤ (5)

where G is the gradient operator on graph signals, and D
is the divergence operator. B ∈ RN×M is an incidence
matrix, where the dimensions represent nodes and edges,
respectively. For edge indices {e1, · · · , eM} ∈ E, if ek =
(vi, vj) ∈ E, then the k-th column of B corresponding to ek

has +1 in row i and −1 in row j. diag
(
{Pij}M(vi,vj)∈E

)
is a diagonal matrix whose entries are the transition prob-
abilities corresponding to the edges in the graph. The de-
tailed derivation of T is included in Appendix A.1, which
illustrates how T functions as a measure of smoothness in
directed graphs, taking into account their directional prop-
erties. Although the structure of DiLap depends on the
indices of edges and nodes, such as the ordering of edge
transition probabilities in diag

(
{Pij}M(vi,vj)∈E

)
, the fol-

lowing property holds (for proof, see Appendix A.2).

Proposition 4.1. DiLapT is permutation equivariant w.r.t.
node indices and permutation invariant w.r.t. edge indices.

Given the Laplacian operator’s role in assessing signal
smoothness throughout the graph, it is essential to allocate
greater weights to nodes of higher structural importance.
This prioritization ensures that the smoothness at nodes cen-
tral to the graph’s structure more significantly influences the
overall smoothness measurement. Thus, we further define

the Weighted DiLap T :

(T s)i = (ΠGDs)i=πi

 ∑
vj∈N in

i

(Gs)(vj,vi)−
∑

vj∈N out
i

(Gs)(vi,vj)

T = ΠT

(6)
Here we utilize the i-th element of the Perron vector π to
quantify the structural importance of vi, reflecting its eigen-
vector centrality. This is based on the principle that a node’s
reachability is directly proportional to its corresponding
value in the Perron vector (Xu et al., 2018). Therefore, π
effectively indicates the centrality and influence over the
long term in the graph. Perron-Frobenius Theorem (Horn
& Johnson, 2012) establishes that π satisfies

∑
i πi = 1, is

strictly positive, and converges to the left eigenvector of the
dominant eigenvalue of P.

4.2. Similarity-based Graph Rewiring

Both the fundamental matrix defined in Eq. (3) and
Weighted DiLap requires Assumption 3.1 to ensure the
existence and uniqueness of the Perron vector π, conditions
that are not universally met in general graphs. To fulfill
the irreducibility and aperiodicity assumptions, Tong et al.
(2020a) introduce a teleporting probability uniformly dis-
tributed across all nodes. This method, inspired by PageR-
ank (Page et al., 1999), amends the transition matrix to
Ppr = γP + (1 − γ) ee

⊤

N , where γ ∈ (0, 1). Ppr allows
for the possibility that a random walker may choose a non-
neighbor node for the next step with a probability of 1−γ

N .
This adjustment ensures that Ppr is irreducible and aperi-
odic, so it has a unique π. However, this approach leads
to a complete graph represented by a dense matrix Ppr,
posing significant challenges for subsequent computational
processes.

Rather than employing Ppr as the transition matrix, we in-
troduce a graph rewiring method based on feature similarity
to make a given graph irreducible, while maintaining the
sparsity. As outlined in Proposition 3.2, to transform the
digraph into a strongly connected structure, it is essential
that each node possesses a directed path to every other node.
To this end, we initially construct a simple and irreducible
graph G′ with all N nodes, then add all edges from G′ to
the original digraph G, thereby ensuring G’s irreducibility.
The construction of G′ begins with the calculation of the
mean of node features as the anchor vector a. Then we
determine the similarity between each node and the anchor,
sort the similarity values, and return the sorted node indices,
denoted as Ω ∈ RN :

a =

∑
i Xi

N
, ωi = cos(a,Xi), S = arg sort({ωi}Ni=1)

(7)
where cos(a,Xi) is the cosine similarity between node fea-

4

Commute Graph Neural Networks

Add edges to

Figure 2: The sorted node indices in Ω are connected one
by one with undirected edges to construct G′, then adding
all edges from G′ to G to generate G̃.

tures of vi and a, and argsort(·) yields the indices of nodes
that sort similarity values {ωi}Ni=1. We then connect the
nodes one by one with undirected (bidirectional) edges fol-
lowing the order in S to construct G′, as shown in Figure 2.
Given that G′ is strongly connected, adding all its edges
into G results in a strongly connected digraph G̃, which is
irreducible. To achieve aperiodicity, self-loops are further
added to G̃. This rewiring approach satisfies Assumption 3.1
and maintains graph sparsity. Additionally, adding edges
between nodes with similar features only minimally alters
the overall semantics of the original graph. Based on G̃ and
its corresponding P̃, B̃, and Π̃, we have the deterministic
Weighted DiLap T̃ .

Note that graph rewiring is a common strategy in graph
analysis research. For instance, (Attali et al., 2024) rewires
graphs to eliminate negatively curved edges and thus alle-
viate over-squashing, while (Rubio-Madrigal et al., 2025)
modifies the graph to enlarge the spectral gap and, in turn,
adjust community structure for the same purpose. In con-
trast, we rewire the graph to ensure irreducibility and aperi-
odicity, which guarantees that commute times are uniquely
and deterministically defined. Hence, both the motivation
and the objective of our approach differ fundamentally from
previous work.

4.3. From DiLap to Commute Time

Given the Weighted DiLap T̃ , we can unify the commute
time information into the message passing by building the
connection between T̃ and the fundamental matrix Z:

Lemma 4.2. Given a rewired graph G̃,
the Weighted DiLap is defined as T̃ =

Π̃B̃diag

({
P̃ij

}M

(vi,vj)∈E

)
B̃⊤. Then the fundamental

matrix Z of G̃ can be solved by:

Z = T̃ †Π̃ = T̃†, (8)

where the superscript † means Moore–Penrose pseudoin-
verse of the matrix.

Leveraging Lemma 4.2 and using Eq. (4), we can further
compute the hitting times and commute times in terms of T̃
with the following theorem.

Theorem 4.3. Given G̃, the hitting time and commute time
from vi to vj on G̃ can be computed as follows:

h(vi, vj) =
T̃†

jj

πj
−

T̃†
ij√

πiπj
,

c(vi, vj) =
T̃†

jj

πj
+

T̃†
ii

πi
−

T̃†
ij√

πiπj
−

T̃†
ji√

πiπj
.

(9)

Then we can derive the matrix forms of the hitting time H
and commute time C as per Eq. (9):

H = (e⊗ π−1)(T̃† ⊙ I)− T̃† ⊙ (π− 1
2 ⊗ π− 1

2)

C = H+H⊤
(10)

where ⊙ denotes Hadamard product, and ⊗ is outer product.
Hij and Cij correspond to the hitting and commute time
from vi to vj respectively. The computation of commute
times via DiLap, in contrast to the method delineated in
Theorem 3.3, is primarily motivated by efficiency concerns.
Specifically, Eq. (3) necessitates the inversion of a dense
matrix with complexity O(N3), whereas our DiLap-based
method hinges on computing the pseudoinverse of a sparse
matrix T̃. The pseudoinverse of T̃ can be efficiently deter-
mined using SVD. Given the sparse nature of T̃, we can
employ well-established techniques such as the randomized
truncated SVD algorithm (Halko et al., 2011; Cai et al.,
2023), which takes advantage of sparsity, to reduce the time
complexity to O(q|E|), where |E| denotes the number of
edges reflecting the sparsity (See Appendix A.4). Next, we
present CGNN based on C.

Connection with Over-squashing Commute time has
been used to analyze the cause of over-squashing (Di Gio-
vanni et al., 2023; Arnaiz-Rodrı́guez et al., 2022), and ex-
tending the analytical framework to digraphs is a promising
direction. While our work primarily focuses on using com-
mute time to encode the directional strength of relationships
between nodes, rather than studying the over-squashing
problem, we still see two ways that our method might en-
hance over-squashing analysis: 1) Direction-Aware Jaco-
bian: Di Giovanni et al. (2023) model over-squashing with
a symmetric Jacobian suitable for undirected graphs. In
contrast, our model captures the directionality of edges, al-
lowing us to construct an asymmetric Jacobian for more
targeted analysis in digraphs. 2) Quantifying “Long Com-
mutes”: while previous over-squashing work identifies that
over-squashing tends to occur between nodes that are far
apart, it does not quantify exactly how large a commute
time triggers over-squashing. Our method, anchored by
the DiLap-based commute time computation, can explicitly
quantify these distances.

5

Commute Graph Neural Networks

4.4. CGNN

C ∈ RN×N quantifies the strength of mutual relations be-
tween node pairs in the random walk context. Notably,
smaller values in C correspond to stronger mutual reachabil-
ity, indicating stronger relations between node pairs. Thus, C
is a positive symmetric matrix, and the commute-time-based
node proximity matrix can be expressed as C̃ = exp(−C).
Since the directed adjacency matrix A represents the outgo-
ing edges of each node, A⊤ therefore accounts for all incom-
ing edges. Then we have C̃out = A⊙ C̃ and C̃ in = A⊤ ⊙ C̃
represent the proximity between adjacent nodes under out-
going and incoming edges, respectively. We further perform
row-wise max-normalization on C̃out and C̃ in to rescale the
maximum value in each row to 1. Given the original graph
G as input, we define the ℓ-th layer of CGNN as:

m
(ℓ)
i,in = Agg

(ℓ)
in

({
C̃ in
ij · h

(ℓ−1)
j : vj ∈ N in

i

})
m

(ℓ)
i,out = Agg

(ℓ)
out

({
C̃out
ij · h(ℓ−1)

j : vj ∈ N out
i

})
h
(l)
i = Comb(ℓ)

(
h
(ℓ−1)
i ,m

(ℓ)
i,in,m

(ℓ)
i,out

)
,

(11)

where Agg
(ℓ)
in (·) and Agg

(ℓ)
out(·) are mean aggregation func-

tions with different feature transformation weights, and
Comb(ℓ)(·) is a mean operator. Within each layer, the in-
fluence of vj on the central node vi is modulated by the
commute-time-based proximity C̃ based on the edge direc-
tionality. The pseudocode of CGNN is shown in Algorithm 1.

Complexity Analysis The randomized truncated SVD to
compute T̃† is O(q|E|) where q is the required rank, and
the message passing iteration has the same time complexity
as DirGNN with O(L|E|d2). Therefore, the overall time
complexity of CGNN is O((Ld2 + q)|E|). In practice, q
is typically set to 5, rendering the time complexity effec-
tively linear with respect to the number of edges |E|. In
GNN domain, models with a complexity less than O(N2)
are generally considered feasible by researchers (Wu et al.,
2020). Given that real-world networks are often extremely
sparse, i.e., |E| ≪ N2, CGNN demonstrates its feasibility
as a model within the GNN family.

5. Experiments
We conduct extensive experiments to evaluate the effec-
tiveness of CGNN on eight digraph datasets. Experimental
details and data statistics are provided in Appendix C.1
and Appendix C.2.

5.1. Overall Results and Analysis

Table 1 reports the node classification results across eight
digraph datasets. Our method CGNN achieves new state-of-
the-art results on 6 out of 8 datasets, and comparable results

Chameleon Squirrel
Dataset

0

100

200

300

400

500

Di
st
an

ce

‖− (A+A⊤)‖22
‖− (̃in+ ̃out)‖22

(a) Heterophilic graph.

CoraML Citeseer
Dataset

0

20

40

60

80

100

Di
st
an

ce

‖− (A+A⊤)‖22
‖− (̃in+ ̃out)‖22

(b) Homophilic graph.

Figure 3: Distance between M and A, and between M and
C̃.

on the remaining ones, validating the superiority of CGNN.
We provide more observations as follows. Firstly, while non-
local GNNs have the potential to cover the commute paths
between adjacent nodes by stacking multiple layers, they do
not consistently outperform general, shallow GNN models.
It suggests that coarsely aggregating all nodes in commute
paths is ineffective. The reason is that deeper models may
aggregate excessive irrelevant information for the central
node. Our goal is to encode mutual relationships between
adjacent nodes by considering their commute times. Aggre-
gating all nodes along the entire path introduces excessive
information about other nodes unrelated to the direct rela-
tionship between the target nodes. Secondly, GNNs tailored
for digraphs do not seem to bring substantial gains. Our
results show that with careful hyper-parameter tuning, gen-
eral GNNs can achieve results comparable to, or even better
than, some of GNNs tailored for digraphs (DiGCN, MagNet
and DiGCL), as evidenced in the Squirrel, Chameleon, and
AM-Photo datasets. Thirdly, CGNN achieves state-of-the-art
results on both homophilic and heterophilic digraph bench-
marks. Notably, DirGNN also performs comparably on het-
erophilic graphs (e.g., Squirrel and Chameleon), confirming
the findings of Rossi et al. (2023) that distinguishing edge
directionality during message passing enables the central
node to adaptively balance information flows from both het-
erophilic and homophilic neighbors, effectively mitigating
the impact of heterophily. Moreover, CGNN, an enhanced
version of DirGNN, further improves performance on these
graphs by effectively incorporating commute times to re-
fine the strength of relationships between nodes, enhancing
model robustness under heterophily.

To illustrate this, we further examine the relations between
commute-time-based proximity and label similarity along
edges. As shown in Eq. (11), we use commute-time-based
proximity C̃ to weigh the neighbors during neighbor aggre-
gation. Then we define a label similarity matrix M where
Mij = 1 if vj ∈ Ni and yi = yj ; otherwise Mij = 0.
Essentially, M extracts the edges connecting nodes with the
same classes from the adjacency matrix A. Thus a higher
value of ∥M− (A+A⊤)∥22 indicates a more pronounced

6

Commute Graph Neural Networks

Table 1: Node classification results. We highlight/underline the best/second-best method. For general GNN and non-local
GNN baselines, we conduct experiments on both symmetrized versions and their directed counterparts, reporting better
results from these two settings. OOM indicates out-of-memory. In Table 9 and Table 10 of Appendix D.1, we present
detailed experimental results for both directed and undirected settings of all available baselines.

Method Squirrel Chameleon Citeseer CoraML AM-Photo Snap-Patents Roman-Empire Arxiv-Year

GCN 52.43±2.01 67.96±1.82 66.03±1.88 70.92±0.39 88.52±0.47 51.02±0.06 73.69±0.74 46.02±0.26

GAT 40.72±1.55 60.69±1.95 65.58±1.39 72.22±0.57 88.36±1.25 OOM 49.18±1.35 45.30±0.23

GraphSAGE 41.61±0.74 62.01±1.06 66.81±1.38 74.16±1.55 89.71±0.57 67.45±0.53 86.37±0.80 55.43±0.75

APPNP 51.91±0.56 45.37±1.62 66.90±1.82 70.31±0.67 87.43±0.98 51.23±0.54 72.96±0.38 50.31±0.42

MixHop 43.80±1.48 60.50±2.53 56.09±2.08 65.89±1.50 87.17±1.34 41.22±0.19 50.76±0.14 45.30±0.26

GPRGNN 50.56±1.51 66.31±2.05 61.74±1.87 73.31±1.37 90.23±0.34 40.19±0.03 64.85±0.27 45.07±0.21

GCNII 38.47±1.58 63.86±3.04 58.32±1.93 64.84±0.71 83.40±0.79 48.09±0.09 74.27±0.13 57.36±0.17

DGCN 37.16±1.72 50.77±3.31 66.37±1.93 75.02±0.50 87.74±1.02 OOM 51.92±0.43 OOM
DiGCN 33.44±2.07 50.37±4.31 64.99±1.72 77.03±0.70 88.66±0.51 OOM 52.71±0.32 48.37±0.19

MagNet 39.01±1.93 58.22±2.87 65.04±0.47 76.32±0.10 86.80±0.65 OOM 88.07±0.27 60.29±0.27

DUPLEX 57.60±0.98 61.25±0.94 67.60±0.72 72.26±0.71 87.80±0.82 66.54±0.11 79.02±0.08 64.37±0.27

DiGCL 35.82±1.73 56.45±2.77 67.42±0.14 77.53±0.14 89.41±0.11 70.65±0.07 87.94±0.10 63.10±0.06

DirGNN 75.19±1.26 79.11±2.28 66.57±0.74 75.33±0.32 88.09±0.46 73.95±0.05 91.23±0.32 64.08±0.26

CGNN 77.83±1.52 79.62±2.33 71.59±0.16 77.08±0.54 90.42±0.10 72.89±0.24 92.87±0.45 66.16±0.32

negative impact of heterophily on the model’s performance.
On the other hand, we compute ∥M−(C̃ in+ C̃out)∥22 to eval-
uate the efficacy of C̃ in filtering heterophilic information.
The closer (C̃ in + C̃out) is to M, the more effectively it aids
the model in discarding irrelevant heterophilic information.
Figure 3 visually demonstrates these relationships. We ob-
serve that in heterophilic datasets, the commute-time-based
proximity matrix (C̃ in + C̃out), aligns more closely with the
label similarity matrix M than (A+A⊤). It indicates that
C̃ effectively filters out irrelevant information during mes-
sage passing by appropriately weighting neighbors, thereby
explaining CGNN’s superior performance on heterophilic
graphs as well as its strong results on homophilic graphs.

Application scope analysis. Can commute times always
enhance message passing on directed graphs? To answer
this, we analyze the scope of use for CGNN based on Table 1.
For example, on the Snap-Patents and CoraML dataset, we
observed that adding commute time-based weights during
message passing did not significantly enhance performance.
Now we can analyze the reason from the perspective of
dataset. CoraML is a directed citation network where nodes
predominantly link to other nodes within the same research
area. However, in such networks, reciprocal citations be-
tween two papers are impossible due to their chronological
sequence. Consequently, mutual path dependencies do
not exist, and thus, incorporating commute times to adjust
neighbor weights might (slightly) hurt performance. A sim-
ilar situation exists with the Snap-Patents dataset, where
each directed edge represents a citation from one patent to
another, again indicating the absence of mutual path depen-

80 100 120 140 160 180 200
Running Time (s)

40

50

60

70

Ac
c

APPNP
GPRGNN
GCNII
DGCN
DiGCN
DiGCL
MagNet
CGNN

(a) Squirrel

100 120 140 160 180 200
Running Time (s)

84

86

88

90

Ac
c

APPNP
GPRGNN
GCNII
DGCN
DiGCN
DiGCL
MagNet
CGNN

(b) AM-Photo

Figure 4: Accuracy vs. running time.

dencies.

In conclusion, in networks like citation networks where mu-
tual relationships inherently do not exist, applying commute
times is unnecessary. Our model is particularly effective
in networks like webpage networks and social networks –
examples being Squirrel and AM-Photo – where mutual
relationships are prevalent. For instance, in a social net-
work, an ordinary user may follow a celebrity, creating a
short path to the celebrity. However, the reverse path from
the celebrity back to the user might be considerably longer.
For such cases, considering mutual relationships based on
commute times can provide a more accurate description of
node relationships.

5.2. Efficiency Comparsion

Figure 4 compares the accuracy of different models along
with running times. Despite the additional computational
load of calculating commute-time-based proximity, the re-

7

Commute Graph Neural Networks

sults show that CGNN provides the best trade-off between
effectiveness and efficiency. In particular, on the Squirrel
dataset, CGNN has the third-fastest calculation speed while
yielding accuracy nearly double that of all other methods.
On AM-Photo, CGNN achieves the highest accuracy while
maintaining moderate efficiency.

5.3. Component Analysis

Comparison between graph rewiring and PPR. In Sec-
tion 4.2, we construct a rewired graph G̃ based on fea-
ture similarity to guarantee the irreducibility and aperiodic-
ity. This approach introduces at most two additional edges
per node, specifically targeting those with the highest fea-
ture similarity, while minimally altering the original graph
structure to preserve semantic information. To investigate
changes in commute times before and after rewiring, for
the original graph, we use its largest connected component,
removing absorbing nodes (i.e., nodes without outgoing
edges) to ensure that we can compute meaningful and de-
terministic commute times. We denote the average nor-
malized commute time for the original graph as corig; For
the rewired graph, we directly compute the commute time
and denote this average normalized value as crew. We then
use δ =

∥corig−crew∥2

∥corig∥ to quantify the changes, which can
be intepretated as the proportion of commute information
changed in the original graph. As shown in Table 2, the
graph rewiring method can effectively preserve the original
commute times of the graph.

Table 2: Changes in commute times before and after
rewiring.

CoraML CiteSeer Chameleon Roman-Empire

δ 0.03280 0.028746 0.00157 0.06242

In contrast, the classic PageRank transition matrix, defined
as Ppr = γP + (1 − γ) ee

⊤

N , achieves a similar objective
but results in a completely connected graph Gpr. However,
this approach tends to overlook the sparse structure of the
original graph, which may alter the semantic information in
the graph. Additionally, computing commute times using
a dense transition matrix incurs a high computational cost.
To validate the effectiveness of the rewiring approach over
the PPR method, we conduct an experiment where G̃ is
replaced with Gpr in the computation of commute-time-
based proximity. We denote this variant as ‘CGNNppr’ and
the results of accuracy and efficiency are reported in Table 3.
The findings reveal that the PPR approach is suboptimal in
terms of both accuracy and efficiency, thereby underscoring
the effectiveness of our rewiring-based approach.

Directed vs. Undirected. To validate the critical role of
directed structures in our model, we transform all directed

Table 3: Accuracy and running time (s) of CGNN and
CGNNppr.

Squirrel Chameleon Citeseer CoraML AM-Photo

Method Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time

CGNN 77.83 99.25 79.62 115.77 71.59 89.25 77.08 125.20 90.42 124.17
CGNNppr 68.37 257.84 71.69 253.05 68.59 137.82 76.23 192.09 88.52 203.04

edges into undirected ones by adding their reverse counter-
parts. This process results in a symmetric adjacency matrix,
denoted as Asym. Subsequently, the commute time is calcu-
lated based on the transition matrix derived from Asym. We
refer this variant as ‘CGNNsym’. Table 4 shows the accuracy
of CGNN and CGNNsym on three datasets. We find that edge
direction can significantly influence the prediction accuracy
for our model.

Table 4: Impact of directed structure.

Squirrel CoraML AM-Photo

CGNN 77.83 77.08 90.42
CGNNsym 72.37 71.29 88.53

Impact of the SVD rank q. To efficiently compute the
pseudoinverse of T̃ and obtain the fundamental matrix, we
employ a randomized truncated SVD algorithm with rank
q, detailed in Appendix A.4. We perform an ablation study
to analyze the influence of the SVD rank q across three
datasets of varying sizes in Table 5. The results indicate that
increasing q beyond a certain point does not yield continu-
ous performance gains and incurs additional computational
cost. Our findings suggest that setting q = 5 or 7 is optimal,
as a small rank is sufficient for nodes to capture neighbor
relationship strengths.

Table 5: Impact of q.

AM-Photo Snap-Patent Arxiv-Year

3 88.36 71.53 64.20
5 90.42 72.89 66.16
7 90.19 73.01 66.21

10 90.37 72.97 66.45

Impact of rewiring on graph structure To explore how
the rewiring procedure only minimally alters the overall
semantics of the original graph, we define edge density as
δ = M

Mmax
, where Mmax is the maximum possible number

of edges (N2 for both G and G̃) in the graph and M is
the actual number of edges. We denote the edge density of
the original graph G as δ and that of the rewired graph G̃

as δ̃. Thus, the change of graph density after rewiring can
be represented as ∆ = δ̃−δ

δ ∈ (0, 1), the smaller ∆ indi-
cates that the less effect of our methods on graph density.
In the Table 6 we calculate ∆ on AM-Photo, Snap-Patent

8

Commute Graph Neural Networks

and Arxiv-Year datasets. The results reveal that on the AM-
Photo dataset, graph rewiring increases density by 10.3%,
while on the Snap-Patent and Arxiv-Year datasets, the in-
creases are only 6.7% and 3.2% respectively. These findings
demonstrate that our rewiring method generally has a mod-
est effect on graph density.

Table 6: Changes in graph structure before and after
rewiring.

AM-Photo Snap-Patent Arxiv-Year

∆ 0.103 0.067 0.032

6. Related Work
6.1. Digraph Laplacian

While the Laplacian for undirected graphs has been exten-
sively studied, the area of Laplace operator digraphs remains
underexplored. Chung (2005) pioneers this area by defin-
ing a normalized Laplace operator specifically for strongly
connected directed graphs with nonnegative weights. This
operator is expressed as I− π1/2Pπ−1/2+π−1/2P∗π1/2

2 . Key
to this formulation is the use of the transition probability
operator P and the Perron vector π, with the operator being
self-adjoint. Building on the undirected graph Laplacian,
Singh et al. (2016) adapt this concept to accommodate the
directed structure, focusing particularly on the in-degree ma-
trix. They define the directed graph Laplacian as Din −A,
where Din = diag

({
din
i

}N

i=1

)
represents the in-degree ma-

trix. Li & Zhang (2012) uses stationary probabilities of
the Markov chain governing random walks on digraphs to
define the Laplacian as π

1
2 (I−P)π− 1

2 , which underscores
the importance of random walks and their stationary dis-
tributions in understanding digraph dynamics. Hermitian
Laplacian (Furutani et al., 2020) consider the edge direction-
ality and node connectivity separately, and encode the edge
direction into the argument in the complex plane. Diverging
from existing Laplacians, our proposed DiLap is grounded
in graph signal processing principles, conceptualized as the
divergence of a signal’s gradient on the digraph. It encom-
passes the degree matrix D to preserve local connectivity,
the transition matrix P to maintain the graph’s directed
structure, and the diagonalized Perron vector Π, captur-
ing critical global graph attributes such as node structural
importance, global connectivity, and expected reachabil-
ity (Chung, 1997).

6.2. Digraph Neural Networks

To effectively capture the directed structure with GNNs,
spectral-based methods (Zhang et al., 2021; Tong et al.,
2020a;b) have been proposed to preserve the underlying

spectral properties of the digraph by performing spectral
analysis based on the digraph Laplacian proposed by Chung
(2005). Koke & Cremers (2024) introduce holomorphic
filters as spectral filters for digraphs, and investigate their
optimal filter-bank. MagNet (Zhang et al., 2021) and its
extensions (Lin & Gao, 2023; Fiorini et al., 2023) utilize the
magnetic Laplacian to derive a complex-valued Hermitian
matrix to encode the asymmetric nature of digraphs. Spatial
GNNs also offer a natural approach to capturing directed
structures. GraphSAGE (Hamilton et al., 2017) allows for
controlling the direction of information flow by considering
in-neighbors or out-neighbors separately. DirGNN (Rossi
et al., 2023) further extends GraphSAGE by segregating
neighbor aggregation according to edge directions, offer-
ing a more refined method to handle the directed nature of
graphs. DUPLEX (Ke et al., 2024) utilizes Hermitian adja-
cency matrix decomposition for neighbor aggregation and
incorporates a dual GAT encoder for modeling directional
neighbors. Transformer-based methods capture directed
structure by specific positional encoding modules, such as
directional random walk encoding (Geisler et al., 2023) and
partial order encoding (Luo et al., 2024).

7. Conclusion
Identifying and encoding asymmetric mutual path dependen-
cies in digraphs is essential for accurately representing real
relationships between entities. In this work, we utilize the
concept of commute time to assess the strength of asymmet-
ric relationships in digraphs and introduce CGNN to enhance
node representations. To achieve this, we propose DiLap,
a novel Laplacian formulation derived from the divergence
of the gradient of signals on digraphs, along with an ef-
ficient computational method for deterministic commute
times. By integrating commute times into GNN message
passing, CGNN effectively harnesses path asymmetry in di-
graphs, significantly improving learning performance, as
validated through extensive experiments.

Limitations and Future work CGNN’s primary limitation
is its memory overhead. The commute time matrix C is
dense by definition, incurring quadratic memory complexity
relative to the number of nodes. A promising direction for
future study is to compute and maintain commute times
locally rather than globally. By restricting computations
to each node’s immediate neighborhood within a limited
number of hops, we may substantially reduce the memory
footprint while still capturing the essential structural infor-
mation needed for effective message passing.

Acknowledgements
The research was supported in part by the Shenzhen Basic
Research Fund (Grant No. JCYJ20241202130025030). W.

9

Commute Graph Neural Networks

Zhuo and H. Yu were supported by the Ministry of Educa-
tion, Singapore, under its Academic Research Fund Tier 1
(RG101/24); the National Research Foundation, Singapore
and DSO National Laboratories under the AI Singapore
Programme (AISG Award No. AISG2-RP-2020-019). X.
Li was supported by Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. RS-2024-
00445087).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In In-
ternational Conference on Machine Learning, pp. 21–29.
PMLR, 2019.

Aldous, D. and Fill, J. Reversible markov chains and random
walks on graphs, 2002.

Arnaiz-Rodrı́guez, A., Begga, A., Escolano, F., and Oliver,
N. M. DiffWire: Inductive Graph Rewiring via the Lovász
Bound. In Proceedings of the First Learning on Graphs
Conference, Proceedings of Machine Learning Research.
PMLR, 2022.

Attali, H., Buscaldi, D., and Pernelle, N. Delaunay graph:
Addressing over-squashing and over-smoothing using de-
launay triangulation. In Forty-first International Confer-
ence on Machine Learning, 2024.

Bojchevski, A. and Günnemann, S. Deep gaussian em-
bedding of attributed graphs: Unsupervised inductive
learning via ranking. arXiv preprint arXiv:1707.03815,
2017.

Cai, X., Huang, C., Xia, L., and Ren, X. Lightgcl: Simple
yet effective graph contrastive learning for recommenda-
tion. arXiv preprint arXiv:2302.08191, 2023.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In International
conference on machine learning, pp. 1725–1735. PMLR,
2020.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
universal generalized pagerank graph neural network. In
International Conference on Learning Representations,

2021. URL https://openreview.net/forum?
id=n6jl7fLxrP.

Chung, F. Laplacians and the cheeger inequality for directed
graphs. Annals of Combinatorics, 9(1):1–19, 2005.

Chung, F. R. Spectral graph theory, volume 92. American
Mathematical Soc., 1997.

Cross, R., Borgatti, S. P., and Parker, A. Beyond answers:
Dimensions of the advice network. Social networks, 23
(3):215–235, 2001.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio, P.,
and Bronstein, M. M. On over-squashing in message
passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine
Learning, pp. 7865–7885. PMLR, 2023.

Fiorini, S., Coniglio, S., Ciavotta, M., and Messina, E. Sig-
manet: One laplacian to rule them all. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 7568–
7576, 2023.

Furutani, S., Shibahara, T., Akiyama, M., Hato, K., and
Aida, M. Graph signal processing for directed graphs
based on the hermitian laplacian. In Machine Learn-
ing and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2019, Würzburg, Germany,
September 16–20, 2019, Proceedings, Part I, pp. 447–
463. Springer, 2020.

Geisler, S., Li, Y., Mankowitz, D. J., Cemgil, A. T.,
Günnemann, S., and Paduraru, C. Transformers meet
directed graphs. In International Conference on Machine
Learning, pp. 11144–11172. PMLR, 2023.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011.

Hamilton, W. L. Graph representation learning. Morgan &
Claypool Publishers, 2020.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035, 2017.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Ke, Z., Yu, H., Li, J., and Zhang, H. DUPLEX: Dual GAT
for complex embedding of directed graphs. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=M3uv4qDKOL.

10

https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=M3uv4qDKOL
https://openreview.net/forum?id=M3uv4qDKOL

Commute Graph Neural Networks

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personal-
ized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Koke, C. and Cremers, D. Holonets: Spectral convo-
lutions do extend to directed graphs. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=EhmEwfavOW.

Li, Y. and Zhang, Z.-L. Digraph laplacian and the degree of
asymmetry. Internet Mathematics, 8(4):381–401, 2012.

Lin, L. and Gao, J. A magnetic framelet-based convolutional
neural network for directed graphs. In ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Luo, Y., Thost, V., and Shi, L. Transformers over directed
acyclic graphs. Advances in Neural Information Process-
ing Systems, 36, 2024.

Page, L., Brin, S., Motwani, R., and Winograd, T. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
International Conference on Learning Representations,
2019.

Qiu, R., Yin, H., Huang, Z., and Chen, T. Gag: Global
attributed graph neural network for streaming session-
based recommendation. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 669–678, 2020.

Rossi, E., Charpentier, B., Giovanni, F. D., Frasca, F.,
Günnemann, S., and Bronstein, M. M. Edge directionality
improves learning on heterophilic graphs. In The Second
Learning on Graphs Conference, 2023. URL https:
//openreview.net/forum?id=T4LRbAMWFn.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale at-
tributed node embedding. Journal of Complex Networks,
9(2):cnab014, 2021.

Rubio-Madrigal, C., Jamadandi, A., and Burkholz, R. GNNs
getting comfy: Community and feature similarity guided
rewiring. In The Thirteenth International Conference on
Learning Representations, 2025.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and
Vandergheynst, P. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. IEEE signal
processing magazine, 30(3):83–98, 2013.

Singh, R., Chakraborty, A., and Manoj, B. Graph fourier
transform based on directed laplacian. In 2016 Interna-
tional Conference on Signal Processing and Communica-
tions (SPCOM), pp. 1–5. IEEE, 2016.

Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D., and Lim,
A. Digraph inception convolutional networks. Advances
in neural information processing systems, 33, 2020a.

Tong, Z., Liang, Y., Sun, C., Rosenblum, D. S., and Lim,
A. Directed graph convolutional network. arXiv preprint
arXiv:2004.13970, 2020b.

Tong, Z., Liang, Y., Ding, H., Dai, Y., Li, X., and Wang, C.
Directed graph contrastive learning. Advances in neural
information processing systems, 34:19580–19593, 2021.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph Attention Networks.
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ. accepted as poster.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In International confer-
ence on machine learning, pp. 5453–5462. PMLR, 2018.

11

https://openreview.net/forum?id=EhmEwfavOW
https://openreview.net/forum?id=EhmEwfavOW
https://openreview.net/forum?id=T4LRbAMWFn
https://openreview.net/forum?id=T4LRbAMWFn
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

Commute Graph Neural Networks

Zhang, X., He, Y., Brugnone, N., Perlmutter, M., and Hirn,
M. Magnet: A neural network for directed graphs. Ad-
vances in neural information processing systems, 34:
27003–27015, 2021.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33, 2020.

12

Commute Graph Neural Networks

A. Proofs and Derivations
A.1. Derivation of DiLap T

The gradient operator G maps a signal defined on the nodes of the graph to a signal on the edges. For a directed graph G and
a signal s ∈ RN on the nodes, the gradient Gs is defined on the edges as:

(Gs)(vi,vj) = Pij(si − sj) (12)

for each directed edge (vi, vj) ∈ E. This captures the difference in the signal between the source node vi and the target
node vj .

The divergence operator D maps a signal defined on the edges back to a signal on the nodes. For a signal Gs ∈ RM on the
edges, the divergence at node vi is:

(D(Gs))i =
∑

vj∈N in
i

(Gs)(vj ,vi) −
∑

vj∈N out
i

(Gs)(vi,vj) (13)

This computes the net “incoming” minus “outgoing” signal flow at each node. The digraph Laplacian DiLap T is then
defined as the composition of the divergence and gradient operators on the original signal s:

Ts = DGs (14)

Eq. (12) and Eq. (13) demonstrate that the composed operator forming DiLap effectively measures how the signal diverges
from each node considering the graph’s directionality. Therefore, analogous to the traditional Laplacian in undirected graphs,
DiLap acts as a measure of smoothness specifically tailored for directed graphs.

To express T in matrix form, we initially define the incidence matrix B ∈ RN×M , which encapsulates both the connectivity
and the directionality of the edges within the digraph:

Bik =

+1, ek = (vi, vj)

−1, ek = (vj , vi)

0, otherwise
, (15)

where k ∈ {1, · · · ,M} represents fixed edge indices, and each undirected edge is treated as comprising two
unidirectional edges. Then We construct a diagonal matrix representing the edge transition probabilities, denoted as
diag

(
{Pij}M(vi,vj)∈E

)
∈ RM×M , where the principal diagonal elements are indexed according to the edge indices. Based

on the above definitions, the gradient operator G can be represented as G = diag
(
{Pij}M(vi,vj)∈E

)
B⊤, and the divergence

operator as D = B. Therefore, the DiLap becomes:

T = Bdiag
(
{Pij}M(vi,vj)∈E

)
B⊤ (16)

A.2. Proof of Proposition 4.1

Proof. Let Qnode ∈ RN×N be a node permutation matrix that reorders the nodes in G. The permuted incidence matrix can
be represented as B′ = Q⊤

nodeB. Then we have the permuted DiLap T′:

T′ = B′diag
(
{Pij}M(vi,vj)∈E

)
B′⊤

=
(
Q⊤

nodeB
)
diag

(
{Pij}M(vi,vj)∈E

) (
B⊤Qnode

)
= Q⊤

nodeTQnode

(17)

Eq. (17) shows that T′ is obtained by conjugating T with the node permutation matrix Qnode, which means T′ is T with its
rows and columns permuted according to Qnode. Thus T is permutation equivariant up to a relabeling of nodes.

13

Commute Graph Neural Networks

Let Qedge ∈ RM×M be an edge permutation matrix that reorders the edges of G. The permuted incidence matrix can be rep-

resented as B′ = BQedge, and the permuted diagonal matrix diag
(
{Pij}M(vi,vj)∈E

)′
= Q⊤

edgediag
(
{Pij}M(vi,vj)∈E

)
Qedge.

Then we have the permuted DiLap T′:

T′ = B′diag
(
{Pij}M(vi,vj)∈E

)′
B′⊤

= (BQedge)
(
Q⊤

edgediag
(
{Pij}M(vi,vj)∈E

)
Qedge

) (
Q⊤

edgeB
⊤)

= Bdiag
(
{Pij}M(vi,vj)∈E

)
B⊤

= T

(18)

Eq. (18) shows that T remains unchanged under edge permutation when B and diag
(
{Pij}M(vi,vj)∈E

)
are adjusted

accordingly. Thus T is fully invariant to the ordering of edges.

A.3. Proof of Lemma 4.2

Proof. We first define the weighted out-transition matrix as F = diag

({
πi

∑
j Pij

}N

i=1

)
. Based on F, the weight DiLap

T can be written as T = F−ΠP. P can be expressed as:

P = Π−1(F− T). (19)

Since the transition matrix P is row-stochastic, it follows that PtJ = J. In light of Eq. (2) and considering that π is
stochastic, we have ZJ = 0n×n and Π− 1

2FΠ− 1
2 = I.

Let K = Π− 1
2 T Π− 1

2 , J = Π
1
2JΠ

1
2 , and Z = Π

1
2ZΠ− 1

2 , we have J 2 = J . As π⊤Z = 0, we have ZJ =
Π

1
2ZJΠ

1
2 = 0N×N and JZ = 0N×N . Since B⊤J = 0N×N , TJ = 0N×N and JT = 0N×N holds. Incorporating these

into Eq. (3), we have:
Z + J = (K + J)−1. (20)

By post-multiplying Eq. (20) from the right by (K + J), we have:

I− J = ZK + JK, (21)

where JK = (Π
1
2JΠ

1
2)(Π− 1

2TΠΠ− 1
2) = Π

1
2JTΠ− 1

2 = 0N×N . Then we have:

ZK = I− J (22)

Similarly, by multiplying from the left, we establish that KZ = I − J . Since JZ = 0N×N , ZKZ = Z . Furthermore,
KJ = (Π− 1

2TΠΠ− 1
2)(Π

1
2JΠ

1
2) = 0N×N leads to KZK = K. Considering the symmetry of the left part of Eq. (22), we

have (ZK)⊤ = ZK. Similarly, (KZ)⊤ = KZ . These derivations satisfy the sufficient conditions for the Moore–Penrose
pseudoinverse, such that

Z = K† (23)

Finally, recovering Z and K as:
Z = T †Π (24)

which concludes the proof.

A.4. SVD for T̃†

Given a matrix T̃ ∈ RN×N , its Moore-Penrose pseudoinverse can be directly computed with an SVD-based method.
Specifically, we first perform truncated SVD on T̃ ≈ UqΣqV

⊤
q , where Uq ∈ RN×q and Vq ∈ RN×q contains the first q

columns of U and V. Σq ∈ Rq×q is the diagonal matrix of q largest singular values. It is a q-rank approximation of T̃,
which holds that rank(R) = q. Then the Moore-Penrose pseudoinverse of T̃ can be easily computed as follows:

T̃† = UqΣ
−1
q V⊤

q . (25)

14

Commute Graph Neural Networks

To leverage sparsity of T̃ to avoid O(N3) complexity, we adopt the randomized SVD algorithm proposed by (Halko et al.,
2011; Cai et al., 2023) to first approximate the range of the input matrix with a low-rank orthonormal matrix, and then
perform SVD on this smaller matrix:

Û q, Σ̂q, V̂
⊤
q = ApproxSVD(T̃, q),

ˆ̃
TSV D = Û qΣ̂qV̂

⊤
q , (26)

where Û q , Σ̂q , and V̂ q are the approximated versions of Uq , Σq , and Vq . Then the Moore-Penrose pseudoinverse of T̃ can
be computed by:

T̃† = Û qΣ̂
−1
q V̂

⊤
q . (27)

The computation cost of randomized truncated SVD takes O(qK), where K is the number of non-zero elements in T̃, so
we have K = |E|. Thus, the sparsity degree of T̃ can determine the time complexity of its Moore-Penrose pseudoinverse,
which demonstrates the importance of Lemma 4.2.

B. Pseudo Code for CGNN

Algorithm 1 CGNN
Input: Digraph G = (V,E,X); Depth L; Hidden size d′; Number of classes K
Output: Logits Ŷ ∈ RN×K

1: Compute the anchor a and node-anchor similarities to construct G′ with Eq. (7).
2: Add all edges from G′ to G to generate G̃.
3: Compute the Weight DiLap T̃ for G̃ with Eq. (6).
4: Compute R and its Moore-Penrose pseudoinverse with Eq. (8) and Eq. (27).
5: Compute the commute time matrix C with Eq. (10).
6: Compute the normalized proximity matrix C̃ with C̃out = A⊙ C̃ and C̃ in = A⊤ ⊙ C̃.
7: for ℓ ∈ {1, · · · , L} do
8: Layer-wise message passing with Eq. (11).
9: end for

10: H = MLP(H(L)).
11: Ŷ = Softmax(H).

C. Implementation Details
C.1. Experimental Settings

We provide a performance comparison with 12 baselines including 1) General GNNs: GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017); 2) Non-local GNNs: APPNP (Klicpera et al.,
2019), MixHop (Abu-El-Haija et al., 2019), GPRGNN (Chien et al., 2021), and GCNII (Chen et al., 2020); 3) Digraph
NNs: DGCN (Tong et al., 2020b), DiGCN (Tong et al., 2020a), MagNet (Zhang et al., 2021), DiGCL (Tong et al., 2021),
DUPLEX (Ke et al., 2024), and DirGNN (Rossi et al., 2023). We evaluate the performance by node classification accuracy
with standard deviation for 10 runs in the semi-supervised setting. For Squirrel and Chameleon, we use 10 public splits
(48%/32%/20% for training/validation/testing) provided by (Pei et al., 2019). For the remaining datasets, we adopt the same
splits as (Tong et al., 2020a; 2021), which chooses 20 nodes per class for the training set, 500 for the validation set, and
allocates the rest to the test set. We conduct our experiments on 2 Intel Xeon Gold 5215 CPUs and 1 NVIDIA GeForce RTX
3090 GPU.

C.2. Data Statistics

The datasets used in Section 5 are Squirrel, Chameleon (Rozemberczki et al., 2021), Citeseer (Sen et al., 2008), CoraML (Bo-
jchevski & Günnemann, 2017), AM-Photo (Shchur et al., 2018), Snap-Patents, Roman-Empire, and Arxiv-Year (Rossi et al.,
2023). We summarize their statistics in Table 7. homo ratio represents the homophily ratio, a metric proposed by Zhu et al.
(2020). which is employed to gauge the degree of homophily within the graph. A lower homo ratio signifies a greater
degree of heterophily, indicating a higher prevalence of edges that connect nodes of differing classes.

15

Commute Graph Neural Networks

Table 7: Statistics of the datasets.

Dataset N |E| # Feat. # Classes homo ratio

Squirrel 5,201 217,073 2,089 5 0.22
Chameleon 2,277 36,101 2,325 5 0.23
Cora-ML 2,995 8,416 2,879 7 0.79
Citeseer 3,312 4,715 3,703 6 0.74
AM-Photo 7,650 238,162 745 8 0.83
Snap-Patents 2,923,922 13,975,791 269 5 0.22
Roman-Empire 22,662 44,363 300 18 0.05
Arxiv-Year 169,343 1,166,243 128 40 0.22

C.3. Hyperparameter Settings

For our model, we tune the hyperparameters based on the highest average validation accuracy. We utilize the randomized
truncated SVD algorithm for computing the Moore-Penrose pseudoinverse of matrix R, setting the required rank q to 5 for all
datasets. The learning rate lr is selected from {0.01, 0.005}, and the weight decay wd from {0, 5e−5, 5e−4}. In the model
architecture, the number of layers L vary among {1, 2, 3, 4, 5} and the dimension d′ is selected from {32, 64, 128, 256, 512}.
The comprehensive hyperparameter configurations for CGNN are detailed in Table 8.

Table 8: Hyperparameters specifications.

Dataset lr wd L d′

Squirrel 0.005 0 5 128
Chameleon 0.01 0 4 128
CoraML 0.01 0 2 64
Citeseer 0.01 0 2 128
AM-Photo 0.005 0 2 512
Snap-Patents 0.01 0 2 32
Roman-Empire 0.01 5e− 4 2 64
Arxiv-Year 0.01 5e− 4 2 64

D. Additional Experiments
D.1. Detailed Experimental Results on Node Classification

Table 1 in Section 5 presents the results from experiments conducted on all eight directed graph datasets. For each baseline,
experiments were carried out on both the original directed graph datasets and their undirected counterparts, which feature
symmetrized adjacency matrices. The superior accuracy results from these two settings are reported in Table 1. This section
provides a detailed exposition of the experimental outcomes for these configurations in Table 9 and Table 10. It is important
to note that while GCN is traditionally a spectral method suited only for undirected graphs, it can be adapted to directed
graphs by interpreting it from a spatial perspective, specifically, by aggregating outgoing neighbors with the weight 1√

didj

.

This adaptation allows GCN to be applicable in both experimental settings. Additionally, APPNP, GPRGNN, and GCNII
are spectral methods that require symmetrized adjacency matrices for spectral filters. Therefore, we only report their results
under the undirected settings in Table 1. For DirGNN and CGNN, in the case of undirected graphs, these models degenerate
to GraphSAGE.

D.2. Sensitivity Analysis

We investigate the sensitivity of CGNN to key hyperparameters that influence its performance, specifically focusing on the
number of layers L and the dimension of the hidden layer d′. We explore a range of values for L, considering {1, 2, 3, 4, 5},
and for d′, considering {32, 64, 128, 256, 512}. From Figure 5, we observe that we observe that CGNN achieves optimal
performance with L = 5 and d′ = 128 on Squirrel, and with L = 2 and d′ = 64 on CoraML. This suggests that deeper
models are necessary to effectively aggregate valuable information in heterophilic graphs, whereas in homophilic graphs,
leveraging local neighborhood information is generally adequate.

16

Commute Graph Neural Networks

32 64 128 256 512
d ′

1
2

3
4

5
L

74.01 71.36 74.92 76.01 72.18

72.85 73.82 74.16 74.05 71.99

74.22 74.20 74.19 74.64 74.51

73.81 73.15 74.52 73.89 74.20

74.24 75.83 75.83 75.74 74.88

(a) Squirrel

32 64 128 256 512
d ′

1
2

3
4

5
L

76.88 76.64 75.82 75.81 76.18

76.99 77.08 77.05 76.24 76.15

76.13 76.66 76.84 75.52 76.55

75.19 73.38 75.62 74.11 74.56

73.27 72.88 72.10 72.11 72.88

(b) CoraML

Figure 5: Sensitivity analysis on Squirrel and CoraML.

Table 9: Comparison of node classification accuracy between original directed graphs and their undirected counterparts on
Squirrel, Chameleon, Citeseer, and CoraML.

Squirrel Chameleon Citeseer CoraML

Method Dir. Undir. Dir. Undir. Dir. Undir. Dir. Undir.

GCN 52.43±2.01 51.93±1.19 63.37±0.92 67.96±1.82 64.27±1.56 66.03±1.88 68.73±0.24 70.92±0.39

GAT 40.72±1.55 40.50±1.47 60.69±1.95 59.37±1.52 65.58±1.39 54.22±0.98 72.20±0.49 72.22±0.57

GraphSAGE 35.19±0.54 41.61±0.74 58.20±1.19 62.01±1.06 62.57±0.71 66.81±1.38 74.16±1.55 72.98±0.90

MixHop 39.25±0.91 43.80±1.48 60.50±2.53 60.15±1.22 56.09 ±2.08 54.71±0.50 65.89±1.50 61.20±0.91

DGCN 37.16±1.72 38.24±1.19 50.7±3.31 48.26±1.97 66.37±1.93 62.15±0.80 75.02±0.50 73.11±0.68

DiGCN 33.44±2.07 28.17±1.90 50.37±4.31 43.08±5.77 64.99±1.72 64.35±1.64 77.03±0.70 76.98±1.00

MagNet 39.01±1.93 35.20±1.65 58.22±2.87 55.46±3.10 65.04±0.47 64.90±0.51 76.32±0.10 76.29±0.08

DUPLEX 57.60±0.98 55.26±1.10 61.25±0.94 61.20±0.75 67.60±0.72 67.35±0.70 72.26±0.71 72.21±0.65

DiGCL 35.82±1.73 33.10±0.94 56.45±2.77 51.16±3.85 67.42±0.14 66.53±0.10 77.53±0.14 76.24±0.05

Table 10: Comparison of node classification accuracy between original directed graphs and their undirected counterparts on
AM-Photo, Snap-Patents, Roman-Empire, and Arxiv-Year.

AM-Photo Snap-Patents Roman-Empire Arxiv-Year

Method Dir. Undir. Dir. Undir. Dir. Undir. Dir. Undir.

GCN 88.52±0.47 85.33±0.25 51.02±0.06 50.15±0.04 73.69±0.74 73.58±0.37 46.02±0.26 44.81±0.19

GAT 88.36±1.25 87.50±1.77 OOM OOM 49.18±1.35 43.37±1.02 45.30±0.23 43.27±0.09

GraphSAGE 89.71±0.57 86.23±1.25 67.45±0.53 60.10±0.26 86.37±0.80 84.26±0.28 55.43±0.75 51.19±0.73

MixHop 87.17±1.30 85.50±1.01 40.17±0.10 41.22±0.19 43.00±0.06 50.76±0.14 45.30±0.26 41.25±0.50

DGCN 87.74±1.02 86.53±1.77 OOM OOM 51.92±0.43 50.50±0.47 OOM OOM
DiGCN 88.66±0.51 87.94±0.23 OOM OOM 52.71±0.32 50.43±0.21 48.37±0.19 47.26±0.11

MagNet 86.80±0.65 85.21±0.20 OOM OOM 88.07±0.27 82.99±0.80 60.29±0.27 55.25±0.10

DUPLEX 85.19±0.73 87.80±0.82 64.92±0.10 66.54±0.11 79.02±0.08 77.64±0.07 64.37±0.27 62.12±0.18

DiGCL 89.41±0.11 87.36±0.20 70.65±0.07 68.62±0.08 87.94±0.10 84.00±0.28 63.10±0.06 59.02±0.02

17

