
Characterizing the Expressivity of Fixed-Precision
Transformer Language Models

Jiaoda Li Ryan Cotterell
{jiaoda.li, ryan.cotterell}@inf.ethz.ch

Abstract

Transformer-based language models (LMs) have achieved widespread empirical
success, but their theoretical expressive power remains only partially understood.
In this work, we analyze a restricted idealization of fixed-precision transformers
with strict future masking, soft attention, and no positional encodings. We establish
that this class of models is exactly as expressive as a specific fragment of linear
temporal logic that contains only a single temporal operator: the past operator.
We further connect this fragment to established classes in formal language theory,
automata theory, and algebra, yielding a unified framework for understanding
transformer expressivity under this idealization. Finally, we present empirical
results that align closely with our theory: transformers trained on languages within
their characterized expressive capacity generalize reliably across sequence lengths,
while they consistently fail to generalize on languages beyond it.1

1 Introduction

Transformer-based language models (LMs) have demonstrated remarkable empirical success [46, 36,
12] on a wide variety of natural language tasks [47, 19, 41, inter alia]. This success has sparked grow-
ing interest in understanding the theoretical expressive power of transformers, i.e., what languages
they can and cannot recognize, and, by extension, what tasks they can and cannot perform. A signif-
icant body of work approaches this question by relating transformers to well-established frameworks
such as formal languages, logic, and circuit complexity [18, 31, 50, 42]. To facilitate their theoretical
analysis, theoreticians often propose idealizations of transformers. For instance, while practical imple-
mentations of transformers operate under fixed precision, e.g., single (32-bit) or half (16-bit) precision,
many authors assume arbitrary [38, 18, 34] or length-dependent precision [32, 7]. Although such ide-
alizations capture key aspects of transformers, they tend to overestimate their expressive power [38].

A recent step toward a more faithful theoretical understanding of the expressive power of transformers
comes from Yang et al. [50], who show that fixed-precision transformers with strict future masking
and unique hard attention (UHA) are exactly as expressive as linear temporal logic LTL[P,F,S,U],
which includes four temporal operators: P (past), F (future), S (since), and U (until).
However, UHA still deviates from the soft attention used in practice. To address this gap, Yang and
Chiang [49] analyze fixed-precision transformers with strict future masking and soft attention, an
idealization that most closely reflects the models deployed in real-world applications. Yang and
Chiang [49] show that such models are upper bounded by C-RASP, a counting-based programming
language, though a precise characterization of these models’ expressivity remains open.

In this paper, we close this gap by providing an exact characterization of the expressive power of
fixed-precision transformers with soft attention, strict masking, and no positional encodings (NoPE).
We show they are precisely characterized by LTL[P], a restricted fragment of LTL[P,F,S,U] that

1Code available at GitHub repository.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:jiaoda.li@inf.ethz.ch
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/rycolab/expressivity-of-fixed-precision-transformers

LTL[P]

PFO2[<]PODFA

R-trivial
monoid

left-deterministic
polynomial

transformer
language model

transformer

Theorem 2.1

Theorem 5.2 Theorem 5.1

Theorem 3.3 T
heorem

3.2Lemma C.1

Lemma C.4

[4]

Figure 1: Roadmap of the paper. Red arrows indicate novel results.

uses only the past operator (P). We further demonstrate that LTL[P] is equivalent in expressivity
to partially ordered deterministic finite automata (PODFAs), which are characterized by R-trivial
monoids and recognize left-deterministic polynomials. These results offer a detailed and principled
characterization of the expressive power of this idealization, delineating its strengths and limitations.
Crucially, our findings imply that many simple languages, e.g., bounded Dyck languages, which
have been shown to be recognizable under more permissive idealizations, are beyond the reach of
the models we study. We also extend our theoretical results to transformer LMs, showing that their
expressivity matches that of transformer recognizers. A visual overview of the theoretical landscape
is provided in Fig. 1.

To arrive at a compelling theory, it is essential to show that it faithfully reflects the behavior of models
trained under standard machine learning paradigms. To this end, we provide empirical evidence using
the length generalization framework, a widely used method for gauging neural network expressivity
[10, 6, 22]. We construct a suite of languages spanning a fine-grained hierarchy of formal language
classes. Our results (Tab. 1) exhibit strong alignment between theory and practice: for all languages
that transformers are predicted to recognize, the models generalize perfectly over lengths (100%
accuracy); for languages beyond their theoretical capacity, they consistently make generalization
errors, regardless of learning rates or random seeds.

2 Background

In this section, we present the necessary background knowledge that underpins our analysis.

2.1 Strings and Languages

An alphabet, denoted as Σ, is a finite, non-empty set of symbols. A string over Σ is a finite sequence
of symbols drawn from Σ. The set of all strings over Σ is denoted by its Kleene star Σ∗. A subset of
Σ∗ is called a language. A regular expression is a declarative way to describe a language, defined
recursively as follows:

• ∅ and each a ∈ Σ are regular expressions;

• If α and β are regular expressions, so are the union α+ β, concatenation αβ, the Kleene star α∗,
and complement αc.

A language is regular if and only if it can be described by a regular expression [26]. A regular
language is said to be star-free if it can be described by a regular expression without the Kleene
star [28]. As an example, Σ∗, the set of all strings over Σ, is star-free, as it can be described by ∅c.

2.2 LTL[P]

Linear temporal logic LTL[P,F,S,U] [25] is a modal logic, with modalities referring to time. The
full definition is given in §A.1. In this paper, we define a fragment of LTL[P,F,S,U]—denoted as
LTL[P]—that includes only one temporal operator P (past). Formulas in LTL[P] are composed of
atomic formulas πa for every a ∈ Σ, Boolean connectives ∧,¬, and a temporal operator P. The

2

disjunction ∨ is definable in terms of ∧ and ¬ as:

ψ1 ∨ ψ2
def
= ¬(¬ψ1 ∧ ¬ψ2). (1)

When defined over strings, the formulas are interpreted with respect to a string w = w1 · · ·wN at a
position n ∈ {1, . . . , N}. The semantics are defined inductively. Given a string w, a position n, and
a formula ψ, we define w, n |= ψ (w satisfies ψ at position n) as follows:

w, n |= πa if and only if the nth symbol of w is an a.
w, n |= ψ1 ∧ ψ2 if and only if w, n |= ψ1 and w, n |= ψ2.
w, n |= ¬ψ if and only if w, n ̸|= ψ.
w, n |= Pψ if and only if there exists m such that m < n and w,m |= ψ.

Example:
• abb, 1 |= πa as the first symbol is a.

• abb, 3 |= Pπa as an a occurs before position 3.

To say a string w of length N satisfies a formula ψ, written as w |= ψ, we evaluate from position
N + 1 (the position after the final symbol):

w |= ψ if and only if w, N + 1 |= ψ. (2)

The language defined by a formula ψ is the set L(ψ) of all strings that satisfy ψ.

Example:
Pa defines all the strings that contain at least one occurrence of a, i.e.,

L(Pa) = Σ∗aΣ∗. (3)

2.3 PFO2[<]

First-order logic FO[<] can also be used to describe formal languages. In contrast to (linear) temporal
logic, where formulas are interpreted at a single position, FO[<] formulas may contain multiple
position variables, making it better-suited to simulating mechanisms in transformers that involve
more than one position, such as attention; see §§ B.2 and 3.2. In this paper, we introduce a fragment
of FO[<] called PFO2[<]—the past fragment of first-order logic with two variables. The atomic
formulas of PFO2[<] consist of unary predicates πa for each a ∈ Σ and a binary numerical predicate
< that can be used to determine the sequential order between variables. Formulas in PFO2[<] can
have at most two distinct variables, x and y. In addition to the usual Boolean connectives ∧ and ¬,
there is a bounded existential quantifier ∃y < x, where y is the variable bounded by the quantifier, and
x is the free variable. In case there is no free variable, the bounded existential quantifier behaves like
an ordinary existential quantifier. The formulas in PFO2[<] are constructed inductively as follows:

• Every atomic formula is a formula;

• A Boolean combination of formulas is a formula if it does not contain more than two variables;

• If ϕ(x, y) is a formula with two variables x, y, ∃y < x : ϕ(x, y) and ∃x < y : ϕ(x, y) are formulas;

• If ϕ(x) is a formula with one variable x, ∃x < y : ϕ(x) is a formula;

• If ϕ(x) is a formula with one variable x, ∃x : ϕ(x) is a formula.

The bounded universal quantifier ∀y < x can be defined using ∃y < x and ¬. For instance:

∀y < x : ϕ(x, y)
def
= ¬∃y < x : ¬ϕ(x, y). (4)

A formula with no free variables is called a sentence. We write w |= ϕ if ϕ is satisfied for w. A
sentence ϕ defines a language, the set of strings over Σ satisfying it, denoted as L(ϕ).

3

Example:
The sentence below defines all the strings that contain abc as a subsequence (symbols appearing
in order, possibly non-contiguously):

∃x : (πc(x) ∧ ∃y < x : (πb(y) ∧ ∃x < y : πa(x))) . (5)

Note that the variable x is reused, as permitted in PFO2[<]. The formulas below, however, are not
definable in PFO2[<]:

• x < y < z (more than two variables);

• ∀x : (∃y ≥ x : πa(y)) (disallowed use of the quantifier ∃y ≥ x).

PFO2[<] is specifically designed to match the expressive power of LTL[P], allowing us to leverage
both formalisms in our analysis of transformer expressivity.

Theorem 2.1. PFO2[<] and LTL[P] have the same expressive power.

Proof. See §A.2.3. ■

3 Transformers

In this section, we formally define the transformer idealization under consideration and establish two
central expressivity results: (i) every transformer can be translated into an equivalent PFO2[<] for-
mula, and (ii) every LTL[P] formula can be simulated by a transformer. Combined with Theorem 2.1,
these results imply that transformers are expressively equivalent to both LTL[P] and PFO2[<].

3.1 The Transformer Architecture

The transformer considered in this section follows the architecture described by Yang et al. [50], with
the exception that we use soft attention in place of unique hard attention (UHA). Before formally
defining the architecture, we first state explicitly the assumptions that will govern our model as
follows.

Assumption 3.1. We assume that the transformer satisfies the following conditions:

1. Fixed precision: There exists a finite set of values that the floating-point numbers can assume. We
denote this set as F = {f1, f2, . . .}.

2. No positional encoding (NoPE): Positional encodings are omitted for now, but are addressed in
§F.3.

3. Soft attention: Attention weights are computed using the softmax function. We also treat average
hard attention (AHA) in §F.1, showing that AHA is equally expressive as soft attention.

4. Strict future masking: As in Yang et al. [50], the attention is strictly future-masked. Strict masking
is shown to be more expressive than non-strict masking in §F.2.

5. Recognition: Following standard practice in expressivity studies [42], the transformer is treated
as a language recognizer. We will extend the analysis to transformer language models in §5.

Transformers take strings as input. Given a string w = w1 · · ·wN over an alphabet Σ, we append a
special end-of-sentence symbol EOS /∈ Σ to form a completed string w def

= w1 · · ·wN EOS over the
extended alphabet Σ def

= Σ ∪ {EOS}. An initial embedding layer E : Σ
N+1 → FD×(N+1) maps each

input symbol including EOS to a D-dimensional representation. We define the embedding layer as
the 0th layer of the transformer:

H(0) def
= E. (6)

The embedding is followed by a stack of L hidden layers. Each hidden layer contains two
sublayers: a self-attention mechanism A(ℓ) : FD×(N+1) → FD×(N+1), and a feedforward net-
work F(ℓ) : FD×(N+1) → FD×(N+1). These components are composed sequentially. For each

4

ℓ ∈ {0, 1, . . . , L− 1}, we define:

H(ℓ+0.5) def
= LN

(
A(ℓ)

(
H(ℓ)

)
+H(ℓ)

)
, (7a)

H(ℓ+1) def
= LN

(
F(ℓ)

(
H(ℓ+0.5)

)
+H(ℓ+0.5)

)
. (7b)

where LN denotes layer normalization [1]. Finally, a classification head C: FD → F maps the
representation at the EOS position in the final layer to a scalar output:

o(w)
def
= C

(
H(L)(w):,N+1

)
. (8)

We use H(L)(w)d,n to denote the (d, n)th entry in the matrix. Similarly, H(L)(w):,n refers to the
column vector at position n, and H(L)(w)d,: refers to the row vector corresponding to dimension d.
Consequently, a transformer defines a function of type ΣN+1 → F, where N is a parameter of the
type. We say a string w is accepted by the transformer if o(w) > 0. A detailed specification of the
architecture is provided in §B.1.

3.2 From Transformers to PFO2[<]

In this subsection, we discuss the following theorem.

Theorem 3.2. Every transformer can be simulated by PFO2[<].

Proof. See §B.2. ■

Our proof closely follows the approach of Chiang et al. [9, Section 5], with one key difference:
the simulation of summation in soft attention. While prior work makes use of counting quantifiers
to simulate summation, Li et al. [27] demonstrate that summation with iterative rounding can be
simulated with FO[<]. We take this a step further by showing that the specific summation involved
in soft attention can be simulated by PFO2[<]. Here, we provide a high-level overview of the proof.
We identify two summations in soft attention. The first occurs in the denominator of the softmax
function, defined for a D-dimensional vector x, as follows:

softmax(x)d
def
=

exp(xd)∑D
i=1 exp(xi)

, for d ∈ {1, . . . , D}. (9)

exp is a deterministic function. Under the fixed precision assumption, the possible input and output
values of exp form a finite set, allowing PFO2[<] formulas to encode exp by explicit enumeration of
these values. Since exp outputs only non-negative values, the summation in the denominator reduces
to a sum of non-negative terms, which can be simulated by PFO2[<] (Lemma B.5). Additionally, the
second summation is a weighted sum, in which the weights are produced by the softmax function.
Under fixed precision, the output of a softmax contains a bounded number of non-zero entries
(Proposition B.6). Therefore, the weighted sum involves only a bounded number of terms and can
similarly be simulated by PFO2[<] (Lemma B.7).

3.3 From LTL[P] to Transformers

In this subsection, we discuss the following theorem.
Theorem 3.3. Every LTL[P] formula can be simulated by a transformer.

Proof. See §B.3. ■

Our proof is adapted from that of Yang et al. [50, Appendix C.1]. Intuitively, each LTL[P] formula is
encoded in a dedicated coordinate d ∈ {1, . . . , D} of the transformer’s hidden state. At each position,
this coordinate takes the value 1 if the formula is satisfied at that position, and 0 otherwise. The
key challenge in proving Theorem 3.3 lies in simulating the temporal operator P. Prior constructions
typically employ uniform attention, which assigns equal weight to all preceding positions, to simulate
such operators. However, under fixed precision, soft attention has a limited attention span, as the

5

output of the softmax function contains only a bounded number of non-zero entries. We refer to
this bound as the maximum attention span, denoted by Nmax. To overcome this limitation, previous
work has relied on non-fixed numerical precision—such as arbitrary precision [9, 49] or log precision
[31]—to prevent attention weights from vanishing. In contrast, we present a construction that
overcomes this issue without requiring increased numerical precision.

We begin by describing a base construction that applies when attention weights do not vanish, and
then extend it to handle cases where vanishing weights may occur.

Base Construction. Suppose a formula ψ is simulated by coordinate d1 at the ℓth layer, i.e., by H
(ℓ)
d1,:

(omitting the input string w for brevity), and let Pψ be the formula we aim to simulate. We construct
an attention sublayer that uniformly attends to all previous positions m < n such that H(ℓ)

d1,m
= 1.

If such positions exist, we set an unused coordinate dP to 1, i.e., H(ℓ+0.5)
dP,n

= 1 and otherwise to 0.

Handling Vanishing Weights. However, when too many (more than Nmax) previous positions
satisfy ψ, the resulting attention weights will underflow to 0. This results in H

(ℓ+0.5)
dP,n

= 0 even when
Pψ is true, leading to incorrect behavior. To address this, we first compute the logical conjunction of
d1 and dP and store it in d∧, i.e.,

H
(ℓ+1)
d∧,n

=

{
1 if H(ℓ)

d1,n
= 1 and H

(ℓ+0.5)
dP,n

= 1,

0 otherwise.
(10)

The number of positions n with H
(ℓ+1)
d∧,n

= 1 is bounded by Nmax, since beyond the (Nmax + 1)th po-

sition, the first attention sublayer will suffer from vanishing attention weights, causing H
(ℓ+0.5)
dP,n

= 0.

Next, we construct a second layer in which the attention sublayer uniformly attends to all positions
m < n where H

(ℓ+1)
d∧,m

= 1. This produces a coordinate dPP that simulates P(ψ ∧ Pψ). Since the

number of positions satisfying H
(ℓ+1)
d∧,m

= 1 is bounded, this second attention sublayer is not subject
to vanishing attention weights and therefore computes its output reliably.

The formula P(ψ ∧ Pψ) effectively asks whether there are at least two positions before n that satisfy
ψ. Thus, if there is exactly one position m < n satisfying ψ, then P(ψ ∧ Pψ) differs from the target
formula Pψ. In this case, however, the first attention sublayer (producing dP) correctly simulates
Pψ, since the attention only needs to cover one position. We therefore take the logical disjunction
of dP and dPP, implemented via the subsequent feedforward sublayer. The resulting coordinate d∨
correctly simulates the formula Pψ. This completes the proof sketch.

Example:
Assume the attention span is limited to 1 position. The following example illustrates the simulation
process, with defective simulations highlighted in red.

formula coordinate position
ψ d1 1 0 1 0 1

Pψ dP 0 1 1 0 0
ψ ∧ Pψ d∧ 0 0 1 0 0

P(ψ ∧ Pψ) dPP 0 0 0 1 1
Pψ = P(ψ ∧ Pψ) ∨ Pψ d∨ 0 1 1 1 1

4 Characterizations of LTL[P]

We have established the expressive equivalence between transformers and LTL[P]. This connection
becomes especially compelling when paired with precise and rich characterizations of LTL[P]. To
that end, we prove the following theorem.
Theorem 4.1. Let L ⊆ Σ∗ be a regular language, M be its syntactic monoid, and A be the DFA
accepting it. The following assertions are equivalent: (1) L is a left-deterministic polynomial, (2) M
is R-trivial, (3) A is partially ordered, and (4) L is definable by LTL[P].

6

Proof. See §C. ■

In the remainder of this section, we focus on the PODFA characterization, which will be central to
later developments. The other characterizations are defined in §C, which also includes a discussion
of superclasses of LTL[P], summarized in Tab. 2.
Definition 4.2. A deterministic finite automaton (DFA) is a 5-tuple A = (Σ, Q, qI , F, δ) where

• Σ is an alphabet;

• Q is a finite set of states;

• qI ∈ Q is the initial state;

• F ⊆ Q is the set of final states;

• δ : Q× Σ → Q is a total transition function;

• qR ∈ Q \ F is a rejecting sink state, i.e., δ(qR,a) = qR for every a ∈ Σ.

Given an automaton A = (Σ, Q, qI , F, δ), we say A is in state q upon reading a string w =
w1 · · ·wN ∈ Σ∗ if and only if there exists a sequence of states q0, . . . , qN such that

• q0 = qI ;

• qn+1 = δ(qn,wn+1) for n ∈ [N − 1];

• qN = q.

A string w is accepted by A if it reaches one of the final states upon reading w.
Definition 4.3. A DFA is said to be partially ordered if there exists a partial order ⪯ on Q such that
for every state q ∈ Q and symbol a ∈ Σ, we have q ⪯ δ(q,a).

Informally, in a partially ordered DFA, once the automaton leaves a state, it never revisits it. An
example of a non-partially ordered DFA is provided in §C.3.

5 Transformer Language Models

In this section, we extend our analysis to transformer LMs. Formally, an LM constitutes a distribution
over Σ∗, typically factorized autoregressively as follows:

p(w)
def
= −→p (EOS | w)

N∏
n=1

−→p (wn | w<n). (11)

where w<n
def
= w1 · · ·wn−1. We define an LM p’s prefix probability pprefix as:

pprefix(w)
def
=

∑
w′∈Σ∗

p(ww′). (12)

To adapt a transformer for language modeling, we feed the input string w into the model autore-
gressively, and the classification head is replaced with a language modeling head L : FD → F|Σ|,
which maps the representation in the last layer L at the most recent position n− 1 to a probability
distribution over Σ. This defines the local distribution −→p as follows:

−→p (wn | w<n)
def
= L

(
H(L)(w<n):,n−1

)
wn

. (13)

where L(H(L)(w<n):,n−1)wn denotes the probability assigned to the symbol wn. Under fixed pre-
cision, this distribution may not be perfectly normalized, as the sum of its components can deviate
from 1 due to rounding errors.

As transformer LMs do not introduce any new computational components beyond those already
present in transformer recognizers, the same constructions and proofs apply. Therefore, every
transformer LM can be simulated by PFO2[<].

7

Theorem 5.1. Every transformer LM can be simulated by PFO2[<].

Proof. See §D. ■

The converse direction is more subtle. Yang and Chiang [49] show how to compile a transformer
LM from C-RASP. Here, we present an alternative approach that is more intuitive. Our construction
leverages the PODFA characterization of LTL[P]. Given a PODFA A = (Σ, Q, qI , F, δ), we can
define a corresponding LM pA by specifying the local distribution −→p A as follows: Suppose A is in
state q upon reading the prefix w<n:

• If q /∈ F and q ̸= qR, −→p A(a | w<n) assigns uniform probability over all symbols in
{a | δ(q,a) ∈ Q \ {qR}};

• If q ∈ F , −→p A(a | w<n) assigns uniform probability over all symbols in {a | δ(q,a) ∈
Q \ {qR}} ∪ {EOS};

• If q = qR, −→p A(a | w<n) = 0 for all a ∈ Σ, i.e., pprefix(w<n) = 0.

Note that in practice, a softmax cannot produce an all-zero vector. For technical convenience, we
therefore extend the Σ with a special symbol UNK /∈ Σ, which receives all the probability mass when
A reaches the rejecting state, i.e., −→p A(UNK | w<n) = 1 if q = qR. Accordingly, we extend the LM
head L to accommodate this special symbol: L : FD → F|Σ∪{UNK}|.
Theorem 5.2. Every PODFA LM can be simulated by a transformer LM.

Proof. See §D. ■

Intuitively, for each state q ∈ Q, we can construct a LTL[P] formula ψq such that w<n, n− 1 |= ψq
if and only if the automaton is in state q after reading the prefix w<n. By Theorem 3.3, each formula
ψq can be encoded into a designated coordinate dq of the transformer’s hidden state. The language
modeling head, extended to include the special token UNK, then maps these coordinates to the
corresponding probability distribution specified by −→p A.

6 Experiments

The experiments are divided into two parts: language recognition and language modeling.

6.1 Language recognition

We have shown that a transformer can recognize only left-deterministic polynomials. In this section,
we conduct a series of language classification experiments to empirically validate this claim. We
consider five language classes, arranged in a strict inclusion hierarchy—each class is a proper subset
of the one preceding it. For each class, we select one or more representative languages. These
languages are listed in Tab. 1, and their detailed definitions are provided in §E.1.2.

6.1.1 Experimental setup

We implement the transformer that we theorize about (Assumption 3.1). For comparison, we also
train a long short-term memory (LSTM) [20]. Models are trained on strings up to length 40, and
tested on strings of length 41−−500. Each experiment is run with 5 different random seeds and 3
learning rates. We consider a transformer to have successfully recognized a language if it achieves
100% accuracy in at least one of the runs. Details of the experimental setup and model configurations
are provided in §E.1.1.

6.1.2 Results

We compute classification accuracy and report both the maximum and mean values across all runs
in Tab. 1. The LSTM achieves perfect accuracy on all tasks, consistent with previous work showing
that LSTMs can recognize regular languages [29] and implement counting mechanisms [48]. This
confirms that the tasks are learnable given the available training data. Results on transformers align

8

(a) RDP-1 (b) LDP-1 (c) LDP-2

Figure 2: Visualization of the transformer’s representations for different DFA states. −1 denotes the
rejecting state qR. The filled contours represent the decision boundaries of a linear classifier.

precisely with our theoretical predictions: under fixed precision, transformers with soft attention
and NoPE can recognize exactly the class of left-deterministic polynomials. They achieve perfect
accuracy on all LTL[P]-definable languages but consistently fail on tasks outside this class, even
though prior work has shown that some of these languages are theoretically recognizable under more
permissive idealizations [9, 31, 49, 51, 44]. Notably, we use single-precision (32-bit) floating-point
numbers, and the string lengths never exceed the maximum attention span of the transformer. That is,
attention can uniformly cover all prior positions without numerical underflow or overflow. Yet, despite
these favorable conditions, the transformer exhibits no expressive power beyond what is predicted
by our formal characterization. A more detailed breakdown of the results can be found in §E.1.3.

6.2 Language modeling

We now turn to experiments on language modeling, focusing on three representative languages: RDP-
1, LDP-2, and LDP-1. The corresponding automata are illustrated in Fig. 3. We train the transformer
LMs using the standard cross-entropy loss. For evaluation, a predicted symbol is considered correct if
it has non-zero probability under the target distribution −→p A induced by the DFA. Per-token accuracies
are reported in Tab. 3. The transformer LM successfully learns LDP-1 and LDP-2 with perfect accuracy.
For RDP-1, the best performance reaches 98.3%, but the model consistently falls short of achieving
100.0%. This gap becomes more evident upon inspecting the hidden states of the model.

Table 1: Language recognition experiments. Language classes are ordered by decreasing complexity.
For each class, examples are chosen to be minimally more complex than those in the immediately
lower class. Maximum and mean accuracies (± standard deviation) are reported. Exact values of
100.0% accuracy are highlighted in bold.

Class Language Transformer LSTM
max (%) mean (%) max (%) mean (%)

Counter languages CNT 83.3 53.6± 8.6 100.0 86.9± 20.9

Regular languages PARITY 52.1 50.6± 0.8 100.0 100.0± 0.0

Star-free
DYCK-(1, 2) 83.4 64.2± 8.0 100.0 99.3± 1.0
DYCK-(1, 1) 87.7 71.5± 9.3 100.0 88.8± 17.3

LT-2 62.1 57.9± 2.3 100.0 100.0± 0.0

Unambiguous polynomials RDP-1 90.0 71.1± 11.5 100.0 100.0± 0.0
LAST 64.8 57.3± 2.7 100.0 100.0± 0.0

Left-deterministic polynomials

PT-2 100.0 98.3± 3.5 100.0 99.7± 1.1
LT-1 100.0 88.8± 11.8 100.0 93.0± 14.2

LDP-2 100.0 100.0± 0.0 100.0 100.0± 0.0
LDP-1 100.0 97.3± 6.0 100.0 100.0± 0.0
FIRST 100.0 99.4± 1.4 100.0 100.0± 0.0

9

We extract the representation H at each position n by concatenating the outputs of all self-attention
and feedforward sublayers:

H:,n =
[
H(0.5)(w):,n

⊤
· · ·H(L)(w):,n

⊤]⊤
. (14)

To assess whether the model internally tracks the states in the DFAs, we train a linear classifier to
predict the state the DFA is in upon reading w<n, given H:,n−1. The classifier consists of two linear
layers with no intermediate nonlinearity: the first projects to F2 for visualization, and the second
performs classification. In Fig. 2, we plot the 2D projections and overlay the decision boundaries of
the classifier.

The visualizations reveal that, for LDP-1 and LDP-2, the transformer does distinguish the states, as
their representations are linearly separable. In contrast, for RDP-1, state representations are intermixed.
Notably, even when we train a neural probe with nonlinearity on the representations, perfect probing
accuracy remains elusive. This suggests that the transformer does not learn to fully separate the states
in the non-partially ordered DFA corresponding to RDP-1.

Acknowledgments

This publication was made possible by an ETH AI Center doctoral fellowship to Jiaoda Li.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. In NIPS Deep

Learning Symposium, 2016. URL https://arxiv.org/abs/1607.06450.

[2] Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical
languages accepted by transformer encoders with hard attention. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=gbrHZq07mq.

[3] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of
Transformers to Recognize Formal Languages. In Bonnie Webber, Trevor Cohn, Yulan He,
and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7096–7116, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.576. URL https://
aclanthology.org/2020.emnlp-main.576.

[4] J.A. Brzozowski and Faith E. Fich. Languages of R-trivial monoids. Journal of Com-
puter and System Sciences, 20(1):32–49, 1980. ISSN 0022-0000. doi: https://doi.org/10.
1016/0022-0000(80)90003-3. URL https://www.sciencedirect.com/science/
article/pii/0022000080900033.

[5] J. Richard Büchi. On a Decision Method in Restricted Second Order Arithmetic, pages 425–
435. Springer New York, New York, NY, 1990. ISBN 978-1-4613-8928-6. doi: 10.1007/
978-1-4613-8928-6_23. URL https://doi.org/10.1007/978-1-4613-8928-6_
23.

[6] Alexandra Butoi, Ghazal Khalighinejad, Anej Svete, Josef Valvoda, Ryan Cotterell, and Brian
DuSell. Training neural networks as recognizers of formal languages. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=aWLQTbfFgV.

[7] David Chiang. Transformers in uniform TC0. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=ZA7D4nQuQF.

[8] David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 7654–7664, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.527. URL https://aclanthology.org/2022.
acl-long.527.

10

https://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq
https://aclanthology.org/2020.emnlp-main.576
https://aclanthology.org/2020.emnlp-main.576
https://www.sciencedirect.com/science/article/pii/0022000080900033
https://www.sciencedirect.com/science/article/pii/0022000080900033
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
https://openreview.net/forum?id=aWLQTbfFgV
https://openreview.net/forum?id=aWLQTbfFgV
https://openreview.net/forum?id=ZA7D4nQuQF
https://aclanthology.org/2022.acl-long.527
https://aclanthology.org/2022.acl-long.527

[9] David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
5544–5562. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
chiang23a.html.

[10] Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot
Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural
networks and the chomsky hierarchy. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

[11] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of first-order
logic over finite words. International Journal of Foundations of Computer Science, 19(03):
513–548, 2008. doi: 10.1142/S0129054108005802. URL https://doi.org/10.1142/
S0129054108005802.

[12] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes,
Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong,
Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna
Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri
Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar
Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura,
Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer,
Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang,
Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey
Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti
Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez,
Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong,
Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng
Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay
Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet,
Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu,
Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita

11

https://proceedings.mlr.press/v202/chiang23a.html
https://proceedings.mlr.press/v202/chiang23a.html
https://openreview.net/forum?id=WbxHAzkeQcn
https://doi.org/10.1142/S0129054108005802
https://doi.org/10.1142/S0129054108005802

Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon
Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris
Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling,
Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman,
Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel,
Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez,
Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman,
Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,
Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff
Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim
Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko,
Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey,
Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng,
Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul
Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina,
Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi
Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak
Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao
Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir
Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang,
Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen,
Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang,
Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models. Computing Research Repository,
arXiv:2407.21783, 2024. URL https://arxiv.org/abs/2407.21783. Version 2.

[13] K. Etessami and T. Wilke. An until hierarchy for temporal logic. In Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science, pages 108–117, 1996. doi: 10.1109/LICS.
1996.561310. URL https://ieeexplore.ieee.org/document/561310.

[14] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Information and Computation, 179(2):279–295, 2002. ISSN 0890-
5401. doi: https://doi.org/10.1006/inco.2001.2953. URL https://www.sciencedirect.
com/science/article/pii/S0890540101929530.

12

https://arxiv.org/abs/2407.21783
https://ieeexplore.ieee.org/document/561310
https://www.sciencedirect.com/science/article/pii/S0890540101929530
https://www.sciencedirect.com/science/article/pii/S0890540101929530

[15] Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and
counter languages. Mathematical systems theory, 2:265–283, 1968. URL https://link.
springer.com/article/10.1007/BF01694011.

[16] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis of
fairness. POPL ’80, page 163–173, New York, NY, USA, 1980. Association for Computing
Machinery. ISBN 0897910117. doi: 10.1145/567446.567462. URL https://doi.org/
10.1145/567446.567462.

[17] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020. doi: 10.1162/tacl_a_00306.
URL https://aclanthology.org/2020.tacl-1.11.

[18] Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard at-
tention transformers: Perspectives from circuit complexity. Transactions of the Associa-
tion for Computational Linguistics, 10:800–810, 2022. doi: 10.1162/tacl_a_00490. URL
https://aclanthology.org/2022.tacl-1.46.

[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International Con-
ference on Learning Representations, 2021. URL https://openreview.net/forum?
id=d7KBjmI3GmQ.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:
1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://dl.acm.org/doi/
10.1162/neco.1997.9.8.1735.

[21] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne,
Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck.
Music transformer. In The Seventh International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJe4ShAcF7.

[22] Xinting Huang, Andy Yang, Satwik Bhattamishra, Yash Sarrof, Andreas Krebs, Hattie Zhou,
Preetum Nakkiran, and Michael Hahn. A formal framework for understanding length generaliza-
tion in transformers. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=U49N5V51rU.

[23] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008. doi:
10.1109/IEEESTD.2008.4610935.

[24] Neil Immerman and Dexter Kozen. Definability with bounded number of bound variables.
Information and Computation, 83(2):121–139, 1989. ISSN 0890-5401. doi: https://doi.org/10.
1016/0890-5401(89)90055-2. URL https://www.sciencedirect.com/science/
article/pii/0890540189900552.

[25] Johan Anthony Wilem Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Univer-
sity of California, Los Angeles, 1968. URL https://www.proquest.com/docview/
302320357.

[26] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata, pages 3–42. Princeton
University Press, Princeton, 1956. ISBN 9781400882618. doi: 10.1515/9781400882618-002.
URL https://doi.org/10.1515/9781400882618-002.

[27] Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers
to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

[28] R. McNaughton and S. Papert. Counter-free Automata. M.I.T. Press research monographs.
M.I.T. Press, 1971. ISBN 9780262130769. URL https://mitpress.mit.edu/
9780262130769/counter-free-automata/.

13

https://link.springer.com/article/10.1007/BF01694011
https://link.springer.com/article/10.1007/BF01694011
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462
https://aclanthology.org/2020.tacl-1.11
https://aclanthology.org/2022.tacl-1.46
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://dl.acm.org/doi/10.1162/neco.1997.9.8.1735
https://dl.acm.org/doi/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=U49N5V51rU
https://www.sciencedirect.com/science/article/pii/0890540189900552
https://www.sciencedirect.com/science/article/pii/0890540189900552
https://www.proquest.com/docview/302320357
https://www.proquest.com/docview/302320357
https://doi.org/10.1515/9781400882618-002
https://openreview.net/forum?id=3EWTEy9MTM
https://mitpress.mit.edu/9780262130769/counter-free-automata/
https://mitpress.mit.edu/9780262130769/counter-free-automata/

[29] William Merrill. Sequential neural networks as automata. In Jason Eisner, Matthias Gallé, Jeffrey
Heinz, Ariadna Quattoni, and Guillaume Rabusseau, editors, Proceedings of the Workshop
on Deep Learning and Formal Languages: Building Bridges, pages 1–13, Florence, August
2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-3901. URL https:
//aclanthology.org/W19-3901.

[30] William Merrill. On the linguistic capacity of real-time counter automata. Computing Research
Repository, arXiv:2004.06866, 2020. URL https://arxiv.org/abs/2004.06866.
Version 2.

[31] William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 52453–52463. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a48e5877c7bf86a513950ab23b360498-Paper-Conference.pdf.

[32] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.
doi: 10.1162/tacl_a_00562. URL https://aclanthology.org/2023.tacl-1.31.

[33] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNGlPh8Wh.

[34] William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-
depth threshold circuits. Transactions of the Association for Computational Linguistics, 10:
843–856, 2022. doi: 10.1162/tacl_a_00493. URL https://aclanthology.org/2022.
tacl-1.49.

[35] Franz Nowak, Anej Svete, Alexandra Butoi, and Ryan Cotterell. On the representational capacity
of neural language models with chain-of-thought reasoning. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 12510–12548, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.676.
URL https://aclanthology.org/2024.acl-long.676.

[36] OpenAI. GPT-4 technical report. Computing Research Repository, arXiv:2303.08774, 2023.
URL https://doi.org/10.48550/arXiv.2303.08774.

[37] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), pages 46–57, 1977. doi: 10.1109/SFCS.1977.32. URL
https://ieeexplore.ieee.org/document/4567924.

[38] Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. In The Seventh International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HyGBdo0qFm.

[39] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position rep-
resentations. In Marilyn Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Short Papers), pages 464–468, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2074.
URL https://aclanthology.org/N18-2074.

[40] Imre Simon. Piecewise testable events. In H. Brakhage, editor, Automata Theory and
Formal Languages, pages 214–222, Berlin, Heidelberg, 1975. Springer Berlin Heidel-
berg. ISBN 978-3-540-37923-2. URL https://link.springer.com/chapter/10.
1007/3-540-07407-4_23.

[41] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka
Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexan-
der W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain,

14

https://aclanthology.org/W19-3901
https://aclanthology.org/W19-3901
https://arxiv.org/abs/2004.06866
https://proceedings.neurips.cc/paper_files/paper/2023/file/a48e5877c7bf86a513950ab23b360498-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a48e5877c7bf86a513950ab23b360498-Paper-Conference.pdf
https://aclanthology.org/2023.tacl-1.31
https://openreview.net/forum?id=NjNGlPh8Wh
https://aclanthology.org/2022.tacl-1.49
https://aclanthology.org/2022.tacl-1.49
https://aclanthology.org/2024.acl-long.676
https://doi.org/10.48550/arXiv.2303.08774
https://ieeexplore.ieee.org/document/4567924
https://openreview.net/forum?id=HyGBdo0qFm
https://aclanthology.org/N18-2074
https://link.springer.com/chapter/10.1007/3-540-07407-4_23
https://link.springer.com/chapter/10.1007/3-540-07407-4_23

Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer,
Anders Johan Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M.
Dai, Andrew La, Andrew Kyle Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong,
Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa
Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin
Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron
Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles
Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites,
Christian Voigt, Christopher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
rette, Dan Hendrycks, Dan Kilman, Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel
Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne
Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep
Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes,
Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader,
Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliza-
beth Donoway, Ellie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem,
Ernie Chang, Ethan A Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi,
Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca
Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo,
Germàn Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gon-
zalo Jaimovitch-Lopez, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah
Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin,
Hinrich Schuetze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble,
Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández
Fisac, James B Simon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson,
Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason
Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen
Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru,
John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg,
Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B.
Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik
Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel, Kevin
Omondi, Kory Wallace Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar,
Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui
Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy
Noble, Ludwig Schmidt, Luheng He, Luis Oliveros-Colón, Luke Metz, Lütfi Kerem Senel,
Maarten Bosma, Maarten Sap, Maartje Ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas
Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramirez-Quintana, Marie
Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L Leavitt, Matthias Hagen,
Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael An-
drew Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube,
Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee
Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva,
Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Andrew Chi, Nayeon Lee, Neta
Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita
Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah
Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy,
Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul
Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter W Chang, Peter Eckers-
ley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti
Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer
Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A.
Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak,
Roman Sitelew, Ronan Le Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Russ Salakhutdinov,
Ryan Andrew Chi, Seungjae Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh,
Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruet-

15

ter, Samuel R. Bowman, Samuel Stern Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A.
Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann,
Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry
Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal,
Shyam Upadhyay, Shyamolima Shammie Debnath, Siamak Shakeri, Simon Thormeyer, Simone
Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar,
Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen
Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop
Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsunori Hashimoto, Te-Lin Wu,
Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo
Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj,
Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas
Raunak, Vinay Venkatesh Ramasesh, vinay uday prabhu, Vishakh Padmakumar, Vivek Srikumar,
William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong,
Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
Yasaman Bahri, Yejin Choi, Yichi Yang, Sophie Hao, Yifu Chen, Yonatan Belinkov, Yu Hou,
Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang,
and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj. Featured Certification.

[42] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal
languages can transformers express? a survey. Transactions of the Association for Computa-
tional Linguistics, 12:543–561, 05 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00663. URL
https://doi.org/10.1162/tacl_a_00663.

[43] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.127063. URL https://www.
sciencedirect.com/science/article/pii/S0925231223011864.

[44] Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. In
Kevin Duh, Helena Gomez, and Steven Bethard, editors, Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pages 6845–6881, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.381.
URL https://aclanthology.org/2024.naacl-long.381/.

[45] Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA, pages 475–499.
2002. doi: 10.1142/9789812776884_0021. URL https://www.worldscientific.
com/doi/abs/10.1142/9789812776884_0021.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[47] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael,
Felix Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark
for general-purpose language understanding systems. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

[48] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite
precision RNNs for language recognition. In Iryna Gurevych and Yusuke Miyao, editors,
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 740–745, Melbourne, Australia, July 2018. Association for

16

https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.1162/tacl_a_00663
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://aclanthology.org/2024.naacl-long.381/
https://www.worldscientific.com/doi/abs/10.1142/9789812776884_0021
https://www.worldscientific.com/doi/abs/10.1142/9789812776884_0021
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

Computational Linguistics. doi: 10.18653/v1/P18-2117. URL https://aclanthology.
org/P18-2117.

[49] Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting
logic into softmax transformers. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=FmhPg4UJ9K.

[50] Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize
exactly the star-free languages. Computing Research Repository, arXiv:2310.13897, 2024. URL
https://arxiv.org/abs/2310.13897. Version 3.

[51] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Chengqing Zong, Fei Xia, Wen-
jie Li, and Roberto Navigli, editors, Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), pages 3770–3785, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.292. URL
https://aclanthology.org/2021.acl-long.292.

A Background

In this section, we provide background information that was omitted from the main text for brevity.
We include it here for the sake of completeness.

A.1 Temporal logic

Temporal logic [37] is a special case of modal logic, with modalities referring to time.

A.1.1 LTL[P,F,S,U]

Linear temporal logic LTL[P,F,S,U] includes four temporal operators: P (past), F (future), S
(since), and U (until). Notably, P, F, and one of S or U can be omitted without loss of expressive
power [16]. We write ⊤ to denote TRUE and ⊥ to denote FALSE. The semantics of the formulas are
defined inductively as follows:

• w, n |= πa iff the nth symbol of w is an a.

• w, n |= ψ1 ∧ ψ2 iff w, n |= ψ1 and w, n |= ψ2.

• w, n |= ¬ψ iff w, n ̸|= ψ.

• w, n |= Pψ iff there exists m such that m < n and w,m |= ψ.

• w, n |= Fψ iff there exists m such that m > n and w,m |= ψ.

• w, n |= ψ1Sψ2 iff there exists m such that m < n, w,m |= ψ2, and for every k such that
m < k < n, w, k |= ψ1.

• w, n |= ψ1Uψ2 iff there exists m such that m > n, w,m |= ψ2, and for every k such that
n < k < m, w, k |= ψ1.

Example:
• abb, 1 |= πa as the first symbol is a.

• abb, 3 |= Pπa as an a occurs before position 3.

• abb, 3 |= πbSπa as πa holds at position 1 (before position 3), and πb holds at every position
between 1 and 3.

To say a string w of length N satisfies a formula ψ, written as w |= ψ, we imagine we start at a
position outside the string, e.g., position 0 or N + 1.

17

https://aclanthology.org/P18-2117
https://aclanthology.org/P18-2117
https://openreview.net/forum?id=FmhPg4UJ9K
https://arxiv.org/abs/2310.13897
https://aclanthology.org/2021.acl-long.292

Example:
• abb |= πbSπa as the formula is satisfied at position 4, outside the string.

• abb |= πaUπb as the formula is satisfied at position 0, outside the string.

The language defined by a formula ψ is the set of all strings that satisfy ψ, denoted by L(ψ):

L(ψ) def
= {w ∈ Σ∗ | w |= ψ}. (15)

Example:

L (πbSπa) = Σ∗ab∗ (16a)
L (πaUπb) = a∗bΣ∗ (16b)

We define the operator depth of a formula ψ, denoted od(ψ), as the maximum number of nested
temporal operators in ψ. It is defined recursively as follows:

od(πa) = 0

od(ψ1 ∧ ψ2) = max(od(ψ1), od(ψ2))

od(¬ψ) = od(ψ)
od(Pψ) = od(ψ) + 1

od(Fψ) = od(ψ) + 1

od(ψ1Sψ2) = max(od(ψ1), od(ψ2)) + 1

od(ψ1Uψ2) = max(od(ψ1), od(ψ2)) + 1

A.1.2 LTL[P,F]

Unary temporal logic LTL[P,F] is the fragment of LTL[P,F,S,U] that excludes the binary operators
S and U. This restriction renders LTL[P,F] strictly less expressive than LTL[P,F, S,U] [13, 14].

Example:
Consider the language consisting of all words that begin with a and end with b. To enforce that a
word starts with a, we require that a occurs at the beginning of the word, i.e., it is preceded by
nothing. This can be expressed as P(πa ∧ ¬P⊤). Symmetrically, ending with b can be expressed
using the dual condition involving F. Thus, the formula

L(P(πa ∧ ¬P⊤) ∧ P(πb ∧ ¬F⊤)) = aΣ∗b (17)

defines the desired language.

A.1.3 LTL[P]

We define LTL[P] as the past fragment of LTL[P,F], which excludes the F operator.

Proposition A.1. LTL[P] is strictly less expressive than LTL[P,F].

Proof. Since LTL[P] is a syntactic fragment of LTL[P,F], every formula expressible in LTL[P] is
also expressible in LTL[P,F]. To establish strictness, it suffices to exhibit a language definable in
LTL[P,F] that is not definable in LTL[P]. Consider again the language aΣ∗b. It is not definable
in LTL[P], as expressing the end of a string requires the ability to look forward, which LTL[P]
lacks. ■

A.2 First-order logic

The seminal work of Büchi [5] demonstrated how properties of languages can be described using
logical formulas, while McNaughton and Papert [28] was the first to restrict these formulas to
first-order logic (FO[<]).

18

A.2.1 FO[<]

The atomic formulas of FO[<] consist of unary predicates πa for each a ∈ Σ and a binary numerical
predicate < that can be used to determine the sequential order between variables. Formulas in FO[<]
may use arbitrarily many variables. However, it has been shown that three variables are both necessary
and sufficient to define all first-order definable languages [25, 24]. In addition to the usual Boolean
connectives ∧ and ¬, there is an existential quantifier ∃. The formulas in FO[<] are constructed
inductively as follows:

• Every atomic formula is a formula;

• A Boolean combination of formulas is a formula;

• If ϕ(x, . . .) is a formula, so is ∃x : ϕ(x, . . .);

The universal quantifier ∀ can be defined as follows:

∀x : ϕ(x, . . .)
def
= ¬∃x : ¬ϕ(x, . . .). (18)

A formula with no free variables is called a sentence. We write w |= ϕ if ϕ is satisfied for w under
the interpretation, where variables range over the positions in w, unary predicates πa(x) hold if the
symbol at position x is a, and < is interpreted as the natural order on positions. A sentence ϕ can
define a language, the set of strings over Σ satisfying it, denoted as L(ϕ).

Example:
The formula below defines the language aΣ∗b:

∃x∀y∃z : (πa(x) ∧ x ≤ y ∧ y ≤ z ∧ πb(z)) (19)

where x ≤ y is shorthand for x < y ∨ x = y.

The quantifier depth of a formula ϕ, denoted qd(ϕ), is defined recursively as follows:

qd(πa) = 0

qd(ϕ1 ∧ ϕ2) = max(qd(ϕ1), qd(ϕ2))
qd(¬ϕ) = qd(ϕ)

qd(∃x : ϕ(x, . . .)) = qd(ϕ) + 1

It is well known that FO[<] and LTL[P,F,S,U] are equivalent in expressive power [25] and they
both define exactly the class of star-free languages [28].

A.2.2 FO2[<]

FO2[<] is the fragment of FO[<] restricted to using only two distinct variables (typically reused via
quantification).

Example:
The formula Eq. (19) can be written as a formula in FO2[<] as follows:

∃x : (πa(x) ∧ ∀y : (x ≤ y ∧ ∃x : (y ≤ x ∧ πb(x)))) , (20)

which uses only two distinct variables x and y.

It is shown that LTL[P,F] and FO2[<] recognize precisely the same languages [14].

A.2.3 PFO2[<]

We define PFO2[<] as the past fragment of FO2[<], in which formulas are restricted so that whenever
a free variable x is present, every existential quantifier must be of the form ∃y < x.. This ensures
that all quantification is limited to positions at or before x, i.e., only past positions relative to the free
variable are accessed.

19

PFO2[<] has precisely the same expressive power as LTL[P]. We establish this equivalence by
providing translations in both directions.

Lemma A.2. Every formula ψ in LTL[P] can be translated into an equivalent single-variable
formula ϕ(x) in PFO2[<].

Proof. We proceed by structural induction on the formula ψ.

Base case. If ψ = πa, we translate it to ϕ(x) = πa(x).

Induction step. Assume ψ1 and ψ2 can be translated into ϕ1(x) and ϕ2(x) respectively. We
translate compound formulas as follows:

• If ψ = ψ1 ∧ ψ2, then ϕ(x) = ϕ1(x) ∧ ϕ2(x).
• If ψ = ¬ψ1, then ϕ(x) = ¬ϕ1(x).
• If ψ = Pψ1, then ϕ(x) = ∃y < x : ϕ1(y)

In each case, the resulting formula ϕ(x) belongs to PFO2[<], since it uses at most two variables (the
free variable x and a bound variable y), both of which can be reused. ■

Lemma A.3. Every single-variable formula ϕ(x) in PFO2[<] can be translated into an equivalent
formula ψ in LTL[P].

Proof. We proceed by induction on the quantifier depth qd(ϕ).

Base case. If qd(ϕ) = 0, then ϕ(x) is a Boolean combination of atomic formulas such as πa(x),
which are directly translatable into LTL[P] formulas.

Induction step. Assume that every formula of quantifier depth at most k can be translated into an
equivalent LTL[P] formula. Consider a formula ϕ(x) of depth k + 1. The formula can be written as
a Boolean combination of:

• Subformulas of quantifier depth at most k, which can be translated into LTL[P] by the inductive
hypothesis;

• Subformulas of the form ∃y < x : ϕ1(y), where ϕ1 has depth at most k. By the inductive hypothesis,
ϕ1(y) translates to a LTL[P] formula ψ1, and the whole subformula translates to ψ = Pψ1.

■

Combining the two lemmas, we obtain the following theorem.

Theorem 2.1. PFO2[<] and LTL[P] have the same expressive power.

Proof. The result follows directly from Lemma A.2 and Lemma A.3. To define languages, LTL[P]
formulas are interpreted at position N + 1. Similarly, PFO2[<] formulas with a single variable
x can be converted into sentences by prefixing them with ∃x, which is semantically equivalent to
∃x < N + 1. ■

B Transformers

In this section, we describe the transformer idealization under consideration in more detail. The
formal proofs for the following two results are also given: (i) every transformer can be translated into
an equivalent PFO2[<] formula, and (ii) every LTL[P] formula can be simulated by a transformer.

20

B.1 Transformer architecture

The assumptions we make are restated as follows:
Assumption 3.1. We assume that the transformer satisfies the following conditions:

1. Fixed precision: There exists a finite set of values that the floating-point numbers can assume. We
denote this set as F = {f1, f2, . . .}.

2. No positional encoding (NoPE): Positional encodings are omitted for now, but are addressed in
§F.3.

3. Soft attention: Attention weights are computed using the softmax function. We also treat average
hard attention (AHA) in §F.1, showing that AHA is equally expressive as soft attention.

4. Strict future masking: As in Yang et al. [50], the attention is strictly future-masked. Strict masking
is shown to be more expressive than non-strict masking in §F.2.

5. Recognition: Following standard practice in expressivity studies [42], the transformer is treated
as a language recognizer. We will extend the analysis to transformer language models in §5.

We denote the set of non-negative floating-point numbers as F≥0 ⊂ F. Similar notation is used for
positive numbers, negative numbers, and other subsets. The set F includes two special values, ∞ and
−∞, representing positive and negative infinity. Their behaviors are defined as follows:

• ∀f ∈ F \ {−∞}, ∞+ f
def
= ∞;

• ∀f ∈ F \ {−∞}, −∞+ f
def
= −∞;

• ∀f ∈ F>0, f · ∞ def
= ∞ and f · (−∞)

def
= −∞;

• ∀f ∈ F<0, f · ∞ def
= −∞ and f · (−∞)

def
= ∞;

• ∀f ∈ F \ {∞,−∞}, f/∞ def
= 0;

• exp(∞)
def
= ∞ and exp(−∞)

def
= 0.

Transformers take strings as inputs. Given a string w = w1 · · ·wN over an alphabet Σ, we append
a special end-of-sentence symbol EOS /∈ Σ to form the extended string w def

= w1 · · ·wN EOS over the
extended alphabet Σ def

= Σ ∪ {EOS}.

The transformer consists of an input layer, followed by a stack of L hidden layers and a final output
layer.

B.1.1 Input layer

An embedding function e of type Σ → FD maps each symbol to a D-dimensional column vector.
The embedding layer applies e to each symbol in w to produce the input representation: E(w) ∈
FD×(N+1), i.e.,

E(w):,n
def
= e(wn), n ∈ {1, . . . , N + 1}. (21)

where wN+1
def
= EOS.

B.1.2 Hidden layers

Each hidden layer contains two sublayers: a self-attention mechanism and a feedforward network.

The self-attention mechanism is a function of type FD×(N+1) → FD×(N+1). Given input H(w) ∈
FD×(N+1), we compute:

Q
def
= ΘQH(w), (22a)

K
def
= ΘKH(w), (22b)

V
def
= ΘVH(w), (22c)

where ΘQ,ΘK,ΘV ∈ FD×D are learnable parameter matrices.

A pairwise compatibility score S ∈ F(N+1)×(N+1) is computed via scaled dot product:

Sn,m
def
=

Q:,n • K:,m√
D

. (23)

21

We then compute attention weights α ∈ F(N+1)×(N+1) using softmax:

αn,m
def
=

exp(Sn,m)∑
i<n exp(Sn,i)

. (24)

In practice, the softmax is numerically stabilized by subtracting the maximum score from all scores
before exponentiation:

αn,m
def
=

exp(Sn,m −maxi<n Sn,i)∑
j<n exp(Sn,j −maxi<n Sn,i)

. (25)

The attention output at position n is then computed as a weighted sum of the value vectors:

A(H(w)):,n
def
=

∑
m<n

αn,mV:,m. (26)

We assume a single attention head, since multiple heads do not increase expressive power [27].

The feedforward sublayer is a function of type FD×(N+1) → FD×(N+1) and consists of two linear
transformations with a ReLU nonlinearity:

F(H(w)):,n
def
= ΘF2ReLU

(
ΘF1H(w):,n + bF1)+ bF2, (27)

where ΘF1 ∈ FD′×D,bF1 ∈ FD′
,ΘF2 ∈ FD′×D,bF2 ∈ FD are trainable parameters, D′ is the

hidden size of the intermediate layer.

B.1.3 Output layer

The final output layer is a function of type FD×(N+1) → F that computes a scalar score based on the
representation at the final position (corresponding to EOS):

C
(
H(L)(w)

)
=

(
θC)⊤ H(L)(w):,N+1 + bC (28)

where θC ∈ FD and bC ∈ F are learnable parameters.

B.2 From transformers to PFO2[<]

In this sub-section, we show that any transformer can be simulated by PFO2[<]. We begin by
formalizing what it means for a function to be simulated by PFO2[<]. With a slight abuse of notation,
we write D to refer either to the model’s hidden dimensionality or to 1, in the case of a scalar
classification output.

Definition B.1. A function H : Σ
N+1 → FD×(N+1) is said to be simulated by PFO2[<] if for every

dimension d ∈ {1, . . . , D} and every floating-point value f ∈ F, there exists a single-variable
formula ϕ(x) in PFO2[<] such that for every position n ∈ {1, . . . , N + 1},

H(w)d,n = f if and only if w, n |= ϕ(x). (29)

Similarly, a function H of type Σ
N+1 → F(N+1)×(N+1) is said to be simulated by PFO2[<] if for

every floating-point value f ∈ F, there exists a two-variable formula ϕ(x, y) in PFO2[<] such that
for every pair of positions n,m ∈ {1, . . . , N + 1},

H(w)n,m = f if and only if w, n,m |= ϕ(x, y). (30)

We will prove the following proposition, which we will use repeatedly.

Proposition B.2. Let H1,H2 be functions of type Σ
N+1 → FD, and let H be either a function

FD → FD′
(where D′ is not necessarily equal to D) or FD × FD → F. If both H1 and H2 can be

simulated by PFO2[<], then so can H(H1) and H(H1,H2).

Proof. Since the inputs are fixed-dimensional vectors over F, the number of possible value combi-
nations is finite. For any given output value f ∈ F, one can enumerate all input configurations for
which the function yields f , and construct a PFO2[<] formula expressing their disjunction. ■

22

This proposition accounts for all components of the transformer architecture, such as the feedforward
sublayers, projection operations, dot products, elementwise operations such as addition, scalar
operations such as division, the exp function, and the classification head—except for the embedding
layer, the summations involved in the attention computation, and the operation of identifying the
maximum score introduced by the stabilized softmax.

We handle the embedding layer as follows:

Lemma B.3. The embedding layer can be simulated by PFO2[<].

Proof. For any dimension d and position n, the embedding layer outputs a fixed value f if the symbol
at position n is mapped to f by the embedding function e in the d-th coordinate. Since Σ is finite and
e is fixed, we can express this using a disjunction over all symbols that are mapped to f in coordinate
d:

E(w)d,n = f if and only if w, n |=
∨

a∈{a|e(a)d=f}

πa(x). (31)

■

We next address the summations in the attention mechanism. We begin by establishing the following
result:
Proposition B.4. PFO2[<] can count up to a threshold.

Proof. The threshold counting quantifiers can be defined as follows.

• The quantifier for "there exists at least one" coincides with the standard bounded existential
quantifier:

∃≥1y < x : ϕ(y)
def
= ∃y < x : ϕ(y). (32)

• "There exist at least two" can be defined as:

∃≥2y < x : ϕ(y)
def
= ∃y < x : (ϕ(y) ∧ ∃x < y : ϕ(x)). (33)

• We can define "exactly one" by combining the above:

∃=1y < x : ϕ(y)
def
= ∃≥1y < x : ϕ(y) ∧ ¬∃≥2y < x : ϕ(y). (34)

• Additional counting quantifiers up to a threshold can be defined in a similar fashion.

■

Soft attention involves two types of summations, which we address in turn. The first appears in the
denominator of the softmax function, used to compute the attention weights α (Eq. (24)). Since exp
outputs non-negative values, this summation consists entirely of non-negative numbers and can be
simulated by PFO2[<].

Lemma B.5. PFO2[<] can simulate a sum of non-negative fixed-precision floating-point numbers.

Proof. Since F≥0 is finite, there exists a finite set of possible sums. Moreover, because all values are
non-negative, for each such sum there are only finitely many combinations of input values that yield
it. Each combination can be characterized using the threshold-counting quantifiers introduced in
Proposition B.4: Too many positive entries lead to overflow, while 0’s do not affect the sum. Taking a
finite disjunction over all such combinations defines a PFO2[<] formula that holds exactly when the
prefix sum equals a given value. ■

The second summation occurs in the computation of attention outputs (Eq. (26)). The value matrix
V ∈ FD×(N+1) may include both positive and negative values, so we cannot apply the previous
approach directly. However, as pointed out by Merrill and Sabharwal [31]:
Proposition B.6. Under fixed precision, there exists an upper limit on the number of non-zero entries
in the output of a softmax function. We refer to the upper bound as the maximum attention span
Nmax.

23

Proof. This upper bound is given by:

Nmax =

⌊
min(1,max(F \ {∞}))

min(F>0)

⌋
, (35)

where ⌊·⌋ is the floor function. ■

Consequently, the number of nonzero attention weights is bounded. It follows that Eq. (26) computes
the sum over a bounded number of terms, which can be simulated by PFO2[<]:

Lemma B.7. PFO2[<] can simulate a sum of a bounded number of fixed-precision floating-point
numbers.

Proof. Since the number of summands is bounded, we can enumerate all possible combinations
of inputs. This behavior can be simulated using the threshold counting quantifiers introduced in
Proposition B.4. ■

Finally, we account for the numerical-stability adjustment in Eq. (25). The only additional operation
introduced by this stabilization is the identification of the maximum score among a finite set of
floating-point values, which can be expressed in PFO2[<] as follows:

Proposition B.8. PFO2[<] can identify the maximum score maxi<n Sn,i.

Proof. Let the ordered set of floating-point values be F = {−∞, f1, f2, . . . , fK ,∞}. For each
f ∈ F, let ϕf (x) be a PFO2[<]-formula that holds iff the value at position x equals f . Since the
set of floating-point numbers is finite, we can enumerate all possible maximum values. For each
candidate maximum value f , we can construct a PFO2[<] formula ϕmax

f (x) that holds if and only
if the scores among all positions y < x are less than or equal to f , and at least one value equals f .
They can be defined inductively over the total order of F as follows:

ϕmax
∞ (x)

def
= ∃y < x : ϕ∞(y), (36a)

ϕmax
fK (x)

def
= (¬∃y < x : ϕmax

∞ (y)) ∧ ∃y < x : ϕfK (y), (36b)
...

ϕmax
f1 (x)

def
=

¬∃y < x :
∨

f∈{∞,fK ,...,f2}

ϕmax
f (y)

 ∧ ∃y < x : ϕf1(y), (36c)

ϕmax
−∞(x)

def
=

¬∃y < x :
∨

f∈{∞,fK ,...,f1}

ϕmax
f (y)

 ∧ ∃y < x : ϕ−∞(y). (36d)

■

We have now completed the proof of the following theorem:

Theorem 3.2. Every transformer can be simulated by PFO2[<].

Proof. By Lemma B.3, the embedding layer can be simulated by PFO2[<]. By Proposition B.2,
simulation by PFO2[<] is closed under all subsequent operations in the transformer, except for
summations. By Lemma B.5, Proposition B.6, and Lemma B.7, the summation operations involved
in attention computation can also be simulated by PFO2[<]. Therefore, the entire transformer can be
simulated by PFO2[<]. ■

24

B.3 From LTL[P] to transformers

In this subsection, we show that every LTL[P] formula can be simulated by a transformer. The central
idea is to encode the truth value of the formula at each position as a dedicated coordinate within the
transformer’s hidden state: the value 1 represents ⊤, and 0 represents ⊥.

The formal definition is as follows.

Definition B.9. A LTL[P] formula ψ is said to be simulated by a function H of type Σ
N+1 →

FD×(N+1) if there exists a coordinate d ∈ {1, . . . , D} such that for every position n ∈ {1, . . . , N+1}
and every input string w ∈ Σ

∗
,

H(w)d,n =

{
1, if w, n |= ψ,

0, otherwise.
(37)

We introduce a one-hot encoding function JK, which maps an index to a column vector of zeros except
for a single entry equal to 1 at that index. Let 0 denote the all-zero column vector.

We first show that the atomic formulas can be translated into an embedding layer.

Lemma B.10. The atomic formulas πa for a ∈ Σ can be simulated by an embedding layer.

Proof. We assign a distinct coordinate d to every distinct symbol a ∈ Σ with a map g : Σ →
{1, . . . ,

∣∣Σ∣∣}. Since the biases in attention mechanisms are sometimes omitted, we include a dedicated
bias coordinate db that always holds a constant value 1. The embedding layer is then defined as
follows:

H(0)(w)d,n =


1, if d = db,

1, if d = g(wn),

0, otherwise.
(38)

Coordinates that remain inactive at this stage are initialized to 0; they will later be used to store
logical formulas introduced in subsequent layers. ■

Next, we show that the Boolean connectives can be simulated.

Lemma B.11. If ψ1 and ψ2 can be simulated by a transformer, then their Boolean combinations can
also be simulated by a transformer.

Proof. Assume ψ1 and ψ2 are simulated by H
(ℓ)
d1,:

and H
(ℓ)
d2,:

respectively. For brevity, we write
x = H(ℓ)(w)d1,: and y = H(ℓ)(w)d2,:, so x,y ∈ F1×(N+1) are row vectors indexed by positions.
All operations below are applied elementwise.

• ¬ψ1: Construct a layer that computes, in a fresh coordinate d¬,

−x+ 1. (39)

This can be implemented with an FFN as follows. Select a hidden unit d′ in the intermediate hidden
state {1, . . . , D′} and set the first linear transformation to:

ΘF1
d,: =

{
−Jd1K

⊤ if d = d′,

0⊤ otherwise,
bF1 = Jd′K. (40)

The second linear transformation maps d′ to the output coordinate d¬:

ΘF2
d,: =

{
Jd′K⊤ if d = d¬,

0⊤ otherwise,
bF2 = 0. (41)

The attention sublayer is bypassed by setting ΘQ,ΘK,ΘV to zero matrices.

25

• ψ = ψ1 ∧ ψ2: Compute, in a fresh coordinate d∧,
ReLU (x+ y − 1) . (42)

Implement this with a single FFN as follows. Select a hidden unit d′ and set the first linear
transformation to:

ΘF1
d,: =

{
Jd1K

⊤
+ Jd2K

⊤ if d = d′,

0⊤ otherwise,
bF1 = −Jd′K. (43)

The second linear transformation connects d′ to the output coordinate d∧:

ΘF2
d,: =

{
Jd′K⊤ if d = d∧,

0⊤ otherwise,
bF2 = 0. (44)

Again, the attention sublayer is bypassed.

■

Finally, we address the temporal operator P.
Lemma B.12. If ψ can be simulated by a transformer, then Pψ can also be simulated by a transformer.

Proof. We start by introducing the base construction and then discuss two issues arising from
fixed-precision arithmetic, together with their corresponding fixes. Assume ψ is simulated by H

(ℓ)
d1,:

.

Base construction. We construct an attention mechanism such that each position n attends uni-
formly to all previous positions m < n where H(ℓ)(w)d1,m = 1. Specifically, we need the attention
scores to be:

Sn,m =

{
0 if H(ℓ)(w)d1,m = 1,

−flarge if H(ℓ)(w)d1,m = 0,
(45)

where flarge ∈ F is a large enough positive floating-point number such that exp(−flarge) = 0. This
ensures that positions where ψ is ⊥ receive zero attention weight.

This behavior can be implemented by configuring the query and key vectors as follows:

∀n, Qd,n =

{
flarge if d = d1,

0 otherwise,
(46)

and
K = H(ℓ)(w)− 1. (47)

where the subtraction by 1 is applied elementwise.

The corresponding attention projection weights are:

ΘQ
d,: =

{
flargeJdbK

⊤ if d = d1,

0⊤ otherwise,
(48)

and
ΘK

d,: = JdK⊤ − JdbK
⊤
, (49)

where db denotes the bias coordinate.

Next, we copy the values from H
(ℓ)
d1,:

into an unused coordinate dP via the value projection:

ΘV
d,: =

{
Jd1K

⊤ if d = dP,

0⊤ otherwise.
(50)

Thus, V becomes:

Vd,: =

{
H(ℓ)(w)d1,: if d = dP,

0⊤ otherwise.
(51)

Let N⊤ denote the number of positions m < n such that H(ℓ)(w)d1,m = 1. If N⊤ > 0, then
αn,m = 1/N⊤, giving H(ℓ+0.5)(w)dP,n = 1. Otherwise, if N⊤ = 0, the attention weights are
distributed uniformly over previous positions, all of which satisfy H(ℓ)(w)d1,m = 0, yielding
H(ℓ+0.5)(w)dP,n = 0. Hence, H(ℓ+0.5)

dP,:
simulates Pψ in the ideal case.

26

Patch 1: Vanishing Attention Weights When too many previous positions with H
(ℓ)
d1,m

= 1,
i.e., N⊤ > Nmax, the resulting attention weights αn,: will underflow to 0⊤. This causes
H(ℓ+0.5)(w)dP,n = 0 even when Pψ is true, leading to incorrect behavior.

To fix this, we first compute the logical conjunction of d1 and dP and store the result in d∧ via the
feedforward sublayer. When H

(ℓ+1)
d∧,n

= 1, it indicates that the position n satisfies ψ and there exists
at least one prior position that also satisfies ψ. The number of such positions is bounded by Nmax,
as starting from the (Nmax + 1)th position, the first attention sublayer will suffer from vanishing
attention weights, causing H(ℓ+0.5)(w)dP,n = 0.

Next, we construct a second layer in which the attention sublayer uniformly attends to positions
m < n where H(ℓ+1)(w)d∧,m = 1. This constructs a coordinate dPP simulating P(ψ ∧ Pψ). Since
the number of positions where H

(ℓ+1)
d∧,m

= 1 is bounded, this second attention sublayer is not subject
to vanishing attention weights and reliably computes its output.

Note that P(ψ∧Pψ) evaluates to ⊤ when at least two earlier positions satisfy ψ. If exactly one earlier
position satisfies ψ, then Pψ holds but P(ψ ∧ Pψ) does not. In this case, however, the first attention
sublayer (producing dP) already correctly simulates Pψ, since the attention only needs to cover one
position. Thus, we take the logical disjunction of dP and dPP, implemented via the feedforward
sublayer. The resulting coordinate d∨ correctly simulates the formula Pψ.

Patch 2: Rounding Errors Fixed-precision arithmetic introduces rounding errors when computing
the attention weights αn,m. The fraction 1/N⊤ may not be exactly representable by a finite-precision
floating-point number. Moreover, the iterative summation in Eq. (26) can further accumulate rounding
errors. Consequently, the output H(ℓ+0.5)

dP,n
may equal a value very close to 1, when it should be

exactly 1. This could lead to incorrect results in subsequent computations.

We address this with a thresholding mechanism implemented via a feedforward sublayer. Define
round(1) as the set of floating-point numbers that deviates from 1 by at most δ:

round(1) = {f ∈ F | |f − 1| ≤ δ} . (52)

In standard floating-point systems, such as IEEE 754 [23], δ is on the order of the machine precision,
e.g., approximately 2−24 for single precision and 2−11 for half precision. Let fsmall be a small positive
floating-point number such that 1/fsmall is also representable, fsmall · 1

fsmall
= 1, and min(round(1))−

fsmall > 0. We rectify the value at dP using: Let fsmall be a small positive floating-point number such
that 1/fsmall is also representable, fsmall · 1

fsmall
= 1, and min(round(1))− fsmall > 0. We rectify the

value at dP using:

− 1

fsmall

(
ReLU

(
H

(ℓ+0.5)
dP,:

− fsmall

)
− ReLU

(
H

(ℓ+0.5)
dP,:

))
. (53)

This function outputs 1 if H(ℓ+0.5)
dP,n

∈ round(1), and 0 if H(ℓ+0.5)
dP,n

= 0. To implement this with an
FFN, select two hidden units d′1, d

′
2 and define:

ΘF1
d,: =

{
JdPK⊤ if d = d′1 or d = d′2,

0⊤ otherwise,
bF1 = −fsmallJd′1K. (54)

and

ΘF2
d,: =

{
− 1
fsmall

(Jd′1K
⊤
+ Jd′2K

⊤
) if d = dP,

0⊤ otherwise,
bF2 = 0. (55)

■

So far, we have ignored layer normalization. We now show that its presence does not affect the
representational power of transformers.

Proposition B.13. If a LTL[P] formula ψ can be simulated by a transformer without layer normal-
ization, then it can also be simulated by a transformer with layer normalization.

27

Proof. Let x be a vector. Layer normalization is defined as follows:

LayerNorm(x) =
x− µ√
σ2 + ϵ

· γ + β, (56)

where µ and σ are the mean and standard deviation of the elements in x, γ and β are parameters, and
ϵ is a small constant for numerical stability.

We introduce, for every logical coordinate d, a mirror coordinate d̂ and enforce

H(ℓ)(w)d̂,n = 1−H(ℓ)(w)d,n (57)

for all sublayers ℓ and positions n. This guarantees that for every position n,

µn =
1

2
and σ2

n =
1

4
. (58)

independently of the particular truth assignment.

With this structure, we can choose the parameters of layer normalization such that the operation
becomes the identity function (i.e., has no effect):

γ =
√
σ2
n + ϵ =

√
1

4
+ ϵ, β = µn =

1

2
. (59)

However, the attention sublayer may produce values close to 1 but not exactly equal to it. Conse-
quently, layer normalization can slightly perturb these values away from the intended Boolean values.
We denote by round(0) and round(1) the sets of floating-point numbers that deviate from 0 and 1,
respectively, by at most a small constant δ, which is again on the order of the machine precision. This
deviation is harmless, since the subsequent feedforward sublayer can rectify the outputs using the
following thresholding function: let d1 be the coordinate we hope to rectify and choose f1, f2 ∈ F
with max(round(0)) < f1 < f2 < min(round(1)). Apply:

1

f2 − f1

((
H(ℓ)(w)d1,: − f1

)
− ReLU

(
H(ℓ)(w)d1,: − f2

))
. (60)

To implement this with an FFN, select two hidden units d′1, d
′
2 and define:

ΘF1
d,: =

{
Jd1K

⊤ if d = d′1 or d = d′2,

0⊤ otherwise,
bF1 = −f1Jd′1K − f2Jd′2K. (61)

and

ΘF2
d,: =

{
1

f2−f1 (Jd
′
1K

⊤ − Jd′2K
⊤
) if d = d1,

0⊤ otherwise,
bF2 = 0. (62)

This yields 1 if H(ℓ)(w)d1,n ∈ round(1), and 0 if H(ℓ)(w)d1,n ∈ round(0). ■

Now, we obtain the following theorem:

Theorem 3.3. Every LTL[P] formula can be simulated by a transformer.

Proof. By applying structural induction to the formula, using the lemmas Lemma B.10, Lemma B.11,
and Lemma B.12, we demonstrate that each formula ψ can be simulated by dimension dψ in the
transformer’s hidden state. Furthermore, by Proposition B.13, we can nullify the effect of layer
normalization.

Finally, the classification head only needs to copy the relevant dimension dψ as the output. ■

C Characterizations of LTL[P]

In this section, we introduce three alternative formalisms and show that they are equivalent in
expressive power to LTL[P].

28

C.1 Left-deterministic polynomials

A monomial over an alphabet Σ is a language of the form:

Σ∗
0a1Σ

∗
1 · · ·anΣ∗

n, (63)

where a1, . . . ,ak ∈ Σ and Σ0,Σ1, . . . ,Σn ⊆ Σ.

A monomial is called

• left-deterministic if for every k ∈ {1, . . . , n}, ak ̸∈ Σk−1,

• right-deterministic if for every k ∈ {1, . . . , n}, ak ̸∈ Σk,

• unambiguous if it is either left-deterministic or right-deterministic.

A polynomial is a finite union of monomials, and it is said to be left-deterministic (resp. right-
deterministic or unambiguous) if it is a finite disjoint union of left-deterministic (resp. right-
deterministic or unambiguous) monomials.

Example:
The language FIRST bΣ∗ is left-deterministic and therefore definable in LTL[P]. In contrast, the
language LAST Σ∗b is right-deterministic but not left-deterministic and thus not recognizable by
LTL[P].

C.2 R-trivial monoids

A semigroup is a set endowed with an associative operator, and a monoid is a semigroup additionally
endowed with an identity element. A canonical example is the set Σ∗, with string concatenation
as the associative operation and the empty string ε as the identity element. A monoid M is said to
be R-trivial (resp. L-trivial) if for all elements s, t ∈ M, the condition sM = tM (respectively,
Ms = Mt) implies s = t.

We now define an equivalence relation on Σ∗ known as the syntactic congruence. Given a language
L ⊆ Σ∗, two strings s,t ∈ Σ∗ are syntactically equivalent, written s≡Lt, if and only if:

∀u,v ∈ Σ∗ : usv ∈ L ⇔ utv ∈ L. (64)

The equivalence class of a string w is denoted as [w]. The quotient monoid Σ∗/≡L, i.e., the set of
equivalence classes under ≡L, is called the syntactic monoid of the language L.

C.3 Partially ordered DFAs

PODFA is introduced in §4. Constructing the DFA for a given language is a useful method for
assessing whether the language is definable in LTL[P].

Example:
It is non-trivial to determine whether certain languages can be defined in LTL[P]. However,
it becomes clearer when we consider its corresponding automaton. For instance, consider the
language DYCK-(1, 1), written as (ab)∗ in regular expression, the Dyck language over one type of
parentheses with nesting depth limited to 1. The minimal DFA accepting this language is shown
below:

q0 q1

a

b

This DFA is not partially ordered, as it can revisit both q1 and q0. Therefore, DYCK-(1, 1) is not
definable in LTL[P].

29

Table 2: Relations between logics, formal languages, monoids, and finite automata.

Temporal logic First-order logic Formal language Monoid Automata

LTL[P,F, S,U] FO[<] Star-free Aperiodic Counter-free
LTL[P,F] FO2[<] Unambiguous polynomial DA 2-PODFA

LTL[P] PFO2[<] Left-deterministic polynomial R-trivial PODFA

C.4 Equivalence

We first show that every PODFA can be defined in LTL[P].
Lemma C.1. Let A = (Σ, Q, qI , F, δ) be a PODFA and w ∈ Σ a string of length N . For every
q ∈ Q, there exists a formula ψq> in LTL[P] such that A is in q upon reading w<n if and only if
w, n− 1 |= ψq>.

Proof. We first construct a formula ψ=q for each state q ∈ Q, such that w, n− 1 |= ψ=q if and only
if A is in q after reading w<n−1, i.e., right before reading wn−1. We proceed by induction on the
partial order ⪯ defined over Q.

Base case. The initial state qI can be defined by ensuring that no prior symbol caused a transition
out of qI :

ψ=qI =
∧

a∈{a|δ(qI ,a)̸=qI}

¬Pπa. (65)

Induction step. Assume that for all q′ ⪯ q with q′ ̸= q, the formulas ψ=q′ have already been
constructed. Then, A has entered q at some prior point if:

ψ<q =
∨
q′∈Q

∨
a∈{a|δ(q′,a)=q}

P(ψ=q′ ∧ πa). (66)

To define ψ=q , we must ensure that q has been entered and it is not exited yet:

ψ=q = ψ<q ∧
∧

a∈{a|δ(q,a)̸=q}

¬P(ψ<q ∧ πa). (67)

Once we obtain ψ=q , we can define ψq> as follows:

ψq> =
∨
q′∈Q

∨
a∈{a|δ(q′,a)=q}

ψ=q′ ∧ πa (68)

Finally, a string w is accepted by A if it reaches a final state:∨
q∈F

ψq. (69)

■

Now we move on to prove the direction from LTL[P] to R-trivial monoid. Our proof is inspired by
the proof of Proposition 4 in Diekert et al. [11].

A key characterization of R-trivial monoids is given by Brzozowski and Fich [4]:

Proposition C.2 (Brzozowski and Fich [4]). M is R-trivial if and only if there exists an integer
K > 0 such that for all s, t ∈ M, we have (st)Ks = (st)K .

Thus, we prove the following lemma as preparation:

Lemma C.3. Let ψ be a formula in LTL[P] with operator depth at most K and K > 0. For every
u,v,s,t ∈ Σ∗, we have

u(st)Ksv |= ψ if and only if u(st)Kv |= ψ. (70)

30

Proof. The case s = ε is trivial, so we assume s ̸= ε.

Let w = u(st)Ksv and w′ = u(st)Kv. As w′ is a subsequence of w, we align positions in w′ with
a subset of positions in w. Define N = |w|. We consider position N + 1 to point just beyond the end
of w.

We define a pair (n, n′) ∈ {1, . . . , N + 1} as legal if

(n = n′ = N + 1) ∨
(
wn = wn′ ∧ (n′ <

∣∣u(st)K∣∣ ∨ n′ >
∣∣u(st)Ks∣∣)) . (71)

Next, define the middle block of w as:

Bk =
{
n
∣∣ ∣∣u(st)k∣∣ < n <

∣∣u(st)Ks∣∣} , (72)

A legal pair (n, n′) is said to be k-close if:

n = n′ ∨ n, n′ ∈ Bk. (73)

We now prove the following inductive claim: Let ψ be a formula in LTL[P] with operator depth at
most k, for some 0 ≤ k ≤ K. For every k-close pair (n, n′), we have

w, n |= ψ if and only if w′, n′ |= ψ. (74)

We proceed by induction on k.

Base case. k = 0: In this case, ψ is a Boolean combination of atomic formulas πa. (n, n′) being a
legal pair implies either n = n′ = N + 1 or wn = wn′ , so the claim holds trivially.

Induction step. Assume the claim holds for depth k − 1. Let ψ1 = Pψ where ψ has depth k − 1.
Suppose w, n |= ψ1. Then there exists a position m < n such that w,m |= ψ. For w′, n′ |= ψ1 to
hold, we need to identify a position m′ < n′ such that w′,m′ |= ψ. By the inductive hypothesis, it
suffices for m′ < n′ and for (m,m′) to be (k − 1)-close. There are two cases:

• Case 1: m /∈ Bk. Then we can set m′ = m. (m,m′) is (k − 1)-close by definition. We now need
to show that m′ < n′.
– Subcase 1.1: n, n′ ∈ Bk. Since m /∈ Bk and m < n, we can conclude m ≤

∣∣u(st)k∣∣. Thus,
m′ = m < n′ because n′ ∈ Bk.
– Subcase 1.2: n = n′. Then we have m′ = m < n = n′.

• Case 2: m ∈ Bk. Then, as Bk−1 \ Bk covers all symbols in Bk, there exists m′ ∈ Bk−1 \ Bk
such that wm′ = wm. Again, (m,m′) is (k − 1)-close since m,m′ ∈ Bk−1. We need to show that
m′ < n′:
– Subcase 2.1: n, n′ ∈ Bk. Since m′ ∈ Bk−1 \ Bk and n′ ∈ Bk, we have m′ < n′.
– Subcase 2.2: n = n′. Since m′ ∈ Bk−1 \ Bk and m ∈ Bk, we have m′ < m < n = n′.

The converse direction, from w′, n′ |= ψ to w, n |= ψ follows analogously.

By applying the claim with k = K, n = N + 1, and n′ = N + 1, we conclude that w |= ψ if and
only if w′ |= ψ. ■

This result then follows straightforwardly:
Lemma C.4. Every LTL[P]-definable language has a R-trivial syntactic monoid.

Proof. Lemma C.3 suffices to show that every LTL[P]-definable language satisfies the characteriza-
tion in Proposition C.2. ■

We now have all the pieces in place to prove the main theorem.
Theorem 4.1. Let L ⊆ Σ∗ be a regular language, M be its syntactic monoid, and A be the DFA
accepting it. The following assertions are equivalent: (1) L is a left-deterministic polynomial, (2) M
is R-trivial, (3) A is partially ordered, and (4) L is definable by LTL[P].

31

Proof. Brzozowski and Fich [4] showed the equivalence of (1), (2), and (3). To complete the picture,
it remains to incorporate (4), which follows from Lemma C.1 and Lemma C.4. ■

The relationships between various temporal logics, first-order logics, formal languages, monoids,
and finite automata are summarized in Tab. 2. We treat the last row (for LTL[P]) in this paper. For
further details on the other classes (LTL[P,F] and LTL[P,F,S,U]), interested readers can refer to
McNaughton and Papert [28] and Tesson and Thérien [45].

D Transformer Language Models

The transformer architecture follows the specification in §B.1, with one modification: the final output
layer is replaced by a language modeling head L : FD → F|Σ∪{UNK}|. L is defined as follows:

L(H(L)(w<n)) = softmax
(
ΘLH(L)(w):,n−1 + bL

)
(75)

where ΘL ∈ F(|Σ|+1)×D and bL ∈ F|Σ|+1 are learnable parameters.

We have laid the groundwork that makes the proofs of the following two theorems straightforward.

Theorem 5.1. Every transformer LM can be simulated by PFO2[<].

Proof. The mapping L consists of a linear layer followed by a softmax. Since both the linear layer
and softmax are definable in PFO2[<] as shown in §B.2, the result follows directly. ■

Theorem 5.2. Every PODFA LM can be simulated by a transformer LM.

Proof. Let A = (Σ, Q, qI , F, δ) be a PODFA, and let pA be its induced LM. By Lemma C.1, for
each state q ∈ Q, there exists a LTL[P] formula ψq that characterizes the automaton being in state q.
Then, by Theorem 3.3, each such formula can be simulated by a dedicated dimension in the hidden
state of a transformer.

Since A is deterministic, at each position, there is exactly one coordinate that takes the value 1, while
the rest are 0. Therefore, the final prediction head effectively acts as a lookup table that maps each
dimension to the target distribution −→p A induced by A, which depends solely on the state A is in. ■

E Experiments

In this section, we present additional empirical results that align with our theoretical findings.

E.1 Language recognition

We supplement §6.1 with detailed descriptions of the experimental setup, tasks, and results.

E.1.1 Experimental setup

Our experimental setup follows Deletang et al. [10], Butoi et al. [6]. We use a transformer with
soft attention, strict future masking, L = 5 layers, model size D = 64, and NoPE. Training strings
are of length up to 40, while test strings range from length 41 to 500. The model is trained for
1,000,000 steps with a batch size of 128. For evaluation, we generate 512 samples per test length. For
comparison, we also train a long short-term memory (LSTM) [20] with a hidden size of 256. Each
experiment is run with 5 different random seeds and 3 learning rates (1× 10−4, 3× 10−4, 5× 10−4).

All experiments were conducted on a single GPU with 24 GB of memory, each taking approximately
one hour to complete. Our code is adapted from https://github.com/google-deepmind/
neural_networks_chomsky_hierarchy, licensed under the Apache License, Version 2.0.

E.1.2 Languages

We consider five language classes, arranged in a strict inclusion hierarchy—each class is a proper
subset of the one preceding it. For each class, we select one or more representative languages.

32

https://github.com/google-deepmind/neural_networks_chomsky_hierarchy
https://github.com/google-deepmind/neural_networks_chomsky_hierarchy

Counter languages. Counter languages are languages that can be recognized by counter machines—
finite-state automata augmented by a number of counters [15, 30]. In our experiments, we choose one
of the simplest counter languages: CNT anbn, the set of strings consisting of an arbitrary number of
as followed by an equal number of bs.

Regular languages. A defining characteristic of non-star-free regular languages is modular count-
ing. For instance, PARITY a∗(ba∗ba∗)∗, the language of binary strings with an even number of bs,
is one of the simplest instances of this class.

Star-free languages. Languages that are definable in LTL[P,F,S,U]. We focus on three common
examples that are not definable in LTL[P,F]:

• DYCK-(1, 2): (a(ab)∗b)∗, the Dyck language (well-balanced parentheses) with 1 pair of parenthe-
ses, limited to depth 2.

• DYCK-(1, 1): (ab)∗, the Dyck language with 1 pair of parentheses, limited to depth 1. This is also
a canonical example of strictly locally testable languages, where string membership depends only
on adjacent symbol blocks [28].

• LT-2: Σ∗abΣ∗ with |Σ| > 2, the set of strings containing ab as a substring (symbols appearing
contiguously). This is an example of a locally testable language [28].

Unambiguous polynomials. Languages that are definable in LTL[P,F]. We are interested in those
not definable in LTL[P], i.e., right-deterministic but not left-deterministic polynomials. We select
two such languages:

• RDP-1: (Σ \ {b0})∗a(Σ \ {a,b1})∗, a simple right-deterministic monomial.

• LAST: Σ∗b, the language of strings ending with b. It can be seen as the simplest representative of
the class.

Left-deterministic polynomials. We now consider languages that are definable in LTL[P], select-
ing five examples that serve as contrasts to the previously discussed ones.:

• PT-2: Σ∗aΣ∗bΣ∗ with |Σ| > 2, the language of strings that contain ab as a subsequence. Lan-
guages of this type are known as piecewise testable languages [40].

• LT-1: Σ∗aΣ∗, the set of strings that contain a as a substring. This is the simplest case in both
locally testable and piecewise testable languages.

• LDP-1: (Σ \ {a,b0})∗a(Σ \ {b1})∗, a left-deterministic monomial symmetrical to RDP-1.

• Although LDP-1 and RDP-1 are symmetrical, the former can be recognized by a DFA with only
2 states, whereas the latter requires 3 (see Fig. 3). For a fair comparison, we also include LDP-2
(Σ \ {a1,b0})∗a1(Σ \ {a2,b1})∗a2(Σ \ {b2})∗, which also requires 3 states.

• FIRST: bΣ∗, the set of strings beginning with b.

Sample generation. For each language, we construct both positive and negative samples. Some
examples are constructed adversarially to increase the difficulty of the classification task.:

• CNT: Negative samples contain one fewer a or b.

• PARITY: Negative samples contain an odd number of bs.

• DYCK-(1, 2), DYCK-(1, 1): One symbol in a positive sample is flipped. Since these languages
require even-length strings, we only use even-length inputs.

• LT-2 and LT-1: Negative samples omit ab (resp. a) as a substring. Positive samples are constrained
to include exactly one such occurrence.

• RDP-1, LDP-1, and LDP-2: Negative samples contain a single incorrect symbol.

• LAST and FIRST: Negative samples do not end or begin with b, respectively.

• PT-2: Negative samples lack the ab subsequence.

33

q0

q1

q2

ab1

b0

Σ \ {a,b0}

Σ \ {b0,b1}

Σ \ {a,b1}

(a) RDP-1

q0

q1

a1

Σ \ {a1,b0}

Σ \ {b1}

(b) LDP-1

q0

q1

q2

a1

a2

Σ \ {a1,b0}

Σ \ {a2,b1}

Σ \ {b2}

(c) LDP-2

Figure 3: DFAs for the given languages. Nodes represent states, and arrows represent transitions.
The initial state is indicated by an incoming arrow with no source node, and accepting (final) states
are shown with double circles.

E.1.3 Results

We compute classification accuracy and report both the maximum and mean values across all runs in
Tab. 1. The LSTM achieves perfect accuracy on all tasks, consistent with previous work showing
that LSTMs can recognize regular languages [29] and implement counting mechanisms [48]. This
confirms that the tasks are learnable given the available training data.

Counter languages. While several papers have shown that counting quantifiers can be simulated by
arbitrary-precision [9, 49] or log-precision transformers [31], our results indicate that a fixed-precision
transformer cannot recognize CNT. The model achieves a maximum accuracy of only 83.3%. This
finding contrasts with Bhattamishra et al. [3], who report that transformers can recognize anbncn.
The discrepancy may stem from our evaluation on longer input lengths.

Regular languages. In line with Hahn [17], we find that the transformer completely fails to learn
the non-star-free regular language PARITY, reaching at most 52.1% accuracy. Although Chiang and
Cholak [8] design a transformer with customized positional encodings capable of recognizing PARITY,
these encodings are not always representable under fixed precision, and the resulting architecture is
not learnable under standard training conditions.

Star-free languages. Yang et al. [50] show that fixed-precision transformers with UHA recognize
exactly the star-free languages. Similarly, Yao et al. [51] demonstrate that transformers with posi-
tional encodings of the form n/N—which are not always representable under fixed precision—can
recognize bounded Dyck languages, a family of star-free languages. In contrast, we prove that trans-
formers with soft attention and NoPE cannot recognize even the simplest bounded Dyck languages
(DYCK-(1, 2) and DYCK-(1, 1)), nor the locally testable language LT-2. These results are corroborated
by our experiments: the transformer fails to learn any of these three languages. The best performance
is on DYCK-(1, 1), with a maximum accuracy of 87.7%, which still indicates poor generalization,
especially considering the simplicity of the task.

Unambiguous polynomials. As predicted by our theory, the transformer fails to learn unambiguous
polynomials that are not left-deterministic. The model achieves a maximum accuracy of 90.0% on
RDP-1 and 64.8% on LAST.

Left-deterministic polynomials. Although the transformer cannot learn LT-2, it achieves perfect
accuracy on both PT-2 and LT-1. In contrast to the poor performance on RDP-1 and LAST, the model
learns their symmetrical counterparts (LDP-1, LDP-2, and FIRST) with 100% accuracy. Notably,
Chiang and Cholak [8] construct unmasked transformer encoders capable of recognizing FIRST,
but report difficulty in training such models in practice. Our results show that masked transformer
decoders can learn FIRST easily and consistently, suggesting that masking may offer a more robust
source of positional information than positional encodings.

Summary The empirical results align fully with our theoretical predictions. Importantly, we use
single-precision (32-bit) floating-point numbers, and the string lengths never exceed the maximum

34

Table 3: Language modeling experiments. Maximum and mean per-token accuracies (± standard
deviation) are reported. Exact 100.0% are highlighted in bold.

Language Max (%) Mean (%)

RDP-1 98.3 73.6± 12.5
LDP-1 100.0 98.6± 2.5
LDP-2 100.0 98.9± 3.7

attention span of the transformer. That is, attention can uniformly cover all prior positions without
numerical underflow or overflow. Yet, despite these favorable conditions, the transformer exhibits no
expressive power beyond what is predicted by our formal characterization.

E.2 Language modeling

The DFAs corresponding to the languages used in our experiments are shown in Fig. 3, and their
maximum and mean per-token accuracies are reported in Tab. 3. As predicted, the transformer
language model learns left-deterministic polynomials perfectly but fails on the right-deterministic
polynomial.

F Additional results

In this section, we present further theoretical results of potential interest.

F.1 Hard attention

Average hard attention (AHA) uniformly attends to positions m < n with the maximum score Sn,m.
Formally, Eq. (24) is modified as follows:

αn,m
def
=

1 {Sn,m = maxi<n Sn,i}∑
j<n 1 {Sn,j = maxi<n Sn,i}

, (76)

where 1 {·} is the indicator function.

We now show that AHA is also definable in PFO2[<].

Theorem F.1. Every transformer with AHA can be simulated by PFO2[<].

Proof. By Proposition B.8, PFO2[<] can identify the maximum score maxi<n Sn,i. The denom-
inator in Eq. (76) is a sum of non-negative terms and can therefore be simulated by PFO2[<] via
Lemma B.5. As with the soft-attention case in Eq. (24), the resulting attention weights may vanish
when the number of positions exceeds the model’s bounded attention span; hence, Lemma B.7 applies
here as well. The remaining steps of the construction follow identically to those in §B.2. ■

The other direction is straightforward.
Theorem F.2. Every LTL[P] formula can be simulated by a transformer with AHA.

Proof. Recall that the attention mechanism we constructed in the proof of Lemma B.12 uniformly
attends to all positions with the highest score Sn,m = 0, effectively making it equivalent to AHA.
Therefore, LTL[P] formulas can also be simulated by transformers with AHA. ■

Now, we turn to UHA, another widely studied attention mechanism where each position n attends to
a single position m < n with the highest Sn,m. In the case of ties, the rightmost position is selected.
Yang et al. [50] prove that transformers with UHA are as expressive as LTL[P,F, S,U].

Combining the results from above, we have:
Corollary F.3. Transformers with AHA are as expressive as those with soft attention, which are
strictly less expressive than those with UHA.

35

Proof. The equality AHA = soft attention follows directly from Theorems F.1 and F.2.

The strict inequality soft attention < UHA follows directly from the fact that LTL[P] is strictly less
expressive than LTL[P,F,S,U]. ■

F.2 Non-strict future masking

Most commonly used transformers adopt non-strict future-masked soft attention, where each position
is allowed to attend to itself. In this case, Eq. (24) and Eq. (26) become:

αn,m
def
=

exp(Sn,m)∑
i≤n exp(Sn,i)

, (77)

and
A(H(w)):,n

def
=

∑
m≤n

αn,mV:,m. (78)

respectively.

This modification, however, limits the expressiveness of the model.
Theorem F.4. Transformers with non-strict future masking are strictly less expressive than those
with strict future masking.

Proof. Since we have already established that transformers with strict masking are as expressive as
PFO2[<], it suffices to show that any transformer with non-strict masking is strictly less expressive
than PFO2[<].

We begin by observing that transformers with non-strict masking can be simulated by PFO2[<]. The
required modification to Proposition B.4 involves including the current position in the threshold
counting quantifiers:

∃≥1y ≤ x : ϕ(y)
def
=

(
∃≥1y < x : ϕ(y)

)
∨ ϕ(x), (79a)

∃≥2y ≤ x : ϕ(y)
def
=

(
∃≥2y < x : ϕ(y)

)
∨
((
∃≥1y < x : ϕ(y)

)
∧ ϕ(x)

)
, (79b)

...

Next, we construct a language that is definable in PFO2[<] but cannot be recognized by a transformer
with non-strict masking. Consider the language bbΣ∗, which can be defined in PFO2[<] by the
following sentence:

∃x : (πb(x) ∧
(
∃=1y < x : πb(y)

)
∧ ¬∃y < x : ¬πb(y)). (80)

On the other hand, given any transformer H with non-strict masking, and for any string w ∈ bbΣ∗,
we have:

H(ℓ)(w):,2 = H(ℓ)(w):,1 for all layers ℓ ∈ {1, . . . , L} (81)

This is because, under non-strict masking, position n attends to all positions ≤ n, including itself.
When the prefix consists entirely of identical symbols, each attention pattern and subsequent compu-
tation depend solely on the identical sequence of embeddings, resulting in identical representations at
each position. However, differentiating the two leading bs is essential for recognizing bbΣ∗, as the
corresponding DFA will enter a different state upon reading the first symbol b. ■

Empirically, we confirm this limitation by training transformers—one with strict masking and one
with non-strict masking—on the language bbΣ∗. The results are consistent with our theoretical
prediction:

• The strictly masked transformer achieves 100.0% maximum accuracy and 96.3%± 5.8% average
accuracy.

• The non-strictly masked variant reaches only 95.8% maximum accuracy and 74.4%±8.2% average
accuracy.

36

F.3 Positional encodings

Positional encodings are introduced in Vaswani et al. [46] to inject information about the positions
into the transformer. In general, there are two categories of positional encodings:

• Absolute positional encoding: This is a function p : {1, . . . , N+1} → FD. It is typically injected
into the input layer by modifying Eq. (21) as follows:

E(w):,n
def
= e(wn) + p(n), n ∈ {1, . . . , N + 1}. (82)

• Relative positional encoding: This is a function p : {1, . . . , N + 1} × {1, . . . , N + 1} → FD. It
is typically injected into the attention sublayer by modifying Eq. (23) as follows [39, 21]:

Sn,m
def
=

Q:,n • K:,m +Q:,n • p(n,m)√
D

. (83)

In formal logic, a numerical predicate is a predicate that depends solely on the positions in a string,
not the symbols in those positions. Numerical predicates that depend on one (resp. two) position(s)
are referred to as unary (resp. binary) numerical predicates. For instance, the relation < is a binary
numerical predicate.

We now show that all absolute (resp. relative) positional encodings can be simulated by unary (resp.
binary) numerical predicates.

Theorem F.5. Let p be an absolute (resp. relative) positional encoding and L ⊆ Σ∗ be a regular
language. There exists a collection of unary (resp. binary) numerical predicates P such that the
following assertions are equivalent:

1. L can be recognized by a transformer with positional encoding p.

2. L is definable by PFO2[<,P], i.e., PFO2[<] extended with the numerical predicates in P .

Proof. Positional encodings, under fixed precision, have a finite image. Therefore, for every dimen-
sion d ∈ 1, . . . , D and every floating-point number f ∈ F, we can define a numerical predicate r
such that:

r(n) = ⊤ if p(n)d = f, (84)

or
r(n,m) = ⊤ if p(n,m)d = f. (85)

■

The reverse direction and a precise logical characterization of commonly used positional encodings,
e.g., sinusoidal and rotary [43], are left for future work.

G Related work

The expressivity of transformers in the context of formal methods has been extensively studied in
recent literature [42]. Various transformer variants have been explored, and different assumptions
have been made to enhance the expressivity of transformers.

Chain of thought (CoT). CoT reasoning, which involves generating intermediate steps before
arriving at a final answer, has become a popular approach. Pérez et al. [38] demonstrated that a
transformer with both an encoder and a decoder, when allowed a polynomial number of intermediate
computation steps, is Turing complete. Similarly, Merrill and Sabharwal [33], Nowak et al. [35], Li
et al. [27] show that the expressivity of transformers can be improved with various forms of CoT
reasoning. In this work, along with many others, we do not allow intermediate steps, which restricts
expressivity. In such a case, Hao et al. [18], Merrill et al. [34], Merrill and Sabharwal [32], Chiang
et al. [9], Yang and Chiang [49] have established various upper bounds on expressivity.

37

Non-fixed precision. If a transformer is allowed arbitrary precision, or if the precision increases
with input length, Bhattamishra et al. [3] proved that it is more expressive than simplified and
stateless counter machines. Additionally, Chiang et al. [9] and Yang and Chiang [49] showed that a
transformer with such precision can recognize any language definable by temporal counting logic. In
contrast, our work focuses on the scenario where precision is fixed, which imposes more limitations
on expressivity.

Bespoke positional encodings. Some prior studies have employed bespoke positional encodings,
many of which cannot be represented under fixed precision, to overcome certain limitations of
transformers. For example, Chiang and Cholak [8] used the encoding n/N to enable transformers
to recognize parity, and Barcelo et al. [2] demonstrated that transformers with a specially designed
positional encoding can achieve a lower bound of FO[<] with unary numerical predicates. In contrast,
our constructions and proofs do not rely on any form of positional encoding.

Hard attention. Two forms of hard attention have been explored in the literature. Yang et al. [50]
showed that masked fixed-precision transformers with UHA and NoPE recognize exactly the star-free
languages. Barcelo et al. [2] established a similar lower bound for transformers with AHA and
certain positional encodings. Prior to our work, it was unclear, under fixed precision, whether these
two hard attention mechanisms were more or less expressive than, or comparable to, the standard
soft attention. Surprisingly, we find that UHA is strictly more expressive than soft attention, while
AHA is as expressive as soft attention.

H Limitations

The primary limitation of this work lies in the omission of positional encodings. While we briefly
discuss their role as numerical predicates, the exact numerical predicates simulated by commonly
used positional encodings remain unknown. We hope to explore this in future work. Nevertheless,
we believe it is important to first understand the expressivity of a barebones transformer architecture,
as this forms the foundation for systematically incorporating various forms of positional encoding
later on.

Another limitation—particularly from an empirical perspective—is our stringent evaluation criteria
for transformer performance. While certain levels of accuracy might be considered successful in
empirical studies, we require perfect accuracy. This is motivated by a formal perspective: a model
(e.g., an automaton or logical formula) either recognizes a language or it does not; anything short of
perfection is regarded as failure, suggesting that some form of approximation or shortcut has been
employed. We interpret our results as identifying a class of tasks that transformers have the full
capacity to solve.

38

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Claims made in abstract and §1 accurately reflect the paper’s contributions and scope.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the
paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this question
will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

39

Justification: §H.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations
of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these assumptions
might be violated in practice and what the implications would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on
a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions,
which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or images
are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed
captions for online lectures because it fails to handle technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms and how they
scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren’t
acknowledged in the paper. The authors should use their best judgment and recognize that individual
actions in favor of transparency play an important role in developing norms that preserve the integrity
of the community. Reviewers will be specifically instructed to not penalize honesty concerning
limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions: §§ B.1, 3.1 and 5, proofs: §§ B.2, B.3, C, D and F.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented by formal
proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A description of the experimental setup and data generation is provided in §§ E.1.1,
E.1.2 and 6.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data are
provided or not.

40

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways. For example,
if the contribution is a novel architecture, describing the architecture fully might suffice, or if the
contribution is a specific model and empirical evaluation, it may be necessary to either make it
possible for others to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but reproducibility can
also be provided via detailed instructions for how to replicate the results, access to a hosted model
(e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce
that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the architecture
clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be a
way to access this model for reproducing the results or a way to reproduce the model (e.g., with an
open-source dataset or instructions for how to construct the dataset).
(d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome
to describe the particular way they provide for reproducibility. In the case of closed-source models, it
may be that access to the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code included in the supplementary material.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be possible, so
“No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is
central to the contribution (e.g., for a new open-source benchmark).
• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which ones
are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: §§ E and 6

Guidelines:

41

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations are reported in Tabs. 1 and 3 and §F.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals,
or statistical significance tests, at least for the experiments that support the main claims of the paper.
• The factors of variability that the error bars are capturing should be clearly stated (for exam-
ple, train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
• The method for calculating the error bars should be explained (closed form formula, call to a library
function, bootstrap, etc.)
• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a
2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not
verified.
• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Computer resources are reported in §E.1.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into the
paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

42

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to
laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: We foresee no societal impact of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or why
the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g., dis-
information, generating fake profiles, surveillance), fairness considerations (e.g., deployment of
technologies that could make decisions that unfairly impact specific groups), privacy considerations,
and security considerations.
• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in the
quality of generative models could be used to generate deepfakes for disinformation. On the other
hand, it is not needed to point out that a generic algorithm for optimizing neural networks could
enable people to train models that generate Deepfakes faster.
• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used as
intended but gives incorrect results, and harms following from (intentional or unintentional) misuse
of the technology.
• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring
misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Our code is adapted from Deletang et al. [10]. The authors are properly credited and
the license and terms are explicitly mentioned and properly respected in §E.1.1.

Guidelines:

43

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of that
source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.
• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submissions
via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This research does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state this
in the paper.

44

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions and locations,
and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
• For initial submissions, do not include any information that would break anonymity (if applicable),
such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs.

Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

45

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Strings and Languages
	
	

	Transformers
	The Transformer Architecture
	From Transformers to
	From to Transformers

	Characterizations of
	Transformer Language Models
	Experiments
	Language recognition
	Experimental setup
	Results

	Language modeling

	Background
	Temporal logic
	LTL[P,F,S,U]
	LTL[P,F]
	

	First-order logic
	
	[2]
	

	Transformers
	Transformer architecture
	Input layer
	Hidden layers
	Output layer

	From transformers to
	From to transformers

	Characterizations of
	Left-deterministic polynomials
	 R-trivial monoids
	Partially ordered DFAs
	Equivalence

	Transformer Language Models
	Experiments
	Language recognition
	Experimental setup
	Languages
	Results

	Language modeling

	Additional results
	Hard attention
	Non-strict future masking
	Positional encodings

	Related work
	Limitations

