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ABSTRACT

We propose Hierarchical Feedback Interface (HFI) for human-in-the-loop reinforce-
ment learning in debugging which structures human feedback grouped into high
level objectives and low level refinements to cover the subjectivity and ineffica-
ciousness of ad-hoc corrections. The HFI employs a two-tiered policy architecture,
in which a high-level policy abstracts debugging goals into ac a interpretable
meta-objectives, and a low-level policy translates these into actionable feedback
thus grounding human input to the ALigned-and-goal reasoning. The framework
integrates a hierarchical actor-critic mechanism - with the high-level policy gen-
erating goal vectors over reduced state representations, while the low level policy
conditions of both code specific features and these goals to generate context-aware
feedback. Human preferences are increased through a reward paradigm that brings
the goal space closer to expert judgments, this is and enabling the system to
adaptively stoic rewards environment and human guidance. Moreover the HFI
take advantage of hybrid state encoders and relational graph attention networks
to deal with semantic and structural representations of codes, making certain of
feasible feedback action dynamically concentrated in relevant parts of the code
The hierarchical decomposition not only generalizing human feedback over similar
Debugging scenarios while also avoiding the need for repetitive input, drastically
enhancing the scalability of human in the loop systems, and Tests have shown that
the HFI has better performance in bug detection and correction as compared to
monolithic feedback approaches, while preserving interpretability and flexibility to
a variety of debugging objectives.

1 INTRODUCTION

Debugging is one of the worst and time consuming aspects of the time in software development
where they spend about 1/3 of their time in identifying and fixing bugs (Chakraborty et al., 2024).
While conventional debugging tools use static analysis or predefined heuristics, recent developments
in reinforcement learning (RL) have shown promises capable of automating part of this process
(Bouchoucha et al., 2024). However, purely automated approaches fail at a complex and context-
dependent bugs that require a human intuition. Human in the loop (HITL) systems address this by
incorporating the feedback of experts in the learning process (Retzlaff et al., 2024), yet existing
frameworks suffer from two potentially important limitations: (1) feedback tends to be ad-hoc and
subjective, with no correspondence to the top level debug objectives, and (2) lack of hierarchical
reasoning is caused by repetitive corrections of semantically similar bugs.

The proposed Hierarchical Feedback Interface (HFI) brings out a structured method of HITL de-
bugging by combining hierarchical reinforcement learning (HRL) (Gebhardt et al., 2021) with
psychologically-based feedback protocols. Unlike monolithic feedback systems, the HFI breaks
down the process of debugging into 2 tiers: a high-level policy that abstracts human preferences in
terms of homogenizeable goals (such as “optimize memory efficiency”), and a low concrete policy
that gives rise to some actions (e.g., “replace linked list with array at line 42”). This decomposition is
similar to the way humans solve problems strategies, in which experts look for overarching objec-
tives prior to developing localised improvements (Dedhe et al., 2023). The architecture builds on
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actor-critic methods (Konda & Tsitsiklis, 1999), with the high-level critic evaluating goal achieving
and the low-level critic value assessing action quality in terms of given goals.

One of the key innovations of the HFI is the hybrid representation of states, a combination of relational
graph attention networks for code structure analysis (Chakarov et al., 2016) with transformer-based
encoders of semantic understanding. Furthermore, the HFI uses a reward shaping mechanism to
match human preferences with rewards from the environment that enable the system to adaptively
balance immediate corrections with long-term code quality (Xu & Zhang, 2024).

The contributions of this work are primarily three fold. First, we in institutionalize hierarchical
protocols for feedback on HITL debugging, showing the way in which high-level goal abstraction
alleviates subjectivity in human input. Second, we introduce a hybrid state encoder by jointly
processes syntactic and semantic code features in order to allow context-aware feedback generation.
Third, we also experimentally demonstrate that the HFI reduces human intervention by 37% compared
to flat feedback systems while improving bug resolution accuracy by 22%. These results highlight
the framework’s ability to generalize expert knowledge across diversified debugging scenarios.

2 RELATED WORK

Incorporating human feedback into reinforcement learning (RL) systems has been discussed across
many areas, to greater or lesser extents of structure and automation. Previous work may be roughly
divided into three areas: (1) preference-based RL, (2) hierarchical RL for decision making, and (3)
human-in-the-loop debugging.

2.1 PREFERENCE-BASED REINFORCEMENT LEARNING

Preference based RL learn reward functions from humans at the alternative of predefined metrics.
Early approaches were based on pairwise comparisons of trajectories (Bukharin et al., 2023), where
humans ranked alternative solutions for determining policy updates. While effective For simple tasks,
these methods fail with scalability in complex environments is because of the combinations explosion
of potential comparisons. Recent work addresses this by incorporating preferences in latent goal
spaces (Zhao et al., 2024), allowing generalization across similar states.

2.2 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical RL is the method of dividing long-horizon tasks into subtasks, and improving sample
efficiency (and satisfaction) and interpretability Classical HRL frameworks such as MAXQ (Di-
etterich, 2000) and options (Sutton et al., 1999) enables temporal abstraction and require manual
decomposition of tasks, limiting their usability to open-ended problems such as debugging. More
recent approaches for discovery of subgoals by unsupervised learning (Rafati & Noelle, 2019), yet
they lack mechanisms to incorporate human direction at varying abstraction levels; The closest to
our work is (Röder et al., 2020), which explores goal-conditioned policies but no integrating human
feedback for dynamic goal refinement.

2.3 HUMAN-IN-THE-LOOP DEBUGGING

Automated analysis and automated debugging with human-in-the-loop debugging systems with
expert intuition. LEARN2FIX (Böhme et al., 2020) pioneered interactive repair by bug validation by
querying users but it working to one granularity, no hierarchical reasoning. Subsequent work like
(Lertvittayakumjorn et al., 2020) introduced feature attribution to guide human attention but does not
treat feedback In the form of unstructured corrections, i.e. A notable exception is (Lloyd-Roberts
et al., 2023), which uses RL for invariant generation with human validation although its feedback
channel remains flat.

Compared to the existing methods, the HFI also introduces three major innovations: (1) a hierarchy
of decomposition of human feedback into goals and refinements (increasing objectivity); (2) a hybrid
state encoder based on models code semantics and structure jointly, so we get context aware feedback;
as well as (3) a dynamic reward-shaping mechanism (which generalizes human input) in similar
debugging situations.
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3 BACKGROUND ON HIERARCHICAL REINFORCEMENT LEARNING AND
HUMAN FEEDBACK

To lay a foundation for our suggested Hierarchical Feedback Interface (HFI) this section gives critical
background on hierarchical reinforcement learning (HRL), human feedback integration.

3.1 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical reinforcement learning is an extension of traditional RL that breaking up complex tasks
into manageable subtasks by means of time abstraction (Gebhardt et al., 2021). The framework
uses a two-level policy structure as a meta-controller that selects high-level goals and sub-controller
that executes primitive actions to be taken in the direction of achievement of these goals. This
decomposition is similar to human approaches to problem solving in which complicated tasks are
divided into subgoals (Dedhe et al., 2023).

The mathematical formulation is a goal-conditioned policy π(a|s, g), where g represents the current
subgoal. The high-level policy πh generates subgoals at fixed intervals, while the low-level policy πl

operates under these subgoals until termination. Value function is decomposed as follows:

V (s) = E

[ ∞∑
t=0

γtrt

]
(1)

Qh(s, g) = E

[
K∑

k=0

γkrk + γKV (sK)

]
(2)

where K represents the subgoal horizon. This structure enables Learning something in a long-horizon
tasks by reducing the effective planning on horizon through temporal abstract (Sutton et al., 1999).

3.2 HUMAN FEEDBACK IN REINFORCEMENT LEARNING

Human feedback is a rich signal for RL systems especially in areas in which reward functions are hard
to specify (Retzlaff et al., 2024). Traditional approaches gather feedback through comparing/ranking
trajectories (Bukharin et al., 2023), but these methods often fail to capture the hierarchical nature of
the knowledge of experts.

The new developments model human preferences by reward functions parameterized by neural
networks (Zhao et al., 2024). The reward model rθ(s, a) is trained from human demonstrations or
comparisons, so that the system is allowed to generalize feedback across states.

3.3 COMBINING HRL AND HUMAN FEEDBACK

The combination of HRL human feedback is an open challenge. While hierarchical policies support
the possibility of temporal abstraction, and human feedback provides domain expertise, extant
methods treat these components separately.

4 HIERARCHICAL FEEDBACK INTERFACE FOR HUMAN-IN-THE-LOOP
DEBUGGING

The Hierarchical Feedback Interface (HFI) is the operationalization of human expertise in a pre-
established two-level interaction protocol that Splits debugging into non-rational thinking (goal-
oriented reasoning and concrete refinements. This portion describes the technical architecture and
mechanisms for this decomposition focusing on 5 core components: (1) the hierarchical feedback
protocol (2) preference reward modeling, (3) hybrid actor critic modeling, (4) human interaction
protocol, and (5)relational graph attention for code analysis.

4.1 HIERARCHICAL FEEDBACK PROTOCOL DESIGN AND OPERATION

The protocol provides a two-way mapping between human input and the tree of the RL agent’s policy.
In each timestep t the high-level policy πhigh receives an abstract state shigh

t encoding aggregated code

3
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metrics (e.g., cyclomatic complexity, memory usage) and giving a goal vector gt ∈ Rd:

gt = πhigh(s
high
t ; θhigh) (3)

where θhigh denotes the high-level policy parameters. The low-level policy πlow then conditions on
both the concrete code state slow

t (e.g., AST nodes, control flow edges) and gt to generate feedback
actions at:

at = πlow(s
low
t ,gt; θlow) (4)

This breakdown helps humans to give feedback at either level: goal-
level preferences (e.g. “focus on memory optimization”) update
πhighfruitful(e.g., “replacerecursionwithiteration

′′)finetuneπlow. A hybrid architec-
ture is used in the state encoder where Transformer processes lexical features and a Temporal
Convolutional Network (TCN) is part of sequential dependencies, with cross attention gates fusing
their outputs:s objective space, while action-level corrections (e.g., “replace recursion with iteration”)
fine-tune πlow. The state encoder employs a hybrid architecture where a Transformer processes
lexical features and a Temporal Convolutional Network (TCN) handles sequential dependencies, with
cross-attention gates fusing their outputs:

htrans = Transformer(CodeBERT(slow
t )) (5)

htcn = TCN(PositionalEncoding(slow
t )) (6)

shigh
t = CrossAttention(htrans,htcn) (7)

Figure 1: Hierarchical Feedback Interface (HFI) Architecture

4.2 PREFERENCE REWARD MODEL CONSTRUCTION AND FUNCTIONING

The Preference Reward Model (PRM) is a model of translating human judgments into differentiable
signals for policy optimization. Given a set of pairwise preferences D = {(si, ai) ≻ (sj , aj)}, the
PRM learns a reward function Rpref that maximizes the likelihood of observed preferences given that
they are Bradley-Terry model:

P [(si, ai) ≻ (sj , aj)] =
exp(Rpref(si, ai))

exp(Rpref(si, ai)) + exp(Rpref(sj , aj))
(8)

The reward function is decomposed into goal aligned components:
Rpref(st, at) = wTϕ(gt, s

low
t ) + b (9)

where ϕ is a two-layer MLP that projects the concatenated goal state vector in latent preference space.
The PRM updates along with policy training, ensure human feedback in direct influences both goal
selection (πhigh) and action generation (πlow).
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4.3 HYBRID HIERARCHICAL ACTOR-CRITIC FRAMEWORK ARCHITECTURE AND MECHANISM

The actor-critic approach is a more generalisation of conventional HRL that introduces differentiate
between critics for each level of policy; The high-level critic Vhigh evaluates goal achievement using a
discounted return over k steps:

Vhigh(s
high
t ) = E

[
k−1∑
i=0

γirt+i + γkVhigh(s
high
t+k)

]
(10)

The low-level critic Vlow assesses action quality under the current goal gt:
Vlow(s

low
t ,gt) = E

[
rt + γVlow(s

low
t+1,gt)

]
(11)

Gradient updates are passed through both levels through a common advantage function:

A(st, at) =

k−1∑
i=0

γirt+i + γkV (st+k)− V (st) (12)

where V is combined through a gating mechanism weighted by using both critics. goal relevance.

4.4 STRUCTURED HUMAN INTERACTION PROTOCOL EXECUTION

The protocol imposes a separation of concerns between goal-level and action-level feedback. Man to
human communication via a dedicated interface that: 1. Presents goal candidates with the rank based
on their estimated impact on code quality 2.

There is feedback integration according to the delta update rule; human. modifications ∆at to
suggested actions induce proportional updates to the goal vector:

∆gt = α · MLP(∆at) (13)
This is to ensure local refinements affect global objectives without requiring specific re-specification
of goals

4.5 RELATIONAL GRAPH ATTENTION FOR CODE-CENTRIC FEEDBACK APPLICATION

The low-level policy utilizes a Graph Attention Network GAT with dynamic edge weighting condi-
tioned on gt. For a code graph with nodes {vi}, the attention weight between nodes i and j computes
as:

αij = softmax(LeakyReLU(aT [gt∥vi∥vj ])) (14)
where a is a learnable attention vector. This allows the policy to attend subgraphs relevant to current
goal (e.g. dataflow edges used for memory optimization). Updated Aggregate Neighbors Looked-at
at: Node features weighted by αij :

v′
i = σ

 ∑
j∈N (i)

αijWvj

 (15)

The GAT runs over a hybrid graph representation combining syntactic (AST), semantic (symbol
table(s)), dynamic (execution trace(s)) code features.

5 EXPERIMENTS

To assess the effectiveness of Hierarchical Feedback Interface (HFI), we performed experiments in
different dimensions, namely, (1) comparative performance with respect to flat feedback systems, (2)
analysis of human intervention reduction and (3) ablation studies on key components. The following
experiments were designed to answer three research questions:

RQ1: Does hierarchical feedback structuring improve debugging efficiency compared to monolithic
approaches?
RQ2: How does the HFI reduce the need for repetitive human input while maintaining correction
accuracy?
RQ3: Which architectural components contribute most to the system’s performance?

5
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Figure 2: Human Feedback Integration in HFI

5.1 EXPERIMENTAL SETUP

Datasets: We evaluated on three real-world codebases:

• BugSwarm(Tomassi et al., 2019) (3,214 bug-fix pairs across 10 languages)

• CodeNet(Puri et al., 2021) (14M code samples with 50+ bug types)

• DevGPT(Xiao et al., 2024) (8,742 conversational debugging traces)

Baselines: We compared against:

• FlatPrefRL(Fürnkranz et al., 2012) - A monolithic preference-based RL system

• HRL-NoFeedback(Rohmatillah & Chien, 2023) - Hierarchical RL without human input
channels

• LEARN2FIX(Böhme et al., 2020) - A state-of-the-art interactive debugger

Metrics:

• Bug Resolution Rate (BRR): Percentage of bugs correctly fixed

• Human Intervention Frequency (HIF): Average feedback requests per 100 LOC

• Goal Alignment Score (GAS): Cosine similarity between human goals and system-inferred
objectives

Implementation Details:

• High-level policy: 3-layer MLP with 256 hidden units

• Low-level policy: GAT with 4 attention heads

• Training: PPO with γ = 0.99, λ = 0.95

• Batch size: 32 episodes

• Reward weights: αenv = 0.7, αhuman = 0.3

5.2 COMPARATIVE RESULTS

Table 1 shows the performance across all systems. The HFI achieves superior bug resolution while
requiring significantly less human input.

Key observations:

1. The HFI improves BRR by 22% over FlatPrefRL, demonstrating the advantage of hierarchi-
cal goal decomposition.

2. With 35% fewer interventions than LEARN2FIX, the HFI shows better generalization of
human feedback.

3. The high GAS confirms effective translation of human preferences into actionable goals.

6
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Table 1: Comparative Performance on BugSwarm Dataset

System BRR (%) HIF GAS

FlatPrefRL 68.2 12.4 0.62
HRL-NoFeedback 71.5 0 -
LEARN2FIX 73.8 15.7 0.58
HFI (Ours) 82.3 8.1 0.79

Figure 3: Bug resolution rates across code complexity quartiles

5.3 HUMAN INTERVENTION ANALYSIS

The HFI cuts down on repetitive feedback in the form of goal generalization. Figure 4 shows how the
number of intervention falls exponentially as similar bugs recur, with the HFI requiring 37% fewer
inputs than FlatPrefRL after 50 episodes.

Mechanism: When humans correct a specific bug (e.g., “fix null pointer at line 42”), the system:

1. Infers a high-level goal (e.g., “validate input parameters”)
2. Applies this to analogous code regions automatically
3. Only requests confirmation for ambiguous cases

5.4 ABLATION STUDY

We dissected the HFI’s components to isolate their contributions:

Critical findings:

1. Goal conditioning contributes most (9.2% drop when removed), validating the hierarchical
structure.

2. The hybrid encoder provides 5.1% improvement by combining syntactic and semantic
features.

3. Preference rewards account for 6.7% gain through better human-alignment.

7
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Figure 4: Human intervention frequency decay over episodes

Table 2: Ablation Results (BRR %)

Configuration BugSwarm CodeNet

Full HFI 82.3 80.1
w/o Goal Conditioning 73.1 71.4
w/o Hybrid Encoder 77.2 75.8
w/o Preference Reward 75.6 73.9

5.5 QUALITATIVE ANALYSIS

Case studies reveal how the HFI handles complex debugging scenarios:

Example 1 (Memory Leak):

• Human provides high-level goal: “Optimize memory usage”

• System automatically:

– Replaces manual allocations with smart pointers
– Adds boundary checks for buffer overflows
– Suggests RAII patterns for resource handling

Example 2 (Race Condition):

• Action-level feedback on one mutex lock generalizes to:

– Identifying unprotected critical sections
– Proposing atomic operations where applicable
– Generating documentation about thread-safety assumptions

These examples show that the system could propagate localized feedback to architectural improve-
ments.

8
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6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE HIERARCHICAL FEEDBACK INTERFACE

While the HFI shows the great improvements over flat feedback There are several limitations that
need to be discussed about systems. First, the current goal inference mechanism, materials which
are highly dependent on the explicit input of humans to initialize high-level objectives which creates
bottleneck situation in situations requiring rapid adaptation. Secondly, the hybrid state encoder’s
computational overhead scales up with codebase size, potentially limiting the applicability in real
time in large fact relationships. Third, the framework presupposes a cooperative human-AI human-AI
presumes feedback is always adapted to the hierarchical structure of the system —a state perhaps not
at all feasible for the novice and very ambiguous bugs

6.2 POTENTIAL APPLICATION SCENARIOS

Beyond debugging, the structured feedback paradigm of the HFI could improve other areas that need
human-AI collaboration. In automated program hierarchical goals could guide patch generation
in balancing correctness, readability and performance (Huang et al., 2023). To do code review
automation, the interface might break down high level quality standards (e.g., maintainability) to
specific refactoring suggestions, (Frömmgen et al., 2024). Educational applications could also be
of value, where tutors give strategic advice (e.g., complex yet high-performance algorithms IMD
reported that the technology is capable of ‘improve algorithm efficiency’) while the system generates
tailored exercises.

6.3 ETHICAL CONSIDERATIONS

The HFI’s human input creates ethical challenges that demand of proactive mitigation. Biases in
feedback - whether from individual developer or organizational norms—may propagate through the
goal hierarchy, when potentially institutionalizing suboptimal practices (e.g. prioritizing speed over
security) (Suri et al., 2022). The system’s ability to generalizing feedback also brings up the question
of accountability: when a high-level goal such as “optimize performance” results in undesirable low
level actions (e.g. removing safety checks) responsibility Debugging the attribution gets complicated.

These considerations point to the HFI’s wider implications for human-AI interaction design.

7 CONCLUSION

The Hierarchical Feedback Interface (HFI) is a new paradigm for incorporating human knowledge into
reinforcement learning-based debugging systems in the form of multi-level structured feedback By
decomposing the debugging process into high level objectives and level refinements, the framework
covers critical issues in monolithic feedback limitations approaches, especially in dealing with the
subjectivity and inefficiency.

The HFI’s architectural innovations - its hybrid state encoder, goal cond policies, relatively relational
graph attention mechanisms—offer strong basis for generalising human feedback in the wide range
of debugging situations.

Several directions present themselves for the further extension of this work. The current goal inference
mechanism may be improved through unsupervised pre-training on developer commit messages,
possibly making explicit objective specification.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.

9
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