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Abstract

Language is never spoken in a vacuum. It is expressed and comprehended within the1

holistic backdrop of the speaker’s history, actions, and environment. Since humans2

are used to communicating efficiently with situated language, the practicality of3

robotic assistants hinge on their ability to understand and act upon implicit and4

situated instructions. In traditional instruction following paradigms, the agent5

acts alone in an empty house, leading to language use that is both simplified and6

artificially “complete.” In contrast, we propose situated instruction following7

(SIF), which embraces the inherent underspecification and ambiguity of real-world8

communication with the physical presence of a human speaker. The meaning of9

situated instructions naturally unfold through the past actions and the expected10

future behaviors of the human involved. Specifically, within our settings we11

have instructions that (1) are ambiguously specified, (2) have temporally evolving12

intent, (3) can be interpreted more precisely with the agent’s dynamic actions. Our13

experiments indicate that state-of-the-art Embodied Instruction Following (EIF)14

models lack holistic understanding of situated human intention.15

1 Introduction16

Humans communicate efficiently by providing only the necessary information, relying on shared17

context like history, actions, and environment. For example, the request "Can you bring me a cup?"18

varies based on context—if said near a kitchen sink with gloves, it likely refers to a dirty cup, while19

near a bathroom sink, it suggests a clean one. Although clarification is possible, humans often20

interpret such requests accurately using contextual cues, showing our ability to derive nuanced,21

situation-specific meanings from ambiguous language.22

As robotic agents increasingly become integral to our daily lives, their effectiveness and utility23

critically depend on their ability to comprehend and respond to situated language— natural language24

spoken by humans. Without this capability, agents may prove more of a hindrance than a help, forcing25

users to perform tasks themselves rather than entrusting them to an assistant. As discussed in the field26

of agent alignment [Leike et al., 2018], it is often difficult for users to precisely define or articulate27

ideal task specifications. Consequently, an agent that demands detailed explanations might render28

manual task execution by humans more attractive.29

Current instruction-following tasks prioritize accurate low-level instruction interpretation [Anderson30

et al., 2018, Gu et al., 2022, Padmakumar et al., 2021, Shridhar et al., 2020] or use commonsense31

to achieve underspecified goals like object navigation [Chaplot et al., 2020, Das et al., 2018]. In32

contrast, our work SIF aims to generalize Embodied Instruction Following to Situated Instruction33

Following, with instructions closer to the language naturally spoken by humans. Specifically, we34

focus on three dimensions of situated reasoning:35
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Phase I: Exploration

Phase 2: Task Starts!

Let’s see 
where the 
human last 

placed objects.

C: <latexit sha1_base64="z/lfAsnTGi4AsXb0HFKU8FsG7BU=">AAACBHicbVC7SgNBFJ31GeMraplmMAhWYVckWknAxs4I5gHJEmYnN8mY2dll5q4YlhQ2/oqNhSK2foSdf+PkUWjigYHDOfdw554glsKg6347S8srq2vrmY3s5tb2zm5ub79mokRzqPJIRroRMANSKKiiQAmNWAMLAwn1YHA59uv3oI2I1C0OY/BD1lOiKzhDK7Vz+VaiOqDH8bSF8ICIafM6uPPpaNTOFdyiOwFdJN6MFMgMlXbuq9WJeBKCQi6ZMU3PjdFPmUbBJYyyrcRAzPiA9aBpqWIhGD+dHDGiR1bp0G6k7VNIJ+rvRMpCY4ZhYCdDhn0z743F/7xmgt1zPxUqThAUny7qJpJiRMeN0I7QwFEOLWFcC/tXyvtMM462t6wtwZs/eZHUTopeqVi6OS2UL2Z1ZEieHJJj4pEzUiZXpEKqhJNH8kxeyZvz5Lw4787HdHTJmWUOyB84nz/CJJjO</latexit>

[Obj]

Bring me a cup;

I will be washing


my hand. 

Task Type: Task Type: Task Type: 

Bring me a cup;

I moved it while 

washing my hand.

Bring me a cup.


<latexit sha1_base64="lQjjx7Gwluzp5uvOSHyxIin8GcQ=">AAAB+3icbVBNT8JAEN3iF+JXxaOXjWDiibQc0COJHjxiFCSBptkuC2zYbZvdqYE0/StePGiMV/+IN/+NC/Sg4EsmeXlvJjPzglhwDY7zbRU2Nre2d4q7pb39g8Mj+7jc0VGiKGvTSESqGxDNBA9ZGzgI1o0VIzIQ7DGYXM/9xyemNI/CB5jFzJNkFPIhpwSM5NvlPrApaJreV/10nMismvl2xak5C+B14uakgnK0fPurP4hoIlkIVBCte64Tg5cSBZwKlpX6iWYxoRMyYj1DQyKZ9tLF7Rk+N8oADyNlKgS8UH9PpERqPZOB6ZQExnrVm4v/eb0EhldeysM4ARbS5aJhIjBEeB4EHnDFKIiZIYQqbm7FdEwUoWDiKpkQ3NWX10mnXnMbtcZdvdK8yeMoolN0hi6Qiy5RE92iFmojiqboGb2iNyuzXqx362PZWrDymRP0B9bnDzwelJU=</latexit>

Shum

<latexit sha1_base64="1x7wiaUbsDvmdEm9R72N568sQmk=">AAAB+3icbVDLTsJAFJ3iC/FVcelmIpi4Ii0LdEmiC5cY5ZFA00yHKYxMH5m5NZCmv+LGhca49Ufc+TcO0IWCJ7nJyTn35t57vFhwBZb1bRQ2Nre2d4q7pb39g8Mj87jcUVEiKWvTSESy5xHFBA9ZGzgI1oslI4EnWNebXM/97hOTikfhA8xi5gRkFHKfUwJacs3yANgUFE3vq24aeY9ZNXPNilWzFsDrxM5JBeVouebXYBjRJGAhUEGU6ttWDE5KJHAqWFYaJIrFhE7IiPU1DUnAlJMubs/wuVaG2I+krhDwQv09kZJAqVng6c6AwFitenPxP6+fgH/lpDyME2AhXS7yE4EhwvMg8JBLRkHMNCFUcn0rpmMiCQUdV0mHYK++vE469ZrdqDXu6pXmTR5HEZ2iM3SBbHSJmugWtVAbUTRFz+gVvRmZ8WK8Gx/L1oKRz5ygPzA+fwAlMJSG</latexit>

Sobj
<latexit sha1_base64="2CuqRFRI2Io48UKBqe7ehU86T3U=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSQ9VI8FPXiMYD+gCWWznbRLN5uwOxFL6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwjY7zbZU2Nre2d8q7lb39g8Oj6vFJRyeZYtBmiUhUL6QaBJfQRo4CeqkCGocCuuHkZu53H0FpnsgHnKYQxHQkecQZRSP5PsITapZ70psNqjWn7ixgrxO3IDVSwBtUv/xhwrIYJDJBte67TopBThVyJmBW8TMNKWUTOoK+oZLGoIN8cfPMvjDK0I4SZUqivVB/T+Q01noah6YzpjjWq95c/M/rZxhdBzmXaYYg2XJRlAkbE3segD3kChiKqSGUKW5utdmYKsrQxFQxIbirL6+TTqPuNuvN+0atdVvEUSZn5JxcEpdckRa5Ix5pE0ZS8kxeyZuVWS/Wu/WxbC1Zxcwp+QPr8wd1uJH6</latexit>

PnP

Figure 1: Overview. The tasks in SIF consist of two phases: an exploration phase (phase 1) and a
task phase (phase 2). PNP represents a conventional static Pick-and-Place task used for comparison,
wherein the environment remains unchanged after the exploration phase. Shum and Sobj introduce
two novel types of situated instruction following tasks. In these tasks, the objects and human subjects
move during the task phase. Nuanced communication regarding these movements is provided,
necessitating reasoning about ambiguous and temporally evolving human intent.

1. Ambiguity: As in the cup example above, there is ambiguity in the instruction given by the36

speaker.37

2. Temporal: A speaker’s actions change how their instruction should be interpreted (e.g.,38

clarifying an underspecified reference).39

3. Dynamic: When the environment changes, the agent needs to decide what actions will40

reduce their uncertainty (e.g., following the human).41

We implement our tasks in Habitat 3.0 [Puig et al., 2023], which includes simulated human agents.42

To ensure fair comparison with prior work, we include both static (prior work) and dynamic (this43

work) tasks (Fig. 1). The static task follows the classic pick-and-place paradigm where the agent is44

instructed to Put [Obj] in/on [Recep]. We simplify the setup by allowing the agent to explore,45

minimizing the role of mapping in our reasoning benchmark.46

Our benchmark focuses on dynamic tasks where the agent must combine instruction understanding47

with human movement. The dynamic tasks include Sobj(object moved by human) and Shum(human48

is the receptacle). In these, the agent receives goal instructions (e.g., “Bring me a mug” for Shumor49

“Put the mug in the bathroom” for Sobj) along with relocation hints. In Shum, the human moves as50

the task begins, signaling intent through both words and movement. The agent must efficiently follow51

instructions, retrieve the object, and place it in the correct location (e.g., with the moving human in52

Shumtasks).53

We specifically target evaluation of state-of-the-art Embodied Instruction Following (EIF) baselines.54

We implement two such systems inspired by papers on related tasks. The first baseline, which we55

refer to as REASONER, is a closed-loop system incorporating a semantic map, a prompt generator,56

and a Large Language Model (LLM) planner. For the prompt generator, we integrated components57

from Voyager[Wang et al., 2023], LLMPlanner[Song et al., 2023], and ReAct[Yao et al., 2022],58

tailoring them to suit our dataset’s specific requirements. The second baseline, PROMPTER[Inoue and59

Ohashi, 2022], was very successful at executing ALFRED [Shridhar et al., 2020] tasks despite being60

open-loop. We see the desired result that our static scenarios match those from existing EIF datasets61

[Inoue and Ohashi, 2022, Song et al., 2023], and these LLM based approaches perform very well in62

tasks requiring common sense. However, their performance significantly declines when faced with63

situations that require reasoning about the human’s behavior.64
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System Prompt: You are an assistance robot in a house, and a 
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Format Prompt: Please answer in the format of Reasoning: , 
Answer: , …

Output
Reasoning: 

Answer: Follow Human

There are two bathrooms and

there is no clear evidence yet

…

Figure 2: REASONER: (a) The semantic mapper is updated at every timestep, whereas the prompt generator
and planner are activated either upon completion of the last high-level action or when a new decision is required.
(b) The prompt consists of system prompt, environment prompt, format prompt.
2 Task65

Our tasks (1) are structured into two distinct phases: (1) the exploration phase and (2) the task66

phase. During the exploration phase, the agent is allotted N steps to navigate around a static house67

environment where object assets are positioned. The value of N is determined to ensure the agent68

has sufficient steps to thoroughly scan the environment; specifically, N = 1.5 x (the number of69

steps required to achieve a complete map using frontier-based exploration techniques). Following70

the exploration phase, some objects are repositioned without the agent’s knowledge. As the task71

phase commences, the agent receives an instruction (e.g., “Bring me a cup,” “Put the cup in the72

sink”), accompanied by either direct or ambiguous information regarding which objects have been73

moved (e.g., “I took a cup with me. I’ll be getting ready for bed”). If the task involves delivering an74

object to a human, the human walks into the agent’s field of view as the task begins, simultaneously75

providing hints about their intended location (“I will be in the bathroom washing my face”). These76

elements, along with other strategic design decisions, ensure that the exploration phase effectively77

contextualizes the language directives, rendering tasks sufficiently solvable.78

3 Baselines79

Many recent state-of-the-art EIF agents are modular models with an LLM planner, connected to80

learned/engineered episodic memory, perception, and execution tools. We present a baseline within81

this high-performing family — REASONER, a closed-loop baseline that adapts FILM[Min et al.,82

2021] and the prompts of llm-planner[Song et al., 2023], and ReAct [Yao et al., 2022], and prompter83

[Inoue and Ohashi, 2022], an open-loop SOTA agent built for ALFRED [Shridhar et al., 2020].84

Semantic Mapper. The semantic mapper creates a global representation for visual observation. As85

in previous work[Chaplot et al., 2020, Min et al., 2021], we process egocentric RGB and depth into86

an allocentric top-down map of obstacles and semantic categories using Detic[Zhou et al., 2022]. The87

semantic categories of interest are [ObjectCat], [Recep], and “human.” In contrast to previous88

works[Chaplot et al., 2020, Min et al., 2021], the most recent human and object positions are refreshed89

post new observations and pick/place actions, ensuring a dynamic and accurate representation of the90

environment.91

Text representation generator. The semantic map and other contexts are converted into prompts.92

It is a concatenation of three components: the system prompt, environment prompt, and the format93

prompt:94
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Table 1: SPL performance of REASONER across splits. In each sectioned-row, the top row assumes oracle
perception (semantic segmentation and manipulation); the bottom row assumes learned semantic segmentation
and heuristic manipulation. To minimize the burden on API costs and time, we have limited LLM API calls for
plan generation to 15 times.

Model Val Seen Val Unseen Test Seen Test Unseen

Planning Perception P
N

P
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b
j

S h
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m

P
N

P
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j

S h
u
m

P
N

P

S o
b
j

S h
u
m

P
N

P

S o
b
j

S h
u
m

Oracle Oracle 98 100 95 100 100 100 98 93 98 95 100 98
Learned 46 46 59 41 30 54 52 30 69 44 47 46

REASONER Oracle 82 61 23 78 49 39 73 58 29 81 49 34
Learned 21 8 12 24 11 12 29 2 15 18 14 15

• System: The system prompt outlines the agent’s role and and encourages it to account for95

uncertainty. It is presented as “You are an assistive robot in a house, aiding a human. Your96

observations may be incomplete or wrong."97

• Environment: The environment prompt is a conversion of the episodic memory into text98

format, and contains information of the agent’s current state and previously completed/failed99

actions. It is given in the following sequence: (1) observation of Pe during exploration100

phase, based on the semantic map, (2) C, regarding object/ human movements, (3) the goal101

instruction I , (4) the high-level action executed by agents at timesteps and their observed102

consequences (success/fail), (5) the agent’s latest observation, based on the semantic map.103

• Format: The format prompt explains action affordance and a format for chain of thought104

[Wei et al., 2022]. It also explains the desired effect of actions (e.g. “If you want to keep105

searching for object(s) or human that might exist (but you have not detected) in the current106

room, choose ‘Explore Room X’ (Table 2).”)107

Execution Tools Upon receiving the prompt, the planner is prompted to choose a high-level action108

(Tab. 2); then corresponding execution tools are called. A complete list of tools are listed in Table 2.109

When the execution is done, the tool sends this message, and the prompt generator creates a new110

prompt and the planner calls a new tool.111

4 Results112

Results from our experiments are presented in Table 1. This table notably shows the following113

facts about our dataset and baselines. First, the gap of model performance across PNP versus Shum,114

Sobj shows that PNP can be solved with commonsense and mechanistic combination, and the rest115

two tasks cannot. The reasoning challenges of Sobj and Shum are backed by the performance of116

REASONER with oracle perception/manipulation; it shows a stark contrast in PNP tasks (∼ 80%) and117

Sobj , Shum tasks (∼ 45%).118

Table 3 examines model performance on clear versus ambiguous tasks. Ambiguity in Sobj tasks119

emerges when multiple potential locations exist for an object, as indicated by communicative120

cues. For example, the statement “I am washing my face” becomes ambiguous when multiple121

bathrooms are available. Similarly, ambiguous Shum tasks occur when the human could be in several122

different locations. In Shum tasks, REASONER underperforms in clear tasks due to a tendency to123

conservatively judge that there is insufficient evidence of the human’s destination, even when only one124

plausible location exists. REASONER attempts some calibration but generally leans towards following125

the human. Qualitative analysis reveals that in ambiguous tasks, REASONER often disengages126

prematurely, assuming it has accumulated enough evidence.127

5 Conclusion128

We present Situated Instruction Following (SIF), a new dataset to evaluate situated and holistic129

understanding of language instructions. Our dataset reflects aspects of real-world instruction follow-130

ing: (1) ambiguous task specification, (2) evolving intent over time, and (3) dynamic interpretation131

influenced by agent action. We show that current state-of-the-art models struggle with this level of132

understanding, further highlighting the complexity and uniqueness of our dataset.133
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A Execution Tools180

Execution tools for REASONER/PROMPTER and their working details/affordance are in Table 2.181

Execution Tool Description & Affordance

Navigation
Go to Room X FMM Planner navigates to a random point in Room X.
Explore Room X FMM Planner navigates to a random point in Room X; then, agent turns 15

times to the right to look around.
Follow Human The last observed position of the human is given as the goal, to the human-

following wrapper (more explanation is Sec. ??) on top of FMM Planner.

Manipulation
Grab Obj The closest object within 2 meters of the grasper is grabbed, and agent’s

grasper is closed.
Put Obj Grasped object is put on the closest receptacle within 2 meters of the grasper

is grabbed, and agent’s grasper is opened.
Give Obj to Human The agent goes within 1 meter of the human and gives grasped object to

human, if human is visible from current view.
Table 2: Execution tools for REASONER/PROMPTER and their working details/affordance.

B Ablations Across Ambiguous/ Clear Tasks182

Table 3: Ambiguous vs Clear tasks. SPL and SR of REASONER and PROMPTER with G.T./learned vision and
manipulation on Val seen & unseen combined.

Model Metric G.T. Vis. & Man. Learned Vis. & Man.

Sobj Shum Sobj Shum

Clear Amb. Clear Amb. Clear Amb. Clear Amb.

REASONER
SPL 62 52 13 42 9 11 3 17
SR 76 71 14 67 15 14 6 26

PROMPTER
SPL 38 29 3 42 11 8 0 17
SR 54 36 4 66 18 10 0 27
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