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Abstract

VReceptor is a virtual receptor simulation framework that generates realistic,
sequence-dependent binding affinity data for peptide-based therapeutics. It com-
bines pharmacophore-inspired weighting schemes with amino acid similarity met-
rics to evaluate peptide design strategies in a controlled environment. Validation
using the Prolactin-Releasing Peptide (PrRP) dataset confirms VReceptor’s ability
to approximate binding behaviors and optimize experimental planning. This frame-
work empowers researchers in computational peptide design and active learning
workflows while highlighting areas for further refinement.

1 Introduction

Peptide-based therapeutics have demonstrated significant potential over the past few decades for the
treatment of various diseases with both specificity and biological safety [[1]. The development of in
silico tools for drug discovery has revolutionised early-stage pharmaceutical research, enabling rapid
hypothesis testing and virtual screening of vast molecular libraries. However, a persistent challenge
remains: how to validate these computational models effectively, especially when experimental re-
sources are limited or prohibitively expensive. This is particularly true for peptide-based therapeutics,
where the combinatorial explosion of possible sequences makes exhaustive experimental testing
infeasible.

To address this, we introduce VReceptor, a virtual receptor simulation framework designed to generate
realistic, sequence-dependent binding affinity data. Inspired by the pharmacophore concept originally
proposed by Paul Ehrlich [2} 3], VReceptor provides a controlled and interpretable environment
for evaluating peptide design strategies and active learning algorithms. It is particularly suited for
benchmarking machine learning models in peptide optimisation tasks, where the goal is to predict or
improve binding affinity based on sequence information.

Unlike purely random or black-box data generators, VReceptor is built on a transparent and bio-
logically motivated model. It simulates ligand—receptor interactions by assigning importance to
specific amino acid positions using a pharmacophore-like weighting scheme. These weights are then
combined with amino acid distance metrics to produce a binding score that reflects both sequence
composition and structural relevance. The result is a synthetic yet biologically plausible dataset that
can be used to test hypotheses, compare design strategies, and train predictive models.

1.1 Related work
To address the challenge of molecular optimization, recent research has introduced the Poli library,

which provides a suite of artificial fitness functions, or oracles, designed to serve as reliable proxies
for molecular traits of interest [4, [5]. While this library facilitates systematic benchmarking of
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molecular optimization methods specifically for protein optimization, further efforts are needed to
broaden the range of modalities to include peptides and to validate the consistency and reliability of
these oracles across various relevant wet-lab characterizations.

Although numerous bioinformatics tools such as PeptideRanker [6] exist for targeting the modulation
of bioactive peptides, [[7]] highlights a general deficiency in their effectiveness. A significant challenge
is the weak correlation between predictions made by these tools and experimentally derived IC50
values. This discrepancy indicates that many models may not adequately capture the complex
biological interactions governing peptide activity, making them less reliable for practical applications.
This underscores the urgent need for more accurate computational methods to enhance the predictive
validity of bioinformatics tools, facilitating their integration into peptide design and leading to more
effective bioactive peptides. Similarly, recent benchmarking work, as exemplified in [8]], provides
benchmarking framework tailored for protein folding neural networks in protein-peptide complex
prediction. While AlphaFold 3 [9] accordingly to [8] demonstrates strong performance in structure
prediction, they note that the confidence metrics correlate poorly with experimental binding affinities.

In this context, VReceptor offers a complementary approach: a transparent and controllable virtual
environment for generating realistic synthetic data to accelerate method development. Although
we validate the realism of VReceptor by fitting it to experimentally measured affinities from the
PrRP peptide family [[10], this serves only as a demonstration of plausibility rather than the primary
contribution of the work. This work makes the following contributions:

* A realistic virtual receptor framework (VReceptor): A transparent, pharmacophore-
inspired simulation model that generates biologically plausible, sequence-dependent binding
affinity data for peptides.

* A synthetic, controllable environment for benchmarking and accelerating peptide-
model development: VReceptor enables systematic testing of peptide optimisation strate-
gies, search algorithms, active learning methods, and machine learning models under realistic
and interpretable conditions—supporting rapid iteration before experimental investment.

* A biologically interpretable receptor model: The framework combines position-specific
weighting with amino acid distance metrics, offering mechanistic transparency absent in
black-box oracle generators.

* Empirical demonstration of realism: We show that VReceptor can be calibrated to
approximate real binding landscapes using data from the PrRP peptide family—serving as a
validation step, not the main contribution.

2 Peptide-Receptor Binding Model

The foundation of the VReceptor framework is a generative model that simulates peptide-receptor
binding affinities based on peptide sequence composition. The core idea is to construct a function
that maps a peptide sequence to a predicted binding strength, mimicking the behaviour of a biological
receptor. This function is designed to be deterministic and sequence-dependent, ensuring that similar
sequences yield similar binding profiles, thereby enabling meaningful comparisons and learning.

The binding affinity is modelled as a function of the peptide sequence (eq. [T)):

ICso = f(sequence) e

To achieve this, the model begins with a reference peptide of length n, where each position ¢ €
{1,...,n} is assigned an importance score b;. These scores reflect the contribution of each position
to the overall binding interaction and are derived from a hypothetical pharmacophore model. This
model is expressed as a mixture of Gaussian functions g, (eq. [2] Fig. [I).

b; = Zakgk(i7#k;0k) @
k
Here, each Gaussian gy, is parameterised by an amplitude ay, a mean uyg, and a width oy, allowing

the model to flexibly encode position-specific relevance across the peptide. The selection of gaussian
functions to model the importance, or weights, of different amino acid stretches in the peptides allows
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Figure 1: Hypothetical pharmacophore model for a peptide with 31 amino acids.

a smaller number of parameter as compared to individual weights, but also reflects ligand-receptor
interactions, where small areas in the peptide interact with the receptor, but nearby amino acids have
a diminishing effect.

In the VReceptor model, each amino acid is represented by a feature vector v € R?, where d denotes
the number of physicochemical descriptors used—herein derived from z-scales as described in [[L1],
¢ indicates the position in the peptide and j indicates the amino acid selected from the amino acid
alphabet. These descriptors capture properties such as hydrophobicity, steric bulk, and electronic
characteristics.

To calculate the score of a target peptide relative to the reference peptide, the model needs a measure
of distance between the amino acids. The distance function dist(v}“’, v/) quantifies the dissimilarity
between the amino acid at position ¢ in the reference peptide and the amino acid in the same position
of the target peptide based on their physicochemical properties (e.g., z-scale descriptors), and is

elaborated in Section2.11

Next, a weight matrix W € R™*™ is constructed, where m is the number of amino acids in the
alphabet (typically 20). Each element W;; represents the weighted contribution of substituting the
amino acid at position ¢ with amino acid 7, and is computed as (eq. [3):

Wij = CliSt(V:ef7 VZ) * bz (3)

In the VReceptor model, each peptide sequence is represented using a one-hot encoding matrix
E, which captures the identity of amino acids at each position in the sequence. For a peptide of
length n and an amino acid alphabet of size m (typically the 20 standard amino acids), the matrix
E € {0,1}"*™ is defined such that:

1 if the amino acid at position 1 is the j-th amino acid in the alphabet
Ey; = 4)
0 otherwise

Each row of E corresponds to a position in the peptide, and each column corresponds to a specific
amino acid. Only one entry per row is set to 1, indicating the presence of a particular amino acid at
that position, while all other entries are 0.

This encoding allows the model to compute the Hadamard product R € R™"*™ (eq. , where W is
the weight matrix derived from the pharmacophore model and distance scores. The resulting matrix
R reflects the contribution of each amino acid to the overall binding affinity of the target peptide,
which is then summed to produce a scalar prediction score.
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To simulate experimental variability, homoscedastic noise is added to the computed binding affinity.
The final expression for the relative binding affinity is (eq. [6):

l0g(ICs00e1) = » | > Rij+e, &~N(0,0%) (6
i=1 j=1

Here, Iz;; denotes the weighted contribution of amino acid j at position ¢, and ¢ is a normally dis-
tributed noise term with zero mean and variance o2, consistent with the homoscedasticity assumption
commonly used in linear mixed models for assay variability estimation [12]].

Together, these components form the basis of the VReceptor simulation engine, enabling the gen-
eration of realistic, interpretable binding data for downstream analysis and model training. The
model does not account for interactions between amino acids within the peptide nor any structural or
conformational considerations; it focuses solely on position-specific importance scores.

2.1 Distance Measures

Three different distance measures have been integrated into the VReceptor, with the possibility of
further extensions. Similarly, extension of the VReceptor can be done with respect to the feature
vector v by replacing z-scale derived physicochemical descriptors with alternative representative
descriptors.

2.1.1 Cosine Distance

To assess the distance between amino acids based on their vector representations (e.g. z5 descriptors),
we define a pairwise distance measure using the cosine of the angle between their feature vectors. Let
us denote the vector of descriptors of amino acids g as v, and the corresponding vector of amino
acid h as vj,. The cosine distance is then defined as (eq. :

T
Vg Vi

[vollllval

(N

diStcosine (Vg7 Vh) =1

This formulation yields values in the interval [0, 2], where higher values indicate greater distance. It
captures the angular proximity between amino acid descriptors and is particularly useful when the
direction of the feature vector is more informative than its magnitude.

2.1.2 Chebyshev-like Distance

To quantify distance based on the maximum absolute difference between features, we define a
Chebyshev-like distance. Let v be the descriptor vector of amino acid g and vy, be the feature vector
of amino acid h. The raw Chebyshev distance is the following with d being the dimension of the
z-scale vectors v (eq. [§):

diStChebyshev (Vg7 Vh) = aeI{I}?{(,d} ‘Vga - Vha| (8)

To normalize this distance across the amino acid set, we divide by the maximum observed difference
for each feature (eq. ).

maxXoe{1,...,d} ‘Vga - Vha|

max
AA AA, o*

©))

distciike(Vg, Vi) = —

VAA,.,a* — VAA, ,a*

This normalized form ensures comparability across features and amino acid pairs, making it suitable
for models where dominant feature differences are most relevant.
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Figure 2: Visual comparison between the 3 discussed distance measures.

2.1.3 L2 Distance

To quantify the distance between amino acids based on their physicochemical properties, we define a
pairwise distance measure derived from the L2 norm of normalized feature vectors. Let v, denote
the vector of properties of amino acid g, in this case the z-scale vector. Each vector is normalized to
the unit length (eq. [T0):

. Vg
Vy = (10)
T vl
The distance between amino acids g and h is then defined as (eq. [TT):
diStLQ(Vg,Vh) = ||{'g —\Afh||2*2 (an

This formulation ensures that the distance values are in the interval [0, 2], with higher values indicating
greater distance. The approach captures relative proximity in the normalized feature space and is
particularly suited for comparing amino acids in embedded or kernel-based models. Figure [2] shows a
comparison of the three different distance measures.

3 Experiments

The intended purpose of this tool was to serve as a data generator for evaluating peptide library design
strategies, tasks that would otherwise be prohibitively expensive and time-consuming to evaluate
experimentally. A simple question is, for example, whether a full mutational scan of a given target
peptide should be conducted or whether a random library of peptides with multiple mutations would
yield a better model. All experiments were conducted on compute architecture featuring an x86_64
configuration with a single Intel Xeon Platinum 8360H CPU @ 3.00 GHz. In the supplied notebook
(see GitHub) we address this problem for a peptide of length 31. We chose the Prolactin-Releasing
Peptide (PrRP, [10]) sequence as a starting peptide and created an artificial pharmacophore with
the use of two Gaussian functions as shown in figure[I] A complete mutational scan with the 20
canonical amino acids yields 589 peptides (31 x 19). We compared this design with a random design
of equal size. Sequences from the 30 million possible triple mutations for this target peptide were
selected. After generating simulated data with the primed VReceptor, two similar models are trained
on these datasets and evaluated on a random test set of 200 peptides, again selected from the set of all
triple mutated peptides (figure 3).

The models consist of a 2-layer, bidirectional LSTM [13]] neural network as the regression model. The
hidden state of the LSTM layer is fed into the output layer. After training the models are evaluated on
the test data set. In this case the model trained on the random data set has a smaller mean-squared
error as compared to the systematic generated scan data set (0.023 vs 0.140) (fig. ).

Figure ] shows the mean squared error (mse) comparing the two different models.


https://github.com/KilianWCF/VReceptor.git

Starting peptide of length 31
SRTHRHSMETIRTPDINPAWYASRGIRPVGRF

/\

Randomly select 589 peptides from 30M triple Perform full mutational scan = 589 peptides (31
mutations x 19)
Generate artificial data using primed VReceptor Generate artificial data using primed VReceptor
Train LSTM model on dataset Train LSTM model on dataset
L l l =
Evaluate model on 200 triple-mutated peptides Evaluate model on 200 triple-mutated peptides
L vy

Figure 3: Flow chart to compare two different design strategies using the VReceptor.
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Figure 4: Train/Test error for the scan and random design strategy

3.1 Realism of VReceptor

During the development and testing of VReceptor, a central question emerged: How realistic is this
model? Can peptide-receptor interactions truly be captured with such simplicity? VReceptor is
intentionally designed with a limited number of parameters, determined by the number of Gaussian
functions N¢ specified during initialization. The only additional degree of freedom lies in the choice
of distance measure dist(g, h), which governs how amino acid substitutions are evaluated. To assess
the model’s authenticity and practical value, we explored fitting these minimal parameters to real
experimental data. This approach allows us to evaluate whether VReceptor can meaningfully replicate
observed binding behaviours, thereby validating its usefulness as a simulation tool.

3.1.1 The PrRP dataset

Prolactin-Releasing Peptide (PrRP) is a neuropeptide involved in the regulation of food intake and
energy homeostasis [10]. It exerts its physiological effects by binding to at least three G-protein
coupled receptors: GPR10, NPFF receptor 1 (NPFFR1), and NPFF receptor 2 (NPFFR2). The dataset
used to validate the VReceptor tool comprises experimentally measured binding affinities (log ICxq
values) of PrRP-derived peptides against these three receptors. The listed data are relative to wildtype
human PrRP. All peptides in the dataset are 31 amino acids long and C-terminally amidated, reflecting
their biologically active form. A subset of peptides includes fatty acid modifications, denoted by an
’X’ in the sequence; however, these were excluded from the present analysis to maintain consistency



in molecular structure and avoid confounding effects. The estimated standard deviation is 0.1 on the
log, scale.

3.1.2 Parameter Fitting Procedure for VReceptor Models

To evaluate the performance of the VReceptor model under different amino acid similarity metrics,
we implemented a parameter optimisation workflow using three distinct similarity functions: cosine
similarity, Chebyshev-like distance, and L2 norm-based similarity. For each similarity function, we
trained a VReceptor model to predict the binding affinity (log IC5g) of peptide sequences using
a minimal set of parameters. The optimisation objective was to minimise the mean squared error
(MSE) between predicted and experimentally measured log ICs( values, represented as 4,, and y,,,
respectively, as detailed in (eq. [I2):

N

1< )
min= > [lGn = yal (12)

n

We selected a subset of the PrRP dataset where the target response variable (relGPR10) was below a
threshold of 2.0. The data was split into training and test sets using a 50:50 ratio with a fixed random
seed for reproducibility. The model parameters were optimised using the scipy.optimize.minimize
function. The parameter vector included the positions and amplitudes of two Gaussian functions used
to define the pharmacophore model. A grid of initial parameter guesses was explored to avoid local
minima, iterating over combinations of Gaussian centres and amplitudes.

For each candidate parameter set, a VReceptor instance was constructed and used to simulate binding
affinities for the training sequences. The predicted values were compared to experimental data using
MSE as the loss function. The best-performing parameter set was retained for each similarity function.
The optimised models were then evaluated on both training and test sets. Predicted log IC5 values
were compared to experimental values using Pearson and Spearman correlation coefficients, and
mean squared error (MSE). The results were stored for each similarity function and visualised to
compare model performance across metrics.

When comparing the VReceptor model metrics with a Ridge linear regression with the same data
split and an empirical determined alpha = 10, the VReceptor performs similar good (figure 5] table T).
The larger difference between the VReceptor and Ridge regression on the train data is most likely
a reflection of the vast difference in parameter, 6 vs 155, respectively, and a train set size of 250
compounds.

Method | Pearsonr | Spearmanr [ MSE
Training Set
Cosine 0.82 0.80 0.131
Chebyshev 0.85 0.83 0.109
L2_sim 0.85 0.83 0.108
Ridge 0.95 0.92 0.036
Test Set
Cosine 0.77 0.75 0.155
Chebyshev 0.83 0.80 0.118
L2_sim 0.83 0.80 0.118
Ridge 0.80 0.73 0.140

Table 1: Performance metrics for different methods on training and test sets.

The fitted VRecptors can predict the test data with decent metrics. The model using the cosine
distance is slightly worse than the other two, but still acceptable.

4 Discussion

The VReceptor framework presents a streamlined yet biologically grounded approach to simulating
peptide—receptor interactions. By combining a pharmacophore-inspired weighting scheme with
interpretable amino acid similarity metrics, it enables the generation of synthetic binding data that
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Figure 5: Performance of VReceptor models using three different similarity measures

reflects meaningful sequence dependencies. This makes it particularly valuable for benchmarking
peptide design strategies and evaluating active learning workflows.

A key strength of VReceptor is its balance between simplicity and flexibility. The model is parame-
terised by a small number of Gaussian functions, which define the positional importance of amino
acids in a peptide sequence. This allows for intuitive control over the simulated binding landscape
while maintaining computational efficiency. The integration of multiple distance measures—cosine,
Chebyshev-like, and L2—further enhances the model’s adaptability, enabling users to explore how
different assumptions about amino acid similarity influence predictive performance.

The application to the PrRP dataset demonstrates that VReceptor can approximate experimental
binding affinities with reasonable accuracy, even when using a minimal parameter set. This suggests
that the model can serve as a practical surrogate for experimental assays in early-stage research,
where rapid iteration and hypothesis testing are critical. The comparison of design strategies—full
mutational scans versus random triple-mutant libraries—also highlights the tool’s utility in guiding
experimental planning.

However, the model’s simplicity also imposes limitations. It assumes additive contributions from
individual amino acid positions and does not account for higher-order interactions or structural
constraints. While this is a deliberate design choice to preserve interpretability, it may limit the
model’s applicability in more complex biological contexts. This can be seen when fitting a model
on the other two provided receptor data (NPFFR1 and NPFFR?2). These fittings have higher mean-
squared error values and lower Spearman and Pearson correlations. Two possible explanations are the
collected data are not diverse enough to provide a good data set and/or there are other effects like e.g.
the influence of the helicity of the peptides on binding affinities which are not captured in this simple
model. Also the fitting of the model to real data was done to evaluate the realism of VReceptor and
the simple global minimum search strategy might not be thorough enough.

5 Conclusion & Future Directions

In summary, VReceptor offers a lightweight, interpretable, and extensible platform for simulating
realistic peptide binding data. It is well-suited for use in computational peptide design, active
learning evaluation, and methodological benchmarking. Its realism and applicability is validated
through approximating the binding behavior of a real wetlab experimental dataset with enhanced
generalization compared to simple ridge regression when facing limited experimental data.

Beyond its role as a synthetic data generator and benchmarking tool, VReceptor can serve as a robust
baseline in predictive machine learning workflows. Its transparent, biologically motivated design
allows researchers to systematically evaluate the performance of more complex models against a
well-understood reference. By incorporating additional features—such as structural priors or higher-
order sequence interactions—VReceptor may achieve predictive accuracy on par with state-of-the-art
machine learning approaches, while retaining interpretability and computational efficiency.
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