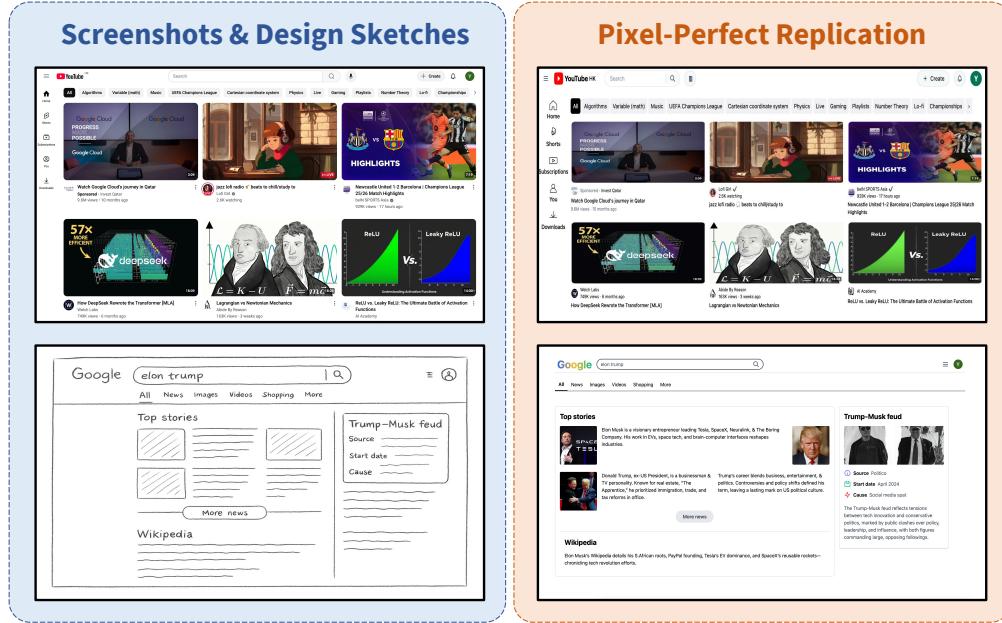


000 SCREENCODER: ADVANCING VISUAL-TO-CODE GENERATION FOR FRONT-END AUTOMATION VIA MODULAR MULTIMODAL AGENTS

006 **Anonymous authors**

007 Paper under double-blind review



032 **Figure 1: ScreenCoder accurately transforms website screenshots and design sketches into**
 033 **pixel-perfect front-end code.** The figure showcases a variety of inputs on the left, including high-
 034 **fidelity screenshots and a low-fidelity design sketch.** The right column displays the corresponding
 035 **websites rendered from our model’s generated code, demonstrating its high-fidelity replication**
 036 **capabilities.**

ABSTRACT

040 Automating the transformation of user interface (UI) designs into front-end code
 041 holds significant promise for accelerating software development and democratizing
 042 design workflows. While multimodal large language models (MLLMs) can
 043 translate images to code, they often fail on complex UIs, struggling to unify visual
 044 perception, layout planning, and code synthesis within a single monolithic model,
 045 which leads to frequent perception and planning errors. To address this, we pro-
 046 pose ScreenCoder, a modular multi-agent framework that decomposes the task
 047 into three interpretable stages: grounding, planning, and generation. By assign-
 048 ing these distinct responsibilities to specialized agents, our framework achieves
 049 significantly higher robustness and fidelity than end-to-end approaches. Further-
 050 more, ScreenCoder serves as a scalable data engine, enabling us to generate high-
 051 quality image-code pairs. We use this data to fine-tune open-source MLLM via a
 052 dual-stage pipeline of supervised fine-tuning and reinforcement learning, demon-
 053 strating substantial gains in its UI generation capabilities. Extensive experiments
 demonstrate that our approach achieves state-of-the-art performance in layout accu-
 racy, structural coherence, and code correctness.

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
064
Automating front-end engineering is a critical step toward efficient software development, and re-
cent large language models (LLMs) have advanced the generation of code directly from text instruc-
tions (Qwen, 2025; Bolt, 2025). However, this text-based approach faces significant limitations.
Generating detailed UIs requires verbose prompts to capture structure and styling, struggles to spec-
ify fine-grained visual design like spacing or alignment, and fundamentally deviates from practical
design workflows that begin with visual sketches, not paragraphs of text. Relying solely on textual
input is therefore sub-optimal for real-world deployment and often fails to capture the full visual
intent.065
066
067
068
069
070
071
To bridge this gap, multimodal large language models (MLLMs) offer the promise of directly in-
terpreting UI design images and translating them into code (Yang et al., 2023). While conceptually
appealing, our analysis reveals that current MLLMs struggle with this task as it requires a unified set
of capabilities, visual understanding, structural layout planning, and domain-specific code synthesis,
that they are not holistically designed for. Empirically, this leads to two recurring failure modes: (1)
perception errors, where components are missed or misclassified, and (2) planning errors, where
components are placed incorrectly or violate layout constraints.072
073
074
075
076
077
078
079
080
081
To address these limitations, we propose **ScreenCoder**, a modular multi-agent framework that de-
composes the UI-to-code task into three interpretable stages: grounding, planning, and generation.
The grounding agent leverages a multimodal large language model to localize and semantically la-
bel key UI regions. The planning agent then constructs a hierarchical layout tree using domain
knowledge of web layout systems. Finally, the generation agent produces HTML and CSS code via
adaptive prompt-based synthesis, incorporating both layout context and optional user instructions to
support interactive design. This decomposition introduces architectural modularity, enabling more
robust component recognition, layout planning, and structured code generation than end-to-end
black-box methods. Experiments show that our framework achieves state-of-the-art performance
in layout fidelity, structural coherence, and generation quality.082
083
084
085
086
087
088
089
090
091
Beyond inference, our framework acts as a **scalable data engine**. This is crucial because training
on raw web data is often infeasible, as its length and noise from dependencies and scripts destabilize
training and prevent models from learning the core visual-to-code mapping (Si et al., 2025). To
address the challenge, we leverage ScreenCoder to create **Screen-10K**, a new large-scale training
dataset of 10,000 high-quality image-code pairs, curated by filtering an initial crawl of 50,000 web-
pages. We use Screen-10K to significantly enhance open-source MLLM via a dual-stage supervised
fine-tuning and reinforcement learning pipeline. Furthermore, to facilitate a more rigorous evalua-
tion of modern models, we introduce **ScreenBench**, a challenging new benchmark composed of
1,000 high-quality, up-to-date websites that reflect contemporary web design. Our framework thus
provides a practical path for both scalable dataset creation and robust model alignment. To sum up,
our contributions are as follows:092
093
094
095
096
097
• We conduct a systematic investigation into the limitations of existing MLLMs on UI-to-
code tasks and propose a novel modular multi-agent framework that decomposes the com-
plex UI-to-code generation task into three interpretable stages: grounding, planning, and
generation, significantly outperforming existing end-to-end multimodal models in layout
fidelity and structural coherence.100
101
102
• Leveraging our framework as a scalable data engine, we introduce Screen-10K, a new large-
scale dataset containing 10,000 high-quality image-code pairs, which addresses a critical
bottleneck in the field by providing a substantial resource for training more capable UI-to-
code generation models.105
106
107
• To facilitate more rigorous and relevant evaluation, we present ScreenBench, a new chal-
lenging benchmark of 1,000 diverse and contemporary web designs. ScreenBench provides
a more accurate measure of model performance on real-world tasks compared to existing
benchmarks.

108

2 RELATED WORK

110

2.1 MULTIMODAL LARGE LANGUAGE MODELS

112 Multimodal Large Language Models (MLLMs) integrate vision and text to enable joint reasoning.
 113 Early models like VisualGPT (Chen et al., 2022) and Frozen (Tsimploukelli et al., 2021) pio-
 114 neered this by using pre-trained LLMs to decode visual features. Architectural innovations, such
 115 as Flamingo’s (Alayrac et al., 2022) gated cross-attention and BLIP-2’s (Li et al., 2023) Q-Former,
 116 further improved vision-language alignment. Modern systems like Gemini 2.5 (Google, 2024) and
 117 GPT-4o (OpenAI, 2024) have dramatically scaled these capabilities, excelling at complex multi-
 118 modal tasks and enabling applications like website generation from images (Zhu et al., 2023). How-
 119 ever, despite their impressive general-purpose abilities, these models struggle with domain-specific
 120 structured generation, such as UI-to-code synthesis. This limitation stems from a lack of inductive
 121 biases for spatial layout and hierarchical planning, as well as a monolithic architecture that hinders
 122 the injection of task-specific knowledge.

123

2.2 VISUAL-TO-CODE GENERATION

125 Early visual-to-code methods used CNNs and LSTMs to translate UI screenshots into domain-
 126 specific languages (DSLs) (Beltramelli, 2018), which offered limited real-world applicability (Xu
 127 et al., 2021). Subsequent research shifted towards generating general-purpose HTML/CSS (Chen
 128 et al., 2018) and improving component recognition, layout understanding (Cizotto et al., 2023),
 129 interaction-awareness (Xiao et al., 2024), and multi-page generation (Wan et al., 2024). Alternative
 130 approaches have included OCR-based techniques (Nguyen & Csallner, 2015) and object detection
 131 for screen parsing (Wu et al., 2021). More recently, divide-and-conquer methods (Wan et al., 2025;
 132 Wu et al., 2025; Gui et al., 2025b;a) have emerged, but often depend on heuristic-based segmen-
 133 tation. Despite these advances, prior works are often brittle, rely on synthetic data, and lack the
 134 interpretability needed to jointly model complex visual semantics, layouts, and coding patterns. In
 135 contrast, our approach introduces a modular multi-agent framework that decomposes the task into
 136 interpretable sub-tasks: grounding, planning, and generation. This allows for explicit reasoning and
 137 the integration of domain-specific priors. Our system also functions as a scalable data engine to train
 138 future MLLMs, addressing the scarcity of high-quality, realistic image-code datasets.

139

3 MOTIVATION: WHY MLLMS FAIL AT UI-TO-CODE GENERATION

141 To motivate our approach, we analyze why state-of-the-art multimodal large language models
 142 (MLLMs) struggle with the direct, end-to-end generation of code from UI screenshots. While mod-
 143 els like GPT-4o exhibit powerful general visual reasoning, our analysis of their outputs on real-world
 144 webpages reveals two primary failure modes, as illustrated in Figure 2: perception failures and plan-
 145 ning failures.

146 First, **perception failures** stem from the model’s inability to accurately interpret visual elements.
 147 This materializes in two ways: (1) **element omission**, where smaller or less salient components like
 148 icons and secondary text are completely missed, and (2) **element distortion**, where an element is
 149 recognized but its attributes (e.g., text content, color) are incorrect, or its type is misidentified (e.g.,
 150 an input field rendered as static text). Second, **planning failures** involve the inability to organize
 151 perceived elements into a coherent spatial and hierarchical structure. Even if all components are
 152 identified, they are often assembled incorrectly, leading to (1) **element misarrangement**, where
 153 components are placed in the wrong positions, and (2) **hierarchical incoherence**, where the model
 154 produces a “flat” layout that fails to infer the nested, DOM-like structure essential for modern,
 155 responsive web design. This highlights a lack of inductive bias for fundamental front-end layout
 156 conventions.

157 Our analysis indicates these failures arise not from an intrinsic inability to perform any single sub-
 158 task, but from the burden of a monolithic, end-to-end approach that overloads a single model with
 159 granular perception, complex spatial planning, and structured code synthesis simultaneously. This
 160 task also demands deep domain knowledge of front-end development, such as layout systems and
 161 component hierarchies, which general-purpose MLLMs lack. Inspired by agentic workflows that
 decompose complex problems, we hypothesize that separating these distinct challenges will yield

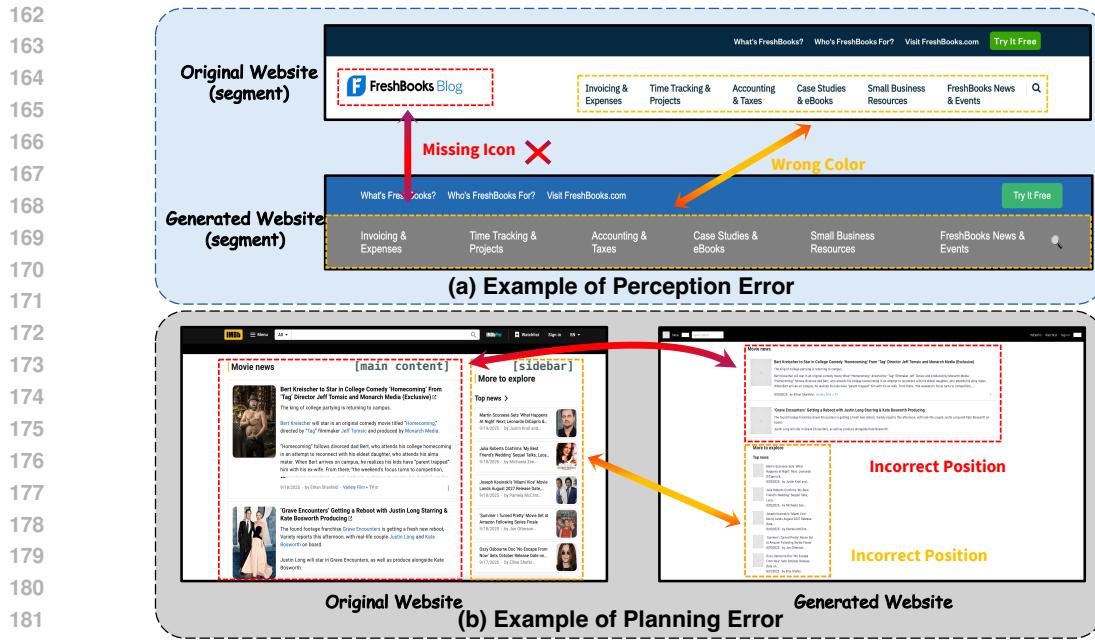


Figure 2: **Analysis of Common MLLM Failure Modes in UI-to-Code Generation.** We identify two primary error categories: (a) Perception Errors, where the model fails to accurately interpret visual details, leading to missing icons or incorrect colors, and (b) Planning Errors, where the model fails to correctly reason about the spatial layout, resulting in elements being placed in the wrong positions.

more robust results. This insight directly motivates our modular, multi-agent framework. By explicitly decoupling the task into **grounding** (to address perception failures), **planning** (to address structural failures), and **generation** (to focus on code synthesis), we enable each agent to specialize. Crucially, this modularity allows us to inject specific domain knowledge at each stage, such as established layout conventions in the planning agent, thereby mitigating the failure modes inherent in a single, end-to-end process.

4 METHOD

We propose a modular, multi-agent framework for UI-to-code generation that decomposes the complex task into three sequential agents: grounding, planning, and generation. This design is explicitly motivated by the failure modes identified in Section 2; each agent is specialized to address a distinct sub-problem, allowing the system to leverage both visual understanding and structured reasoning in a coordinated manner. The grounding agent targets *perception errors* by accurately identifying UI components. The planning agent tackles *planning errors* by constructing a coherent layout hierarchy. Finally, the generation agent translates this structured plan into high-fidelity code. Our overall framework is shown in Figure 3.

4.1 GROUNDING AGENT: OVERCOMING PERCEPTION ERRORS

The grounding agent serves as the perceptual front-end of our framework, tasked with detecting and semantically labeling major structural components to overcome the *perception errors* (element omission and distortion) common in end-to-end models. This design choice, assigning explicit labels like sidebar, header, and navigation, is crucial for enabling interactive, language-driven design, as it allows users and downstream agents to reference and manipulate specific components via natural language (e.g., “resize the sidebar”).

To accomplish this, the agent employs a Multimodal Large Language Model (MLLM) queried with prompts such as “Where is the sidebar?” or “Locate the header area.” The MLLM returns a set of

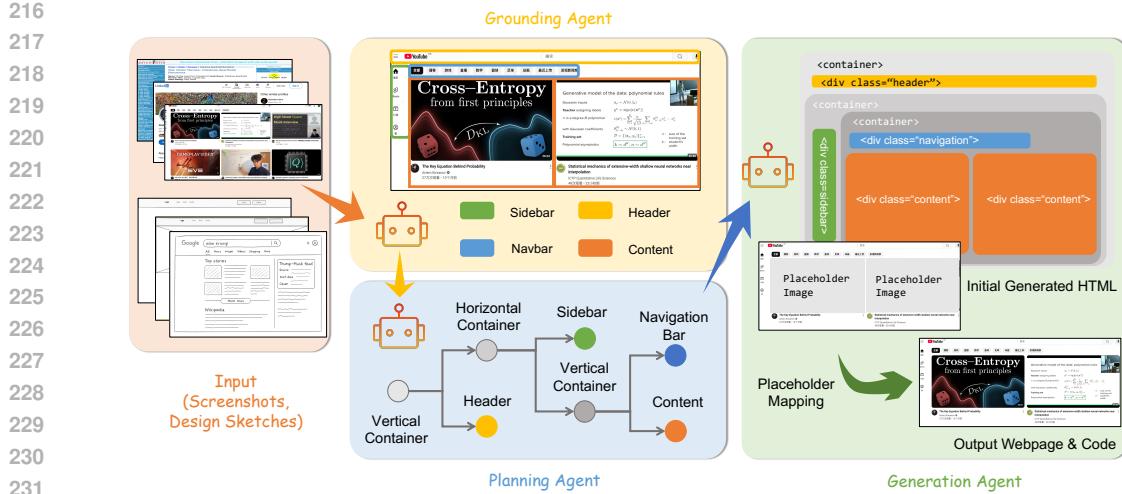


Figure 3: **Overview of ScreenCoder.** Given UI screenshots or design sketches as input, the Grounding Agent first detects and labels key components (e.g., header, navbar, sidebar, content). The Planning Agent organizes these components into a hierarchical layout using front-end engineering priors. The Generation Agent synthesizes initial HTML code with placeholders, followed by content mapping to produce the final webpage and code.

grounded regions as bounding boxes and their associated labels:

$$\mathcal{B} = \{(b_i, l_i) \mid l_i \in \mathcal{L}\}_{i=1}^N, \text{ where } \mathcal{L} = \{\text{sidebar, header, navigation}\}. \quad (1)$$

Here, each $b_i = (x_i, y_i, w_i, h_i)$ is a bounding box in pixel coordinates. Unlike traditional object detection, this MLLM-based approach allows grounding to be flexibly guided by text, making the system extensible to new UI concepts.

To ensure robustness, the agent performs several post-processing operations: (1) Deduplication and Conflict Resolution, using class-specific non-maximum suppression (NMS) to filter multiple detections for the same label and retain the most confident one; (2) Fallback Recovery, invoking a heuristic based on spatial priors if a key component is missed (e.g., a wide, short box at the top is likely a header); and (3) Main Content Inference, which robustly defines the primary content area by inferring it as the largest rectangular area not overlapping any detected component. The final output is a layout dictionary which provides the semantic and spatial foundation for the next stage. Unlike traditional object detectors which require costly retraining, our MLLM-based approach is inherently extensible. The system can be adapted to recognize new UI concepts simply by expanding the textual label set \mathcal{L} , offering a flexible path for future domain adaptations.

4.2 PLANNING AGENT: CORRECTING PLANNING ERRORS

The Planning Agent mitigates common MLLM failures in spatial reasoning, such as component misarrangement and hierarchical incoherence. Instead of a generative approach, it uses a novel, deterministic Visual-to-Structural Tree Mapping algorithm¹ to programmatically translate unstructured visual information into a well-formed layout. The algorithm embeds key domain knowledge from modern web development by converting the flat 2D canvas of bounding boxes into a DOM-like tree, the standard hierarchical data structure for web pages. This deliberately trades the unconstrained flexibility of generative models for structural integrity and predictability, ensuring the generated code faithfully mirrors the source screenshot’s layout.

First, our algorithm establishes the global layout by creating tree nodes for primary components (e.g., header, sidebar), converting absolute pixel coordinates into responsive percentage-based values, and using absolute positioning to preserve the macro-structure. It then recursively handles internal component layouts by injecting domain knowledge, designating parent regions with children as CSS Grid containers to arrange nested elements with high fidelity. This process yields an interpretable layout tree that serves as a blueprint, effectively decoupling the abstract planning of

270 **Algorithm 1** Visual-to-Structural Tree Mapping

```

271 1: Input: Layout dictionary  $L = \{l \mapsto b_l\}$ , Image dimensions  $W, H$ 
272 2: Output: Layout Tree  $\mathcal{T}$ 
273 3:  $\mathcal{T} \leftarrow \text{createNode}(\text{root}, \text{style}=\{\text{'position': 'relative'}, \text{'width': '100%'}, \dots\})$ 
274 4: for all label  $l$ , box  $b_l$  in  $L$  do
275 5:    $N_l \leftarrow \text{createNode}(l)$ 
276 6:    $(x\%, y\%, w\%, h\%) \leftarrow (b_l.x/W, b_l.y/H, b_l.width/W, b_l.height/H) \times 100$ 
277 7:    $N_l.\text{style} \leftarrow \{\text{'position': 'absolute'}, \text{'left': } x\%, \text{'top': } y\%, \dots\}$ 
278 8:   if  $l$  contains subdivisions then  $N_l.\text{is\_grid\_container} \leftarrow \text{true}$ 
279 9:   end if
280 10:   $\text{AddChild}(\mathcal{T}, N_l)$ 
281 11: end for
282 12: return  $\mathcal{T}$ 

```

283
284 the UI structure from the concrete task of code generation, embodying the principle of separation of
285 concerns.
286

287 4.3 GENERATION AGENT: HIGH-FIDELITY CODE SYNTHESIS

288
289 The generation agent translates the hierarchical layout tree \mathcal{T} into executable HTML and CSS. It
290 traverses the tree and, for each node, uses a large language model to generate code based on an
291 *adaptive prompt*. This prompt combines the component’s semantic label, its structural context from
292 the tree, and optional user instructions. This approach provides the LLM with rich context, guiding
293 it to produce code that is not only visually correct but also structurally sound and responsive to user
294 intent. The generated code snippets for each component are then assembled according to the tree
295 structure, preserving the hierarchy and layout defined by the planning agent. This closes the loop
296 from visual perception to structured, interactive code synthesis.
297

298 4.4 PLACEHOLDER MAPPING

299
300 To restore visual fidelity, we introduce a final placeholder mapping stage that replaces generic image
301 placeholders with their original visual assets. The process begins by using a UI Element Detection
302 (UIED)(Xie et al., 2020) model to extract all visual elements (e.g., icons, images) from the source
303 screenshot. These elements are then partitioned according to the semantic regions defined by the
304 Planning Agent (e.g., header, sidebar).
305

306 Within each region, we solve an optimal assignment problem to match the detected elements to the
307 placeholders. We construct a cost matrix based on the negative Complete IoU (CIoU) between the
308 placeholder boxes and the original element boxes, after applying a localized affine transformation
309 to correct for minor rendering discrepancies. This bipartite matching problem is solved using the
310 Hungarian Algorithm to find the optimal one-to-one mapping. Finally, the matched image patches
311 are cropped from the original screenshot and inserted into the generated code, restoring the full
312 visual content of the UI.
313

314 5 ENHANCING MLLMs WITH SCALABLE DATA GENERATION AND
315 DUAL-STAGE POST-TRAINING

316 Beyond its inference capabilities, our framework serves a crucial role as a scalable data engine,
317 addressing a fundamental challenge in training visual-to-code models. Directly training on raw,
318 crawled web data is often infeasible (Si et al., 2025). Real-world code is typically long and noisy,
319 replete with complex dependencies, external links, and irrelevant scripts that make training unstable
320 and hinder the model’s ability to learn the core mapping from visual structure to clean, self-contained
321 code.
322

323 To overcome this, we leverage our engine to generate Screen-10K, a large-scale dataset of 10,000
324 high-quality image-code pairs. This dataset was curated by initially crawling 50,000 webpages and
325 applying a rigorous, automated filtering process to retain only the most valuable, well-structured ex-

Model	ScreenBench					Design2Code				
	Block	Text	Position	Color	CLIP	Block	Text	Position	Color	CLIP
GPT-4o	0.745	0.835	0.725	0.702	0.775	0.845	0.962	0.903	0.881	0.917
GPT-4V	0.721	0.815	0.701	0.682	0.758	0.831	0.955	0.895	0.872	0.905
Gemini-2.5-Pro	0.741	0.825	<u>0.752</u>	0.695	0.788	0.841	0.969	0.901	0.879	0.908
LLaVA 1.6-7B	0.635	0.830	0.544	0.592	0.727	0.736	0.910	0.729	0.816	0.802
DeepSeek-VL-7B	0.680	0.773	0.570	0.614	0.732	0.718	0.824	0.702	0.720	0.843
Qwen2.5-VL	0.723	0.828	0.613	0.632	0.762	0.822	0.951	0.815	0.831	0.893
Seed1.5-VL	0.727	<u>0.852</u>	0.742	<u>0.729</u>	0.783	0.829	0.968	<u>0.915</u>	<u>0.897</u>	0.911
DCGen	0.731	0.831	0.713	0.699	0.767	0.836	0.958	<u>0.885</u>	<u>0.865</u>	0.901
Websight-8B	0.678	0.768	0.554	0.606	0.748	0.755	0.903	0.767	0.785	0.859
ScreenCoder (Agentic)	0.768	0.857	0.755	0.734	0.812	0.865	0.975	0.925	0.908	0.922
ScreenCoder (Finetuned)	<u>0.758</u>	0.841	0.742	0.718	<u>0.791</u>	0.849	0.968	0.913	0.886	<u>0.915</u>

Table 1: Automatic evaluation results on the ScreenBench and Design2Code benchmarks. For each metric, the best result is in **bold** and the second best is underlined.

amples. This clean dataset provides the stable foundation necessary for our dual-stage post-training pipeline. First, we perform supervised fine-tuning (SFT) on a 9,000-pair subset to align the model’s visual understanding with correct code syntax, establishing a strong baseline. The remaining 1,000 pairs are then used in a subsequent reinforcement learning (RL) stage to further optimize for high visual fidelity.

The reinforcement learning stage is based on Group Relative Policy Optimization (GRPO) (Shao et al., 2024). We optimize the policy π_θ to maximize the expected reward over our RL dataset:

$$\max_{\theta} \mathbb{E}_{(x,y) \sim \pi_\theta} [\mathcal{R}(x, y)], \quad (2)$$

where x is the input image and y is the generated code.

To directly optimize for visual fidelity, our reward function $\mathcal{R}(x, y)$ is based on the pixel-level similarity between the original screenshot and the webpage rendered from the generated code. For each output y , we first render it to produce an image, $\text{Render}(y)$. The reward is then defined as the negative Mean Squared Error (MSE) between the original image x and the rendered output. Since RL seeks to maximize reward, using a negative error term incentivizes the policy to minimize the pixel-wise difference:

$$\mathcal{R}(x, y) = -\text{MSE}(x, \text{Render}(y)) \quad (3)$$

where the MSE between two images I_1 and I_2 of height H and width W is calculated as:

$$\text{MSE}(I_1, I_2) = \frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W \|I_1(i, j) - I_2(i, j)\|_2^2 \quad (4)$$

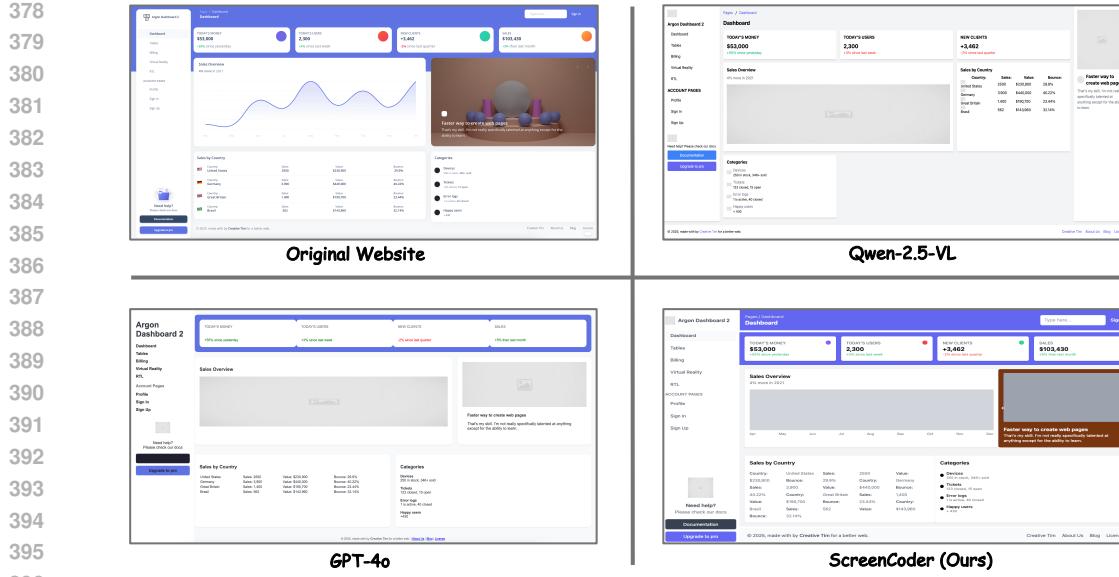
This reward function provides a strong, holistic signal that guides the model toward generating code that achieves a pixel-perfect visual replication of the original design.

6 EXPERIMENTS

We evaluate our framework from two complementary perspectives: (1) the visual fidelity and semantic consistency of the generated webpages, and (2) its effectiveness as a scalable data engine for fine-tuning multimodal large language models (MLLMs). We assess the quality of the generated code by comparing the rendered output against ground-truth screenshots using the metrics and benchmarks detailed below.

6.1 EXPERIMENTAL SETUP

Datasets. To rigorously evaluate modern UI-to-code models, we introduce **ScreenBench**, a new benchmark of 1,000 high-quality image-code pairs. This benchmark addresses the limitations of existing datasets like Design2Code (Si et al., 2025), which, with its 484 samples from older websites, primarily tests for textual content reproduction over structural complexity. In contrast, Screen-



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: **Qualitative comparison of UI-to-code generation.** While leading MLLMs fail to accurately replicate the target website’s layout, styling, and component structure, our method, ScreenCoder, produces a high-fidelity result that closely matches the original design in both appearance and organization.

Bench is substantially larger and sourced from contemporary web applications, featuring the complex, nested layouts (e.g., CSS Grid/Flexbox) that define modern web design. We also adopt Design2Code (Si et al., 2025) for evaluation.

Evaluation Metrics. We follow the methodology of Design2Code (Si et al., 2025) and evaluate visual similarity using both high-level and low-level metrics. For high-level assessment, we compute the CLIP similarity (Radford et al., 2021) between the rendered output and the reference screenshot. For low-level evaluation, we extract OCR-based visual blocks from both images, align them using text similarity, and then measure four key aspects based on these matched elements: block reproduction accuracy, textual consistency, spatial alignment, and color similarity.

Baselines. We benchmark our approach against a comprehensive suite of state-of-the-art models. This includes leading proprietary MLLMs (GPT-4o (OpenAI, 2024), GPT-4V (OpenAI, 2023), and Gemini-2.5-Pro (Google, 2024)); a range of open-source MLLMs (LLaVA 1.6-7B (Liu et al., 2023), DeepSeek-VL-7B (Lu et al., 2024), Qwen2.5-VL (Bai et al., 2025), and Seed1.5-VL (Guo et al., 2025)); and specialized UI-to-code methods (DCGen (Wan et al., 2025) and Websight-8B (Laurençon et al., 2024)). Our method is implemented on the open-source Qwen2.5-VL-32B model. We show other implementation details in Appendix C.1 and C.2.

6.2 MAIN RESULTS

As shown in Table 1, our ScreenCoder framework, in both its agentic and fine-tuned variants, consistently surpasses all open-source baselines. The primary agentic model achieves state-of-the-art performance, outperforming even top proprietary systems on the challenging ScreenBench with a Block score of 0.755. Furthermore, our fine-tuned model secures the second-best results on many metrics, and achieve comparable performance with close-source models. These results validate our framework’s dual utility as both a high-performing inference system and an effective data engine for significantly enhancing open-source MLLMs. Besides automatic evaluation, we also conduct human expert evaluation, whose setting and result are shown in Appedix A.

432 433 434 435 436 437 438 439 440 441 442	Training Stage	ScreenBench					Design2Code				
		Block	Text	Position	Color	CLIP	Block	Text	Position	Color	CLIP
Base Model (Qwen2.5-VL)		0.723	0.828	0.613	0.632	0.762	0.822	0.951	0.815	0.831	0.893
+ SFT		0.741	0.835	0.705	0.681	0.784	0.842	0.963	0.890	0.870	0.908
+ RL (Final)		0.758	0.841	0.742	0.718	0.791	0.849	0.968	0.913	0.886	0.915

Table 2: Effect of different dual-stage post-training stage on the ScreenBench and Design2Code benchmarks.

6.3 QUALITATIVE ANALYSIS

Figure 4 provides a qualitative comparison that highlights the practical advantages of our method. Leading end-to-end MLLMs, such as Qwen-2.5-VL and GPT-4o, demonstrate significant perception and planning failures. They struggle to replicate the target design, resulting in distorted layouts, incorrect component arrangements, and a general loss of styling information. In stark contrast, ScreenCoder produces a high-fidelity result that closely mirrors the original website’s appearance and organization. More qualitative results are shown in Figure 1 and Appendix.

6.4 ABLATION STUDY

To isolate the contributions of our dual-stage training, we conducted an ablation study (Table 2). Starting with the base Qwen2.5-VL model, the application of Supervised Fine-Tuning (SFT) yielded significant improvements across all metrics, especially in spatial layout awareness (‘Position’). The subsequent Reinforcement Learning (RL) stage further refined the model’s capabilities, providing incremental but crucial boosts to achieve our final, top-performing results. This analysis confirms that SFT builds a strong foundational understanding, while RL fine-tunes the model’s precision, validating our cumulative training strategy.

7 DISCUSSION

Interactive Design and Human-in-the-Loop Feedback. One key strength of our modular pipeline is its potential to support interactive design iteration. Since each stage, grounding, planning, and generation, is disentangled, user feedback can be incorporated at different abstraction levels. For instance, designers can manually adjust the layout tree or re-prompt specific components without restarting the entire process. Future work may further enhance this interactivity by integrating real-time preview, editable intermediate representations, and dialogue-based refinement.

Scalability and the Cost-Quality Trade-Off. Our modular framework offers a flexible trade-off between computational cost and output quality via test-time scaling. Users can select smaller, faster models for quick, low-fidelity drafts or larger, more powerful models for high-fidelity, production-ready code. While a high-quality generation takes tens of seconds, this is an acceptable trade-off for its intended use as a workflow accelerator where initial code quality is the priority. This versatility allows the system to be adapted for different stages of the development process. Future work can further enhance this flexibility. We envision a system where developers can interactively refine the output, dedicating more compute only to the specific components that require changes. This moves beyond a one-off generation and towards a more dynamic, resource-efficient, human-in-the-loop partnership.

8 CONCLUSION

We present ScreenCoder, a modular multi-agent framework for UI-to-code generation that addresses key limitations of end-to-end models, and also functions as a scalable data engine to improve MLLMs via dual-stage post-training with supervised fine-tuning and reinforcement learning. Experiments demonstrate state-of-the-art performance in visual fidelity and code correctness, offering a practical solution for front-end automation and a foundation for future research in multimodal program synthesis.

ETHICAL STATEMENTS

This research was conducted in full compliance with the ICLR Code of Ethics. All aspects of our work, from data collection to model development, adhere to ethical standards of privacy, consent, and responsible AI. To the best of our knowledge, this study does not introduce any new ethical risks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made several resources available. First, the complete implementation code is provided in the supplementary material. Second, our visual mapping algorithm is formally described in Algorithm 1. Third, the prompt templates used for each agent are detailed in Appendix C.1. Finally, a comprehensive breakdown of the training procedure is included in Appendix C.2.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL <https://arxiv.org/abs/2502.13923>.

T. Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In *Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems*, pp. 1–6, 2018.

Bolt. Introduction to bolt, 2025. URL <https://support.bolt.new/building/intro-bolt>. Accessed: 2025-07-23.

C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu. From ui design image to gui skeleton: a neural machine translator to bootstrap mobile gui implementation. In *Proceedings of the 40th International Conference on Software Engineering*, pp. 665–676, 2018.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adaptation of pretrained language models for image captioning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18030–18040, 2022.

A. A. J. Cizotto, R. C. T. de Souza, V. C. Mariani, and L. dos Santos Coelho. Web pages from mockup design based on convolutional neural network and class activation mapping. *Multimedia Tools and Applications*, pp. 1–27, 2023.

Google. Gemini api, 2024. URL <https://ai.google.dev/gemini-api>. Accessed: 2024-06-06.

Yi Gui, Zhen Li, Zhongyi Zhang, Guohao Wang, Tianpeng Lv, Gaoyang Jiang, Yi Liu, Dongping Chen, Yao Wan, Hongyu Zhang, Wenbin Jiang, Xuanhua Shi, and Hai Jin. Latcoder: Converting webpage design to code with layout-as-thought. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining* V.2, KDD ’25, pp. 721–732, New York, NY, USA, 2025a. Association for Computing Machinery. ISBN 9798400714542. doi: 10.1145/3711896.3737016. URL <https://doi.org/10.1145/3711896.3737016>.

Yi Gui, Yao Wan, Zhen Li, Zhongyi Zhang, Dongping Chen, Hongyu Zhang, Yi Su, Bohua Chen, Xing Zhou, Wenbin Jiang, and Xiangliang Zhang. Uicopilot: Automating ui synthesis via hierarchical code generation from webpage designs. In *Proceedings of the ACM on*

540 *Web Conference 2025*, WWW '25, pp. 1846–1855, New York, NY, USA, 2025b. Association
 541 for Computing Machinery. ISBN 9798400712746. doi: 10.1145/3696410.3714891. URL
 542 <https://doi.org/10.1145/3696410.3714891>.

543

544 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 545 Jianyu Jiang, Jiawei Wang, Jingji Chen, Jingjia Huang, Kang Lei, Liping Yuan, Lishu Luo,
 546 Pengfei Liu, Qinghao Ye, Rui Qian, Shen Yan, Shixiong Zhao, Shuai Peng, Shuangye Li, Si-
 547 hang Yuan, Sijin Wu, Tianheng Cheng, Weiwei Liu, Wenqian Wang, Xianhan Zeng, Xiao Liu,
 548 Xiaobo Qin, Xiaohan Ding, Xiaojun Xiao, Xiaoying Zhang, Xuanwei Zhang, Xuehan Xiong,
 549 Yanghua Peng, Yangrui Chen, Yanwei Li, Yanxu Hu, Yi Lin, Yiyuan Hu, Yiyuan Zhang, Youbin
 550 Wu, Yu Li, Yudong Liu, Yue Ling, Yujia Qin, Zanbo Wang, Zhiwu He, Aoxue Zhang, Bairen Yi,
 551 Bencheng Liao, Can Huang, Can Zhang, Chaorui Deng, Chaoyi Deng, Cheng Lin, Cheng Yuan,
 552 Chenggang Li, Chenhui Gou, Chenwei Lou, Chengzhi Wei, Chundian Liu, Chunyuan Li, Deyao
 553 Zhu, Donghong Zhong, Feng Li, Feng Zhang, Gang Wu, Guodong Li, Guohong Xiao, Haibin
 554 Lin, Haihua Yang, Haoming Wang, Heng Ji, Hongxiang Hao, Hui Shen, Huixia Li, Jiahao Li,
 555 Jialong Wu, Jianhua Zhu, Jianpeng Jiao, Jiaoshi Feng, Jiaze Chen, Jianhui Duan, Jihao Liu, Jin
 556 Zeng, Jingqun Tang, Jingyu Sun, Joya Chen, Jun Long, Junda Feng, Junfeng Zhan, Junjie Fang,
 557 Junting Lu, Kai Hua, Kai Liu, Kai Shen, Kaiyuan Zhang, Ke Shen, Ke Wang, Keyu Pan, Kun
 558 Zhang, Kunchang Li, Lanxin Li, Lei Li, Lei Shi, Li Han, Liang Xiang, Liangqiang Chen, Lin
 559 Chen, Lin Li, Lin Yan, Liying Chi, Longxiang Liu, Mengfei Du, Mingxuan Wang, Ningxin Pan,
 560 Peibin Chen, Pengfei Chen, Pengfei Wu, Qingqing Yuan, Qingyao Shuai, Qiuyan Tao, Renjie
 561 Zheng, Renrui Zhang, Ru Zhang, Rui Wang, Rui Yang, Rui Zhao, Shaoqiang Xu, Shihao Liang,
 562 Shipeng Yan, Shu Zhong, Shuaishuai Cao, Shuangzhi Wu, Shufan Liu, Shuhan Chang, Songhua
 563 Cai, Tenglong Ao, Tianhao Yang, Tingting Zhang, Wanjun Zhong, Wei Jia, Wei Weng, Weihao
 564 Yu, Wenhao Huang, Wenjia Zhu, Wenli Yang, Wenzhi Wang, Xiang Long, XiangRui Yin, Xiao
 565 Li, Xiaolei Zhu, Xiaoying Jia, Xijin Zhang, Xin Liu, Xinchen Zhang, Xinyu Yang, Xiongcai Luo,
 566 Xiuli Chen, Xuantong Zhong, Xuefeng Xiao, Xujing Li, Yan Wu, Yawei Wen, Yifan Du, Yihao
 567 Zhang, Yining Ye, Yonghui Wu, Yu Liu, Yu Yue, Yufeng Zhou, Yufeng Yuan, Yuhang Xu, Yuhong
 568 Yang, Yun Zhang, Yunhao Fang, Yuntao Li, Yurui Ren, Yuwen Xiong, Zehua Hong, Zehua Wang,
 569 Zewei Sun, Zeyu Wang, Zhao Cai, Zhaoyue Zha, Zhecheng An, Zhehui Zhao, Zhengzhuo Xu,
 570 Zhipeng Chen, Zhiyong Wu, Zhuofan Zheng, Zihao Wang, Zilong Huang, Ziyu Zhu, and Zuquan
 571 Song. Seed1.5-vl technical report, 2025. URL <https://arxiv.org/abs/2505.07062>.

572

573 Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into
 574 html code with the websight dataset, 2024. URL <https://arxiv.org/abs/2403.09029>.

575

576 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 577 pre-training with frozen image encoders and large language models. In *International conference
 578 on machine learning*, pp. 19730–19742. PMLR, 2023.

579

580 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *arXiv
 581 preprint arXiv:2304.08485*, 2023.

582

583 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng
 584 Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong
 585 Ruan. Deepseek-vl: Towards real-world vision-language understanding, 2024. URL <https://arxiv.org/abs/2403.05525>.

586

587 T. A. Nguyen and C. Csallner. Reverse engineering mobile application user interfaces with remaui
 588 (t). In *2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)*,
 589 pp. 248–259, 2015.

590

591 OpenAI. Gpt-4v(ision) system card, September 2023. URL https://cdn.openai.com/papers/GPTV_System_Card.pdf. Accessed: 2025-07-24.

592

593 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>. Ac-
 594 cessed: 2024-06-06.

595

596 Qwen. Qwen3 blog post, 2025. URL <https://qwenlm.github.io/zh/blog/qwen3/>.
 597 Accessed: 2025-07-23.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 595 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 596 Sutskever. Learning transferable visual models from natural language supervision. *arXiv preprint*
 597 *arXiv:2103.00020*, 2021. URL <https://arxiv.org/abs/2103.00020>.

598 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 599 Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
 600 ematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024. URL
 601 <https://arxiv.org/pdf/2402.03300.pdf>.

602 Changlei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2Code:
 603 Benchmarking multimodal code generation for automated front-end engineering. In Luis
 604 Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations*
 605 *of the Americas Chapter of the Association for Computational Linguistics: Human Language*
 606 *Technologies (Volume 1: Long Papers)*, pp. 3956–3974, Albuquerque, New Mexico, April 2025.
 607 Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.
 608 naacl-long.199. URL <https://aclanthology.org/2025.naacl-long.199>.

609 Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Mul-
 610 timodal few-shot learning with frozen language models. *Advances in Neural Information Pro-*
 611 *cessing Systems*, 34:200–212, 2021.

612 Yuxuan Wan, Yi Dong, Jingyu Xiao, Yintong Huo, Wenzuan Wang, and Michael R. Lyu.
 613 Mrweb: An exploration of generating multi-page resource-aware web code from ui de-
 614 signs. *ArXiv*, abs/2412.15310, 2024. URL <https://api.semanticscholar.org/CorpusID:274965541>.

615 Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenzuan Wang, Shuqing Li, Yintong Huo, and Michael
 616 Lyu. Divide-and-conquer: Generating ui code from screenshots. *Proceedings of the ACM on*
 617 *Software Engineering*, 2(FSE):2099–2122, June 2025. ISSN 2994-970X. doi: 10.1145/3729364.
 618 URL <http://dx.doi.org/10.1145/3729364>.

619 Fan Wu, Cuiyun Gao, Shuqing Li, Xin-Cheng Wen, and Qing Liao. Mllm-based ui2code automation
 620 guided by ui layout information. *Proceedings of the ACM on Software Engineering*, 2(ISSTA):
 621 1123–1145, June 2025. ISSN 2994-970X. doi: 10.1145/3728925. URL <http://dx.doi.org/10.1145/3728925>.

622 J. Wu, X. Zhang, J. Nichols, and J. P. Bigham. Screen parsing: Towards reverse engineering of ui
 623 models from screenshots. In *The 34th Annual ACM Symposium on User Interface Software and*
 624 *Technology*, pp. 470–483, 2021.

625 Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zhiyao Xu, and Michael R. Lyu. Interaction2code: How
 626 far are we from automatic interactive webpage generation? *ArXiv*, abs/2411.03292, 2024. URL
 627 <https://api.semanticscholar.org/CorpusID:273821629>.

628 Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen. Uied: a hy-
 629 brid tool for gui element detection. In *Proceedings of the 28th ACM Joint Meeting on Euro-*
 630 *pean Software Engineering Conference and Symposium on the Foundations of Software Engi-*
 631 *neering*, ESEC/FSE 2020, pp. 1655–1659, New York, NY, USA, 2020. Association for Com-
 632 puting Machinery. ISBN 9781450370431. doi: 10.1145/3368089.3417940. URL <https://doi.org/10.1145/3368089.3417940>.

633 Y. Xu, L. Bo, X. Sun, B. Li, J. Jiang, and W. Zhou. image2emmet: Automatic code generation from
 634 web user interface image. *Journal of Software: Evolution and Process*, 33(8):e2369, 2021.

635 Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan
 636 Wang. The dawn of lmms: Preliminary explorations with gpt-4v(ision). *ArXiv*, abs/2309.17421,
 637 2023. URL <https://api.semanticscholar.org/CorpusID:263310951>.

638 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 639 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-*
 640 *ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 641 *3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 642 *tics*. URL <http://arxiv.org/abs/2403.13372>.

648 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
649 vision-language understanding with advanced large language models. *ArXiv*, abs/2304.10592,
650 2023. URL <https://api.semanticscholar.org/CorpusID:258291930>.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

A HUMAN EVALUATION

To validate our automatic metrics, we conducted a human evaluation study assessing two critical dimensions: the **perceived visual fidelity** of the generated webpages and the **practical utility** of ScreenCoder in a real-world development workflow.

A.1 PAIRWISE COMPARISON OF VISUAL FIDELITY

Setup. We recruited six Ph.D. students with web development experience to serve as expert annotators. Following the standard methodology for evaluating generative models, we performed a pairwise comparison study. In each trial, annotators were shown an original UI screenshot alongside two rendered webpages—one generated by **ScreenCoder (Agentic)** and one by a strong baseline (**GPT-4o**). They were asked to vote for the page that was more visually similar to the original ("A is better," "B is better," or "Tie"). To ensure reliable judgments, each comparison was evaluated by three annotators, and a winner was declared based on a majority vote (≥ 2).

Results. The results, summarized in Table 3, reveal a strong human preference for our method. Annotators judged ScreenCoder’s output as superior to GPT-4o’s in **65%** of cases, while finding it inferior in only **11%**. This outcome confirms that the improvements captured by our automatic metrics translate into a noticeably better perceptual experience, suggesting that our modular approach produces layouts that are more structurally coherent and visually faithful.

Table 3: Pairwise comparison of visual fidelity between ScreenCoder and GPT-4o. Results show the percentage of times each outcome was chosen by human annotators.

Outcome	Win Rate (%)
ScreenCoder Wins	65%
GPT-4o Wins (Baseline)	11%
Tie	24%

A.2 WORKFLOW USEFULNESS STUDY

Setup. To measure ScreenCoder’s impact on developer productivity, we designed a task-based study. Six participants with front-end experience were divided into an **Experimental Group (n=3)**, who used a tool powered by ScreenCoder, and a **Control Group (n=3)**, who used their preferred method (all chose GPT-4o). Each participant was tasked with converting two UI screenshots (one simple, one complex) into functional webpages, with a 20-minute time limit for each task. We measured both the completion time and the quality of the final output, which was rated for UI similarity on a 5-point Likert scale by two independent expert judges.

Results. As detailed in Table 4, ScreenCoder provides a significant boost to development efficiency. On average, the ScreenCoder group completed tasks **2.2 times faster** than the control group (8.5 minutes vs. 18.7 minutes). Notably, all participants using ScreenCoder finished comfortably within the time limit, whereas two tasks in the control group timed out. Furthermore, the quality of the output was substantially higher for the ScreenCoder group, which achieved an average similarity score of **4.6/5.0**, compared to **3.4/5.0** for the control group (with a strong inter-judge Pearson correlation of 0.78). These findings demonstrate that ScreenCoder acts as a powerful accelerator in a human-in-the-loop process, enabling developers to build UIs faster and with greater accuracy.

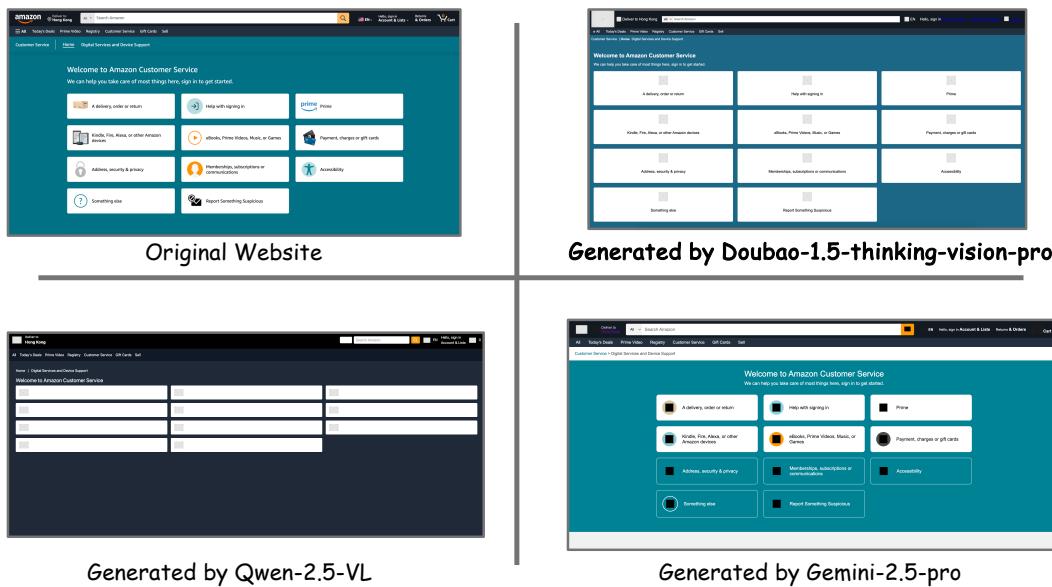
B ADDITIONAL QUALITATIVE COMPARISONS

To further demonstrate the effectiveness of our framework, this appendix provides an extended set of qualitative results. The following figures showcase side-by-side comparisons between the webpages generated by our method, ScreenCoder, and those produced by leading baseline models.

756
757 Table 4: Results of the workflow usefulness study. We compare the performance of developers using
758 ScreenCoder against a control group using GPT-4o.
759

Metric	ScreenCoder (Experimental)	GPT-4o (Control)
Avg. Completion Time (min)	8.5	18.7
Avg. UI Similarity (out of 5.0)	4.6	3.4
Tasks Timed Out (out of 6)	0	2

764
765 These examples were selected to cover a diverse range of website styles and layout complexities.
766 They serve to highlight the common failure modes of existing end-to-end models—such as incorrect
767 spatial arrangements, missing UI elements, and distorted styling—and illustrate how ScreenCoder’s
768 modular, agentic approach successfully overcomes these challenges. As shown in the comparisons,
769 our method consistently produces webpages with significantly higher visual fidelity and structural
770 coherence, more closely matching the original design intent of the source screenshots.
771



791 Figure 5: Qualitative comparison between our proposed method and various baselines.
792
793

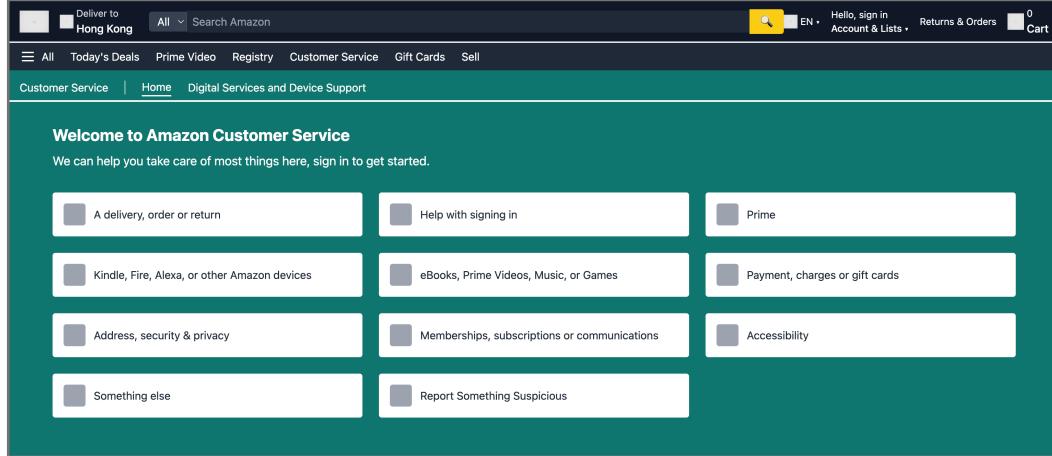
C IMPLEMENTATION DETAIL

C.1 PROMPT TEMPLATE

798 The prompt templates are shown in Figure 13 and 14.

C.2 TRAINING DETAILS

801 Our training and experiments were conducted using the Llama Factory codebase on a high-
802 performance cluster of 16 NVIDIA A100 GPUs. We adopted a two-stage training pipeline. For
803 the SFT stage, we fine-tuned the base model on 9,000 samples from our Screen-10K dataset. We
804 adopt the LLaMa Factory (Zheng et al., 2024) as the code base. The model was optimized using the
805 AdamW optimizer with a cosine learning rate schedule, a peak learning rate of 2×10^{-5} , a weight
806 decay of 0.01, and a warmup ratio of 10%. In the subsequent RL stage, we used the remaining
807 1,000 samples from Screen-10K. We employed the Group Relative Policy Optimization (GRPO) al-
808 gorithm, continuing from the SFT checkpoint. The reward function was based on the negative Mean
809 Squared Error (MSE) between the rendered output and the ground-truth image, directly optimizing
for visual fidelity.

810
811
812
813818
819
820
821
822
823
824
825
826
827
828
Generated by ScreenCoder (ours)831
832
833
834
835
836
837
838
839
840
Figure 6: Qualitative comparison between our proposed method and various baselines.859
860
861
862
863
Figure 7: Qualitative comparison between our proposed method and various baselines.

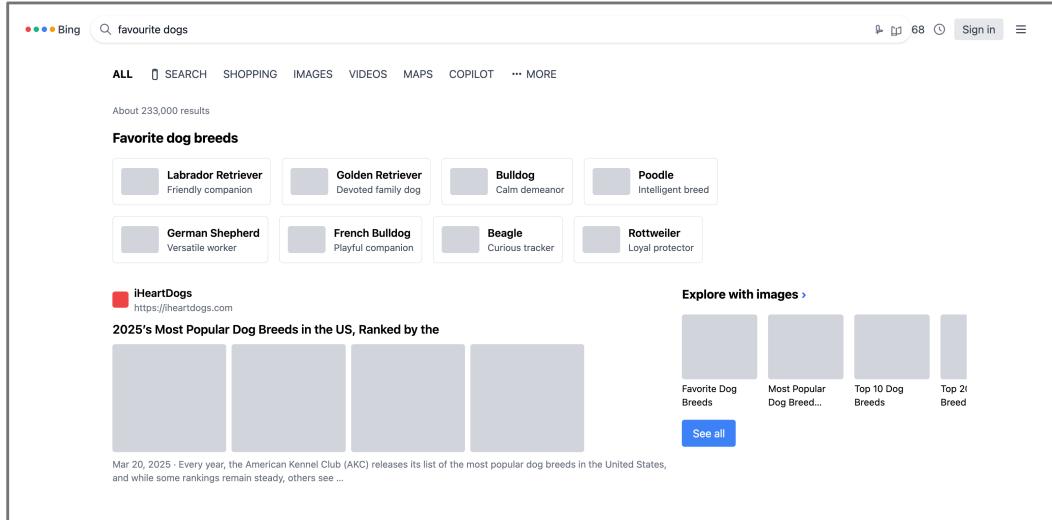
864

865

866

867

868



869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

Generated by ScreenCoder (ours)

884

885

886

Figure 8: Qualitative comparison between our proposed method and various baselines.

887

888

889

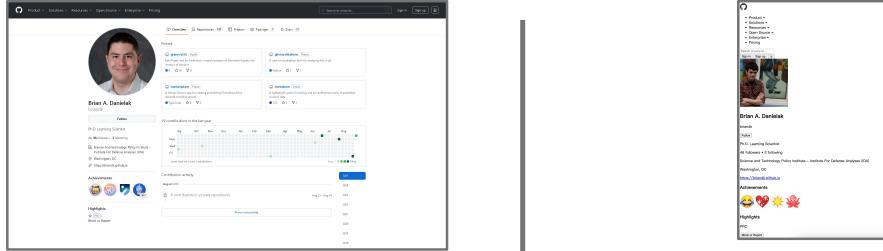
890

891

892

893

894

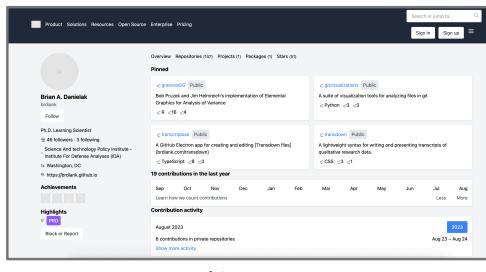


902

Original Website

Generated by Doubao-1.5-thinking-vision-pro

903



904

905

906

907

908

909

910

911

912

913

914

915

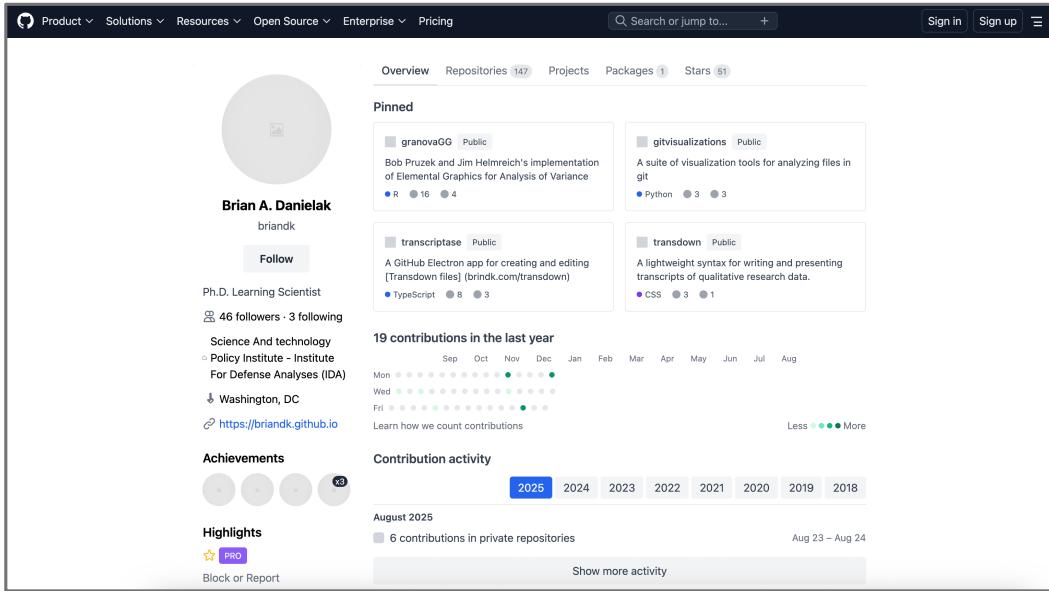
916

917

Generated by GPT-4o

Figure 9: Qualitative comparison between our proposed method and various baselines.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939



Generated by ScreenCoder (ours)

Figure 10: Qualitative comparison between our proposed method and various baselines.

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

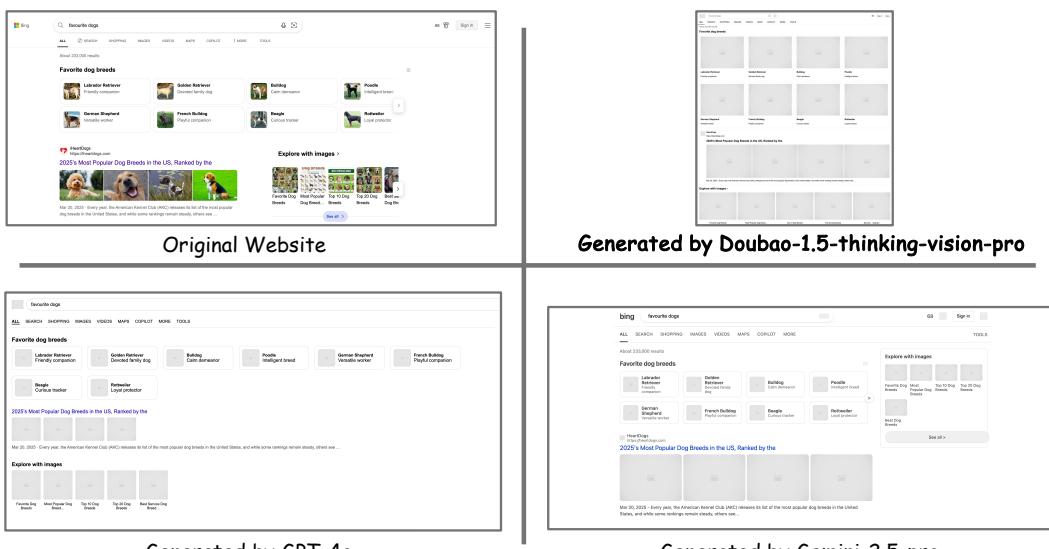
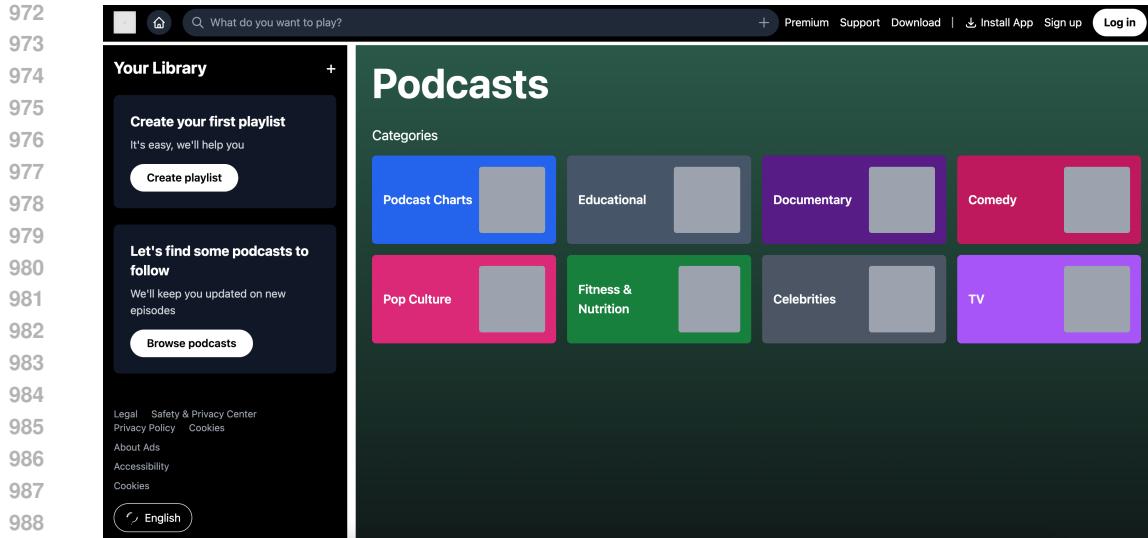


Figure 11: Qualitative comparison between our proposed method and various baselines.



Generated by ScreenCoder (ours)

Figure 12: Qualitative comparison between our proposed method and various baselines.

D LLM USAGE STATEMENT

We used LLMs as an assistive tool for improving grammar and clarity in the text, and for code completion. The core research, including the experimental design and final implementation, was conceived and executed entirely by the authors.

E FAILURE CASE ANALYSIS AND ROBUSTNESS CHECK

In this section, we provide a qualitative analysis of failure modes, specifically focusing on “Hard Cases” involving non-standard, artistic layouts that deviate from the standard rectangular box model. We compare the performance of ScreenCoder against the strong end-to-end baseline, Qwen2.5-VL.

As illustrated in Figures 15 to 17, we test the models on a design featuring significant CSS transformations (e.g., `skewY`) and overlapping elements. This analysis highlights a critical trade-off between pixel imitation and structural integrity:

- **Catastrophic Failure in Baselines (Qwen2.5-VL):** Monolithic MLLMs tend to prioritize pixel-level visual matching. When encountering skewed or rotated elements, the baseline attempts to replicate the geometry using absolute positioning and incorrect transform approximations. This results in “spatial hallucination,” where elements suffer from Z-index errors, text overlaps, and fragmented coordinate placement. The resulting code, while attempting to look like the input, is functionally unusable.
- **Graceful Degradation in ScreenCoder (Ours):** Our modular approach prioritizes valid DOM structure. The Planning Agent maps the non-rectangular visual input to the nearest robust rectangular grid (CSS Flexbox/Grid). While this results in a loss of the specific artistic nuance (the skew angle is removed), the system fails *gracefully*. The generated code remains clean, responsive, and structurally valid. This demonstrates that ScreenCoder prefers simplification over broken complexity, ensuring the output is always a viable starting point for developers.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

Prompt for Grounding

Seed-1.5-thinking-pro-vision

"""Only return the bounding boxes of the 'header', 'footer', 'main content', 'sidebar', and 'navigation' in this webpage screenshot. Please only return the corresponding bounding boxes in the format of 'name: <bbox>x1 y1 x2 y2</bbox>' for each line without extra information and comments!!! Note: 1. All text information, images and other content should be framed, don't miss any information; 2. The areas should not overlap; 3. Output a label and the corresponding bounding box for each line. You can decide whether to include some regions or not."""

Qwen-2.5-VL

"""Only return the bounding boxes of the 'header', 'footer', 'main content', 'sidebar', and 'navigation' in this webpage screenshot. Please only return the corresponding bounding boxes in the format of 'header: <bbox>x1 y1 x2 y2</bbox>\nfooter: <bbox>x1 y1 x2 y2</bbox>\nmain content: <bbox>x1 y1 x2 y2</bbox>\nsidebar: <bbox>x1 y1 x2 y2</bbox>\nnavigation: <bbox>x1 y1 x2 y2</bbox>\nfor each line without extra information and comments!!! Note: 1. All text information, images and other content should be framed, don't miss any information; 2. The areas should not overlap; 3. Output a label and the corresponding bounding box for each line. You can decide whether to include some regions or not. Also, output the image size in the format of "width: <width> height: <height>\n"""

Figure 13: Prompt Templates.

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
 1081
 1082
 1083
 1084
 1085 **Prompt for Generation**
 1086 {"sidebar": f"""\nThis is a screenshot of a container. Here is the user's additional
 1087 instruction: {user_instruction["sidebar"]}. Please fill in a complete HTML and
 1088 Tailwind CSS code to accurately reproduce the given container. Please ensure that
 1089 all block layouts, icon styles, sizes, and text information are consistent with the
 1090 original screenshot, based on the user's additional conditions. Below is the code
 1091 template to fill in:
 1092 <div>
 1093 your code here
 1094 </div>
 1095 Only return the code within the <div> and </div> tags.""""},
 1096
 1097 {"header": f"""\nThis is a screenshot of a container. Here is the user's additional
 1098 instruction: {user_instruction["header"]}. Please fill in a complete HTML and
 1099 Tailwind CSS code to accurately reproduce the given container. Please ensure that
 1100 all blocks' relative positions, layout, text information, and colors within the
 1101 bounding box are consistent with the original screenshot, based on the user's
 1102 additional conditions. Below is the code template to fill in:
 1103 <div>
 1104 your code here
 1105 </div>
 1106 Only return the code within the <div> and </div> tags.""""},
 1107
 1108 {"navigation": f"""\nThis is a screenshot of a container. Here is the user's additional
 1109 instruction: {user_instruction["navigation"]}. Please fill in a complete HTML and
 1110 Tailwind CSS code to accurately reproduce the given container. Please ensure that
 1111 all blocks' relative positions, text layout, and colors within the bounding box are
 1112 consistent with the original screenshot, based on the user's additional conditions.
 1113 Please use the same icons as in the original screenshot. Below is the code template
 1114 to fill in:
 1115 <div>
 1116 your code here
 1117 </div>
 1118 Only return the code within the <div> and </div> tags.""""},
 1119
 1120 {"main content": f"""\nThis is a screenshot of a container. Here is the user's additional
 1121 instruction: {user_instruction["main content"]}. Please fill in a complete HTML and
 1122 Tailwind CSS code to accurately reproduce the given container. Please replace the
 1123 images in the original screenshot with solid gray blocks of the same size; text inside
 1124 the images does not need to be recognized. Please ensure that all blocks' relative
 1125 positions, layout, text information, and colors within the bounding box are
 1126 consistent with the original screenshot, based on the user's additional conditions.
 1127 Below is the code template to fill in:
 1128 <div>
 1129 your code here
 1130 </div>
 1131 Only return the code within the <div> and </div> tags.""""}
 1132
 1133 user_instruction: dictionary for storing user-defined instructions for each region
 ("header", "footer", "sidebar", "navigation", "main content").

Figure 14: Prompt Templates.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

1149 **Figure 15: Failure Case Part 1: Input Design.** The input features a non-standard layout with a
1150 skewed container and rotated text.

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

1167 **Figure 16: Failure Case Part 2: Qwen2.5-VL (Baseline).** The baseline suffers from *spatial hallucination*.
1168 It prioritizes pixel matching via fragile absolute positioning, leading to Z-index errors and
1169 overlapping text.

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

1186 **Figure 17: Failure Case Part 3: ScreenCoder (Ours).** ScreenCoder simplifies the geometry to
1187 a standard rectangular grid (Graceful Degradation). While it misses the artistic skew, it maintains
1188 structural integrity, generating clean and valid code.