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ERATION FOR FRONT-END AUTOMATION VIA MODU-
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Screenshots & Design Sketches Pixel-Perfect Replication

Original Websites ScreenCoder (Ours)
Figure 1: ScreenCoder accurately transforms website screenshots and design sketches into
pixel-perfect front-end code. The figure showcases a variety of inputs on the left, including high-
fidelity screenshots and a low-fidelity design sketch. The right column displays the corresponding
webpages rendered from our model’s generated code, demonstrating its high-fidelity replication
capabilities.

ABSTRACT

Automating the transformation of user interface (UI) designs into front-end code
holds significant promise for accelerating software development and democratiz-
ing design workflows. While multimodal large language models (MLLMs) can
translate images to code, they often fail on complex UIs, struggling to unify visual
perception, layout planning, and code synthesis within a single monolithic model,
which leads to frequent perception and planning errors. To address this, we pro-
pose ScreenCoder, a modular multi-agent framework that decomposes the task
into three interpretable stages: grounding, planning, and generation. By assign-
ing these distinct responsibilities to specialized agents, our framework achieves
significantly higher robustness and fidelity than end-to-end approaches. Further-
more, ScreenCoder serves as a scalable data engine, enabling us to generate high-
quality image-code pairs. We use this data to fine-tune open-source MLLM via a
dual-stage pipeline of supervised fine-tuning and reinforcement learning, demon-
strating substantial gains in its UI generation capabilities. Extensive experiments
demonstrate that our approach achieves state-of-the-art performance in layout ac-
curacy, structural coherence, and code correctness.
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1 INTRODUCTION

Automating front-end engineering is a critical step toward efficient software development, and re-
cent large language models (LLMs) have advanced the generation of code directly from text instruc-
tions (Qwen, 2025; Bolt, 2025). However, this text-based approach faces significant limitations.
Generating detailed UIs requires verbose prompts to capture structure and styling, struggles to spec-
ify fine-grained visual design like spacing or alignment, and fundamentally deviates from practical
design workflows that begin with visual sketches, not paragraphs of text. Relying solely on textual
input is therefore sub-optimal for real-world deployment and often fails to capture the full visual
intent.

To bridge this gap, multimodal large language models (MLLMs) offer the promise of directly in-
terpreting UI design images and translating them into code (Yang et al., 2023). While conceptually
appealing, our analysis reveals that current MLLMs struggle with this task as it requires a unified set
of capabilities, visual understanding, structural layout planning, and domain-specific code synthesis,
that they are not holistically designed for. Empirically, this leads to two recurring failure modes: (1)
perception errors, where components are missed or misclassified, and (2) planning errors, where
components are placed incorrectly or violate layout constraints.

To address these limitations, we propose ScreenCoder, a modular multi-agent framework that de-
composes the UI-to-code task into three interpretable stages: grounding, planning, and generation.
The grounding agent leverages a multimodal large language model to localize and semantically la-
bel key UI regions. The planning agent then constructs a hierarchical layout tree using domain
knowledge of web layout systems. Finally, the generation agent produces HTML and CSS code via
adaptive prompt-based synthesis, incorporating both layout context and optional user instructions to
support interactive design. This decomposition introduces architectural modularity, enabling more
robust component recognition, layout planning, and structured code generation than end-to-end
black-box methods. Experiments show that our framework achieves state-of-the-art performance
in layout fidelity, structural coherence, and generation quality.

Beyond inference, our framework acts as a scalable data engine. This is crucial because training
on raw web data is often infeasible, as its length and noise from dependencies and scripts destabilize
training and prevent models from learning the core visual-to-code mapping (Si et al., 2025). To
address the challenge, we leverage ScreenCoder to create Screen-10K, a new large-scale training
dataset of 10,000 high-quality image-code pairs, curated by filtering an initial crawl of 50,000 web-
pages. We use Screen-10K to significantly enhance open-source MLLM via a dual-stage supervised
fine-tuning and reinforcement learning pipeline. Furthermore, to facilitate a more rigorous evalu-
ation of modern models, we introduce ScreenBench, a challenging new benchmark composed of
1,000 high-quality, up-to-date websites that reflect contemporary web design. Our framework thus
provides a practical path for both scalable dataset creation and robust model alignment. To sum up,
our contributions are as follows:

• We conduct a systematic investigation into the limitations of existing MLLMs on UI-to-
code tasks and propose a novel modular multi-agent framework that decomposes the com-
plex UI-to-code generation task into three interpretable stages: grounding, planning, and
generation, significantly outperforming existing end-to-end multimodal models in layout
fidelity and structural coherence.

• Leveraging our framework as a scalable data engine, we introduce Screen-10K, a new large-
scale dataset containing 10,000 high-quality image-code pairs, which addresses a critical
bottleneck in the field by providing a substantial resource for training more capable UI-to-
code generation models.

• To facilitate more rigorous and relevant evaluation, we present ScreenBench, a new chal-
lenging benchmark of 1,000 diverse and contemporary web designs. ScreenBench provides
a more accurate measure of model performance on real-world tasks compared to existing
benchmarks.
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2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Multimodal Large Language Models (MLLMs) integrate vision and text to enable joint reason-
ing. Early models like VisualGPT (Chen et al., 2022) and Frozen (Tsimpoukelli et al., 2021) pio-
neered this by using pre-trained LLMs to decode visual features. Architectural innovations, such
as Flamingo’s (Alayrac et al., 2022) gated cross-attention and BLIP-2’s (Li et al., 2023) Q-Former,
further improved vision-language alignment. Modern systems like Gemini 2.5 (Google, 2024) and
GPT-4o (OpenAI, 2024) have dramatically scaled these capabilities, excelling at complex multi-
modal tasks and enabling applications like website generation from images (Zhu et al., 2023). How-
ever, despite their impressive general-purpose abilities, these models struggle with domain-specific
structured generation, such as UI-to-code synthesis. This limitation stems from a lack of inductive
biases for spatial layout and hierarchical planning, as well as a monolithic architecture that hinders
the injection of task-specific knowledge.

2.2 VISUAL-TO-CODE GENERATION

Early visual-to-code methods used CNNs and LSTMs to translate UI screenshots into domain-
specific languages (DSLs) (Beltramelli, 2018), which offered limited real-world applicability (Xu
et al., 2021). Subsequent research shifted towards generating general-purpose HTML/CSS (Chen
et al., 2018) and improving component recognition, layout understanding (Cizotto et al., 2023),
interaction-awareness (Xiao et al., 2024), and multi-page generation (Wan et al., 2024). Alternative
approaches have included OCR-based techniques (Nguyen & Csallner, 2015) and object detection
for screen parsing (Wu et al., 2021). More recently, divide-and-conquer methods (Wan et al., 2025;
Wu et al., 2025; Gui et al., 2025b;a) have emerged, but often depend on heuristic-based segmen-
tation. Despite these advances, prior works are often brittle, rely on synthetic data, and lack the
interpretability needed to jointly model complex visual semantics, layouts, and coding patterns. In
contrast, our approach introduces a modular multi-agent framework that decomposes the task into
interpretable sub-tasks: grounding, planning, and generation. This allows for explicit reasoning and
the integration of domain-specific priors. Our system also functions as a scalable data engine to train
future MLLMs, addressing the scarcity of high-quality, realistic image-code datasets.

3 MOTIVATION: WHY MLLMS FAIL AT UI-TO-CODE GENERATION

To motivate our approach, we analyze why state-of-the-art multimodal large language models
(MLLMs) struggle with the direct, end-to-end generation of code from UI screenshots. While mod-
els like GPT-4o exhibit powerful general visual reasoning, our analysis of their outputs on real-world
webpages reveals two primary failure modes, as illustrated in Figure 2: perception failures and plan-
ning failures.

First, perception failures stem from the model’s inability to accurately interpret visual elements.
This materializes in two ways: (1) element omission, where smaller or less salient components like
icons and secondary text are completely missed, and (2) element distortion, where an element is
recognized but its attributes (e.g., text content, color) are incorrect, or its type is misidentified (e.g.,
an input field rendered as static text). Second, planning failures involve the inability to organize
perceived elements into a coherent spatial and hierarchical structure. Even if all components are
identified, they are often assembled incorrectly, leading to (1) element misarrangement, where
components are placed in the wrong positions, and (2) hierarchical incoherence, where the model
produces a “flat” layout that fails to infer the nested, DOM-like structure essential for modern,
responsive web design. This highlights a lack of inductive bias for fundamental front-end layout
conventions.

Our analysis indicates these failures arise not from an intrinsic inability to perform any single sub-
task, but from the burden of a monolithic, end-to-end approach that overloads a single model with
granular perception, complex spatial planning, and structured code synthesis simultaneously. This
task also demands deep domain knowledge of front-end development, such as layout systems and
component hierarchies, which general-purpose MLLMs lack. Inspired by agentic workflows that
decompose complex problems, we hypothesize that separating these distinct challenges will yield
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(a) Example of Perception Error

(b) Example of Planning Error

Missing Icon
Wrong Color

Original Website 
(segment)

Generated Website 
(segment)

Original Website Generated Website

[main content] [sidebar]

Incorrect Position

Incorrect Position

Figure 2: Analysis of Common MLLM Failure Modes in UI-to-Code Generation. We identify
two primary error categories: (a) Perception Errors, where the model fails to accurately interpret
visual details, leading to missing icons or incorrect colors, and (b) Planning Errors, where the model
fails to correctly reason about the spatial layout, resulting in elements being placed in the wrong
positions.

more robust results. This insight directly motivates our modular, multi-agent framework. By ex-
plicitly decoupling the task into grounding (to address perception failures), planning (to address
structural failures), and generation (to focus on code synthesis), we enable each agent to specialize.
Crucially, this modularity allows us to inject specific domain knowledge at each stage, such as es-
tablished layout conventions in the planning agent, thereby mitigating the failure modes inherent in
a single, end-to-end process.

4 METHOD

We propose a modular, multi-agent framework for UI-to-code generation that decomposes the com-
plex task into three sequential agents: grounding, planning, and generation. This design is explicitly
motivated by the failure modes identified in Section 2; each agent is specialized to address a distinct
sub-problem, allowing the system to leverage both visual understanding and structured reasoning in
a coordinated manner. The grounding agent targets perception errors by accurately identifying UI
components. The planning agent tackles planning errors by constructing a coherent layout hierar-
chy. Finally, the generation agent translates this structured plan into high-fidelity code. Our overall
framework is shown in Figure 3.

4.1 GROUNDING AGENT: OVERCOMING PERCEPTION ERRORS

The grounding agent serves as the perceptual front-end of our framework, tasked with detecting
and semantically labeling major structural components to overcome the perception errors (element
omission and distortion) common in end-to-end models. This design choice, assigning explicit labels
like sidebar, header, and navigation, is crucial for enabling interactive, language-driven
design, as it allows users and downstream agents to reference and manipulate specific components
via natural language (e.g., “resize the sidebar”).

To accomplish this, the agent employs a Multimodal Large Language Model (MLLM) queried with
prompts such as “Where is the sidebar?” or “Locate the header area.” The MLLM returns a set of
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Grounding Agent 

Sidebar

Navbar

Header

Content

Planning Agent

<div class=sidebar>

<container>

<div class=“header”>

<div class=“navigation”>

<div class=“content”> <div class=“content”>

<container>
<container>

Placeholder 
Image

Placeholder 
Image

Placeholder 
Mapping

Vertical 
Container

Header

Sidebar

Content

Horizontal 
Container

Vertical
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Navigation
Bar

Initial Generated HTML

Output Webpage & Code

Generation Agent

Input
(Screenshots, 

Design Sketches)

Figure 3: Overview of ScreenCoder. Given UI screenshots or design sketches as input, the Ground-
ing Agent first detects and labels key components (e.g., header, navbar, sidebar, content). The Plan-
ning Agent organizes these components into a hierarchical layout using front-end engineering priors.
The Generation Agent synthesizes initial HTML code with placeholders, followed by content map-
ping to produce the final webpage and code.

grounded regions as bounding boxes and their associated labels:

B = {(bi, li) | li ∈ L}Ni=1 , where L = {sidebar, header, navigation}. (1)

Here, each bi = (xi, yi, wi, hi) is a bounding box in pixel coordinates. Unlike traditional object
detection, this MLLM-based approach allows grounding to be flexibly guided by text, making the
system extensible to new UI concepts.

To ensure robustness, the agent performs several post-processing operations: (1)Deduplication and
Conflict Resolution, using class-specific non-maximum suppression (NMS) to filter multiple detec-
tions for the same label and retain the most confident one; (2)Fallback Recovery, invoking a heuristic
based on spatial priors if a key component is missed (e.g., a wide, short box at the top is likely a
header); and (3)Main Content Inference, which robustly defines the primary content area by infer-
ring it as the largest rectangular area not overlapping any detected component. The final output is
a layout dictionary which provides the semantic and spatial foundation for the next stage. Unlike
traditional object detectors which require costly retraining, our MLLM-based approach is inher-
ently extensible. The system can be adapted to recognize new UI concepts simply by expanding the
textual label set L, offering a flexible path for future domain adaptations.

4.2 PLANNING AGENT: CORRECTING PLANNING ERRORS

The Planning Agent mitigates common MLLM failures in spatial reasoning, such as component mis-
arrangement and hierarchical incoherence. Instead of a generative approach, it uses a novel, deter-
ministic Visual-to-Structural Tree Mapping algorithm1 to programmatically translate unstructured
visual information into a well-formed layout. The algorithm embeds key domain knowledge from
modern web development by converting the flat 2D canvas of bounding boxes into a DOM-like tree,
the standard hierarchical data structure for web pages. This deliberately trades the unconstrained
flexibility of generative models for structural integrity and predictability, ensuring the generated
code faithfully mirrors the source screenshot’s layout.

First, our algorithm establishes the global layout by creating tree nodes for primary components
(e.g., header, sidebar), converting absolute pixel coordinates into responsive percentage-based val-
ues, and using absolute positioning to preserve the macro-structure. It then recursively handles
internal component layouts by injecting domain knowledge, designating parent regions with chil-
dren as CSS Grid containers to arrange nested elements with high fidelity. This process yields an
interpretable layout tree that serves as a blueprint, effectively decoupling the abstract planning of
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Algorithm 1 Visual-to-Structural Tree Mapping

1: Input: Layout dictionary L = {l 7→ bl}, Image dimensions W,H
2: Output: Layout Tree T
3: T ← createNode(’root’, style={’position’: ’relative’, ’width’: ’100%’, ...})
4: for all label l, box bl in L do
5: Nl ← createNode(l)
6: (x%, y%, w%, h%)← (bl.x/W, bl.y/H, bl.width/W, bl.height/H)× 100
7: Nl.style← {’position’: ’absolute’, ’left’: x%, ’top’: y%, ...}
8: if l contains subdivisions then Nl.is grid container← true
9: end if

10: AddChild(T , Nl)
11: end for
12: return T

the UI structure from the concrete task of code generation, embodying the principle of separation of
concerns.

4.3 GENERATION AGENT: HIGH-FIDELITY CODE SYNTHESIS

The generation agent translates the hierarchical layout tree T into executable HTML and CSS. It
traverses the tree and, for each node, uses a large language model to generate code based on an
adaptive prompt. This prompt combines the component’s semantic label, its structural context from
the tree, and optional user instructions. This approach provides the LLM with rich context, guiding
it to produce code that is not only visually correct but also structurally sound and responsive to user
intent. The generated code snippets for each component are then assembled according to the tree
structure, preserving the hierarchy and layout defined by the planning agent. This closes the loop
from visual perception to structured, interactive code synthesis.

4.4 PLACEHOLDER MAPPING

To restore visual fidelity, we introduce a final placeholder mapping stage that replaces generic image
placeholders with their original visual assets. The process begins by using a UI Element Detection
(UIED)(Xie et al., 2020) model to extract all visual elements (e.g., icons, images) from the source
screenshot. These elements are then partitioned according to the semantic regions defined by the
Planning Agent (e.g., header, sidebar).

Within each region, we solve an optimal assignment problem to match the detected elements to the
placeholders. We construct a cost matrix based on the negative Complete IoU (CIoU) between the
placeholder boxes and the original element boxes, after applying a localized affine transformation
to correct for minor rendering discrepancies. This bipartite matching problem is solved using the
Hungarian Algorithm to find the optimal one-to-one mapping. Finally, the matched image patches
are cropped from the original screenshot and inserted into the generated code, restoring the full
visual content of the UI.

5 ENHANCING MLLMS WITH SCALABLE DATA GENERATION AND
DUAL-STAGE POST-TRAINING

Beyond its inference capabilities, our framework serves a crucial role as a scalable data engine,
addressing a fundamental challenge in training visual-to-code models. Directly training on raw,
crawled web data is often infeasible (Si et al., 2025). Real-world code is typically long and noisy,
replete with complex dependencies, external links, and irrelevant scripts that make training unstable
and hinder the model’s ability to learn the core mapping from visual structure to clean, self-contained
code.

To overcome this, we leverage our engine to generate Screen-10K, a large-scale dataset of 10,000
high-quality image-code pairs. This dataset was curated by initially crawling 50,000 webpages and
applying a rigorous, automated filtering process to retain only the most valuable, well-structured ex-
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Model ScreenBench Design2Code
Block Text Position Color CLIP Block Text Position Color CLIP

GPT-4o 0.745 0.835 0.725 0.702 0.775 0.845 0.962 0.903 0.881 0.917
GPT-4V 0.721 0.815 0.701 0.682 0.758 0.831 0.955 0.895 0.872 0.905
Gemini-2.5-Pro 0.741 0.825 0.752 0.695 0.788 0.841 0.969 0.901 0.879 0.908
LLaVA 1.6-7B 0.635 0.830 0.544 0.592 0.727 0.736 0.910 0.729 0.816 0.802
DeepSeek-VL-7B 0.680 0.773 0.570 0.614 0.732 0.718 0.824 0.702 0.720 0.843
Qwen2.5-VL 0.723 0.828 0.613 0.632 0.762 0.822 0.951 0.815 0.831 0.893
Seed1.5-VL 0.727 0.852 0.742 0.729 0.783 0.829 0.968 0.915 0.897 0.911
DCGen 0.731 0.831 0.713 0.699 0.767 0.836 0.958 0.885 0.865 0.901
Websight-8B 0.678 0.768 0.554 0.606 0.748 0.755 0.903 0.767 0.785 0.859

ScreenCoder (Agentic) 0.768 0.857 0.755 0.734 0.812 0.865 0.975 0.925 0.908 0.922
ScreenCoder (Finetuned) 0.758 0.841 0.742 0.718 0.791 0.849 0.968 0.913 0.886 0.915

Table 1: Automatic evaluation results on the ScreenBench and Design2Code benchmarks. For each
metric, the best result is in bold and the second best is underlined.

amples. This clean dataset provides the stable foundation necessary for our dual-stage post-training
pipeline. First, we perform supervised fine-tuning (SFT) on a 9,000-pair subset to align the model’s
visual understanding with correct code syntax, establishing a strong baseline. The remaining 1,000
pairs are then used in a subsequent reinforcement learning (RL) stage to further optimize for high
visual fidelity.

The reinforcement learning stage is based on Group Relative Policy Optimization (GRPO) (Shao
et al., 2024). We optimize the policy πθ to maximize the expected reward over our RL dataset:

max
θ

E(x,y)∼πθ
[R(x, y)] , (2)

where x is the input image and y is the generated code.

To directly optimize for visual fidelity, our reward function R(x, y) is based on the pixel-level
similarity between the original screenshot and the webpage rendered from the generated code. For
each output y, we first render it to produce an image, Render(y). The reward is then defined as the
negative Mean Squared Error (MSE) between the original image x and the rendered output. Since
RL seeks to maximize reward, using a negative error term incentivizes the policy to minimize the
pixel-wise difference:

R(x, y) = −MSE(x,Render(y)) (3)

where the MSE between two images I1 and I2 of height H and width W is calculated as:

MSE(I1, I2) =
1

H ×W

H∑
i=1

W∑
j=1

∥I1(i, j)− I2(i, j)∥22 (4)

This reward function provides a strong, holistic signal that guides the model toward generating code
that achieves a pixel-perfect visual replication of the original design.

6 EXPERIMENTS

We evaluate our framework from two complementary perspectives: (1) the visual fidelity and se-
mantic consistency of the generated webpages, and (2) its effectiveness as a scalable data engine
for fine-tuning multimodal large language models (MLLMs). We assess the quality of the gener-
ated code by comparing the rendered output against ground-truth screenshots using the metrics and
benchmarks detailed below.

6.1 EXPERIMENTAL SETUP

Datasets. To rigorously evaluate modern UI-to-code models, we introduce ScreenBench, a new
benchmark of 1,000 high-quality image-code pairs. This benchmark addresses the limitations of
existing datasets like Design2Code (Si et al., 2025), which, with its 484 samples from older web-
sites, primarily tests for textual content reproduction over structural complexity. In contrast, Screen-
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Original Website Qwen-2.5-VL

GPT-4o ScreenCoder (Ours)

Figure 4: Qualitative comparison of UI-to-code generation. While leading MLLMs fail to accu-
rately replicate the target website’s layout, styling, and component structure, our method, Screen-
Coder, produces a high-fidelity result that closely matches the original design in both appearance
and organization.

Bench is substantially larger and sourced from contemporary web applications, featuring the com-
plex, nested layouts (e.g., CSS Grid/Flexbox) that define modern web design. We also adopt De-
sign2Code (Si et al., 2025) for evaluation.

Evaluation Metrics. We follow the methodology of Design2Code (Si et al., 2025) and evaluate vi-
sual similarity using both high-level and low-level metrics. For high-level assessment, we compute
the CLIP similarity (Radford et al., 2021) between the rendered output and the reference screen-
shot. For low-level evaluation, we extract OCR-based visual blocks from both images, align them
using text similarity, and then measure four key aspects based on these matched elements: block
reproduction accuracy, textual consistency, spatial alignment, and color similarity.

Baselines. We benchmark our approach against a comprehensive suite of state-of-the-art mod-
els. This includes leading proprietary MLLMs (GPT-4o (OpenAI, 2024), GPT-4V (OpenAI, 2023),
and Gemini-2.5-Pro (Google, 2024)); a range of open-source MLLMs (LLaVA 1.6-7B (Liu et al.,
2023), DeepSeek-VL-7B (Lu et al., 2024), Qwen2.5-VL (Bai et al., 2025), and Seed1.5-VL (Guo
et al., 2025)); and specialized UI-to-code methods (DCGen (Wan et al., 2025) and Websight-
8B (Laurençon et al., 2024)). Our method is implemented on the open-source Qwen2.5-VL-32B
model. We show other implementation details in Appendix C.1 and C.2.

6.2 MAIN RESULTS

As shown in Table 1, our ScreenCoder framework, in both its agentic and fine-tuned variants, con-
sistently surpasses all open-source baselines. The primary agentic model achieves state-of-the-art
performance, outperforming even top proprietary systems on the challenging ScreenBench with a
Block score of 0.755. Furthermore, our fine-tuned model secures the second-best results on many
metrics, and achieve comparable performance with close-source models. These results validate our
framework’s dual utility as both a high-performing inference system and an effective data engine
for significantly enhancing open-source MLLMs. Besides automatic evaluation, we also conduct
human expert evaluation, whose setting and result are shown in Appedix A.

8
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Training Stage ScreenBench Design2Code
Block Text Position Color CLIP Block Text Position Color CLIP

Base Model (Qwen2.5-VL) 0.723 0.828 0.613 0.632 0.762 0.822 0.951 0.815 0.831 0.893
+ SFT 0.741 0.835 0.705 0.681 0.784 0.842 0.963 0.890 0.870 0.908
+ RL (Final) 0.758 0.841 0.742 0.718 0.791 0.849 0.968 0.913 0.886 0.915

Table 2: Effect of different dual-stage post-training stage on the ScreenBench and Design2Code
benchmarks.

6.3 QUALITATIVE ANALYSIS

Figure 4 provides a qualitative comparison that highlights the practical advantages of our method.
Leading end-to-end MLLMs, such as Qwen-2.5-VL and GPT-4o, demonstrate significant perception
and planning failures. They struggle to replicate the target design, resulting in distorted layouts,
incorrect component arrangements, and a general loss of styling information. In stark contrast,
ScreenCoder produces a high-fidelity result that closely mirrors the original website’s appearance
and organization. More qualitative results are shown in Figure 1 and Appendix.

6.4 ABLATION STUDY

To isolate the contributions of our dual-stage training, we conducted an ablation study (Table 2).
Starting with the base Qwen2.5-VL model, the application of Supervised Fine-Tuning (SFT) yielded
significant improvements across all metrics, especially in spatial layout awareness (’Position’). The
subsequent Reinforcement Learning (RL) stage further refined the model’s capabilities, providing
incremental but crucial boosts to achieve our final, top-performing results. This analysis confirms
that SFT builds a strong foundational understanding, while RL fine-tunes the model’s precision,
validating our cumulative training strategy.

7 DISCUSSION

Interactive Design and Human-in-the-Loop Feedback. One key strength of our modular
pipeline is its potential to support interactive design iteration. Since each stage, grounding, plan-
ning, and generation, is disentangled, user feedback can be incorporated at different abstraction
levels. For instance, designers can manually adjust the layout tree or re-prompt specific compo-
nents without restarting the entire process. Future work may further enhance this interactivity by
integrating real-time preview, editable intermediate representations, and dialogue-based refinement.

Scalability and the Cost-Quality Trade-Off. Our modular framework offers a flexible trade-off
between computational cost and output quality via test-time scaling. Users can select smaller, faster
models for quick, low-fidelity drafts or larger, more powerful models for high-fidelity, production-
ready code. While a high-quality generation takes tens of seconds, this is an acceptable trade-off for
its intended use as a workflow accelerator where initial code quality is the priority. This versatility
allows the system to be adapted for different stages of the development process. Future work can
further enhance this flexibility. We envision a system where developers can interactively refine the
output, dedicating more compute only to the specific components that require changes. This moves
beyond a one-off generation and towards a more dynamic, resource-efficient, human-in-the-loop
partnership.

8 CONCLUSION

We present ScreenCoder, a modular multi-agent framework for UI-to-code generation that addresses
key limitations of end-to-end models, and also functions as a scalable data engine to improve
MLLMs via dual-stage post-training with supervised fine-tuning and reinforcement learning. Ex-
periments demonstrate state-of-the-art performance in visual fidelity and code correctness, offering
a practical solution for front-end automation and a foundation for future research in multimodal
program synthesis.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made several resources available. First, the com-
plete implementation code is provided in the supplementary material. Second, our visual mapping
algorithm is formally described in Algorithm 1. Third, the prompt templates used for each agent are
detailed in Appendix C.1. Finally, a comprehensive breakdown of the training procedure is included
in Appendix C.2.
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APPENDIX

A HUMAN EVALUATION

To validate our automatic metrics, we conducted a human evaluation study assessing two critical
dimensions: the perceived visual fidelity of the generated webpages and the practical utility of
ScreenCoder in a real-world development workflow.

A.1 PAIRWISE COMPARISON OF VISUAL FIDELITY

Setup. We recruited six Ph.D. students with web development experience to serve as expert an-
notators. Following the standard methodology for evaluating generative models, we performed a
pairwise comparison study. In each trial, annotators were shown an original UI screenshot alongside
two rendered webpages—one generated by ScreenCoder (Agentic) and one by a strong baseline
(GPT-4o). They were asked to vote for the page that was more visually similar to the original (”A
is better,” ”B is better,” or ”Tie”). To ensure reliable judgments, each comparison was evaluated by
three annotators, and a winner was declared based on a majority vote (≥ 2).

Results. The results, summarized in Table 3, reveal a strong human preference for our method.
Annotators judged ScreenCoder’s output as superior to GPT-4o’s in 65% of cases, while finding it
inferior in only 11%. This outcome confirms that the improvements captured by our automatic met-
rics translate into a noticeably better perceptual experience, suggesting that our modular approach
produces layouts that are more structurally coherent and visually faithful.

Table 3: Pairwise comparison of visual fidelity between ScreenCoder and GPT-4o. Results show the
percentage of times each outcome was chosen by human annotators.

Outcome Win Rate (%)
ScreenCoder Wins 65%
GPT-4o Wins (Baseline) 11%
Tie 24%

A.2 WORKFLOW USEFULNESS STUDY

Setup. To measure ScreenCoder’s impact on developer productivity, we designed a task-based
study. Six participants with front-end experience were divided into an Experimental Group (n=3),
who used a tool powered by ScreenCoder, and a Control Group (n=3), who used their preferred
method (all chose GPT-4o). Each participant was tasked with converting two UI screenshots (one
simple, one complex) into functional webpages, with a 20-minute time limit for each task. We
measured both the completion time and the quality of the final output, which was rated for UI
similarity on a 5-point Likert scale by two independent expert judges.

Results. As detailed in Table 4, ScreenCoder provides a significant boost to development effi-
ciency. On average, the ScreenCoder group completed tasks 2.2 times faster than the control group
(8.5 minutes vs. 18.7 minutes). Notably, all participants using ScreenCoder finished comfortably
within the time limit, whereas two tasks in the control group timed out. Furthermore, the quality
of the output was substantially higher for the ScreenCoder group, which achieved an average simi-
larity score of 4.6/5.0, compared to 3.4/5.0 for the control group (with a strong inter-judge Pearson
correlation of 0.78). These findings demonstrate that ScreenCoder acts as a powerful accelerator in
a human-in-the-loop process, enabling developers to build UIs faster and with greater accuracy.

B ADDITIONAL QUALITATIVE COMPARISONS

To further demonstrate the effectiveness of our framework, this appendix provides an extended set of
qualitative results. The following figures showcase side-by-side comparisons between the webpages
generated by our method, ScreenCoder, and those produced by leading baseline models.
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Table 4: Results of the workflow usefulness study. We compare the performance of developers using
ScreenCoder against a control group using GPT-4o.

Metric ScreenCoder (Experimental) GPT-4o (Control)
Avg. Completion Time (min) 8.5 18.7
Avg. UI Similarity (out of 5.0) 4.6 3.4
Tasks Timed Out (out of 6) 0 2

These examples were selected to cover a diverse range of website styles and layout complexities.
They serve to highlight the common failure modes of existing end-to-end models—such as incorrect
spatial arrangements, missing UI elements, and distorted styling—and illustrate how ScreenCoder’s
modular, agentic approach successfully overcomes these challenges. As shown in the comparisons,
our method consistently produces webpages with significantly higher visual fidelity and structural
coherence, more closely matching the original design intent of the source screenshots.

Original Website

Generated by Gemini-2.5-pro

Generated by Doubao-1.5-thinking-vision-pro

Generated by Qwen-2.5-VL

Figure 5: Qualitative comparison between our proposed method and various baselines.

C IMPLEMENTATION DETAIL

C.1 PROMPT TEMPLATE

The prompt templates are shown in Figure 13 and 14.

C.2 TRAINING DETAILS

Our training and experiments were conducted using the Llama Factory codebase on a high-
performance cluster of 16 NVIDIA A100 GPUs. We adopted a two-stage training pipeline. For
the SFT stage, we fine-tuned the base model on 9,000 samples from our Screen-10K dataset. We
adopt the LLaMa Factory (Zheng et al., 2024) as the code base. The model was optimized using the
AdamW optimizer with a cosine learning rate schedule, a peak learning rate of 2 × 10−5, a weight
decay of 0.01, and a warmup ratio of 10%. In the subsequent RL stage, we used the remaining
1,000 samples from Screen-10K. We employed the Group Relative Policy Optimization (GRPO) al-
gorithm, continuing from the SFT checkpoint. The reward function was based on the negative Mean
Squared Error (MSE) between the rendered output and the ground-truth image, directly optimizing
for visual fidelity.
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Generated by ScreenCoder (ours)

Figure 6: Qualitative comparison between our proposed method and various baselines.

Original Website

Generated by GPT-4o

Generated by Doubao-1.5-thinking-vision-pro

Generated by Gemini-2.5-pro

Figure 7: Qualitative comparison between our proposed method and various baselines.
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Generated by ScreenCoder (ours)

Figure 8: Qualitative comparison between our proposed method and various baselines.

Original Website

Generated by GPT-4o

Generated by Doubao-1.5-thinking-vision-pro

Generated by Qwen-2.5-VL

Figure 9: Qualitative comparison between our proposed method and various baselines.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Generated by ScreenCoder (ours)

Figure 10: Qualitative comparison between our proposed method and various baselines.

Original Website

Generated by GPT-4o

Generated by Doubao-1.5-thinking-vision-pro

Generated by Gemini-2.5-pro

Figure 11: Qualitative comparison between our proposed method and various baselines.
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Generated by ScreenCoder (ours)

Figure 12: Qualitative comparison between our proposed method and various baselines.

D LLM USAGE STATEMENT

We used LLMs as an assistive tool for improving grammar and clarity in the text, and for code
completion. The core research, including the experimental design and final implementation, was
conceived and executed entirely by the authors.

E FAILURE CASE ANALYSIS AND ROBUSTNESS CHECK

In this section, we provide a qualitative analysis of failure modes, specifically focusing on “Hard
Cases” involving non-standard, artistic layouts that deviate from the standard rectangular box model.
We compare the performance of ScreenCoder against the strong end-to-end baseline, Qwen2.5-VL.

As illustrated in Figures 15 to 17, we test the models on a design featuring significant CSS trans-
formations (e.g., skewY) and overlapping elements. This analysis highlights a critical trade-off
between pixel imitation and structural integrity:

• Catastrophic Failure in Baselines (Qwen2.5-VL): Monolithic MLLMs tend to prioritize
pixel-level visual matching. When encountering skewed or rotated elements, the baseline
attempts to replicate the geometry using absolute positioning and incorrect transform ap-
proximations. This results in “spatial hallucination,” where elements suffer from Z-index
errors, text overlaps, and fragmented coordinate placement. The resulting code, while at-
tempting to look like the input, is functionally unusable.

• Graceful Degradation in ScreenCoder (Ours): Our modular approach prioritizes valid
DOM structure. The Planning Agent maps the non-rectangular visual input to the nearest
robust rectangular grid (CSS Flexbox/Grid). While this results in a loss of the specific
artistic nuance (the skew angle is removed), the system fails gracefully. The generated
code remains clean, responsive, and structurally valid. This demonstrates that ScreenCoder
prefers simplification over broken complexity, ensuring the output is always a viable start-
ing point for developers.
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Prompt for Grounding

Seed-1.5-thinking-pro-vision

Qwen-2.5-VL

"""Only return the bounding boxes of the ‘header', ‘footer’, ‘main content’, ‘sidebar’, 

and ‘navigation’ in this webpage screenshot. Please only return the corresponding 

bounding boxes in the format of ‘name: <bbox>x1 y1 x2 y2</bbox>’ for each line 

without extra information and comments!!! Note: 1. All text information, images 

and other content should be framed, don't miss any information; 2. The areas 

should not overlap; 3. Output a label and the corresponding bounding box for each 

line. You can decide whether to include some regions or not."""

"""Only return the bounding boxes of the ‘header’, ‘footer’, ‘main content’, ‘sidebar’, 

and ‘navigation’ in this webpage screenshot. Please only return the corresponding 

bounding boxes in the format of ‘header: <bbox>x1 y1 x2 y2</bbox>\nfooter: 

<bbox>x1 y1 x2 y2</bbox>\nmain content: <bbox>x1 y1 x2 y2</bbox>\nsidebar: 

<bbox>x1 y1 x2 y2</bbox>\nnavigationr: <bbox>x1 y1 x2 y2</bbox>\n

’for each line without extra information and comments!!! Note: 1. All text 

information, images and other content should be framed, don‘t miss any information; 

2. The areas should not overlap; 3. Output a label and the corresponding bounding 

box for each line. You can decide whether to include some regions or not. Also, 

output the image size in the format of "width: <width> height: <height>\n"."""

Figure 13: Prompt Templates.
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{"sidebar": f"""This is a screenshot of a container. Here is the user's additional 
instruction: {user_instruction["sidebar"]}. Please fill in a complete HTML and 
Tailwind CSS code to accurately reproduce the given container. Please ensure that 
all block layouts, icon styles, sizes, and text information are consistent with the 
original screenshot, based on the user's additional conditions. Below is the code 
template to fill in:
<div>
your code here
</div>
Only return the code within the <div> and </div> tags.""",

"header": f"""This is a screenshot of a container. Here is the user's additional 
instruction: {user_instruction["header"]}. Please fill in a complete HTML and 
Tailwind CSS code to accurately reproduce the given container. Please ensure that 
all blocks‘ relative positions, layout, text information, and colors within the 
bounding box are consistent with the original screenshot, based on the user's 
additional conditions. Below is the code template to fill in:
<div>
your code here
</div>
Only return the code within the <div> and </div> tags.""",

"navigation": f"""This is a screenshot of a container. Here is the user‘s additional 
instruction: {user_instruction["navigation"]} Please fill in a complete HTML and 
Tailwind CSS code to accurately reproduce the given container. Please ensure that 
all blocks‘ relative positions, text layout, and colors within the bounding box are 
consistent with the original screenshot, based on the user’s additional conditions.
Please use the same icons as in the original screenshot. Below is the code template 
to fill in:
<div>
your code here
</div>
Only return the code within the <div> and </div> tags.""",

"main content": f"""This is a screenshot of a container. Here is the user‘s additional 
instruction: {user_instruction["main content"]} Please fill in a complete HTML and 
Tailwind CSS code to accurately reproduce the given container. Please replace the 
images in the original screenshot with solid gray blocks of the same size; text inside 
the images does not need to be recognized. Please ensure that all blocks‘ relative 
positions, layout, text information, and colors within the bounding box are 
consistent with the original screenshot, based on the user's additional conditions. 
Below is the code template to fill in:
<div>
your code here
</div>
Only return the code within the <div> and </div> tags.""”,

"footer ": """This is a screenshot of a container. Here is the user‘s additional 
instruction: {user_instruction["footer"]}. Please fill in a complete HTML and 
Tailwind CSS code to accurately reproduce the given container. Please ensure that 
all blocks‘ relative positions, text layout, and colors within the bounding box are 
consistent with the original screenshot, based on the user’s additional conditions.
Please use the same icons as in the original screenshot. Below is the code template 
to fill in:
<div>
your code here
</div>
Only return the code within the <div> and </div> tags."""}

user_instruction: dictionary for storing user-defined instructions for each region 
("header", "footer", "sidebar", "navigation", "main content").

Prompt for Generation

Figure 14: Prompt Templates.
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Figure 15: Failure Case Part 1: Input Design. The input features a non-standard layout with a
skewed container and rotated text.

Figure 16: Failure Case Part 2: Qwen2.5-VL (Baseline). The baseline suffers from spatial hallu-
cination. It prioritizes pixel matching via fragile absolute positioning, leading to Z-index errors and
overlapping text.

Figure 17: Failure Case Part 3: ScreenCoder (Ours). ScreenCoder simplifies the geometry to
a standard rectangular grid (Graceful Degradation). While it misses the artistic skew, it maintains
structural integrity, generating clean and valid code.
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