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ABSTRACT

The design of biological sequences is essential for engineering functional
biomolecules that contribute to advancements in human health and biotechnol-
ogy. Recent advances in diffusion models, with their generative power and effi-
cient conditional sampling, have made them a promising approach for sequence
generation. To enhance model performance on limited data and enable multi-
objective design and optimization, reinforcement learning (RL)-based fine-tuning
has shown great potential. However, existing fine-tuning methods are often unsta-
ble in discrete optimization when not using gradients or become computationally
inefficient when relying on gradient-based approaches, creating significant chal-
lenges for achieving both control and stability in the tuning process. To address
these issues, we propose GLID2E, a gradient-free RL-based tuning approach for
discrete diffusion models. Our method introduces a clipped likelihood constraint
to regulate the exploration space and reward shaping to better align the genera-
tive process with design objectives, ensuring a more stable and efficient tuning
process. By integrating these techniques, GLID2E mitigates training instabilities
commonly encountered in RL and diffusion-based frameworks, enabling robust
optimization even in challenging biological design tasks. In DNA sequence de-
sign system, GLID2E achieves competitive performance in function-based design
while ensuring lightweight and efficient tuning.

1 INTRODUCTION

Designing biological sequences with specific functional or structural properties, such as foldability
and biological activity, is a critical task in computational biology (Abramson et al., 2024; Dauparas
et al., 2022). While diffusion-based generative models have demonstrated strong capability in cap-
turing the data distribution of structures and sequences, adapting these models for controllable and
task-specific sequence design remains an open challenge (Ho et al., 2020; Song et al., 2020; Camp-
bell et al., 2022; Lou et al., 2023; Xu et al., 2024). Existing approaches to fine-tuning diffusion
models in discrete spaces primarily rely on the reward evaluated at the final states of the generative
process as supervision signals (Rector-Brooks et al., 2024; Wang et al., 2024). DRAKES (Wang
et al., 2024) applies Gumbel-Softmax to mask discrete trajectories generated by diffusion models
differentiable, enabling direct back-propagation of rewards. Besides, it incorporates KL regulariza-
tion to ensure that the optimized sequences achieve high reward values while remaining consistent
with the pretrained model, preventing overfitting or distributional drift. However, this approach can
be computationally demanding, as it requires storing intermediate states across multiple timesteps.
Furthermore, it does not fully utilize information from intermediate sampling states, which could
otherwise contribute to greater flexibility and controllability in fine-tuning. These issues are further
exacerbated in discrete spaces, where gradient discontinuities pose additional optimization chal-
lenges.
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To address these limitations, we propose GLID2E, a Gradient-free LIghtweight fine-tuning frame-
work for Discrete sequence DEsign that reformulates the fine-tuning process as a policy optimization
problem. Our method introduces value approximation to efficiently guide the generation process and
incorporates intermediate scoring mechanisms to enable fine-grained control at arbitrary time steps.
This eliminates the need for expensive back-propagation through the entire generative trajectory,
significantly reducing computational overhead while maintaining high-quality and controllable se-
quence generation. Moreover, our framework improves related properties while optimizing a single
objective, enhancing its effectiveness in complex tasks like biological sequence engineering. Addi-
tionally, it has the potential to be extended for multi-objective optimization, enabling the simulta-
neous optimization of competing properties. We validate the effectiveness of our method through
extensive experiments on two distinct biological sequence systems. Results demonstrate that our
framework achieves state-of-the-art controllability and generation quality while substantially reduc-
ing computational costs compared to existing approaches. Furthermore, ablation studies show the
contributions of key components in our framework and the superiority in efficiency and flexibility.

2 RELATED WORK

Diffusion models for discrete sequence modeling Diffusion models have recently been extended
from continuous domains to discrete domains, such as text and biological sequence generation (Li
et al., 2022; Lou et al., 2023; Wu et al., 2024; Wang et al.; Huang et al., 2024). These extensions
enable diffusion models to handle discrete data by adapting the denoising and sampling processes,
making them applicable to tasks like text generation and biological sequence design. However, ap-
plying diffusion models to discrete spaces introduces two key challenges. First, unlike continuous
diffusion models that rely on Gaussian noise, discrete diffusion models require a discrete noising
process with categorical state transitions, making it challenging to design a well-calibrated transi-
tion mechanism and ensure effective learning. Recent works address this by introducing transition
matrices or Markovian corruption processes to model discrete noise (Austin et al., 2021; Hooge-
boom et al., 2021) and applying auto-regressive sampling to avoid complex categorical transition
design (Wu et al., 2023). Second, efficient sampling remains a major bottleneck. Continuous dif-
fusion models benefit from well-established solvers, whereas discrete models often require iterative
categorical sampling, which can be computationally expensive. To mitigate this, techniques such
as accelerated sampling strategies and partial noising approaches have been proposed to reduce the
number of denoising steps while maintaining generation quality (Chen et al.; Song et al., 2023).

Reinforcement-learning in generative modes Reinforcement learning (RL) has become a pow-
erful tool for optimizing generative models, particularly when dealing with non-differentiable ob-
jectives or trade-offs across multiple constraints (Uehara et al., 2024b; Clark et al., 2023; Fan et al.,
2024). In text generation, RL has been used to enhance fluency and semantic consistency (Ouyang
et al., 2022; Yang et al., 2024; Guo et al., 2025). Similarly, RL has shown promise in improving
functionality and stability in protein design and other biological sequences, leveraging reward-driven
optimization akin to its success in text-based tasks.

The key to conditional biological sequence design is ensuring controllability and generation quality.
Recent works have explored fine-tuning and training-free guidance strategies to optimize diffusion-
based generation (Wu et al., 2024; Zhou et al., 2024; Lisanza et al., 2024; Gruver et al., 2024; Wang
et al.; Yi et al., 2024). Fine-tuning allows generative models to specialize in specific functional
objectives, while training-free guidance techniques enable generation control without requiring ex-
tensive retraining. However, maintaining stability during conditional sampling remains challenging,
as models often struggle to balance trade-offs between generation quality and control (Epstein et al.,
2023; Bar-Tal et al., 2023). Recent studies have combined policy gradient methods with genera-
tive models to guide sample generation for tasks such as molecular activity and protein stability
optimization (Wang et al., 2024). In this context, RL-based approaches provide a promising direc-
tion for enhancing controllability in discrete diffusion models through reward-driven optimization.
Nevertheless, applying these methods in high-dimensional discrete spaces can be challenging, par-
ticularly in terms of efficiency and optimization stability.

2



Published at the GEM workshop, ICLR 2025

3 PRELIMINARY

Our goal is to map a known and easy-to-access prior distribution pdata(x) ∈ ∆(X ) into a distribution
p∗(x) ∈ ∆(X ), whereX ⊆ {1, . . . , N}n is a discrete domain and ∆ is the simplex over the domain.
For a given reward model r(x), p∗(x) assigns higher probabilities to samples x for which r(x) has
a higher value. This work considers the scenario in which a diffusion model has been pre-trained on
large-scale real data and a reward model for evaluating the value we focus on for any given data. This
pre-trained diffusion model can generate data that is close to real data; however, it cannot ensure that
the generated data has a high value. The reward model can approximately assess the value of the
given data; however, it may give some invalid data the highest reward.

For the problems we study, protein and DNA sequence generation, the continuous-time Markov
chain (CTMC) is used to model a series of distributions so that a given sequence is transformed
into a special mask sequence from t = 0 to t = T under a time-dependent transitions matrix Q(t).
The transition matrix Q(t) is typically designed manually. It is computationally straightforward
and guarantees that the sequence xT at the time T is a sequence of the special MASK tokens.
For the corresponding time-reversal CTMC dxT−t

dt = Q̄θ(T − t)xT−t, a deep diffusion model is
trained to approximate the reverse-time transition matrix Q̄θ(T − t). Subsequently, the original data
distribution can be retrieved by time-reversal CTMC from this special sequence according to the
trained diffusion model. For convenience of presentation, we often regard the original pre-trained
diffusion model as an unconditional model whose input is a vector of fixed length and does not
consider the length of the vector explicitly.

4 METHOD

In this section, we explore two issues that may be encountered when directly applying reinforcement
learning methods for fine-tuning discrete diffusion models. The detailed algorithm is shown in A.3.

4.1 CLIPPED LIKELIHOOD CONSTRAIN

Due to the imperfections of the reward model, directly using the reward model as the optimization
objective in reinforcement learning can lead to issues such as unstable training, over-optimization,
and policy collapse Clark et al. (2023); Uehara et al. (2024a). Recent research works Wang et al.
(2024) employ regularization terms to encourage the optimized policy close to a reference policy,
and KL divergence is frequently used for this. The optimization policy is obtained by solving

max
θ

Ex∼pθ
[r(x)]− βKL(pθ, pprior),

where r(x) is the reward model. Assuming that the model has sufficient expressive ability,
the optimal solution pθ∗(x) to the above optimization problem satisfies the form pθ∗(x) ∝
pprior(x) exp(

1
β r(x)), but in general this posterior is intractable and hard to approximate.

The optimal policy can be seen as a product of the prior distribution and a reward-induced distri-
bution, modulated by the KL regularization hyperparameter. A large regularization hyperparameter
may cause the final policy to generate conservative samples close to those from the prior distribu-
tion, with consistently lower rewards. This happens because the prior distribution is often trained
on task-agnostic data. Conversely, a small regularization hyperparameter may cause the policy to
generate unreasonable samples due to flaws in the reward function.

The analysis of optimal policy formulation reveals two observations. First, the pre-trained diffusion
models possess a superior ability to evaluate the validity of generated samples, as they were trained
on an extensive real-world dataset that effectively captures fundamental rationality criteria. Second,
over-reliance on prior distributions may limit the exploration space of maximizing task-specific
reward functions, especially since prior distributions inherently lack task-specific inductive biases.
This raises a question: Could the pre-trained diffusion model alone sufficiently enforce sample ratio-
nality constraints? Furthermore, if good rationality could be guaranteed through such constraints,
would the reward function-induced distribution dominate the optimal policy?

A natural idea is to use the magnitude of the marginal distribution in the pre-trained model to assess
whether the generated sample is reasonable. However, accurately estimating the marginal distribu-
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tion is unrealistic for the diffusion model. A heuristic criterion is proposed to determine whether
the generated samples are reasonable relative to the prior distribution, namely, checking whether the
estimated upper bound of the log-likelihood of diffusion models exceeds a constant.

To select the constant, we use the pre-trained diffusion model to generate a large number of samples,
and then calculate the mean and variance of their approximate log-likelihood. We choose the value
of the constant as the mean minus k = 1 times the standard variance, detailed in (1). This approach
is inspired by the fact that a diffusion model pre-trained on a large scale can generate a rich enough
set of reasonable samples with few repetitions. In other words, it generates samples that the prior
distribution deems reasonable with a high probability. Therefore, determining the rationality of
samples by identifying outliers beyond the standard deviation can effectively indicate the confidence
level of the diffusion model.

Finally, due to the flexibility of the reinforcement learning problem setting, the heuristic can be
naturally introduced by the modified reward model. We use standardization to transfer this intuition
to the reward function to avoid the difference in the absolute value of the log-likelihood over different
pretrained diffusion models and tasks, which is

r̄(x) = r(x) + β min

(
log pprior(x)− µ

σ
+ k, 0

)
, (1)

where µ and σ are the mean and standard deviation of the log-likelihood and β is a hyperparameter
to control the strength of the penalty. The diffusion strategy is then fine-tuned without any KL
regularization. We use PPO (Schulman et al., 2017) with GAE (Schulman et al., 2015) and an
entropy penalty as a standard RL optimization policy, and the clipping ratio of PPO is set to 0.05.

4.2 REWARD SHAPING

To encourage the RL policy to explore high-value and reasonable solutions, we adopt reward shaping
as an additional information source to guide the training process. Reward shaping is a well-studied
technique in RL, which aims to guide an agent towards the desired behavior in a more effective
manner Ng et al. (1999). One common approach is potential-based reward shaping. A potential
function Φ(s) is defined over the state space S of the environment. The reward at a state s is then
modified as r(s) = ro(s) + γΦ(s′) − Φ(s), where ro(s) is the original reward in state s, s′ is the
next state and γ is the discount factor. Recall our RL formulation following Wang et al. (2024), the
state space constitutes the set of all sequences with a length of t. The diffusion model conducts a
single denoising action at each discrete time step. The reward is 0 for all non-final state transitions,
i.e. r(st) = 0,∀t ∈ {0, . . . , T − 1}. Until all time steps are concluded, a reward generated by
the reward function is received at the final step as r(sT ) = r̄(xT ). The discount factor is 1.0. For
states earlier in time, it is more difficult to estimate the final reward due to the randomness of the
policy and the complex state transitions. Adding extra rewards at each step can guide the policy
in choosing better actions early on. A natural choice is to reuse the trained reward function as a
hint. However, due to the internal structure and calculation mechanism of the reward function, for
a partial sequence that has MASK tokens, the reward function cannot be processed directly. This is
because the MASK tokens are used for training the diffusion model and are outside of the reward
model training. To address this issue, we introduce a new concept - the indicator sequence. Here we
define the best possible sequence without MASK token as an indicator sequence xb. We design our
potential function as

Φ(st) =

{
r(xb

t) 1 ≤ t ≤ T

0, other
, (2)

where xb
t = argmaxx ̸=MASK pθ(x|xt−1, t), and the potential function on the final state is

0, i.e. r′(sT−1, a, sT ) = r̄(sT ) − Φ(sT−1). This function design determine that for all
(s0, a0, . . . , sT−1, aT−1, sT = x), the sum

∑T
i=1 r(si−1) is equal to r̄(x). As the denoising pro-

cess progresses, the number of MASK tokens in the sequence gradually decreases. The closer the
distance between the indicator sequence and the true sequence is, the more accurate the estimation
of the reward function will be. This information can be delivered to the policy via the potential
function at these early states to encourage the policy to learn more effectively.
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Table 1: General performance for DNA sequence design models. State-of-the-art performance is
bold, and the second-highest performance is underlined. KL, M1, and M2 denote KL regularization,
reward shaping, and likelihood penalty, respectively.

Method Pred-Activity (median) ↑ ATAC-Acc ↑ (%) 3-mer Corr ↑ Log-Lik (median) ↑
Pretrained 0.17(0.04) 1.5(0.2) -0.061(0.034) -261(0.6)
CG 3.30(0.00) 0.0(0.0) -0.065(0.001) -266(0.6)
SMC 4.15(0.33) 39.9(8.7) 0.840(0.045) -259(2.5)
TDS 4.64(0.21) 45.3(16.4) 0.848(0.008) -257(1.5)
CFG 5.04(0.06) 92.1(0.9) 0.746(0.001) -265(0.6)
DRAKES w/o KL 6.44(0.04) 82.5(2.8) 0.307(0.001) -281(0.6)
DRAKES 5.61(0.07) 92.5(0.6) 0.887(0.002) -264(0.6)
GLID2E 7.35(0.067) 90.6(0.26) 0.49(0.074) -239.889(14.2)
GLID2E w/o M1 2.57(0.60) 0.63(0.3) 0.473(0.078) -239.12(10.07)
GLID2E w/o M2 6.62(0.42) 67.3(39.4) 0.458(0.009) -244.65(21.5)

5 EXPERIMENT

Dataset We apply the same dataset and oracle as DRAKES (Wang et al., 2024), where the pre-
training dataset consists of approximately 700k DNA sequences (200 bp each) and the oracles’
dataset is split into two subsets for different reward oracle training.

Metric Four metrics—Pred-Activity, ATAC-Acc, 3-mer Corr, and Log-Lik—are applied to the
model’s performance in enhancer activity, chromatin accessibility, sequence similarity, transcription
factor binding site correlations, and the naturalness of generated sequences.

Baseline The benchmark baselines include controlled generation methods for discrete diffusion,
including conditional guidance, classifier-free guidance, and RL-based fine-tuning methods.

5.1 DNA SEQUENCE DESIGN

Benchmark analysis Our method achieves superior enhancer activity compared to other ap-
proaches. By effectively balancing exploration and exploitation, it identifies sequences with higher
functional potential while maintaining biological plausibility. Reinforcement learning enables effi-
cient optimization, allowing the model to explore diverse sequence spaces without excessive devi-
ation from natural distributions. Despite optimizing for enhancer activity, our method ensures that
generated sequences remain biologically plausible. Likelihood constraints prevent the model from
overfitting to the reward function, reducing the risk of generating unrealistic sequences. This balance
allows for performance improvements while preserving key sequence characteristics. Our method
explores a broader sequence space compared to baselines, occasionally deviating from natural DNA
motifs to discover high-activity variants. However, the likelihood constraint mitigates excessive
divergence, ensuring that generated sequences remain within a biologically reasonable range.

Ablation study Removing reward shaping (M1) significantly decreases enhancer activity and se-
quence accessibility. Without M1, the model struggles to focus on high-value regions of the se-
quence space, resulting in suboptimal optimization. Reward shaping is essential for guiding the
reinforcement learning process toward functionally relevant solutions. Likelihood constraints (M2)
help maintain sequence plausibility. Without M2, the optimization process prioritizes reward max-
imization without regard for biological validity, leading to sequences that deviate from natural dis-
tributions. This constraint ensures that improvements in enhancer activity do not come at the cost
of generating unrealistic sequences. M1 and M2 work together to balance optimization and plausi-
bility. M1 directs the search toward high-reward sequences, while M2 prevents excessive deviation
from natural DNA distributions. Removing either component reduces performance, underscoring
their complementary roles in reinforcement learning-based sequence design.
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6 CONCLUSION

We propose GLID2E, a gradient-free reinforcement learning (RL)-based tuning method designed for
biological sequence generation. Unlike gradient-dependent approaches, GLID2E leverages clipped
likelihood constraints and reward shaping techniques to effectively address the high computational
cost and instability issues associated with previous methods. These innovations make it a lightweight
yet robust solution for conditional discrete generation tasks. In experiments on DNA sequence ac-
tivity optimization, GLID2E demonstrates promising potential for multi-objective function-based
design across different biological systems. This highlights its flexibility and effectiveness in tackling
diverse challenges in biological sequence generation. Future work will explore broader applications
of the proposed framework across more biological sequence systems. With its computational ef-
ficiency and versatility, GLID2E provides a promising foundation for advancing discrete sequence
design in both biological and other domain-specific contexts.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The hyper-parameters used for table 1 are listed in table 2. The neural networks are based on the
setting from (Wang et al., 2024). The value network uses Enformer(Avsec et al., 2021) architecture
and is changed from the reward oracles from (Wang et al., 2024) and initialized from the pre-trained
reward oracles weights open published by Wang et al. (2024). The policy network is initialized
via the pretrained masked discrete diffusion model open published by Wang et al. (2024). For
each epoch, we generated 1024 samples with 128 discrete sampling steps and formed the replay
buffer for mini-batch training. To stabilize the training process and final performance, we utilized a
cosine learning rate scheduler and decayed the learning rate to 1e-8 at the last epoch. For evaluation
purposes, we generate 640 sequences per method. This is achieved by using a batch size of 64
over 10 batches. For each random seed, this process is repeated. We report the mean and standard
deviation of model performance across three random seeds.

Table 2: Hyper-parameters used in the training process. This table lists the key training settings, in-
cluding learning rate, optimizer, scheduler, and other important parameters such as entropy penalty,
gradient clipping, and Generalized Advantage Estimation (GAE) parameters. The highlighted row
indicates the entropy penalty term, which helps regulate policy entropy during training.

Training Setting

Learning rate 1× 10−4

Optimizer Adam
Scheduler Cosine scheduler
Number of epochs 1000
Batch size 128
Total number of steps 128
Entropy penalty 1× 10−3

ϵ 0.05
Gradient clip 1.0

Clipped Likelihood Constraint

β 1.0

GAE

λ 0.95
γ 1.0

A.2 TRAINING TIME COMPARISON

We compared the training times of DRAKES and GLID2E, as shown in 3. The Gradient-Free setting
enhances the algorithm’s efficiency.

Method DRAKES GLID2E (Ours)
Time 23.28± 0.14 13.54± 0.04

Table 3: Training time per epoch for different methods.
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A.3 DETAILED TRAINING ALGORITHM OF GLID2E

Algorithm 1 GLID2E Training Algorithm based on PPO algorithm

1: Input: Policy network pθ, Value network Vϕ, Training epochs K, Advantage estimate Ât,
Clipping parameter ϵ

2: Initialization: Policy network parameters θ and value network parameters ϕ
3: while Termination condition is not met do
4: Collect N trajectories τi = (si,t, ai,t, log p(si,t))

T
t=0, where i = 1, . . . , N

5: Calculate indicate states xb
i,t

6: Calculate reward ri,t = Φ(xb
i,t+1)− Φ(xb

i,t), where t = 0, . . . , T − 1

7: and ri,T = r(xi,T )− Φ(xb
i,T ) + βmin

(
log pprior(xi,T )−µ

σ + k, 0
)

8: Compute advantage estimates Âi,t for each trajectory via GAE
9: for k = 1 to K do

10: for Each mini-batch B containing M samples do
11: Compute the policy loss LCLIP (θ)

LCLIP (θ) = −Êt

[
min

(
pθ(at|st)
pθold(at|st)

Ât, clip(
pθ(at|st)
pθold(at|st)

, 1− ϵ, 1 + ϵ)Ât

)]
12: Compute the value loss LV F (ϕ)

LV F (ϕ) = Êt

[(
Vϕ(st)− V̂t

)2
]

where V̂t is the estimated value
13: Compute the entropy bonus S(θ)

S(θ) = Êt [H (πθ(·|st))]

whereH is the entropy function
14: Compute the total loss L(θ, ϕ)

L(θ, ϕ) = LCLIP (θ) + LV F (ϕ)− c1S(θ)

where c1 is a hyperparameter
15: Update policy network parameters θ and value network parameters ϕ:

θ ← θ − αθ∇θL(θ, ϕ)

ϕ← ϕ− αϕ∇ϕL(θ, ϕ)
where αθ and αϕ are learning rates

16: end for
17: end for
18: end while
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