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Abstract

Exisiting 3D facial emotion modeling have001
been constrained by limited emotion classes002
and insufficient datasets. This paper intro-003
duces “Emo3D”, an extensive “Text-Image-004
Expression dataset” spanning a wide spectrum005
of human emotions, each paired with images006
and 3D blendshapes. Leveraging advanced007
Language Models (LLMs), we generate a di-008
verse array of textual descriptions, facilitat-009
ing the capture of a broad spectrum of emo-010
tional expressions. Using this unique dataset,011
we conduct a comprehensive evaluation of lan-012
guage model fine-tuning and CLIP-based mod-013
els for 3D facial expression synthesis. We014
also introduce a new evaluation metric for this015
task to more directly measure the conveyed016
emotion. Our new evaluation metric, Emo3D,017
demonstrates its superiority over Mean Squared018
Error (MSE) metrics in assessing visual-text019
alignment and semantic richness in 3D facial020
expressions associated with human emotions.021
“Emo3D” has great applications in animation022
design, virtual reality, and emotional human-023
computer interaction.024

1 Introduction025

Automatic translation of character emotions into 3D026
facial expressions is an important task in digital me-027
dia, owing to its potential to enhance user experience028
and realism. Facial Expression Generation (FEG) has a029
wide range of applications across various industries, in-030
cluding game development, animation, film production,031
and virtual reality. Previous studies in this domain have032
primarily focused on generating facial expressions for033
2D or 3D characters, often relying on a limited set of034
predefined classes (Siddiqui, 2022) or driven by audio035
cues (Karras et al., 2017; Peng et al., 2023). However,036
there is a growing need for better control in the genera-037
tion of complex and diverse human facial expressions.038
Recent studies (Zou et al., 2023; Zhong et al., 2023; Ma039
et al., 2023) have made notable progress in this area040
through the use of text prompts, offering a more direct041
approach to address the challenge of limited control042
that has been prevalent in earlier works (Siddiqui, 2022;043
Karras et al., 2017; Peng et al., 2023).044

The primary issue with recent works using text 045
prompts is (i) their limited focus on textual descriptions 046
of emotions, as many studies have not deeply explored 047
emotional context or offered a comprehensive solution 048
that integrates both textual descriptions and 3d facial 049
expression generation, creating a noticeable gap in the 050
field (Zhong et al., 2023; Zou et al., 2023). Moreover, 051
there is (ii) a scarcity of datasets containing emotional 052
text alongside corresponding 3d facial expressions, 053
impeding the development and training of facial 054
expression generation (FEG) models for practical 055
applications (Zhong et al., 2023; Zou et al., 2023; Ma 056
et al., 2023). Additionally, (iii) the absence of reliable 057
benchmarks and standardized evaluation metrics in this 058
research area further complicates the assessment of 059
FEG models. 060

061

Contributions: This paper tackles key challenges in 062
Facial Expression Generation, focusing on generating 063
expressions from textual emotion descriptions. Our 064
contributions towards addressing the gaps in the field of 065
Facial Expression Generation are as follows: (i) Emo3d- 066
dataset: We present the Emo3D-dataset, specifically 067
developed to bridge the gap between textual emotion 068
descriptions and 3D facial expression generation. This 069
dataset provides a rich compilation of annotated emo- 070
tional texts alongside matching 3D expressions for ef- 071
fective training and assessment of FEG models. (ii) 072
Baseline Models: We propose baseline FEG models 073
as benchmarks for future research in this field. These 074
models offer a reference point for evaluating new ad- 075
vancements and assessing progress. (iii) Evaluation 076
Metric: To address the absence of standardized evalua- 077
tion metrics in FEG, we introduce a new metric designed 078
for the unique challenges of capturing the complexities 079
of human emotions. 080

2 Related Work 081

Audio-based emotion extraction: Facial expression 082
generation methods often utilize audio data, leveraging 083
the semantic, tonal, and expressive qualities of voice for 084
3D generation. ‘Audio-driven Facial Animation’ (Kar- 085
ras et al., 2017) learns to map audio waveforms to 3D 086
facial coordinates, identifying a latent code for expres- 087
sion variations beyond audio cues. ‘EmoTalk’ (Peng 088
et al., 2023) focuses on creating 3D facial animations 089
driven by speech, aligning expressions with both content 090
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and emotion.091
CLIP-based baselines: The utility of CLIP’s language-092
and-vision feature space (Radford et al., 2021) in text-to-093
image generation has been highlighted in several works.094
MotionCLIP (Tevet et al., 2022) leverages CLIP for a095
feature space that accommodates dual modalities, en-096
abling out-of-domain actions and motion integration097
into CLIP’s latent space. The 4D Facial Expression Dif-098
fusion Model (Zou et al., 2023) uses this latent space for099
text-driven control. Also, ExpCLIP (Zhong et al., 2023)100
bridges text with facial expressions through semantic101
alignment.102
Additionally, (Li et al., 2023) introduced CLIPER, a103
unified framework for both static and dynamic facial104
expression recognition, utilizing CLIP and introducing105
multiple expression text descriptors (METD) for fine-106
grained expression representations, achieving state-of-107
the-art performance by a two-stage training paradigm108
which involves learning METD and fine-tuning the im-109
age encoder for discriminative features.110
Metrics: While numerous metrics exist for 2D image111
generation, a notable gap persists in effective metrics112
for 3D facial expression generation. R-precision, used113
to measure the alignment between input text and output114
image, was adopted by (Cong et al., 2023) following the115
approach in (Xu et al., 2017). This involved utilizing116
a CLIP model fine-tuned on the entire dataset, with117
R-Precision calculations based on (Park et al., 2021).118

3 Dataset119

We introduce the Emo3d-dataset, an assembly of120
150,000 instances. Each instance comprises a triad: tex-121
tual description, corresponding image, and blendshape122
scores created as follows:123
(i) Emotion descriptions: For generating emotion-124
specific textual descriptions, we prompt GPT-3.5 (Ope-125
nAI, 2023), with a focus on eight principal emotions for126
this purpose. Secondly, we again hard-prompt GPT-3.5127
language model to derive emotion distributions for these128
textual elements. This process entailed the construction129
of specialized prompts for GPT, leading to the genera-130
tion of eight-dimensional vectors representing distinct131
emotion distributions, detailed in Figure 1.a. More de-132
tails on the linguistic characteristics of the generated133
data is provided in the Appendix A.134
(ii) 2D Image Generation: Subsequently, we utilize135
DALL-E 3 (Ramesh et al., 2022), a hierarchical image136
generation model, to create images that align with the137
generated textual descriptions.138
(iii) Blendshape scores estimation: We employ Medi-139
apipe framework (Lugaresi et al., 2019) to synthesize140
blendshape scores corresponding to the generated im-141
ages based on textual descriptions.142
Primitive Emotion Faces: Additionally, for intrinsic143
evaluation purposes, we construct a dataset of primi-144
tive emotions comprising singular emotion words, each145
paired with corresponding images that portray males146
and females exhibiting three distinct intensity levels of147

emotion. Utilizing Mediapipe (Lugaresi et al., 2019), 148
we subsequently extract blendshape scores for the facial 149
expressions depicted in these images. The emotional 150
distributions associated with these individual words are 151
derived using Emolex (Mohammad, 2018). 152

4 Method 153

4.1 Models 154

In this section, we propose several baseline models for 155
the task of translating emotion descriptions into 3D 156
facial expressions. This includes (i) fine-tuning of pre- 157
trained language models, (ii) CLIP-based approaches, 158
and (iii) Emotion-XLM, an architecture we have devel- 159
oped to enhance LM functionality. 160
Pretrained LM Baselines: We utilize BERT (Devlin 161
et al., 2019) and Glot500, a highly multilingual vari- 162
ant of XLM-RoBERTa (ImaniGooghari et al., 2023), as 163
the backbones. To map LM outputs into a designated 164
target space, we incorporate a Multi-Layer Perceptron 165
(MLP). During the training phase, we process textual 166
data through the LMs to obtain encoded latent represen- 167
tations of the [CLS] token. The MLP is then trained 168
with tuples T = (b, l) | b ∈ R768, l ∈ R52, where b de- 169
notes the LM output and l represents the corresponding 170
blendshape scores. 171
Emotion-XLM: In our architecture, we extend this 172
MLP structure to XLM-RoBERTa as the backbone, in- 173
troducing an additional emotion-extractor unit. Within 174
this framework, we feed the transformer output into 175
the emotion-extractor unit to extract the distribution 176
of emotions alongside the corresponding one-hotted 177
vector. Representing the input space as B = {b | 178
b ∈ R768}, the emotion-extractor unit produces an 179
output E = {(v, o) | v ∈ R8, o ∈ R8}, where v in- 180
dicates emotion intensities in V = {[v1, . . . , v8] | vi ∈ 181
[0, 1], i = 1, . . . , 8}, and o is the one-hotted vector of 182
v. Pairs of vectors are then passed to the MLP unit, 183
where the vectors are concatenated with themselves and 184
the text embedding before being fed to the regression 185
unit. Consequently, the regression unit functions as 186
F(.) : R784 → R52. To enhance robustness in the re- 187
gression phase, 50% of the ground truths of emotions 188
are replaced with the outputs from the emotion-extractor 189
unit. 190

(1) L = λ1LBlendshape + λ2LEmotion 191

Overall, for the training phase, the model is trained us- 192
ing triples of T = (e, v, l) | e ∈ R768, v ∈ R8, l ∈ R52, 193
and two MSE losses over blendshapes and the extracted 194
emotions are summed up with coefficients 1 and 5, 195
respectively. This model is illustrated in Figure 1.c. 196

197
CLIP Baseline: We employed a Multi-Layer Percep- 198
tron (MLP) structure on the CLIP (Radford et al., 2021) 199
backbone. What distinguishes this model from Pre- 200
trained LM Baselines is the incorporation of both image 201
and text embeddings during training, effectively dou- 202
bling the size of our dataset. 203
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Figure 1: (a) Emo3D-datasets Generation Pipeline: Textual data describing human emotions is initially generated
using GPT (OpenAI, 2023). We then utilize DALL-E models (Ramesh et al., 2022) to synthesize human faces. Each
image undergoes face blendshape extraction using MediaPipe (Lugaresi et al., 2019). Furthermore, we employ GPT
(OpenAI, 2023) to extract the emotion distribution for each prompt. (b) Emo3D Metric: Our methodology entails
selecting n prompts with a balanced emotion distribution. We generate facial expressions using a text-utilizing FEG
model for a given input prompt. We project the 3D face model onto a 2D image and employ zero-shot CLIP to
identify the k nearest text prompts. Subsequently, we compute the Kullback-Leibler (KL) divergence between the
emotion distribution of the input text and these k prompts. (c) Emotion-XLM: The model uses emotion ground
truth to predict facial blendshapes. An Emotion Extractor guides the Regression model with the Teacher-Forcing
technique at a 50% ratio. Both units are trained via Mean Squared Error (MSE) loss. (d) Autoencoder CLIP: The
model concurrently reconstructs facial expressions while aligning their latent representation with corresponding text
and image representations in the CLIP space. (e) ‘Surprise’ Emotion Word Cloud: closest words to ’surprise’
using Emolex (Mohammad, 2018) based on cosine similarity of emotion distribution. (f) FEG model Comparison
for the proposed FEG baselines on an example prompt.

VAE CLIP We employed a Variational Autoencoder204
(VAE) to align blendshape scores with their correspond-205
ing text and image CLIP (Radford et al., 2021) embed-206
dings, as illustrated in Figure 1d. The encoder maps207
blendshape scores to their respective text and image208
representations using cosine similarity, and the decoder209
sample from the latent space and reconstructs the blend-210
shape scores. The reconstruction loss is defined by211

Mean Squared Error (MSE). 212

Ltext = 1− cos (CLIP text, z)(2) 213

Limage = 1− cos (CLIP image, z)(3) 214

L = Lrecon + λtextLtext + λimageLimage(4) 215

Here, cos(a, b) denotes the cosine similarity between 216
two vectors a and b. 217
Additionally, in the pursuit of a comprehensive 218
comparison, we made diligent attempts to establish 219
contact with the Expclip team through email and 220
include the model in our comparison. Regrettably, as of 221
the present moment, we have not received a response 222
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from them.223
224

4.2 Emo3D Metric225

We introduce a new 3D Facial Expression Generation226
(FEG) metric for evaluating the reconstruction of the227
original emotion vector from 2D snapshots of the gener-228
ated 3D faces. We create a test set comprising diverse229
emotion prompts uniformly selected. To evaluate any230
proposed FEG model, we generate the corresponding231
blenshape scores of the input text and project the 3D face232
model onto a 2D image. Using zero-shot CLIP (Radford233
et al., 2021), we identify the k-nearest text prompts re-234
lated to the image. We calculate the emotion distribution235
for the original prompt and the top-K prompts. This is236
followed by computing the Kullback-Leibler (KL) diver-237
gence between the emotion vector of the original prompt238
and the average emotion vector of the top-K retrieved239
prompts. We refer to the normalized KL bounded be-240
tween 0 and 1 as the “Emo3D metric”:241

(5) DKL(ϕ || ψ̄) =
∑
i

ϕ(i) · log
(
ϕ(i)

ψ̄(i)

)
242

243

(6) Emo3D Metric =
1

1 + e−DKL(ϕ || ψ̄)
244

where ϕ represents the emotion distribution of the245
input prompt, and ψ̄ represents the mean emotion dis-246
tribution of the top-k prompts. The steps for Emo3D247
calculation are outlined in Figure 1b. In our evaluation248
of the FEG models, we provide both the Emo3D Metric249
and the MSE scores of the 3D models for comparison250
purposes.251

5 Results252

The FEG model performances are provided in Table 1.253
It becomes evident that the CLIP With Regression Unit254
model demonstrates superior performance when evalu-255
ated using our Emo3D metric. Our results indicate that256
the MSE and Emo3D metrics do not consistently align.257
When we examined the 3D model outputs, we observed258
that samples that performed better according to Emo3D259
metric also demonstrated a closer visual resemblance260
to the input prompt, in contrast to samples that showed261
better performance based on MSE, similar to Figure 1f.262
This can be because in our metric, Emo3D prioritizes263
visual-text alignment and proximity, tending to capture264
richer semantic information than distance metrics in 3D265
space using MSE.266

6 Conclusion267

In this paper, we introduced ’Emo3D,’ a comprehensive268
’Text-Image-Expression dataset’ that covered a wide269
range of human emotions and their textual descriptions,270
paired with images and 3D blendshapes. Our use of271
Language Models (LLMs) to generate prompts captured272

Model MSE Emo3D

BERT 0.03 0.796
XLMRoBERTa 0.04 0.789
Autoencoder CLIP 0.002 0.776
Emotion-XLM 0.035 0.756
CLIP 0.014 0.737

Table 1: Performance comparison of FEG models using
MSE vs. Emo3D metrics.

a variety of emotional expressions and descriptions. To 273
the best of our knowledge, ’Emo3D’ stood out as the 274
most comprehensive FEG dataset, encompassing suf- 275
ficiently diverse and complex emotional descriptions. 276
Furthermore, we developed an efficient evaluation met- 277
ric to provide 3D image synthesis models with a reliable 278
benchmark. Throughout our work, we tested several uni- 279
modal and multimodal models as baselines to encourage 280
new entrants to the field. The significance of ’Emo3D’ 281
lay in its potential to advance 3D facial expression syn- 282
thesis, holding promising implications for animation, 283
virtual reality, and emotional human-computer interac- 284
tion. 285
Comparison of Emo3D with existing datasets: 286
Emo3d-dataset integrates textual, visual, and blend- 287
shape modalities, providing a more holistic representa- 288
tion of emotional expressions compared to single-modal 289
datasets (Saravia et al., 2018; Mollahosseini et al., 2019; 290
Chen et al., 2023). Our dataset comprises 90,000 im- 291
ages and 60,000 texts. It can also be employed for 292
emotion recognition in text and images, thanks to the 293
emotion distributions associated with each sample. The 294
Emo3d-dataset shares similarities with other existing 295
datasets, particularly TEAD(Zhong et al., 2023) and 296
TA-MEAD(Ma et al., 2023), in terms of modality inte- 297
gration and a focus on emotional expressions. 298

The TA-MEAD(Ma et al., 2023) dataset, designed 299
for 2D facial expression generation (FEG), provides 300
emotion descriptions for videos, along with Action Unit 301
(AU)(Ekman and Friesen) intensity annotations for each 302
video. In contrast, our Emo3d-dataset offers a unique 303
perspective by concentrating on textual emotion expres- 304
sions, corresponding images, and blendshape scores. 305

The TEAD(Zhong et al., 2023) dataset, designed for 306
3D FEG, features situation descriptions, our Emo3d- 307
dataset distinguishes itself by emphasizing emotion de- 308
scriptions. Additionally, our dataset includes a dis- 309
tinctive feature with corresponding images for each 310
text, providing a richer and more comprehensive re- 311
source. The Emo3d-dataset, comprising 150,000 sam- 312
ples, stands out significantly in scale when compared to 313
ExpClip, which consists of 50,000 samples. 314

7 Limitations and future work 315

While our dataset exhibits positive attributes, it is not 316
without errors stemming from the processes involved 317
in its production. Specifically, the use of Mediapipe to 318
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obtain blendshape sores introduced inaccuracies, par-319
ticularly in the representation of certain emotions and320
facial expressions. To enhance the dataset in future en-321
deavors, collaboration with skilled animators could be322
sought to refine and design more accurate blendshape323
scores.324
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A Appendix432

A.1 More analysis of Emo3D-dataset433

To further explore the linguistic characteristics of each434
emotion category, this appendix presents four detailed435
tables. Table 2 presents statistical analyses of the dataset,436
offering further insights into its characteristics. Table 3437
lists the most frequently occurring words within each438
category, providing insights into the vocabulary most439
closely associated with different emotional states. Ta-440
bles 4 and 5 delve deeper into the semantic landscape of441
each emotion by showcasing the most frequent synsets442
(sets of words with similar meanings) within each cate-443
gory.444
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Emotion Number of words Number of unique words Avg word len Avg sentence len
Neutral 14805 1684 7.277609 13.555218

Happiness 31405 1519 6.687916 12.375832
Surprise 33690 1559 6.576492 12.152983
Sadness 32878 2220 6.816656 12.633311
Anger 16097 1288 6.419271 11.838541

Disgust 19917 1306 6.766280 12.532560
Fear 15120 1245 6.161111 11.322222

Contempt 7535 958 6.982349 12.964698

Table 2: Dataset Statistics by emotion Category

Neutral Happiness Surprise Sadness Anger Disgust Fear Contempt
emotion happiness surprise sadness anger contempt fear contempt

expression eyes eyes eyes eyes expression eyes expression
confusion smile wide expression furrowed disgust wide eyes

person joy mouth downturned expression look mouth lips
furrowed wide emotion emotion lips lips expression disdain

one expression open mouth brow eyes furrowed look
eyes bright eyebrows deep rage mouth lips emotion
hint expressing raised person narrowed furrowed pale mouth

random emotion shock lips eyebrows nose open feeling
look person slightly sorrow brows disdain look sneer

Table 3: Most Frequent Words for each emotion

Neutral Happiness Surprise Sadness
demonstration.n.05 feeling.n.01 astonishment.n.01 area.n.01
cognitive state.n.01 communication.n.02 feeling.n.01 feeling.n.01
combination.n.07 area.n.01 demonstration.n.05 sadness.n.01

confusion.n.02 positive stimulus.n.01 cognitive state.n.01 negative stimulus.n.01
communication.n.02 demonstration.n.05 combination.n.07 region.n.01

feeling.n.01 collection.n.01 emotion.n.01 sagacity.n.01
countenance.n.01 emotional state.n.01 communication.n.02 unhappiness.n.02

sagacity.n.01 sagacity.n.01 sagacity.n.01 countenance.n.01
small indefinite quantity.n.01 facial expression.n.01 rejoinder.n.01 communication.n.01

hair.n.01 countenance.n.01 hair.n.01 rejoinder.n.01

Table 4: Most frequent synsets for each emotion

Anger Disgust Fear Contempt
feature.n.02 dislike.n.02 fear.n.01 dislike.n.02
anger.n.01 demonstration.n.05 feature.n.02 demonstration.n.05

communication.n.02 area.n.01 emotion.n.01 area.n.01
sagacity.n.01 facial expression.n.01 sagacity.n.01 hair.n.01

countenance.n.01 communication.n.02 anxiety.n.02 communication.n.02
demonstration.n.05 region.n.01 countenance.n.01 region.n.01

communication.n.01 rejoinder.n.01 communication.n.01 disrespect.n.01
hair.n.01 countenance.n.01 rejoinder.n.01 countenance.n.01

rejoinder.n.01 communication.n.01 hair.n.01 communication.n.01
feeling.n.01 disrespect.n.01 appearance.n.01 rejoinder.n.01

Table 5: Most Frequent synsets for each emotion
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