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Abstract

Self-attention is widely regarded as a key mech-
anism enabling Transformers to dynamically
focus on relevant input tokens. However,
this focusing process can become distorted by
attention sinks (Xiao et al., 2024)—tokens
such as the beginning-of-sequence marker or
other function words that receive dispropor-
tionately high attention weights despite offer-
ing minimal semantic contribution. In this pa-
per, we study the causal significance of self-
attention in decoder-based Large Language
Models (LLMs) for classification tasks, with
a particular emphasis on how these attention
sinks impact interpretability. We first docu-
ment the prevalence of attention sink across
diverse sentiment and short-prompt classifica-
tion datasets, revealing that seemingly crucial
tokens often have little causal influence on fi-
nal predictions making it hard to interpret the
LLM’s thereby making them a blackbox mod-
els. We then propose and evaluate mitigation
strategies—such as reweighting the attention
distribution to reduce the effect of attention
sinks. Empirical results show that these tech-
niques improve alignment between attention
weights and truly influential tokens, thereby
enhancing the causal interpretability of the self-
attention mechanism. Our findings underscore
the importance of identifying and alleviating
attention sinks, particularly for applications
where transparent and trustworthy model ex-
planations are paramount.

1 Introduction

What are decoder language models actually
looking at (or attending to) when predicting a
class label? In principle, the self-attention mech-
anism in Transformer decoders (Vaswani et al.,
2023) is designed to dynamically focus on the
most relevant parts of an input sequence. How-
ever, in practice, we observe a phenomenon we
call an attention sink (Xiao et al., 2024): certain
tokens—such as the beginning-of-sequence marker,

prompt words, or other non semantically important
tokens—attract disproportionately high attention
weights, even though they contribute little semanti-
cally. This issue has been noted in prior work (Xiao
et al., 2024; Yu et al., 2024), raising the question
of whether high attention weights truly reflect a
token’s causal role in model decisions.

This paper starts by asking three fundamental
questions:

¢ Which tokens does the model attend to in
order to predict a class?

* Are the tokens with the highest attention
scores semantically meaningful, or are they
merely attention sinks?

* Does mitigating attention sinks improve the
causal interpretability of decoder language
models and, in turn, their explainability?

To illustrate these points, we used several archi-
tectures of decoder LLLM’s and for a classification
prompt we average the attention scores of all the
heads of last layer of LLM and extract the scores
for the last token. Figures 1 and 2 show the contrast
between raw attention distributions and those after
sink mitigation. In Figure 1, the model’s attention
is heavily skewed towards starting and some func-
tion tokens. In contrast, Figure 2 demonstrates that
once the attention sink is mitigated, the true mean-
ingful and semantically critical tokens that drive
the classification decision are reflected from the at-
tention distribution which helps a lot in interpreting
LLMs and explaining there prediction.

By addressing these questions and leveraging
the insights provided by the attention visualiza-
tions, we investigate the causal significance of
self-attention in decoder-based LLMs for classi-
fication tasks. We further propose mitigation tech-
niques—such as reweighting the attention distribu-
tion using entropy and/or Z-scores to mitigate the
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Figure 1: Raw attention distribution illustrating the at-
tention sink phenomenon, where prompt tokens and
function words receive disproportionately high atten-
tion.
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Figure 2: Attention distribution after mitigating atten-
tion sinks. The model now focuses on the key sentiment-
bearing tokens that are causally relevant to the classifi-
cation decision.

influence of attention sinks. Our empirical results
indicate that these techniques realign attention with
the truly influential tokens, thereby offering more
transparent and trustworthy explanations for model
predictions.

2 Experimental Setup

In Figure 3, we illustrate the pipeline used to inves-
tigate the causal influence of tokens in a decoder-
based LLM during classification. We begin by feed-
ing a prompt with n tokens, {S1, Sa, ..., S, }, into
the decoder. The model then produces an output
tokens, denoted as [ans]. As depicted by the red
arrow (the attention sink), certain tokens—often the
first token or special symbols—can disproportion-
ately attract the highest attention weights despite
being semantically meaningful. Meanwhile, the
black arrows represent the causal paths or influen-
tial tokens that genuinely drive the classification
decision. By measuring how attention is distributed
across the input tokens and contrasting it with the
causal impact of masking or removing some sink
tokens, we can diagnose and mitigate attention sink
effects. This process allows us to better interpret
which tokens truly shape the model’s final output,
thereby offering a clearer view into the causal un-
derpinnings of the self-attention mechanism for
classification tasks.

2.1 Experimental Setup Evaluation

After applying our attention sink removal method,
we evaluate the refined attention distribution by ex-
tracting the top K tokens (with K = 10) for each
prompt which have the highest attention scores,
this list is generated by prompting GPT-40 to sug-
gest the most semantically informative tokens for
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Figure 3: End-to-end pipeline.The red arrow marks an
attention sink; black arrows indicate causal paths.

each query in a dataset , we pre-define a collection
of important tokens that capture key semantic fea-
tures required for classification. For example, in
the SST-2 dataset, this set includes tokens such as
classify, sentiment, positive, and negative.
We then match the extracted top-K tokens against
these pre-specified sets separately for two cases:
(i) the positive case, where the model’s prediction
is correct or matching the ground truth, and (ii)
the negative case, where the prediction is incor-
rect or not matching the ground truth. We wanted
to check if in the positive case does the model’s
attention is well-aligned with semantically mean-
ingful tokens after remoiving the attention sink,
thereby confirming the efficacy of our sink removal
approach. Conversely, we wanted to check if in the
negative case does misaligned attention is higher
which implies that model is not attending to se-
mantically meaningful tokens which lead to the
poor downstream performance. This evaluation
framework thus provides quantitative insight into
how effectively the top attention tokens correspond
to the tokens known to be causally influential in
driving the model’s decisions.

3 Tasks and Datasets

We focus on short-passage classification to re-
duce the computation costs easy experimentation
and tasks that span various domains to do a ro-
bust analysis of our method. For choosing datasets
and their label sets we followed the same setting
as (Yu et al., 2024) paper’s classification datasets.
Which are: SST-2, SST-5, MR, SUBJ, DBPedia,
AG News, tracel ,trace2, CB, and BoolQ (Socher
et al., 2013; HuggingFace contributors, Accessed 3
March 2025¢,A,A; Lehmann et al., 2015; Hugging-
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Dataset Label set x
SST-2 {positive, negative}
SST-5 {terrible, negative, neutral, positive, great}
MR {positive, negative }
SUBJ ({subjective, objective}

DBPedia 14 classes (company, school, ..., book)
AGNews {World, Sports, Business, Technology}
TREC {Desc., Entity, Expr., Person, Number, Loc.}
CB {Yes, No, Maybe}

BoolQ {True, False}

Table 1: Label sets for the text-classification datasets

used in our experiments.

Face contributors, Accessed 3 March 2025a; Li and
Roth, 2002; Hovy et al., 2001; Wang et al., 2019;
Clark et al., 2019). See Table 1 for an overview
of labels and sources. We randomly sampled 900
samples from each dataset for our experements.

3.1 Prompt Templates and Label Choices

For each dataset, we provide an instruction
(e.g., “Classify the sentiment into ’positive’
or 'negitive’) and a template (e.g., “Sentence:
{text}\nSentiment: "), which frames the user input
and the expected classification label. We specify
the set of label choices (e.g., “positive”, “nega-
tive””), which the model uses to predict the next
token. These prompt templates and label sets are
customized to each dataset, ensuring consistency
in how we query our language model for classifica-
tion.

3.2 Model and Attention Analysis

We use Llama-2-7B-Chat-HF (Llama, 2023),
Mistral-7B-v0.1 (Mistral, 2023), DeepSeek-R1-
Distill-Qwen-7B (DeepSeek-Al, 2025) where the
later two have a mixture of experts type of architec-
ture, we wanted to check if our method is robust to
such architecture changes. We also observed that
for our chat setting non instruction tuned models
are not performing well for our classification tasks
so we chose the instruction tunded models. We
extract self-attention scores from the last decoder
layers and average over all the attention heads. We
extract the attention scores of all the tokens for
the last token, that is which tokens were more at-
tended to? to produce the answer? The experimen-
tal pipeline:

1. Query a sentiment-related sentence: Exam-
ple: "The movie was surprisingly enjoyable."

2. Extract token-wise attention weights from

the final layers.

3. Identify key tokens influencing sentiment
decisions before and after sink mitigation.

4 Sink Detection Overview

4.1 Preliminaries: Last-Token Attention

Let the input be a sequence of n tokens:

S= (81,82, PN ,Sn),
and suppose a Transformer decoder of L layers
with H heads per layer. Denote by

A(L’h)

%

the attention weight from the last token s,, (query)
to token s; (key) in the A-th head of the L-th (final)
layer. As usual:

(L,h)

L L,h L

(W

)

A(Lvh)

ni | = softmaxi<

Vi

Average Over Heads: We aggregate across
heads:

1 H
Y T
h=1

Thus a = (ay,...,a,) forms a valid probability
distribution over the n tokens as they sum to 1:

n
Zai = 1.
i=1

4.2 Drawbacks of Simple Mean-Thresholding

A common approach is to define a threshold 6 - p,
as suggested by (Yu et al., 2024), where

1 n
m= Ezai’
i=1

and if a; > Ou, we call s; a “sink.” While easy to
implement and computationally less expensive in
practice when we tested on numerous examples we
had to change the threshold hyperparameter differ-
ently for each test case to get meaningful causal
interpretation after removing the sink attention. So,
below, we outline more flexible methods.



4.3 Entropy-Based Sink Detection

Overall Distribution Entropy
we use the Shannon entropy of the attention dis-
tribution a:

H(a) =—> a; log(a;),
i=1

A very low overall entropy often indicates a highly
peaked attention distribution (i.e., only a few tokens
receive large weights, potentially indicating a sink).

Change in Entropy When Removing a Token

One way to detect if a specific token s; is a
“sink™ is to see how removing it from the distri-
bution changes the overall attention entropy.

1. Define a masked attention vector

d(»_i) _ 0, ifj=1,
J aj, otherwise.

2. Normalize to create a valid probability distri-
bution:

~(—1)

4= %

(=) _
J T «—n ~(—1)°
Zk:lal(e :

3. Compute the new entropy:

H@a )= -3 "a" 10g(a}™").

j=1
4. Let '
AH; = H(a) — H(a™).

If AH; < 0 (i.e., removing token i increases
entropy a lot), or AH; > 0, either scenario can re-
veal outlier behavior. A large positive A H; means
that removing ¢ destroys the distribution’s focus,
suggesting ¢ is crucial to the current peaked dis-
tribution (potentially a sink). On the other hand,
a large negative AH; (rare but can happen if re-
normalization yields an even spikier distribution)
also flags abnormal distribution changes. One
may define a suitable threshold on A H; to iden-
tify sinks.

4.4 Z-score Based Sink Detection

This approach is to identify “sinks” as statistical
outliers in the attention vector:

1 & 1
“:nz;“i’ 02252(%‘—#)2'
1=

Define a z-score for each token i:

If z; exceeds some threshold «, s; is considered a
sink:

sink if z; > a.

Unlike raw mean-thresholding, this approach ac-
counts for variance in the attention distribution.

4.5 Sink Removal & Normalization

Regardless of how sinks is detected (entropy, z-
score, or/and causal masking), the removal and
normalization step follows:

* Mask identified sinks:

. 0, ifs;isasink,
a; = .
a;, otherwise.

* Renormalize:
* The vector b = (by,...,by,) is now your

“sink-free” attention distribution for interpre-
tation.



Algorithm 1 Detect—-Mask—Renormalise Attention

Sinks

Require: Attention vector a = (aj,...,ay),
method m € {Entropy, Z-score}, threshold 7

10 Tgink <

2: fori < 1tondo

3: if m = Entropy then

4: AH; < H(a) — H(Renorm(ay;))

5: if |[AH;| > 7 then

6: Lsink < Lsink U {Z}

7: end if

8: else if m = Z-score then

9: zi + (a; — p) /o > p, o pre-computed
once

10: if z; > 7 then

11: Isink — Isink U {Z}

12: end if

13: end if

14: end for

15: for i < 1ton do
16: if i € Tk then

17: a; < 0

18: else

19: a; < a;

20: end if

21: end for

22: b+ a/ 225G > renormalise
23: return b > sink-free attention distribution

5 Mitigating Attention Sink for Causal
Interpretability

5.1 Reweighted Attention Scaling

We introduce a normalization factor to redis-
tribute attention weights:

Zk Aik

where Agj represents the normalized attention
weights.

Ay = (1

6 Results and Discussion

As shown in Table 2, our experiments reveal several
insights:

* Overall Performance. Llama achieves the
highest accuracy on sentiment tasks (e.g.,
91.2% on SST-2), suggesting that it is better
at identifying polarity cues than Mixtral and
Deepseek. However, on TREC question-type

classification, all models underperform, indi-
cating that short-prompt classification remains
challenging for fine-grained tasks.

* Mismatch vs. Match. The “Match” metric
consistently exceeds the “Mismatch” metric.
For example, on SST-2, Llama’s match score
15 0.91 compared to a mismatch score of 0.45.
This gap implies that correctly predicted ex-
amples exhibit stronger alignment between at-
tention distributions and semantically salient
tokens, whereas misclassifications often corre-
spond to diffuse or misaligned attention. This
also leads to another question can we calibrate
the model’s attention distribution to focus on
important tokens to improve the downstream
accuracy of the model? This could be a good
direction for researchers.

* Attention Sink Removal. Mitigating atten-
tion sinks significantly improves interpretabil-
ity. After removing highly attended but se-
mantically uninformative tokens (e.g., prompt
markers, punctuation), the attention distribu-
tion re-focuses on content-rich words in the
question (e.g., “Classify,” “Sentiment”). This
realignment is evident in the higher Match
scores across all datasets.

* Model-Specific Patterns. Although Llama
generally excels at sentiment classification,
Mixtral outperforms it on AGNews (83.1%
vs. 78.3%), and Deepseek attains a lead-
ing accuracy on BoolQ (86.1%). These find-
ings suggest that attention sink removal aids
interpretability but does not fully explain
domain-specific variations in model perfor-
mance, which likely stem from architectural
and training differences.

Overall, reducing attention sinks clarifies the
model’s decision pathway by emphasizing tokens
with genuine causal influence, thus offering more
transparent and trustworthy explanations.

7 Conclusion and Future Directions

Our empirical observations indicate that, for many
classification inputs, the final token often devotes
large fractions of its attention to initial tokens
(such as the beginning-of-sequence token) or punc-
tuation. This attention sink effect can overshadow
genuinely semantic tokens e.g.,and thereby ob-
scures which tokens truly contribute to classifi-



Llama Mixtral Deepseek
Dataset Acc. Mismatch  Match  Acc. Mismatch Match  Acc. Mismatch ~ Match
SST-2 91.2% 0.45 0.91 54.1% 0.40 0.85 48.3% 0.35 0.90
SST-5 45.3% 0.28 0.85 44.7% 0.22 0.82 44.1% 0.26 0.85
MR 90.2% 0.48 0.83 86.0% 0.43 0.85 89.9% 0.17 0.81
AGNews 78.3% 0.27 0.65 83.1% 0.30 0.68 88.2% 0.25 0.60
TREC 12.2% 0.25 0.74  23.1% 0.28 0.75 20.0% 0.28 0.73
CB 67.8% 0.27 0.65 70.1% 0.28 0.75 65.9% 0.26 0.75
BoolQ 79.2% 0.47 0.73 84.0% 0.53 0.73 86.1% 0.48 0.72

Table 2: Evaluation of attention sink removal across three decoder architectures. For each dataset, we report (i)
Accuracy, (ii) the average keyword match score on mispredicted examples (Mismatch), and (iii) the average keyword

match score on correctly predicted examples (Match).

cation decisions. When we adjust or “reweight”
attentions to reduce sink-token’s dominance, we
observe that more relevant sentiment cues receive
meaningful attention weights, helping us to in-
terpret what the model is attending to produce
answer

These results underscore a potential misalign-
ment between raw attention distributions and
causally important tokens: the model may “look at”
function tokens and special symbols, even though
removing those tokens has little impact on the out-
put label. Consequently, standard attention visual-
izations alone can be misleading for causal inter-
pretability. To mitigate this, we propose:

By incorporating these steps, we find that atten-
tion sink is reduced, revealing more consistent
correspondence between high-attention tokens and
classification-critical words. Future work will in-
vestigate a broader range of transformer layers and
heads separately and explore how calibrating at-
tention sinks to focus on semantically meaningful
tokens improves the downstream performance.
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Limitations

Our study is confined to English, short-passage
classification with three open-weight 7-B-
parameter decoder-only models; we therefore do
not know how attention-sink behaviour—or our
fixed entropy/z-score thresholds—will transfer
to other languages, long-context generation,
encoder—decoder architectures or much larger
frontier models. The causal-alignment metric
relies on small, hand-curated keyword lists that
introduce human bias, and itself is a post-hoc
re-weighting that offers probabilistic cues rather
than guaranteed causal explanations, leaving it
vulnerable to adversarial prompts and unsuitable
as the sole basis for high-stakes decisions. We
inherit demographic and topical skews present
in SST-2, AG News and related corpora, and
although the extra computation is minimal (5 ms
per sample), we did not measure full life-cycle
carbon costs. Addressing these gaps—multilingual
and long-form coverage, unbiased evaluation,
training-time mitigation and broader ethical
audits—remains essential future work before
real-world deployment.
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