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Abstract001

Self-attention is widely regarded as a key mech-002
anism enabling Transformers to dynamically003
focus on relevant input tokens. However,004
this focusing process can become distorted by005
attention sinks (Xiao et al., 2024)—tokens006
such as the beginning-of-sequence marker or007
other function words that receive dispropor-008
tionately high attention weights despite offer-009
ing minimal semantic contribution. In this pa-010
per, we study the causal significance of self-011
attention in decoder-based Large Language012
Models (LLMs) for classification tasks, with013
a particular emphasis on how these attention014
sinks impact interpretability. We first docu-015
ment the prevalence of attention sink across016
diverse sentiment and short-prompt classifica-017
tion datasets, revealing that seemingly crucial018
tokens often have little causal influence on fi-019
nal predictions making it hard to interpret the020
LLM’s thereby making them a blackbox mod-021
els. We then propose and evaluate mitigation022
strategies—such as reweighting the attention023
distribution to reduce the effect of attention024
sinks. Empirical results show that these tech-025
niques improve alignment between attention026
weights and truly influential tokens, thereby027
enhancing the causal interpretability of the self-028
attention mechanism. Our findings underscore029
the importance of identifying and alleviating030
attention sinks, particularly for applications031
where transparent and trustworthy model ex-032
planations are paramount.033

1 Introduction034

What are decoder language models actually035

looking at (or attending to) when predicting a036

class label? In principle, the self-attention mech-037

anism in Transformer decoders (Vaswani et al.,038

2023) is designed to dynamically focus on the039

most relevant parts of an input sequence. How-040

ever, in practice, we observe a phenomenon we041

call an attention sink (Xiao et al., 2024): certain042

tokens—such as the beginning-of-sequence marker,043

prompt words, or other non semantically important 044

tokens—attract disproportionately high attention 045

weights, even though they contribute little semanti- 046

cally. This issue has been noted in prior work (Xiao 047

et al., 2024; Yu et al., 2024), raising the question 048

of whether high attention weights truly reflect a 049

token’s causal role in model decisions. 050

This paper starts by asking three fundamental 051

questions: 052

• Which tokens does the model attend to in 053

order to predict a class? 054

• Are the tokens with the highest attention 055

scores semantically meaningful, or are they 056

merely attention sinks? 057

• Does mitigating attention sinks improve the 058

causal interpretability of decoder language 059

models and, in turn, their explainability? 060

To illustrate these points, we used several archi- 061

tectures of decoder LLM’s and for a classification 062

prompt we average the attention scores of all the 063

heads of last layer of LLM and extract the scores 064

for the last token. Figures 1 and 2 show the contrast 065

between raw attention distributions and those after 066

sink mitigation. In Figure 1, the model’s attention 067

is heavily skewed towards starting and some func- 068

tion tokens. In contrast, Figure 2 demonstrates that 069

once the attention sink is mitigated, the true mean- 070

ingful and semantically critical tokens that drive 071

the classification decision are reflected from the at- 072

tention distribution which helps a lot in interpreting 073

LLMs and explaining there prediction. 074

By addressing these questions and leveraging 075

the insights provided by the attention visualiza- 076

tions, we investigate the causal significance of 077

self-attention in decoder-based LLMs for classi- 078

fication tasks. We further propose mitigation tech- 079

niques—such as reweighting the attention distribu- 080

tion using entropy and/or Z-scores to mitigate the 081

1



Figure 1: Raw attention distribution illustrating the at-
tention sink phenomenon, where prompt tokens and
function words receive disproportionately high atten-
tion.

Figure 2: Attention distribution after mitigating atten-
tion sinks. The model now focuses on the key sentiment-
bearing tokens that are causally relevant to the classifi-
cation decision.

influence of attention sinks. Our empirical results082

indicate that these techniques realign attention with083

the truly influential tokens, thereby offering more084

transparent and trustworthy explanations for model085

predictions.086

2 Experimental Setup087

In Figure 3, we illustrate the pipeline used to inves-088

tigate the causal influence of tokens in a decoder-089

based LLM during classification. We begin by feed-090

ing a prompt with n tokens, {S1, S2, . . . , Sn}, into091

the decoder. The model then produces an output092

tokens, denoted as [ans]. As depicted by the red093

arrow (the attention sink), certain tokens—often the094

first token or special symbols—can disproportion-095

ately attract the highest attention weights despite096

being semantically meaningful. Meanwhile, the097

black arrows represent the causal paths or influen-098

tial tokens that genuinely drive the classification099

decision. By measuring how attention is distributed100

across the input tokens and contrasting it with the101

causal impact of masking or removing some sink102

tokens, we can diagnose and mitigate attention sink103

effects. This process allows us to better interpret104

which tokens truly shape the model’s final output,105

thereby offering a clearer view into the causal un-106

derpinnings of the self-attention mechanism for107

classification tasks.108

2.1 Experimental Setup Evaluation109

After applying our attention sink removal method,110

we evaluate the refined attention distribution by ex-111

tracting the top K tokens (with K = 10) for each112

prompt which have the highest attention scores,113

this list is generated by prompting GPT-4o to sug-114

gest the most semantically informative tokens for115

Figure 3: End-to-end pipeline.The red arrow marks an
attention sink; black arrows indicate causal paths.

each query in a dataset , we pre-define a collection 116

of important tokens that capture key semantic fea- 117

tures required for classification. For example, in 118

the SST-2 dataset, this set includes tokens such as 119

classify, sentiment, positive, and negative. 120

We then match the extracted top-K tokens against 121

these pre-specified sets separately for two cases: 122

(i) the positive case, where the model’s prediction 123

is correct or matching the ground truth, and (ii) 124

the negative case, where the prediction is incor- 125

rect or not matching the ground truth. We wanted 126

to check if in the positive case does the model’s 127

attention is well-aligned with semantically mean- 128

ingful tokens after remoiving the attention sink, 129

thereby confirming the efficacy of our sink removal 130

approach. Conversely, we wanted to check if in the 131

negative case does misaligned attention is higher 132

which implies that model is not attending to se- 133

mantically meaningful tokens which lead to the 134

poor downstream performance. This evaluation 135

framework thus provides quantitative insight into 136

how effectively the top attention tokens correspond 137

to the tokens known to be causally influential in 138

driving the model’s decisions. 139

3 Tasks and Datasets 140

We focus on short-passage classification to re- 141

duce the computation costs easy experimentation 142

and tasks that span various domains to do a ro- 143

bust analysis of our method. For choosing datasets 144

and their label sets we followed the same setting 145

as (Yu et al., 2024) paper’s classification datasets. 146

Which are: SST-2, SST-5, MR, SUBJ, DBPedia, 147

AG News, trace1,trace2, CB, and BoolQ (Socher 148

et al., 2013; HuggingFace contributors, Accessed 3 149

March 2025c,A,A; Lehmann et al., 2015; Hugging- 150
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@lX@
Dataset Label set x

SST-2 {positive, negative}
SST-5 {terrible, negative, neutral, positive, great}

MR {positive, negative}
SUBJ {subjective, objective}

DBPedia 14 classes (company, school, . . . , book)
AGNews {World, Sports, Business, Technology}

TREC {Desc., Entity, Expr., Person, Number, Loc.}
CB {Yes, No, Maybe}
BoolQ {True, False}

Table 1: Label sets for the text-classification datasets
used in our experiments.

Face contributors, Accessed 3 March 2025a; Li and151

Roth, 2002; Hovy et al., 2001; Wang et al., 2019;152

Clark et al., 2019). See Table 1 for an overview153

of labels and sources. We randomly sampled 900154

samples from each dataset for our experements.155

3.1 Prompt Templates and Label Choices156

For each dataset, we provide an instruction157

(e.g., “Classify the sentiment into ’positive’158

or ’negitive’) and a template (e.g., “Sentence:159

{text}\nSentiment: ”), which frames the user input160

and the expected classification label. We specify161

the set of label choices (e.g., “positive”, “nega-162

tive”), which the model uses to predict the next163

token. These prompt templates and label sets are164

customized to each dataset, ensuring consistency165

in how we query our language model for classifica-166

tion.167

3.2 Model and Attention Analysis168

We use Llama-2-7B-Chat-HF (Llama, 2023),169

Mistral-7B-v0.1 (Mistral, 2023), DeepSeek-R1-170

Distill-Qwen-7B (DeepSeek-AI, 2025) where the171

later two have a mixture of experts type of architec-172

ture, we wanted to check if our method is robust to173

such architecture changes. We also observed that174

for our chat setting non instruction tuned models175

are not performing well for our classification tasks176

so we chose the instruction tunded models. We177

extract self-attention scores from the last decoder178

layers and average over all the attention heads. We179

extract the attention scores of all the tokens for180

the last token, that is which tokens were more at-181

tended to? to produce the answer? The experimen-182

tal pipeline:183

1. Query a sentiment-related sentence: Exam-184

ple: "The movie was surprisingly enjoyable."185

2. Extract token-wise attention weights from186

the final layers. 187

3. Identify key tokens influencing sentiment 188

decisions before and after sink mitigation. 189

4 Sink Detection Overview 190

4.1 Preliminaries: Last-Token Attention 191

Let the input be a sequence of n tokens: 192

S = (s1, s2, . . . , sn), 193

and suppose a Transformer decoder of L layers 194

with H heads per layer. Denote by 195

A
(L,h)
n,i 196

the attention weight from the last token sn (query) 197

to token si (key) in the h-th head of the L-th (final) 198

layer. As usual: 199

A
(L,h)
n,i = softmaxi

((W(L,h)
Q h

(L)
n )⊤(W

(L,h)
K h

(L)
i )

√
dk

)
. 200

Average Over Heads: We aggregate across 201

heads: 202

ai =
1

H

H∑
h=1

A
(L,h)
n,i , i = 1, . . . , n. 203

Thus a = (a1, . . . , an) forms a valid probability 204

distribution over the n tokens as they sum to 1: 205

n∑
i=1

ai = 1. 206

4.2 Drawbacks of Simple Mean-Thresholding 207

A common approach is to define a threshold θ · µ, 208

as suggested by (Yu et al., 2024), where 209

µ =
1

n

n∑
i=1

ai, 210

and if ai > θµ, we call si a “sink.” While easy to 211

implement and computationally less expensive in 212

practice when we tested on numerous examples we 213

had to change the threshold hyperparameter differ- 214

ently for each test case to get meaningful causal 215

interpretation after removing the sink attention. So, 216

below, we outline more flexible methods. 217
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4.3 Entropy-Based Sink Detection218

Overall Distribution Entropy219

we use the Shannon entropy of the attention dis-220

tribution a:221

H(a) = −
n∑

i=1

ai log(ai),222

A very low overall entropy often indicates a highly223

peaked attention distribution (i.e., only a few tokens224

receive large weights, potentially indicating a sink).225

Change in Entropy When Removing a Token226

One way to detect if a specific token si is a227

“sink” is to see how removing it from the distri-228

bution changes the overall attention entropy.229

1. Define a masked attention vector230

ã
(−i)
j =

{
0, if j = i,

aj , otherwise.
231

2. Normalize to create a valid probability distri-232

bution:233

â
(−i)
j =

ã
(−i)
j∑n

k=1 ã
(−i)
k

.234

3. Compute the new entropy:235

H(a(−i)) = −
n∑

j=1

â
(−i)
j log

(
â
(−i)
j

)
.236

4. Let237

∆Hi = H(a)−H(a(−i)).238

If ∆Hi ≪ 0 (i.e., removing token i increases239

entropy a lot), or ∆Hi ≫ 0, either scenario can re-240

veal outlier behavior. A large positive ∆Hi means241

that removing i destroys the distribution’s focus,242

suggesting i is crucial to the current peaked dis-243

tribution (potentially a sink). On the other hand,244

a large negative ∆Hi (rare but can happen if re-245

normalization yields an even spikier distribution)246

also flags abnormal distribution changes. One247

may define a suitable threshold on ∆Hi to iden-248

tify sinks.249

4.4 Z-score Based Sink Detection250

This approach is to identify “sinks” as statistical251

outliers in the attention vector:252

µ =
1

n

n∑
i=1

ai, σ2 =
1

n

n∑
i=1

(ai − µ)2.253

Define a z-score for each token i: 254

zi =
ai − µ

σ
. 255

If zi exceeds some threshold α, si is considered a 256

sink: 257

sink if zi > α. 258

Unlike raw mean-thresholding, this approach ac- 259

counts for variance in the attention distribution. 260

4.5 Sink Removal & Normalization 261

Regardless of how sinks is detected (entropy, z- 262

score, or/and causal masking), the removal and 263

normalization step follows: 264

• Mask identified sinks: 265

ãi =

{
0, if si is a sink,
ai, otherwise.

266

• Renormalize: 267

C =
n∑

i=1

ãi, bi =
ãi
C
. 268

• The vector b = (b1, . . . , bn) is now your 269

“sink-free” attention distribution for interpre- 270

tation. 271
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Algorithm 1 Detect–Mask–Renormalise Attention
Sinks
Require: Attention vector a = (a1, . . . , an),

method m ∈ {Entropy,Z-score}, threshold τ
1: Isink ←
2: for i← 1 to n do
3: if m = Entropy then
4: ∆Hi ← H(a)−H

(
Renorm(a\i)

)
5: if |∆Hi| > τ then
6: Isink ← Isink ∪ {i}
7: end if
8: else if m = Z-score then
9: zi ← (ai − µ)/σ ▷ µ, σ pre-computed

once
10: if zi > τ then
11: Isink ← Isink ∪ {i}
12: end if
13: end if
14: end for
15: for i← 1 to n do
16: if i ∈ Isink then
17: ãi ← 0
18: else
19: ãi ← ai
20: end if
21: end for
22: b← ã

/∑
j ãj ▷ renormalise

23: return b ▷ sink-free attention distribution

5 Mitigating Attention Sink for Causal272

Interpretability273

5.1 Reweighted Attention Scaling274

We introduce a normalization factor to redis-275

tribute attention weights:276

A′
ij =

Aij∑
k Aik

(1)277

where A′
ij represents the normalized attention278

weights.279

6 Results and Discussion280

As shown in Table 2, our experiments reveal several281

insights:282

• Overall Performance. Llama achieves the283

highest accuracy on sentiment tasks (e.g.,284

91.2% on SST-2), suggesting that it is better285

at identifying polarity cues than Mixtral and286

Deepseek. However, on TREC question-type287

classification, all models underperform, indi- 288

cating that short-prompt classification remains 289

challenging for fine-grained tasks. 290

• Mismatch vs. Match. The “Match” metric 291

consistently exceeds the “Mismatch” metric. 292

For example, on SST-2, Llama’s match score 293

is 0.91 compared to a mismatch score of 0.45. 294

This gap implies that correctly predicted ex- 295

amples exhibit stronger alignment between at- 296

tention distributions and semantically salient 297

tokens, whereas misclassifications often corre- 298

spond to diffuse or misaligned attention. This 299

also leads to another question can we calibrate 300

the model’s attention distribution to focus on 301

important tokens to improve the downstream 302

accuracy of the model? This could be a good 303

direction for researchers. 304

• Attention Sink Removal. Mitigating atten- 305

tion sinks significantly improves interpretabil- 306

ity. After removing highly attended but se- 307

mantically uninformative tokens (e.g., prompt 308

markers, punctuation), the attention distribu- 309

tion re-focuses on content-rich words in the 310

question (e.g., “Classify,” “Sentiment”). This 311

realignment is evident in the higher Match 312

scores across all datasets. 313

• Model-Specific Patterns. Although Llama 314

generally excels at sentiment classification, 315

Mixtral outperforms it on AGNews (83.1% 316

vs. 78.3%), and Deepseek attains a lead- 317

ing accuracy on BoolQ (86.1%). These find- 318

ings suggest that attention sink removal aids 319

interpretability but does not fully explain 320

domain-specific variations in model perfor- 321

mance, which likely stem from architectural 322

and training differences. 323

Overall, reducing attention sinks clarifies the 324

model’s decision pathway by emphasizing tokens 325

with genuine causal influence, thus offering more 326

transparent and trustworthy explanations. 327

7 Conclusion and Future Directions 328

Our empirical observations indicate that, for many 329

classification inputs, the final token often devotes 330

large fractions of its attention to initial tokens 331

(such as the beginning-of-sequence token) or punc- 332

tuation. This attention sink effect can overshadow 333

genuinely semantic tokens e.g.,and thereby ob- 334

scures which tokens truly contribute to classifi- 335
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Llama Mixtral Deepseek
Dataset Acc. Mismatch Match Acc. Mismatch Match Acc. Mismatch Match
SST-2 91.2% 0.45 0.91 54.1% 0.40 0.85 48.3% 0.35 0.90
SST-5 45.3% 0.28 0.85 44.7% 0.22 0.82 44.1% 0.26 0.85
MR 90.2% 0.48 0.83 86.0% 0.43 0.85 89.9% 0.17 0.81
AGNews 78.3% 0.27 0.65 83.1% 0.30 0.68 88.2% 0.25 0.60
TREC 12.2% 0.25 0.74 23.1% 0.28 0.75 20.0% 0.28 0.73
CB 67.8% 0.27 0.65 70.1% 0.28 0.75 65.9% 0.26 0.75
BoolQ 79.2% 0.47 0.73 84.0% 0.53 0.73 86.1% 0.48 0.72

Table 2: Evaluation of attention sink removal across three decoder architectures. For each dataset, we report (i)
Accuracy, (ii) the average keyword match score on mispredicted examples (Mismatch), and (iii) the average keyword
match score on correctly predicted examples (Match).

cation decisions. When we adjust or “reweight”336

attentions to reduce sink-token’s dominance, we337

observe that more relevant sentiment cues receive338

meaningful attention weights, helping us to in-339

terpret what the model is attending to produce340

answer341

These results underscore a potential misalign-342

ment between raw attention distributions and343

causally important tokens: the model may “look at”344

function tokens and special symbols, even though345

removing those tokens has little impact on the out-346

put label. Consequently, standard attention visual-347

izations alone can be misleading for causal inter-348

pretability. To mitigate this, we propose:349

By incorporating these steps, we find that atten-350

tion sink is reduced, revealing more consistent351

correspondence between high-attention tokens and352

classification-critical words. Future work will in-353

vestigate a broader range of transformer layers and354

heads separately and explore how calibrating at-355

tention sinks to focus on semantically meaningful356

tokens improves the downstream performance.357
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Our study is confined to English, short-passage427

classification with three open-weight 7-B-428

parameter decoder-only models; we therefore do429

not know how attention-sink behaviour—or our430

fixed entropy/z-score thresholds—will transfer431

to other languages, long-context generation,432

encoder–decoder architectures or much larger433

frontier models. The causal-alignment metric434

relies on small, hand-curated keyword lists that435

introduce human bias, and itself is a post-hoc436

re-weighting that offers probabilistic cues rather437

than guaranteed causal explanations, leaving it438

vulnerable to adversarial prompts and unsuitable439

as the sole basis for high-stakes decisions. We440

inherit demographic and topical skews present441

in SST-2, AG News and related corpora, and442

although the extra computation is minimal (5 ms443

per sample), we did not measure full life-cycle444

carbon costs. Addressing these gaps—multilingual445

and long-form coverage, unbiased evaluation,446

training-time mitigation and broader ethical447

audits—remains essential future work before448

real-world deployment.449
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