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Abstract
We consider a learning-augmented framework for
NP-hard permutation problems. The algorithm
has access to predictions telling, given a pair u, v
of elements, whether u is before v or not in an
unknown fixed optimal solution. Building on the
work of Braverman and Mossel (SODA 2008),
we show that for a class of optimization problems
including scheduling, network design and other
graph permutation problems, these predictions
allow to solve them in polynomial time with high
probability, provided that predictions are true with
probability at least 1/2+ϵ, for any given constant
ϵ > 0. Moreover, this can be achieved with a
parsimonious access to the predictions.

1. Introduction
In recent years, advancements in Machine Learning (ML)
have significantly influenced progress in solving optimiza-
tion problems across a wide range of fields. By leveraging
historical data, ML predictors are utilized every day to tackle
numerous challenges. These developments have motivated
researchers in algorithms to incorporate ML predictions into
algorithm design for optimization problems. This has given
rise to the vastly growing field of learning-augmented algo-
rithms, also known as algorithms with predictions. In this
framework, it is assumed that predictions about a problem’s
input are provided by a black-box ML model. The objective
is to use these predictions to develop algorithms that out-
perform existing ones when the predictions are sufficiently
accurate.

The idea of learning-augmented algorithms was initially in-
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75005 Paris, France 2National Technical University of Athens,
Greece 3Archimedes, Athena Research Center, Greece 4Université
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troduced by Mahdian, Nazerzadeh, and Saberi, who applied
it to the problem of allocating online advertisement space
for budget-constrained advertisers (Mahdian et al., 2007).
Later, Lykouris and Vassilvitskii formalized the framework,
studying the online caching problem using predictions (Lyk-
ouris & Vassilvitskii, 2021). The main emphasis in the field
of algorithms with predictions has been on online optimiza-
tion, as predicting the future of a partially unknown input
instance is a natural approach. However, in the past few
years, the field has expanded into various other areas. An
almost complete list of papers in the field can be found
in (Lindermayr & Megow).

More relevant to this work, algorithms with predictions have
been used to address NP-hard optimization problems and
overcome their computational challenges. The first learning-
augmented algorithms applied to NP-hard problems were fo-
cused on clustering, as seen in (Gamlath et al., 2022; Ergun
et al., 2022; Nguyen et al., 2023), and other graph optimiza-
tion problems (Chen et al., 2022). Moreover, several papers
have studied MAXCUT with predictions, including (Bampis
et al., 2024; Cohen-Addad et al., 2024; Ghoshal et al., 2024;
Dong et al., 2025). Cohen-Addad et al. investigated the
approximability of MAXCUT with predictions in two mod-
els (Cohen-Addad et al., 2024). In the first model, similar to
the one used in this work, they assumed predictions for each
vertex (on its position in an optimal cut) that are correct
with probability 1/2 + ϵ, for a given ϵ > 0, and presented a
polynomial-time (0.878+ Ω̃(ϵ4))-approximation algorithm.
In the second model, they receive a correct prediction for
each vertex with probability ϵ > 0 (and no information oth-
erwise) and designed a (0.858 + Ω(ϵ))-approximation algo-
rithm. Ghoshal et al. also studied MAXCUT and MAX2-LIN
in both models (Ghoshal et al., 2024). Furthermore, (Braver-
man et al., 2024) studied Maximum Independent Set within
the framework of learning-augmented algorithms, adopting
the aforementioned first model. Finally, (Antoniadis et al.,
2024) studied approximation algorithms with predictions for
several NP-hard optimization problems within a prediction
model different from the one used in this work.

In this paper, we design learning-augmented algorithms for
NP-hard optimization problems. Our approach does not use
all available predictions for the problem at hand but instead
utilizes the predictor selectively. This aligns with the con-
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cept of parsimonious algorithms, introduced by (Im et al.,
2022), which aim to limit the number of predictions used,
assuming that obtaining additional predictions can be com-
putationally expensive. Here, we consider problems whose
feasible solutions can be represented as permutations. There
are n input elements for an optimization problem denoted
by a1, . . . , an. A permutation (ordering) σ corresponds to
the solution (aσ(1), . . . , aσ(n)).

Regarding the prediction model, we adopt the following
probabilistic framework. For each pair i, j we can get a
prediction query q(ai, aj) that denotes whether ai precedes
aj or not in a fixed optimal solution (permutation). Each
prediction is independently correct with probability at least
1/2+ϵ, for a given constant ϵ > 0. An algorithm has access
to

(
n
2

)
predictions. A formal description of the model is

given in Section 2.

In this work, we use these prediction queries to solve NP-
hard optimization problems exactly with high probability.
We design a novel framework which is capable of han-
dling permutation optimization problems that exhibit one
of two key properties: the decomposition property and the
c-locality property in their objective function (see Section 3
for formal definitions).

The decomposition property states that solving a subprob-
lem I(i, j) (between positions i and j in the permutation)
of the optimization problem at hand optimally depends only
on the set of elements in positions in [i, j], the permutation
σ(i, j) of these elements in [i, j], and the set of elements to
the left of i and to the right of j, but not on their order. On
the other hand, the c-locality property states that the cost
function of the problem depends only locally (with respect
to the permutation) on pairs of distinct elements.

More specifically, we adjust and extend the approach of
Braverman and Mossel (Braverman & Mossel, 2008; 2009)
for the problem of sorting from noisy information and give
the following theorem for a family of optimization problems
(see Section 4 for its proof).

Theorem 1.1. If the objective function of a permutation
optimization problem P either exhibits the decomposition
property or is c-local, then P can be solved exactly with high
probability in polynomial time, using O(n log n) prediction
queries.

Therefore, if a permutation optimization problem is either
decomposable or c-local, it can be solved with high proba-
bility in polynomial time within our prediction-based frame-
work. We note that the running time depends on the accu-
racy of the prediction queries, i.e., on ϵ. To illustrate these
properties, we examine several example problems: Max-
imum Acyclic Subgraph, Minimum Linear Arrangement,
a scheduling problem as examples of decomposable prob-
lems, the Traveling Salesperson Problem (TSP) and social

welfare maximization in keyword auctions with externali-
ties and window size as representatives of c-local problems.
All these are well-known NP-hard problems and cannot
be solved exactly in polynomial time without predictions
unless P = NP (deterministic), or NP ⊆ BPP (random-
ized). Moreover, the framework can naturally be extended
to address a variety of other NP-hard problems with similar
structural properties.

Another important aspect of our framework is that it does not
query all possible pairs but instead makes only O(n log n)
queries, making it parsimonious with respect to the num-
ber of predictions used. We note that this is a tight bound
on the number of queries, as Ω(n log n) queries are nec-
essary even in the case of perfect predictions already for
the Noisy Sorting Without Resampling problem (see Sec-
tion 2.1). Indeed, it becomes sorting by comparisons (where
comparisons are queries), for which it is well known that
Ω(n log n) comparisons are needed (even for randomized
algorithms).

The proof of Theorem 1.1 demonstrates that, for the permu-
tation problems under consideration, knowing an approxi-
mation of each σ∗(i) (in an optimal solution σ∗) within an
additive O(log n) bound is sufficient to solve the problem
in polynomial time. In Section 5, we first show that this
O(log n) approximation is not always sufficient for polyno-
mial time solvability. Finally, we prove that the O(log n)
bound is tight, as there are decomposable and c-local prob-
lems where an additive approximation of f(n) log n is not
enough to solve these problems in polynomial time, for any
unbounded function f .

We conclude this section by a brief discussion on the pre-
diction model. Similarly as several recent articles on the
topic, our framework requires good predictions of optimal
solutions for hard optimization problems, which is a strong
assumption. Whether ML algorithms are or will soon be
able to provide such good predictions or not is currently an
open question, and a large number of recent works do focus
on getting predictions for discrete optimization problems
(see (Bengio et al., 2021; Cappart et al., 2023) for survey-
like papers, and (Khalil et al., 2017) for a specific work on
predictions for problems including (Euclidean) TSP). This
recent but fast-growing field makes it reasonable to hope for
some accurate predictors for some permutation problems in
the near future. We note also that there are restricted settings
where one could outline how such noisy predictions of the
optimal permutation can be learned. E.g., consider a setting
where instances are stationary and instance stationarity im-
plies that the optimal solution / permutation of each instance
is a noisy sample from a Mallows distribution M(π∗, β)
with π∗ corresponding to the optimal permutation of the
“mean” instance and the noise parameter β accounts for the
variance of the instance distribution. Such a Mallows dis-
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tribution M(π∗, β) can be learned from instances sampled
independently from the instance distribution (Busa-Fekete
et al., 2019). Samples from M(π∗, β) can be used as pre-
dictions in the form of noisy rankings. For fixed β, this
provides whp a sufficiently good approximation of the rank-
ing (up to an additive O(log n) term on the position of each
element) so that our approach applies (see (Braverman &
Mossel, 2009), where this case is discussed).

2. Background and Overview
2.1. Definitions

Formally, we consider the following probabilistic prediction
model, which is inspired by the noisy query model studied
in (Braverman & Mossel, 2008).

Definition 2.1. Let A = {a1, . . . , an} and σ∗ be a permu-
tation from [1, n] to [1, n]. For each pair (aℓ, at) in

(
A
2

)
the

result of a prediction query for (aℓ, at), with respect to σ∗,
is q(aℓ, at) ∈ {−1, 1} where q(aℓ, at) = −q(at, aℓ). We
assume that:

• for each 1 ≤ i < j ≤ n the probability that
q(aσ∗(i), aσ∗(j)) = 1 is at least 1

2 + ϵ, 0 < ϵ < 1/2,

• the queries {q(aℓ, at) : 1 ≤ ℓ < t ≤ n} are indepen-
dent conditioned on σ∗.

In this definition, the query q(aℓ, at) asks whether aℓ pre-
cedes at in (aσ∗(1), . . . , aσ∗(n)) or not. The first item states
that the prediction is correct with probability at least 1/2+ϵ.

Given the prediction queries, we are interested in finding a
permutation that maximizes the number of agreements with
the queries. Formally:

Definition 2.2. Given
(
n
2

)
prediction queries q(aℓ, at), the

score sq(π) of a permutation π : [1, n] → [1, n] is given by

sq(π) =
∑
i<j

q(aπ(i), aπ(j)). (1)

We say that a permutation π∗ is s-optimal if π∗ is a maxi-
mizer of (1) among all permutations.

The Noisy Sorting Without Resampling (NSWR) problem,
defined in (Braverman & Mossel, 2008), is the problem of
finding an s-optimal permutation π∗ with respect to a (hid-
den) permutation σ∗ assuming that q satisfies Definition 2.1
with p = 1/2 + ϵ, ϵ > 0.

As mentioned in the introduction, we consider in this work
permutation problems, i.e., optimization problems whose
solutions of an instance I are permutations of n elements
of a set A of I (vertices or edges in a graph, jobs in a
scheduling problem,. . . ). So the goal is to maximize or
minimize fI(σ) for σ : [1, n] → [1, n]. Here, aσ(i) ∈ A is

the element of A that is in position i in the permutation (i.e.,
the permutation is (aσ(1), aσ(2), . . . , aσ(n))). To deal with
feasibility constraints, fI(σ) = ∞ if σ is unfeasible (for a
minimization problem, −∞ for a maximization problem).

A core part of our work will focus on permutation problems
for which we have an additional information, which is an
approximation of σ∗(i) for an optimal solution σ∗. We
formalize this in the following definition.

Definition 2.3. Given a permutation problem P and a per-
mutation (a1, a2, . . . , an), P is k-position enhanced if we
know that there exists an optimal solution σ∗ such that for
all i, |σ∗(i)− i| ≤ k.

2.2. Framework Overview

The NSWR problem has been introduced and studied
in (Braverman & Mossel, 2008). They showed the following
result.

Theorem 2.4. (Braverman & Mossel, 2008) There exists a
randomized algorithm that for any α > 0 finds an optimal
solution to NSWR (s-optimal) with p = 1/2 + ϵ, ϵ > 0 in
time nO((α+1)ϵ−4) except with probability n−α. Moreover,
the algorithm asks O(n log n) queries.

The proof of this theorem mainly relies on two results. The
first one shows that with high probability an optimal so-
lution π∗ of NSWR (s-optimal) is close to the “hidden”
permutation σ∗.

Theorem 2.5. (Braverman & Mossel, 2008) Consider the
NSWR problem, with p = 1/2 + ϵ, ϵ > 0, with respect to a
permutation σ∗ and let π∗ be any s-optimal order assuming
that q satisfies Definition 2.1. Let α > 0. Then there exists
a constant c(α, ϵ) such that except with probability O(n−α)
it holds that

max
i

|σ∗(i)− π∗(i)| ≤ c · log n = O(log n).

The second result is a dynamic programming (DP) algo-
rithm showing that k-position enhanced NSWR is solvable
in O(2O(k)n2). Then a specific iterative procedure allows
for the computation of an optimal solution of NSWR. Very
roughly speaking, the use of queries allows for a k-position
enhancement for NSWR with k = O(log n) (thanks to The-
orem 2.5), and then the DP algorithm works in polynomial
time O(2O(k)n2) = nO(1).

In this work, we build upon these results to tackle various
problems in our prediction setting. Roughly speaking, our
framework first generates a warm-start solution using the
prediction queries and then utilizes this solution to solve the
problem with dynamic programming. The idea of leveraging
predictions to obtain a warm-start solution has been explored
in a series of papers in the literature (Dinitz et al., 2021;
Sakaue & Oki, 2022). The following lemma, which makes a
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connection with the aforementioned results on NSWR, will
allow us to get the polynomial time algorithms claimed in
Theorem 1.1.

Lemma 2.6. Suppose that a k-position enhanced version
of permutation problem P is solvable in polynomial time
for k = O(log n). Then P can be solved exactly in polyno-
mial time with high probability, using O(n log n) prediction
queries.

Proof. Let σ∗ be an optimal permutation for an instance of
the optimization problem P . By making O(n log n) queries,
according to Theorem 2.4 we can get in polynomial time
with high probability an optimal solution π∗ for the NSWR
problem relative to σ∗.

From Theorem 2.5, we know that with high probability
|σ∗(i)− π∗(i)| = O(log n) for all i. Equivalently, for all j:

|σ∗ ◦ π∗−1(j)− j| = O(log n).

As by assumption the k-position enhanced version of P is
solvable in polynomial time for k = O(log n), we can find
σ∗ ◦ π∗−1, hence σ∗, in polynomial time.

Motivated by Lemma 2.6, we exhibit two sufficient condi-
tions for a permutation problem to be polynomial time solv-
able when being k-positioned enhanced, for k = O(log n).
These conditions (decomposability and c-locality) and their
illustration on classical optimization problems are given in
Section 3. The proofs that under these conditions O(log n)-
positioned enhanced permutation problems are polynomial
time solvable are in Section 4. They are based on DP al-
gorithms, one of which being a generalization of the one
of (Braverman & Mossel, 2008).

3. Decomposability and c-locality
We now give the definitions for the decomposition property
and c-locality, and illustrate them with some problems ex-
pressible in these ways. As explained before, each of these
properties will allow to design DP algorithms, which is the
key step to derive Theorem 1.1.

3.1. Decomposition property

To design DP algorithms, we will consider subproblems.
Intuitively, for i < j we will consider subproblems of
finding and ordering elements in positions i to j, i.e.,
(aσ(i), . . . , aσ(j)), and need a recurrence that allows express-
ing the subproblem between i and j as a combination of
the subproblems between i and s, and between s + 1 and
j (for i < s < j). A difficulty is that finding and order-
ing elements from positions i to j typically depends on the
elements before (between positions 1 and i− 1) and after
(between positions j + 1 and n), and on their respective

ordering. Roughly speaking, our decomposition property
holds when finding and ordering elements from positions i
to j only depends on the set of elements before i and after
j, not on their particular ordering.

We now formalize this idea, and illustrate it on three dif-
ferent problems. For a permutation σ : [1, n] → [1, n], we
denote σ(i, j) the subpermutation of σ on [i, j], Sσ(i, j) the
set {σ(i), . . . , σ(j)} (indices in positions between i and j),
Lσ(k) = Sσ(1, k) (first k indices, L stands for left) and
Rσ(k) = Sσ(k, n) (indices in position between k and n, R
stands for right).

Definition 3.1. Let P be a permutation problem, with ob-
jective function f . We say that P fulfills the decomposition
property if there exists a function g such that:

• fI(σ) = g(1, n, ∅, ∅, σ);

• For any i < s < j in {1, . . . , n} and permutation σ:

g(i, j, Lσ(i− 1), Rσ(j + 1), σ(i, j)) =

g(i, s, Lσ(i− 1), Rσ(s+ 1), σ(i, s))

+ g(s+ 1, j, Lσ(s), Rσ(j + 1), σ(s+ 1, j))

+ h(Lσ(i− 1), Rσ(j + 1), Sσ(i, s), Sσ(s+ 1, j)),

for some function h.

Note that h does not depend on the permutation of any el-
ements, only on sets of elements. In this definition, we
express the objective function on subproblem (i, j) by a
function g that depends on the subpermutation σ(i, j) be-
tween i and j and on sets (not positions) of elements before
i and after j (Lσ(i− 1) and Rσ(j + 1)).

The decomposition property states that the value is the sum
of the value on the subproblem (i, s) (referred to as the “left
call” in the sequel), the value on the subproblem (s+ 1, j)
(referred to as the “right call”), and a quantity (function
h) that depends only on the sets (not the ordered sets) of
elements involved in the decomposition.

Maximum Acyclic Subgraph. In the Maximum Acyclic
Subgraph problem, we are given a simple directed graph
G = (V,E). The goal is to find a permutation σ : [1, n] →
[1, n] which maximizes f(σ) = |{(vσ(i), vσ(j)) ∈ E : i <
j}|. This is a well known NP-hard problem (Karp, 1972).

As this problem only depends on the relative order of ele-
ments (endpoints of arcs) and not on their exact position, it
is easy to express it in the form of Definition 3.1. For given
i < j and σ(i, j), we simply define:

g(i, j, L,R, σ(i, j)) = |{(vσ(ℓ), vσ(r)) ∈ E : i ≤ ℓ < r ≤ j}|.

This is just the number of arcs “well ordered” by σ with
both endpoints between positions i and j (g is independent
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of L and R). Obviously the first item of Definition 3.1 is
verified (for i = 1 and j = n we count the total number of
arcs “well ordered” by σ).

For the second item, g(i, s, Lσ(i − 1), Rσ(s + 1), σ(i, s))
(resp. g(s+1, j, Lσ(s), Rσ(j+1), σ(s+1, j))) counts the
number of arcs well ordered by σ with both endpoints in
positions between i and s (resp. between s+ 1 and j). So,
to get g(i, j, Lσ(i − 1), Rσ(j + 1), σ(i, j)), we only have
to add arcs (vσ(ℓ), vσ(r)) with i ≤ ℓ ≤ s and s+1 ≤ r ≤ j.
In other words, if we denote cut(A,B) the number of arcs
(vℓ, vr) with ℓ ∈ A and r ∈ B, we have

h(Lσ(i−1), Rσ(j+1), Sσ(i, s), Sσ(s+1, j) = cut(Sσ(i, s), Sσ(s+1, j)).

Note that this immediately generalizes to any problem
whose objective function only depends on the relative order
of endpoints of arcs (for instance the weighted version of
Maximum Acyclic Subgraph), not on their exact positions.

Minimum Linear Arrangement. Let G = (V,E) be a
simple undirected graph. Given a permutation σ : [1, n] →
[1, n], let us call the weight of an edge as the absolute dif-
ference between the positions assigned to its endpoints in
σ. Minimum Linear Arrangement is a well known NP-
hard (Garey & Johnson, 1979) problem which consists of
finding a permutation of the vertices of G such that the sum
of the weights of its edges is minimized. More formally,
we would like to find a permutation σ : [1, n] → [1, n] that
minimizes

∑
{vσ(i),vσ(j)}∈E |j − i|.

While Maximum Acyclic Subgraph deals (only) with the
order of endpoints of arcs in the permutation, Minimum Lin-
ear Arrangement depends on their exact position. We now
show that the decomposition property also allows to deal
with such a problem. The idea is the following: consider
i < j, and fix the subpermutation σ(i, j), the sets Lσ(i− 1)
of elements “on the left”, and Rσ(j + 1) of elements “on
the right”. Then (see Figure 1 for an illustration of the
contribution of edges):

• for an edge with both endpoints in Sσ(i, j), we
know its exact contribution (as σ(i, j) is fixed).
These edges have a global contribution N1 =∑

{vσ(ℓ),vσ(r)}∈E,i≤ℓ,r≤j |r−ℓ|. Note that N1 depends
only on σ(i, j).

• For an edge with one endpoint in the left part Lσ(i−1)
and one endpoint in Sσ(i, j), i.e., {vσ(ℓ), vσ(r)} with
ℓ < i and i ≤ r ≤ j, we will charge only for this edge
the (yet partial) contribution r − i (instead of r − ℓ, as
the exact left position is not fixed yet). Let N2 be the
sum of these contributions (note that N2 depends only
on Lσ(i− 1) and σ(i, j)).

• Similarly, for an edge with one endpoint in the right
part Rσ(j + 1) and one endpoint in Sσ(i, j), i.e.,
{vσ(ℓ), vσ(r)} with i ≤ ℓ ≤ j and j < r, we will
charge only for this edge the (yet partial) contribution
j − ℓ. Let N3 be the sum of these contributions (note
that N3 depends only on Rσ(j + 1) and σ(i, j)).

We then define g(i, j, Lσ(i−1), Rσ(j+1), σ(i, j)) = N1+
N2 +N3.

1 i j n

ℓ r

rℓ

rℓ

Figure 1. Contribution in g of edges, depending on the positions
of their extremities. The contribution is in solid line. If ℓ < i and
r > j the contribution is 0.

It is clear that the first item of Definition 3.1 is satisfied
(when i = 1 and j = n, N1 equals the objective function,
N2 = N3 = 0).

For the second item, let i < s < j. Consider an edge
{vσ(ℓ), vσ(r)}. We show, for each possible case, how to
recover the contribution of this edge to subproblem (i, j)
(i.e., in g(i, j, Lσ(i− 1), Rσ(j + 1), σ(i, j))), see Figure 2
for an illustration:

• If both ℓ and r are in [i, s], its contribution in
g(i, j, Lσ(i−1), Rσ(j+1), σ(i, j)) is already counted
in the “left call” g(i, s, Lσ(i− 1), Rσ(s+ 1), σ(i, s)).

• Similarly, if both ℓ and r are in [s+ 1, j], its contribu-
tion in g(i, j, Lσ(i− 1), Rσ(j + 1), σ(i, j)) is already
counted in the “right call” g(s + 1, j, Lσ(s), Rσ(j +
1), σ(s+ 1, j)).

• If i ≤ ℓ ≤ s and s+ 1 ≤ r ≤ j, then the contribution
is (s−ℓ) in the left call and r− (s+1) in the right call,
so in total r− ℓ− 1. It only missed 1 to get the correct
contribution r−ℓ. So for these edges we have to add in
total a contribution C1 = cut(Sσ(i, s), Sσ(s+ 1, j)).

• If ℓ < i and i ≤ r ≤ s, then the contribution on the left
call is r− i, the correct one. Similarly, if s+1 ≤ ℓ ≤ j
and j + 1 ≤ r the contribution of the right call is the
correct one (j − ℓ).

• If ℓ < i and s + 1 ≤ r ≤ j, the contribution in the
left call is 0, the one in the right call is r − (s+ 1). It
misses s+ 1− i to get the correct contribution r − i.
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So for these edges we have to add in total C2 = (s+
1− i) · cut(Lσ(i− 1), Sσ(s+ 1, j)).

• Similarly, if i ≤ ℓ ≤ s and r > j, to get the correct
charge we miss C3 = (j−s)·cut(Rσ(j+1), Sσ(i, s)).

Then, we define h(Lσ(i− 1), Rσ(j + 1), Sσ(i, s), Sσ(s+
1, j) = C1 + C2 + C3.

1 i s s+ 1 j n

ℓ r ℓ r

ℓ r

rℓ rℓ

ℓ r

ℓ r

Figure 2. Decomposition in g: blue (resp. orange) corresponds to
the contribution in the left call (resp. right call), red corresponds to
missing contributions (that are counted in h). If ℓ < i and r > j
the contribution is 0.

Single-machine Sum of Completion Time Problem.
We consider the following scheduling problem (denoted
1|prec|

∑
Cj in the classical Graham’s notation for schedul-

ing problems), known to be strongly NP-hard (Lawler,
1978): we are given a set J of n jobs and a set of precedence
constraints forming a DAG (J,A). The goal is to order the
jobs, respecting precedence constraints, so as to minimize
the sum of completion time of jobs.

Consider i < j, σ(i, j) and Lσ(i−1). With this information,
we can compute the completion time of each job in Sσ(i, j)
(as we know the jobs before them (Lσ(i− 1)) and the order
σ(i, j) of jobs in Sσ(i, j)). So we simply define g as the
sum of these completion times (g depends on Sσ(i, j) and
Lσ(i − 1)), with of course value ∞ if the order σ(i, j)
violates any constraints.

Item 1 of Definition 3.1 is trivially satisfied. For item 2, the
left call computes the sum of completion times for jobs in
Sσ(i, s), and the right call the sum of completion times for
jobs in Sσ(s+ 1, j). Then h is ∞ if a constraint is violated
(between a job whose position is between s+ 1 and j, and
a job whose position is between i and s), and 0 otherwise.

Here again, this generalizes to many other single machine
scheduling problems (involving other constraints and/or
weights on jobs and/or other objective functions like sum of
tardiness).

3.2. c-locality

The c-locality property states that the cost function of the
problem depends only locally (with respect to the permuta-
tion/solution) on pairs of distinct elements. More formally,
we have the following definition.

Definition 3.2. Let P be a permutation problem, with cost
function f . We say that P is c-local if, on an instance I
asking for a permutation σ on a set A = {a1, . . . , an}:

fI(σ) =
∑
i

costI(aσ(i−c), aσ(i−c+1), . . . , aσ(i)).

for some cost function1 costI .

TSP. Given a complete graph on set V of vertices and a
distance function d(vi, vj) on pair of vertices, TSP asks to
find a permutation σ that minimizes

∑n
i=1 d(vσ(i), vσ(i+1))

(where vσ(n+1) is vσ(1)). This NP-hard problem (Garey
& Johnson, 1979) is then trivially 1-local (we can easily
reformulate to get rid of the last term d(vσ(n), vσ(1))).

Other routing problems can be shown to be 1-local as well.

Social Welfare Maximization in Keyword Auctions with
Externalities. In standard Keyword Auctions (Edelman
et al., 2007; Varian, 2007), a set N = {1, . . . , n} of adver-
tisers compete over a set K = {1, . . . , k} of advertisement
(or simply ad) slots, where k ≤ n. Each player i ∈ N has
a valuation vi per click and their ad has an intrinsic click
probability qi ∈ (0, 1]. Each slot j ∈ K is associated with a
click-through rate (ctr) λj , with 1 ≥ λ1 > λ2 > · · ·λk > 0.
The overall ctr of an ad i in slot j is λjqi. In the follow-
ing, we assume that k = n, i.e., the number of slots k
is equal to the number of ads n, for simplicity, by setting
λk+1 = · · · = λn = 0 in case where k < n.

We aim to compute an assignment π : N → K of ads to
slots (which for k = n is a permutation of ads) so that the
resulting expected social welfare, which is

∑n
i=1 viλπ(i)qi,

is maximized.

In Keyword Auctions with Externalities (Gatti et al., 2018;
Fotakis et al., 2011), the overall click-through rate of an ad i
appearing in slot π(i) also depends on the ads appearing in
the c slots above π(i)− c, π(i)− c+1, . . . , π(i)−1, where
c is known as the window size and quantifies the scope of
users’ attention and memory when they process the ad list
(Athey & Ellison, 2011). We let Qi(π) denote the i’s ctr
given the influence of the c ads above i in π. Then, we aim
to compute an assignment π : N → [n] of ads to slots so
that the resulting expected social welfare under externalities,
which is

∑n
i=1 viλπ(i)Qi(π), is maximized.

Social welfare maximization in keyword auctions with ex-

1To be more precise, to deal with the cases i ≤ c in the sum it
should be costI(aσ(t), aσ(t+1), . . . , aσ(i)) for t = max{i−c, 1}.
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ternalities is NP-hard (Fotakis et al., 2011; Gatti et al., 2018)
and is an example of a c-local permutation problem.

4. Proof of Theorem 1.1
In this section, we present the proof of Theorem 1.1, the
main result of this paper. Using Lemma 2.6, what remains
to be shown is that if a problem is decomposable or c-local,
then it is polynomial time solvable when being O(log n)-
position enhanced. We provide a corresponding DP algo-
rithm for decomposition in Lemma 4.1 (which extends the
one of (Braverman & Mossel, 2008)) and for c-locality in
Lemma 4.2

Lemma 4.1. If a permutation optimization problem P is
decomposable, then its k-position enhanced version is solv-
able in time O(n · 2O(k) · t) where t is the time to compute
the value of a solution.

This gives a polynomial computation time when k =
O(log n), provided that t ∈ poly(n).

Proof. We will use dynamic programming to find an op-
timal solution for the optimization problem P . Let σ∗ be
an (unknown) optimal permutation such that |σ∗(i)− i| ≤
c log n for all i.

Let i < j be any indices. Let I∗(i, j) denote the elements
in positions between i and j in σ, i.e.,

I∗(i, j) = {aσ(i), aσ(i+1), . . . , aσ(j)}.

Moreover, let

I∗L(i) = {aσ(1), aσ(2), . . . , aσ(i−1)}

be the elements of the left of i and

I∗R(j) = {aσ(j+1), aσ(j+2), . . . , aσ(n)}

the elements on the right of j. By assumption, we have
I−L (i) ⊆ I∗L(i) ⊆ I+L (i), I−(i, j) ⊆ I∗(i, j) ⊆ I+(i, j)
and I−R (j) ⊆ I∗R(j) ⊆ I+R (j) where

I+L (i) = {a1, a2, . . . , ai+k−1},

I−L (i) = {a1, a2, . . . , ai−k−1},

I+(i, j) = {ai−k, ai−k+1, . . . , aj+k},

I−(i, j) = {ai+k, ai+k+1, . . . , aj−k},

I+R (j) = {aj+1−k, aj+2−k, . . . , an},

I−R (j) = {aj+1+k, aj+2+k, . . . , an}.

Thus, selecting the sets I∗L(i), I
∗(i, j) and I∗R(j) involves

selecting k elements from a list of 2k elements for I∗L(i)
and 2k elements from 4k elements for I∗(i, j). Once I∗L(i),

a1 ai−k ai ai+k aj−k aj aj+k an

I−L
I+L

I−
I+

I−R
I+R

Figure 3. Selecting the set I∗ involves choosing j − i + 1 ele-
ments that include all elements of I− and are contained within I+

(highlighted in green). This corresponds to selecting 2k elements
from the list {ai−k, ai−k+1, . . . , ai+k−1, aj−k+1, . . . , aj+k} of
4k elements. Similarly, selecting I∗L requires choosing i− 1 ele-
ments that include I−L and are contained within I+L (in blue). This
involves selecting k elements from the list {ai−k, . . . , ai+k−1} of
2k elements. The same logic applies for I∗R (in red).

I∗(i, j) are fixed, the remaining elements belong to I∗R(j)
(see Figure 3 for an illustration). Thus the number of differ-
ent guesses we have to do is bounded by 22k+4k = 26k.

Now, let us define for any i, j the set S(i, j) of sets I ′(i, j)
of size j − i + 1 such that I−(i, j) ⊆ I ′(i, j) ⊆ I+(i, j).
We have that I∗(i, j) ∈ S(i, j).

Moreover, let L(i− 1) be the set of sets I ′L(i) of size i− 1
such that I−L (i) ⊆ I ′L(i) ⊆ I+L (i). We have that I∗L(i) ∈
L(i−1). Similarly, we define the set R(j+1) of sets I ′R(j)
of size n− j.

We now define the following problem I(i, j): for each
I ′(i, j) ∈ S(i, j), each I ′L(i) ∈ L(i− 1) and each I ′R(j) ∈
R(j + 1) such that I ′(i, j), I ′L(i) and I ′R(j) are pairwise
disjoint, find a permutation σ′ of elements in I ′(i, j) such
that:

• |σ′(t)− t| ≤ k,

• {aσ′(i), . . . , aσ′(j)} = I ′(i, j)

• σ′(i, j) optimizes the function g given in the decompo-
sition property of P .

Based on the decomposition property of g, we will solve
the problem via dynamic programming. Note that we find
an optimal solution by solving I(1, n). Assume for the
sake of simplicity that n is a power of two. We will solve
I(1, n) using the solutions of I(1, n/2) and I(n/2 + 1, n),
and so on. We solve the leaves of the tree (containing only
one element) in constant time, and we have it total n − 1
subproblems.

Let us explain how we solve I(i, j) using the solutions of
I(i, s) and I(s+ 1, j), where i ≤ s ≤ j.

Let I ′(i, j) ∈ S(i, j), I ′L(i) ∈ L(i − 1) and I ′R(j) ∈
R(j + 1). Thanks to the decomposition property on g
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(see Definition 3.1), I ′(i, j), I ′L(i) and I ′R(j) being fixed,
an optimal σ′(i, j) is composed of an optimal on [i, s] and
an optimal solution on [s + 1, j]. There are at most 2O(k)

choices to partition I ′(i, j) into two sets I ′(i, i+s) ∈ S(i, s)
and I ′(s+ 1, j) ∈ S(s+ 1, j). So we can compute an opti-
mal solution of our subproblem using 2O(k) calls to the DP
table (on subproblems in I(i, s) and I(s+ 1, j)).

Now we can also prove a similar lemma for the case of a
c-local permutation optimization problem, using a different
DP.

Lemma 4.2. Let P be a c-local permutation problem. Its
k-position enhanced version is solvable in time O(n · 22k ·
kc+1).

Proof. We will use again dynamic programming to find an
optimal solution for problem P . Let i be any index. Let
I∗(i) denote the elements in an optimal order in positions
between 1 and i in σ, i.e., I∗(i) = {aσ(1), . . . , aσ(i)}.

By assumption, we have that I−(i) ⊆ I∗(i) ⊆ I+(i), where

I−(i) = {a1, a2, . . . , ai−k}, I+(i) = {a1, a2, . . . , ai+k}.

Thus, selecting the set I∗(i) involves selecting k elements
from a list of 2k elements. Therefore, the number of differ-
ent guesses we have to do is bounded by 22k.

Let us now define for any i the set Sσ(i) of sets I ′(i) of
size i such that I−(i) ⊆ I ′(i) ⊆ I+(i). We have that
I∗(i) ∈ Sσ(i).

Similarly, we let I∗(i + 1, i + c) denote the elements in
positions between i + 1 and i + c in σ. Here, we have
to select each of these c elements among a list of 2k + 1
elements, so the number of different guesses is bounded by
O(kc) (as c is a constant). Moreover, for each guess we
also consider all different permutations of the c elements
(denoted by σ(i, i+ c)) which takes constant time (as c is
constant).

We also define for any i the set S(i + 1, i + c) of sets
I ′(i+ 1, i+ c) of size c such that I−(i+ 1, i+ c) ⊆ I ′(i+
1, i+ c) ⊆ I+(i+1, i+ c). We have that I∗(i+1, i+ c) ∈
S(i+ 1, i+ c).

Let us now explain how we solve the problem using dynamic
programming which is based on the property of c-locality.
For every entry of the DP table we have the following:

DP (Sσ(i), aσ(i+1), . . . , aσ(i+c)) =

min
σ(i)

{
DP (Sσ(i) \ {σ(i)}, aσ(i), . . . , aσ(i+c−1))

+costI(aσ(i), aσ(i+1), . . . , aσ(i+c))
}
.

There are at most 2k+1 choices for aσ(i), so each DP entry
can be computed in time O(k). Overall, we have that the
running time is O(n · 22k · kc+1).

5. About position-enhanced permutation
problems

The dynamic programming algorithms of Lemmas 4.1
and 4.2 show that O(log n)-position enhanced versions of
decomposable or c-local permutation problems are solvable
in polynomial time. In this section, we show two comple-
mentary results on position-enhanced versions of permuta-
tion problems that, though technically quite easy, enlight
interesting limitations to Lemma 2.6:

• First we show that there are some permutation prob-
lems which remain hard to solve in polynomial time
even when being O(log n)-position enhanced.

• Second, we show that this bound O(log n) is tight,
meaning that there are decomposable problems and
c-local problems which remain hard when being
f(n) log n-position enhanced, as soon as f is un-
bounded.

5.1. A log(n)-position-enhanced hard problem

Let us consider the following problem called Permutation
Clique: we are given a graph G = (V,E) on n = t2 vertices
vi,j , i, j = 1, . . . , t. The goal is to determine whether
there exists a permutation σ over {1, . . . , t} such that the
t vertices vi,σ(i), i = 1, . . . , t, form a clique in G. If one
puts vertices in a tabular of size t× t, then we want to find
a clique of t vertices with exactly one vertex per row and
one per column. This problem is trivially solvable in time
2O(t log t). Interestingly, (Lokshtanov et al., 2018) showed
the following, where ETH stands for Exponential Time
Hypothesis:

Proposition 5.1. (Lokshtanov et al., 2018) Under ETH,
Permutation Clique is not solvable in time 2o(t log t).

We show that this problem remains hard even when being
O(log t)-position enhanced. Formally, the problem is de-
fined as follows. We are given an instance G = (V,E) of
Permutation Clique on t2 vertices, and we want to determine
if there is a permutation σ over {1, . . . , t} such that:

(1) |σ(i)− i| ≤ c log t for all i = 1, . . . , t;

(2) {vi,σ(i) : i = 1, . . . , t} is a clique in G.

Proposition 5.2. Under ETH, (c log t)-Positioned-
Enhanced Permutation Clique is not solvable in polynomial
time (for any c > 0).
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Proof. Let us consider an instance G = (V,E) of Permu-
tation Clique, on n = t2 vertices {vi,j : i, j = 1, . . . , t}.
Let t′ = 2t/c. We build from G a graph G′ = (V ′, E′) on
n′ = t′2 vertices {v′i,j : i, j = 1, . . . , t′} where:

• For i1, i2, j1, j2 ≤ t: v′i1,j1 is adjacent to v′i2,j2 if and
only if vi1,j1 is adjacent to vi2,j2 in G;

• For i, j ≤ t and ℓ > t: v′i,j is adjacent to vℓ,ℓ;

• For ℓ1, ℓ2 > t: vℓ1,ℓ1 is adjacent to vℓ2,ℓ2 .

By construction, a (non trivial) clique in G′ is composed by
a clique in G plus ‘diagonal’ vertices vℓ,ℓ. Hence, there is a
permutation clique of size t′ in G′ if and only if there is a
permutation clique of size t in G. Moreover, we know by
construction that if there is a permutation clique induced by
σ′ in G′, then for ℓ > t σ(ℓ) = ℓ (diagonal vertices), and for
ℓ ≤ t σ(ℓ) ≤ t. Then in any case, |σ(ℓ)− ℓ| ≤ t = c log t′.

Suppose that we answer to (c log t′)-Positioned-Enhanced
Permutation Clique in polynomial time O(n′c). The con-
struction of G′ takes time O(n′), so we can solve Permu-
tation Clique in time O(n′c) = O(t′c

′
) = 2O(t). This is in

contradiction with ETH.

5.2. Hardness results for worse than
O(log n)-position-enhancement

Let us now go back to decomposable and c-local problems,
and show that the O(log n)-position enhancement is neces-
sary for some problems.

Proposition 5.3. For any unbounded increasing function f ,
f(n) log n-Positioned-Enhanced Max Acyclic Subgraph is
not solvable in polynomial time under ETH.

Proof. We make a reduction from Max Acyclic Subgraph,
which is not solvable in time 2o(n) under ETH (from the
linear reduction from vertex cover (Karp, 1972) and the
hardness of vertex cover (Impagliazzo et al., 2001)). Let
G = (V,E) be a directed graph. We build a graph G′ by
adding to G dummy vertices so that G′ has N = 2n/f(n)

vertices. We keep the arcs that are in G but do not add
any new arcs. Then the order in which we put dummy
vertices does not change the objective function. So we know
that there is an optimal solution such that σ(i) = i for
i > n and σ(i) ≤ n for i ≤ n, and there σ restricted to
{1, . . . , n} is an optimal solution for G. So we know that
|σ(i)− i| ≤ n = f(n) logN ≤ f(N) logN .

Now, suppose that we can solve f(n) log n-Positioned-
Enhanced Max Acyclic Subgraph in polynomial time
O(N c). Then we would solve Max Acyclic Subgraph in
time O(2cn/f(n)) = 2o(n) as f is unbounded. This is im-
possible under ETH.

Proposition 5.4. For any unbounded increasing function
f , f(n) log n-Positioned-Enhanced TSP is not solvable in
polynomial time under ETH.

Proof. The proof is similar to the one of Proposition 5.3.
This time, we add dummy vertices that are all at distance
0 from a given initial vertex v (and all distances between
them are 0), so that there are N = 2n/f(n) vertices in total.
Then we know that there exists an optimal solution in which
these vertices are ranked last in the permutation (the solution
starts with v), so we get as previously f(N) logN -position
enhancement “for free”. We get the same conclusion, us-
ing the fact that TSP is not solvable in time 2o(n) under
ETH (Impagliazzo et al., 2001).

Similar proofs can be easily derived for other problems,
such as Min Linear Arrangement and the single-machine
sum of completion time problem considered in Section 3.
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