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Abstract
Determining the similarity between dynamical
systems remains a long-standing challenge in both
machine learning and neuroscience. Recent works
based on Koopman operator theory have proven
effective in analyzing dynamical similarity by ex-
amining discrepancies in the Koopman spectrum.
Nevertheless, existing similarity metrics can be
severely constrained when systems exhibit com-
plex nonlinear behaviors across multiple temporal
scales. In this work, we propose KoopSTD, a dy-
namical similarity measurement framework that
precisely characterizes the underlying dynamics
by approximating the Koopman spectrum with ex-
plicit timescale decoupling and spectral residual
control. We show that KoopSTD maintains invari-
ance under several common representation-space
transformations, which ensures robust measure-
ments across different coordinate systems. Our
extensive experiments on physical and neural sys-
tems validate the effectiveness, scalability, and
robustness of KoopSTD compared to existing sim-
ilarity metrics. We also apply KoopSTD to ex-
plore two open-ended research questions in neuro-
science and large language models, highlighting
its potential to facilitate future scientific and engi-
neering discoveries. Code is available at link.

1. Introduction
Investigating and comparing non-linear neural networks

through the lens of representation space has attracted con-
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siderable attention within the machine learning commu-
nity (Hotelling, 1992; Kriegeskorte et al., 2008; Hardoon
et al., 2004; Kornblith et al., 2019; Williams et al., 2021;
Klabunde et al., 2025; Huh et al., 2024). Recent develop-
ments in representation space analysis have shed light on
how internal representations of deep neural networks are
influenced by network architectures (Hermann & Lampinen,
2020; Nguyen et al., 2021), training methods (Wang et al.,
2018; Mehrer et al., 2020; Csiszárik et al., 2021), and data
distributions (Ding et al., 2021; D’Amour et al., 2022). One
fundamental assumption behind most existing similarity
analyses is that the representation of a network can closely
correspond to its functional characteristics. This assumption
holds for static network architectures, such as convolutional
neural networks (CNNs) and feed-forward networks (FFNs),
which do not involve complex internal dynamics.

However, for non-linear dynamical networks such as re-
current neural networks (RNNs), large language models
(LLMs), and brain networks, two significant challenges
arise concerning this assumption. Firstly, two dynamical
systems can exhibit distinct representational structures while
preserving computational equivalence in their underlying
dynamics (Maheswaranathan et al., 2019; Dubreuil et al.,
2022). Secondly, two dynamical systems may demonstrate
different dynamical behaviours while maintaining similar
representational structures (Russo et al., 2020; Driscoll et al.,
2024). To facilitate the comparison of temporal dynam-
ics, various temporal similarity measures have been pro-
posed, such as dynamic time warping (DTW) (Sakoe &
Chiba, 1978) and cross-correlation (Rabiner, 1978), which
conduct comparisons after addressing temporal misalign-
ments between representations. However, these measures
still struggle to tackle the two challenges mentioned above,
particularly when the temporal correspondences between
sequences cannot be well established.

Recent advances in Koopman operator theory (Koopman,
1931; Kutz et al., 2016; Brunton et al., 2022) offer a promis-
ing solution by transforming the analysis of non-linear dy-
namical systems into a linear, infinite-dimensional space
of observables. This transformation enables us to analyze
non-linear systems using the extensive array of powerful
techniques available in linear systems theory. Several efforts
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have since started to push the boundaries of dynamical simi-
larity metrics via linear operator representations, such as the
Koopman spectral kernel-based metric (Fujii et al., 2017),
Perron-Frobenius operator-based metric (Ishikawa et al.,
2018) and dynamical similarity analysis based on Hankel Al-
ternative View of Koopman (HAVOK-based DSA) (Ostrow
et al., 2024). However, existing approaches are not sensitive
to cross-scale coupling in temporal dynamics, which limits
their ability to capture multi-scale dynamical patterns in-
trinsic to many physical and biological systems. Moreover,
these methods are prone to spectral pollution, where spuri-
ous eigenvalues arise in the numerical approximation of the
Koopman operator (Lewin & Séré, 2010; Klus et al., 2018;
Colbrook et al., 2019; Kostic et al., 2023; Philipp et al.,
2023), potentially undermining the reliability of similarity
measurements.

To address these limitations, we introduce KoopSTD, a
framework to measure similarity between dynamical sys-
tems by approximating the Koopman Spectrum of dynam-
ical systems with Timescal Decoupling. Specifically, the
transition in the original state space is first decomposed into
different frequency components using the short-time Fourier
transform (STFT) to capture temporal dynamics across mul-
tiple timescales. KoopSTD then extracts spatiotemporal pat-
terns by performing Koopman mode decomposition (KMD)
on the obtained time-frequency representation, revealing
the intricate interplay among decoupled timescales. Finally,
the resulting Koopman spectrum is refined by filtering out
spurious modes based on the spectral residuals, ensuring a
verified and more accurate representation of the underlying
dynamics.

Our contributions can be summarized as follows:

• We propose a dynamical similarity metric, KoopSTD,
to effectively analyze the similarities between high-
dimensional multi-scale nonlinear dynamical systems
(detailed in Sec. 3).

• We theoretically demonstrate that KoopSTD remains
invariant under a broad class of invertible linear trans-
formations, including isotropic scaling, rotation, and
permutation (see Sec.3.4), which ensure the robust-
ness of the proposed metric under common transfor-
mations in representation space (Kornblith et al., 2019;
Williams et al., 2021; Klabunde et al., 2025).

• We conduct comprehensive experiments on both physi-
cal and neural systems to validate the effectiveness (de-
tailed in Sec. 4.2) and robustness (detailed in Sec. 4.3)
of KoopSTD, demonstrating significant improvements
over existing similarity metrics.

• We apply KoopSTD to analyze fMRI data from the hu-
man auditory cortex, revealing a functional hierarchy

across five brain regions (detailed in Sec. 4.4). The
results show a strong correspondence with the estab-
lished structural organization of auditory pathways,
suggesting a structural-functional coupling in the hu-
man auditory cortex.

• We apply KoopSTD to analyze LLMs, specifically
GPT-2 and LLaMA, of varying sizes (detailed in
Sec. 4.4). Our findings demonstrate that larger-scale
models exhibit significantly higher coherence in their
internal dynamics compared to smaller variants, pro-
viding a fresh perspective of the scaling laws governing
LLMs.

The rest of this paper is organized as follows. Section 2
provides a comprehensive review of similarity metrics for
both static systems and non-linear dynamic systems. Sec-
tion 3 introduces our proposed metric and establishes its
theoretical groundedness through rigorous analysis. In Sec-
tion 4, we present our experimental results on both synthetic
and real-world datasets, followed by a discussion of our
key findings. Section 5 concludes the paper and outlines
potential directions for future research.

2. Related Work
There are two main research lines in measuring the similar-

ity between dynamical systems: representation-based meth-
ods and dynamics-based methods. In the representation-
based methods, the linear analysis approaches, particularly
canonical correlation analysis (CCA) (Hotelling, 1992),
represent one of the earliest attempts. To capture non-
linear relationships, one set of approaches draws from in-
formation theory, utilizing metrics such as mutual infor-
mation (Kraskov et al., 2004; Belghazi et al., 2018) and
Jensen-Shannon divergence (Lin, 1991). Another line of
solutions analyzes geometric relationships in representa-
tional spaces by comparing the patterns of neural responses
across different conditions, such as representational similar-
ity analysis (RSA) (Kriegeskorte et al., 2008) and centered
kernel alignment (CKA) (Kornblith et al., 2019). Although
these representation similarity metrics enable cross-modal
system comparison, they are sensitive to simple transforma-
tions of the representations, such as data perturbations (Ding
et al., 2021) or subset shifts (Davari et al., 2023). Similar
to (Ding et al., 2021), generalized shape metrics (Williams
et al., 2021) provide a distance measurement by defining a
rigorous mathematical framework between representations
through optimal linear transformations.

However, these representation-based approaches face crit-
ical limitations when comparing dynamical systems, even
after applying temporal alignment techniques like cross-
correlation (Rabiner, 1978) or DTW (Sakoe & Chiba, 1978).
These limitations motivate recent advances to shift the com-
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parison from static representations to the underlying dynam-
ics of the non-linear systems themselves (i.e., dynamics-
based methods). Early efforts to compare dynamical sys-
tems focused on model-specific approaches. The fixed-point
topology analysis was proposed by (Maheswaranathan et al.,
2019) to extract universal dynamical properties across RNN
architectures via constructing directed graphs from fixed
points and their transition probabilities. Similarly, (Chen
et al., 2023) introduced inner product-based similarity mea-
sures for comparing filter subspace similarity, though this
method was limited to systems with identical architectures.
To achieve model-agnostic dynamical similarity metrics,
researchers developed methods that directly analyze sys-
tem dynamics. (Fujii et al., 2017) pioneered this direction
by proposing Koopman spectral kernels, which general-
ized Binet-Cauchy kernels to nonlinear dynamical systems
through Koopman operator spectral analysis. Similarly,
(Ishikawa et al., 2018) constructed a metric using the ratio
of empirical Perron-Frobenius operator norms over infi-
nite time, eliminating the need for exponential discounting.
More recently, (Ostrow et al., 2024) advanced the field with
DSA based on HAVOK, which evaluates similarity by ana-
lyzing how vector fields transform under orthogonal maps
to identify topologically conjugate systems.

Despite these advances, these model-agnostic operator-
theoretic metrics face inherent spectral pollution is-
sues (Lewin & Séré, 2010; Colbrook et al., 2019) when
approximating infinite-dimensional operators with finite-
dimensional matrices, and operating primarily in the tempo-
ral domain, limiting both their practical utility and ability to
capture multi-scale dynamics.

3. Method

3.1. Preliminary on Koopman Operator Theory

The Koopman operator theory provides a powerful frame-
work for representing nonlinear dynamical systems in an
infinite-dimensional Hilbert function space. This allows
us to leverage powerful linear analysis techniques such as
spectral analysis, mode decomposition and linear predic-
tion, while still capturing the full nonlinear dynamics of the
original system. For a time-discrete system described by
x[t+ 1] = F(x[t]) that evolves over a state-space Ω ⊆ Rd

under the mapping F : Ω → Ω, the Koopman operator
K corresponding to observables g : Ω → C is defined as
follows:

[Kg] (x) = (g ◦ F)(x), x ∈ Ω, g ∈ L2(Ω, ω). (1)

A key aspect of modern Koopman operator theory is Koop-
man Mode Decomposition (KMD). It breaks apart a spa-
tiotemporal signal into infinite triplets {(λi, ϕi, vi)}∞i=1,
where λi represents Koopman eigenvalues that reflects

scalar amplitudes, ϕi denotes eigenfunctions, and vi repre-
sents Koopman modes,

g(x[t]) = Ktg(x[0]) =

∞∑
i=1

λt
iϕi(x[0])vi. (2)

This decomposition describes the complex flow patterns
by a hierarchy of simpler processes, with their linear su-
perposition reconstructing the full system dynamics. The
resulting representation allows comparison of any two dy-
namical systems according to the principle of topological
conjugacy (Ostrow et al., 2024; Redman et al., 2024).

While KMD provides a theoretical framework that decom-
poses a dynamical system into a set of modes associated
with eigenvalues of the Koopman operator, its exact compu-
tation is often intractable for real-world systems. Dynamic
mode decomposition (DMD) (Williams et al., 2015; Schmid,
2022) addresses this limitation by offering a data-driven ap-
proach to approximate this decomposition. To approximate
the Koopman operator, DMD constructs a finite-dimensional
linear matrix A through least-squares optimization with
two snapshots Wx = {g(x[0]), g(x[1]), ..., g(x[t−1])} and
W ′

x = {g(x[1]), g(x[2]), ..., g(x[t])} in observable space:

K ≈ A = argmin
A

∥W ′
x −AWx∥F = W ′

xW
†
x , (3)

where ∥·∥F is the Frobenius norm and † denotes the pseudo-
inverse. Thus, the spectral components can be obtained by
solving AΦ = ΦΛ, where Λ = diag(λ1, λ2, ..., λN ) is the
diagonal matrix containing the Koopman eigenvalues, and
Φ is the corresponding eigenvectors.

3.2. KoopSTD Captures Multi-Scale Dynamics in the
Eigen-Time-frequency Coordinate

Nonlinear dynamical systems are inherently complex and
challenging to analyze directly in the time domain due
to their intricate interactions across multiple timescales,
or equivalently, their diverse frequency components. As
a prominent method in signal processing, the STFT pro-
vides a time-frequency representation through windowed
Fourier analysis of the time series. Given a time series
X ∈ RT×Nd with sampling time T and feature dimension
Nd, the STFT can be regarded as a mapping h that produces
a time-frequency representation Z,

h : X→ Z, (4)

where Z ∈ R(T−l
s +1)×Nf with l and s denoting STFT win-

dow length and hop size, respectively. Nf =
(
l
2 + 1

)
·Nd is

the total number of frequency components obtained by con-
catenating frequency bins across all dimensions. Note that
KoopSTD also supports other time-frequency techniques
(e.g., wavelet transform).
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To effectively capture multi-scale temporal dynamics, Koop-
STD leverages Koopman analysis to approximate the evolu-
tion of the system within the eigen-time-frequency coordi-
nates defined by the right singular vectors V∗ of Z,

Z = UΣV∗, (5)

where ∗ denotes the conjugate transpose. Then, we charac-
terize the finite-dimensional operator A outlined in Eq. (3)
based on the temporal snapshots WV,W

′

V from singular
vectors V, denoted as Atf ,

Atf = W
′

VW†
V. (6)

Note that V forms a basis in the eigen-time-frequency coor-
dinates, extracting dominant temporal modes from the origi-
nal time-frequency space. Based on these modes, the Koop-
man operator approximation Atf in Eq. (6) explicitly quan-
tifies the underlying dynamics across multiple timescales.

3.3. KoopSTD Measures the Dynamics Dissimilarity
with Reliable Koopmanism

By applying DMD on eigen-time-frequency observations,
the approximated operator Atf captures the evolution on
different timescales. To assess the dynamical similarity be-
tween two systems, one could employ similarity metrics
such as Wasserstein distance or Procrustes analysis on the
operators Atf . However, when performing discrete spectral
analysis, the occurrence of spurious eigenvalues, which are
not associated with the real dynamics of the operator, can
lead to spectral pollution. This phenomenon can signifi-
cantly distort the comparison, weakening the reliability of
the similarity measure and potentially leading to inaccurate
conclusions about the dynamical behavior of the systems.

Here, we incorporate the advances in spectral error control
via Galerkin method (Fletcher & Fletcher, 1984) for linear
operators (Williams et al., 2015; Colbrook & Townsend,
2024) to identify and exclude Koopman modes with unreli-
able spectral residuals. Specifically, given Nf eigenvalue-
eigenvector pairs {λ̂j , v̂j}

Nf

j=1 for the approximated Koop-
man operator Atf , we explicitly measure the accuracy of
each candidate eigenpair by computing its squared relative
residual as follows:

r̂es(λ̂, v̂)2 =
v̂∗

[
M− λ̂N ∗ − ¯̂

λN + |λ̂|2O
]
v̂

v̂∗N v̂
, (7)

where M = W′∗
VW′

V, N = W∗
VW′

V, O = W∗
VWV,

and λ̄ denotes the complex conjugate of eigenvalues. A
detailed derivation of Eq. (7) is provided in Appendix B.2.
This residual quantifies the deviation from the expected
spectral properties, thus serving as a standard for accurate
mode selection and reliable dynamical similarity metric.

We give a systematic discussion about the Galerkin and
alternative methods for estimating the spectral error bound
of linear operators in Appendix B.1.

To systematically demonstrate KoopSTD, let us consider
two dynamical systems X1[t+ 1] = F1(X1[t]) and X2[t+
1] = F2(X2[t]), where X1 ∈ RNd1 and X2 ∈ RNd2 , re-
spectively. The data sampled from two systems are first
transformed into the eigen-time-frequency coordinate via
STFT and SVD, resulting in two embeddings. We subse-
quently apply Eq. (7) to both embeddings for extracting
the top r eigenvalue-eigenvector pairs with the minimum
spectral residuals. These pairs represent the evolution of
r accurate modes, which capture the system’s overall dy-
namical behaviors. The eigenvalues explicitly reflect the
evolving amplitudes of these modes, making it reasonable
to use eigenvalues {λ̂1,j}rj=1 and {λ̂2,j}rj=1 to measure the
discrepancy d(F1,F2) between two dynamical systems via
symmetric permutation invariant distance metrics. Here, we
adopt d(F1,F2) as the Wasserstein distance:

d(F1,F2) = inf
π∈P(r)

1

r

r∑
j=1

∥λ̂1,j − λ̂2,π(j)∥p
 1

p

, (8)

where P(r) denotes the set consisting of all permutations
of r elements. The pseudocode of KoopSTD is summarized
in Algorithm 1.

Algorithm 1 KoopSTD Pseudocode

Input: two time series, X1 ∈ RT1×Nd1 and X2 ∈
RT2×Nd2 ; STFT window size, l ∈ Z+; STFT hop size,
s ∈ Z+; number of preserved modes, r ∈ Z+

Output: Dynamics dissimilarity d between X1 and X2

Procedure DMDSTFT (X, l, s)
Z = STFT(X, l, s)
Solve Z = UΣV∗

Approximate Atf by Eq. (6)
Return Atf

End Procedure
Procedure RESCONTROL(Atf , r)

Solve AtfΦ = ΦΛ for eigenpairs {λ̂j , v̂j}
Nf

j=1

for j = 1 to Nf do
Compute the residual of {λ̂j , v̂j} by Eq. (7)

end for
Top r accurate eigenvalues Λ = diag(λ̂1, λ̂2, . . . , λ̂r)
Return Λ

End Procedure
Atf ,1 ← DMDSTFT (X1, l, s)
Atf ,2 ← DMDSTFT (X2, l, s)
Λ1 ← RESCONTROL(Atf,1, r)
Λ2 ← RESCONTROL(Atf,2, r)
Compute the dynamics dissimilarity d by Eq. (8)
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3.4. Transformation-Invariant Property

In this section, we prove that KoopSTD exhibits funda-
mental invariance properties, ensuring its robustness against
common transformations in the representation space. To
facilitate a more concise and unified theoretical analysis, we
reformulate the KoopSTD in Eq. (8) into a more general
form as shown in Definition 1.
Definition 1. (KoopSTD). Let F1,F2 : RNd → RNd

be two dynamical systems with their finite-dimensional
approximations of Koopman operators A1,A2. The dy-
namics dissimilarity between two systems can be defined
as:

d(F1,F2) ≜ d(λ(A1), λ(A2)), (9)

where λ(·) denotes the eigenvalue spectrum and d(·, ·)
can be symmetric permutation invariant metrics (e.g.,
Wasserstein distance and Jensen–Shannon divergence).

Building upon the KoopSTD formalized in Definition 1, a
natural follow-up question is whether this similarity metric
possesses any theoretical groundedness? Our answer, in
Proposition 1, is yes: the similarity measurement of Koop-
STD remains invariant under invertible linear transforma-
tions on the representational space.
Proposition 1. Let X1[t + 1] = F1(X1[t]) and X2[t +
1] = F2(X2[t]) be two time-discrete dynamical systems,
governed by mappings F1,F2 : RNd → RNd . Then, the
dissimilarity d(F1,F2) measured by KoopSTD is invari-
ant under a broad class of invertible linear transforma-
tions T on the representational space, such that:

d(T (F1,F2)) = d(F1,F2). (10)

Note that T includes, but is not limited to, some common
transformations, such as isotropic scaling, rotations, and
permutations (Kornblith et al., 2019; Williams et al., 2021;
Klabunde et al., 2025), which frequently appear in real-
world neural data or network representation spaces. As a
result, KoopSTD demonstrates several notable properties:
Property 1. (Isotropic scaling invariance). KoopSTD
remains invariant for any isotropic scaling TIS on the
representation space,

d(TIS(F1,F2)) = d(F1,F2), (11)

where TIS = {X 7→ XQ : Q = qINd
} and q ∈ R+

denotes the scaling factor.

Property 2. (Rotation invariance). KoopSTD remains
invariant for any rotation transformations TR on the rep-
resentation space,

d(TR(F1,F2)) = d(F1,F2), (12)

where TR = {X 7→ XQ : Q ∈ O(Nd)}, and O(Nd) :=
{RNd×Nd ,QTQ = INd

} denote the orthogonal group.

Property 3. (Permutation invariance). KoopSTD remains
invariant for any permutation transformations TP on the
representation space,

d(TP (F1,F2)) = d(F1,F2), (13)

where TP = {X 7→ XQπ : π ∈ PNd
}, PNd

denote the
set of all permutations on {1, ..., Nd}, and for π ∈ PNd

,
Qπ ∈ RNd×Nd denote the permutation matrix.

The proof of Proposition 1 and Property 1-3 are provided in
Appendix A.

4. Experimental Results
In this section, we first introduce the experimental setup

in Sec. 4.1. We then conduct a comprehensive comparison
between the proposed KoopSTD and existing metrics in
Sec. 4.2, utilizing classical Lorenz systems, followed by
an ablation study of KoopSTD. To verify the robustness
of KoopSTD, we further conduct experiments under two
challenging scenarios in Sec. 4.3: a) different system dy-
namics yield similar sampled representations, or b) similar
system dynamics manifested in different sampling represen-
tations. Finally, in Sec. 4.4, we apply KoopSTD to address
open-ended research questions in neuroscience and LLMs.

4.1. Experimental Setup

To evaluate the performance of KoopSTD, we com-
pare it with four existing similarity metrics, including
two representation-based methods, CKA (Kornblith et al.,
2019) and Procrustes analysis (Williams et al., 2021), as
well as two dynamics-based methods, Cross-Correlation
(CC) (Rabiner, 1978) and HAVOK-based DSA (Ostrow
et al., 2024). Details on their implementation can be found
in Appendix C.1. Each metric maps the dynamical pat-
terns into a low-dimensional metric space through pairwise
dissimilarity measures, where an effective metric would
result in samples of the same dynamical class forming well-
separated clusters. The quality of these clusters, and thus
the effectiveness of the metrics, is evaluated using the Sil-
houette coefficient. For a given similarity metric M applied
to a N -samples dataset with k distinct dynamical behavior
clusters, the coefficient can be expressed as:

I(M) =
1

N

N∑
i=1

b(i)− a(i)

max(a(i), b(i))
, (14)

where a(i) is the average distance between sample i and
other samples in the same cluster (intra-cluster distance),
and b(i) is the minimum average distance between sample
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Figure 1. Comparison of different metrics across five classes of Lorenz systems via MDS projection. The more separable the patterns are,
the better the performance of the metric.

i and all samples in the nearest neighboring cluster (inter-
cluster distance). The Silhouette coefficient ranges from -1
to 1, where values close to 1 indicate well-defined clusters,
values close to 0 suggest overlapping clusters, and values
close to -1 imply misclassification.

Systems

Metrics Representational Dynamical

CKA Procrustes CC HAVOK KoopSTD

Lorenz
Systems -0.05 -0.04 -0.27 0.47 0.94

PDM
Attractors -0.04 -0.02 -0.30 0.90 0.99

Flip-Flop
RNNs 0.20 0.98 -0.16 0.10 -0.04

Table 1. Quantitative analysis of existing similarity metrics across
three systems using the Silhouette coefficient. For the experiments
of Lorenz system and PDM attractors, higher values indicate bet-
ter performance, while in the 3-bit Flip-Flop RNNs experiments,
values approach to 0 are preferred. A detailed description of these
metrics is provided in Appendix C.1.

4.2. Effectiveness Analysis

The Lorenz system is defined by three coupled nonlinear
differential equations: dx

dt = σ(y − x), dy
dt = x(ρ− z)− y,

and dz
dt = xy − βz. By setting σ = 10, β = 8

3 , and varying
ρ, we obtain five classes of trajectories: line-like (ρ = 10),
ring-like (ρ = 20), two periodic orbits (ρ = 152, 220),
and chaotic (ρ = 75). These trajectories exhibit behaviors
ranging from stable to highly nonlinear with multi-scale
dynamics, making them ideal for testing various similarity
metrics.

As shown in Table 1, KoopSTD achieves the highest Sil-
houette coefficient (0.94) among all compared similarity
metrics, indicating its superiority in analyzing multi-scale
dynamics. Figure 1 illustrates that KoopSTD, when visu-
alized through multidimensional scaling (MDS) (Kruskal,
1964), maintains low intra-cluster distances and high inter-
cluster distances with the lowest variance. Contrastingly,
representation-based metrics (i.e., CKA and Procrustes anal-
ysis) fail to differentiate between distinct dynamics. The two
dynamics-based metrics (i.e., CC and HAVOK-based DSA)
can separate line-like and ring-like dynamics but struggle to
differentiate between periodic and chaotic dynamics due to

their shared recurrent patterns in broader temporal scales.

To further understand the contribution of each component
in KoopSTD, we conduct ablation studies, which are de-
tailed in Appendix E. The results confirm that both timescale
decoupling and spectral residual control in KoopSTD are
crucial for distinguishing different dynamical behaviors.
Specifically, the time-frequency transformation enables ef-
fective separation between chaotic dynamics and other types
by decoupling complex temporal patterns across multiple
scales. Moreover, the spectral residual control for Koopman
operator rank reduction improves the distinction between
globally similar but locally different dynamics, particularly
for periodic orbits, by ensuring the selection of accurate and
relevant dynamical modes.

4.3. Robustness Analysis

In this section, we compare KoopSTD with other metrics
under challenging conditions where either a) different sys-
tem dynamics yield similar sampled representations, or b)
similar system dynamics manifested in different sampling
representations.

Geometric Homogeneity. The first experiment aims to
assess whether the proposed metric can accurately capture
the underlying dynamical disparity despite relatively similar
trajectories. Following (Ostrow et al., 2024), we examine
three noisy attractors: bistable attractors (BA), line attrac-
tors (LA), and point attractors (PA), representing unstable,
stable, and leaky integration in perceptual decision-making,
respectively. Through adversarial optimization (Galgali
et al., 2023), the condition-averaged trajectories of LA and
PA become almost identical to BA’s, leaving only noise-
induced deviations during recurrence to reveal their distinct
dynamics. In this experiment, we generated 50 systems
for each attractor class with 100 sampled trajectories per
system.

According to the intra- and inter-cluster distances shown in
Figure 2, Procrustes analysis identifies all samples to be the
same due to its emphasis on geometric aspects, where all
samples exhibit similar trajectories in the 2D space. While
HAVOK-based DSA and KoopSTD are both capable of
separating different dynamical patterns, KoopSTD exhibits
stronger consistency on the inter-cluster distance across dif-
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Figure 2. Comparison of different metrics between attractor systems. Each class (BA: bistable attractor, LA: line attractor, PA: point
attractor) contains 50 systems with 100 sampled trajectories per system. The bars show both intra-class distances within each attractor
type and inter-class distances between attractor types. Better metrics are characterized by lower intra-class distances (left part of each
subfigure) and higher inter-class distances (right part of each subfigure).

Figure 3. Comparison of metrics across three types of RNN via MDS projection. The more inseparable the patterns are, the better.

ferent samples. As a result, KoopSTD achieves an almost
perfect clustering performance with a Silhouette coefficient
of 0.99. In contrast to KoopSTD, representation-based met-
rics fail to effectively distinguish both inter-class and intra-
class differences in neural dynamics.

Geometric Disparity. The second experiment investigates
whether the metric can correctly identify neural network sys-
tems with the same recurrent dynamic despite differences
in geometric network architectures. To explore this, we
trained 60 one-layer RNNs with varying architectures on
the widely recognized 3-bit Flip-Flop task (Sussillo & Barak,
2013). More details for the task and training can be found
in Appendix D. Notably, Figure 10 shows that when pro-
jecting network hidden states onto their first three principal
components, trajectories across different RNN architectures
consistently trace the vertices of a three-dimensional cube,
revealing a shared computational structure.

As shown in Figure 3, all existing metrics identify the dispar-
ity between networks in solving the 3-bit Flip-Flop task to
varying degrees, with CKA, CC, and HAVOK-based DSA
detecting partial differences, and Procrustes Analysis detect-
ing the full extent. This points to their reduced robustness

in capturing dynamic similarity amidst geometric variations.
On the other hand, KoopSTD yields a Silhouette coefficient
of -0.04, indicating minimal separation in their underlying
dynamics, further demonstrating its capacity to effectively
uncover the shared intrinsic dynamics across different net-
work architectures.

4.4. Empower Scientific Discoveries through KoopSTD

KoopSTD is a powerful tool that can facilitate complex
dynamical system analysis across various domains. We next
demonstrate its potential for scientific research in both com-
putational neuroscience and LLMs by answering two funda-
mental questions: RQ1. To what extent can the KoopSTD
reveal functional correspondences among distinct regions
of the human auditory cortex? RQ2. What novel perspec-
tives can KoopSTD offer regarding the relationship between
model size and the functional behavior of LLMs?

Discover Structural-functional Relationship between
Cortical Regions

We investigated the functional dissimilarity patterns across
human auditory cortical regions using KoopSTD on the
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“Narratives” dataset (Nastase et al., 2021). This dataset com-
prises cortical fMRI recordings of 68 individuals listening
to the same audio story. Experimental details are provided
in Appendix C.5.

As illustrated in Figure 4, our analysis reveals a distinct hier-
archical organization of functional relationships among dif-
ferent auditory areas, including primary core area A1, three
surrounding belt regions (i.e., LBelt, MBelt, and PBelt) and
RI in the anterior insular cortex. Specifically, the diagonal
block of A1, LBelt, and MBelt regions exhibit high func-
tional similarity, suggesting shared computational properties
in early auditory processing stages. In contrast, the PBelt
and RI regions show substantially higher functional dis-
similarity compared to other auditory areas, implying their
distinct functional role in the auditory processing hierarchy.
We leave more comparisons in Appendix D.

Intriguingly, these functional dissimilarities analyzed by
KoopSTD correspond closely to the known myelination
patterns in the human auditory cortex (Glasser et al., 2016;
Baker et al., 2018), where regions exhibit similar myelin
concentrations also display similar functional properties (see
Appendix Figure 11). This alignment between structural
and functional organization provides fresh insights into the
relationship between cortical myelination and functional
specialization in auditory processing.

Figure 4. Functional dissimilarity between different auditory re-
gions (A1, LBelt, MBelt, PBelt, and RI) measured by KoopSTD.

Validating LLM Scaling Laws and Beyond

To make an effective similarity comparison, we randomly
selected 75 instructions from the Databricks Dolly 15K
dataset (Conover et al., 2023). For each instruction, we
conducted experiments using four GPT-2 (Radford et al.,

Figure 5. Dynamics dissimilarity between different scales (120M,
340M, 760M, and 1.5B) of GPT-2 measured by KoopSTD.

Figure 6. Dynamics dissimilarity between different scales (1B, 3B,
and 8B) of LLaMA measured by KoopSTD.

2019) models with increasing sizes (120M, 340M, 760M,
1.5B parameters). We performed 5 independent inference
runs with different random seeds for each instruction, col-
lecting 375 samples from the last layer of each model (75
instructions × 5 runs), resulting in a total of 1500 samples.

As shown in Figure 5, KoopSTD effectively captures sig-
nificant dynamical discrepancies between different scales
of GPT-2 models. Notably, the dynamics of representations
produced by larger models (i.e., GPT-2 760M and 1.5B)
show higher consistency across different instructions. This
is reflected in both the KoopSTD-based dissimilarity matrix
and the low-dimensional visualization, where larger models
exhibit more concentrated clusters, suggesting potentially
more stable and consistent dynamical patterns in their repre-
sentation spaces. Moreover, in the low-dimensional space,
representations from larger models exhibit substantial over-
lap. These observations demonstrate a hypothesis: ‘Repre-
sentation dynamics evolve towards greater consistency and
stability as the model scale increases.’

To validate this hypothesis beyond GPT-2, we conducted
additional experiments on the LLaMA family of mod-
els (Dubey et al., 2024) with 1B, 3B, and 8B param-
eters using 50 instructions randomly sampled from the
Massive Multitask Language Understanding (MMLU)
dataset (Hendrycks et al., 2021). The similarity results of
LLaMA in Figure 6 share the same phenomenon as GPT-2
to some extent, as shown by the convergent dynamics in
representation space when scaling up model parameters.
These findings shed light on the nuanced differences be-
tween LLMs of varying sizes, offering new insights into the
scaling laws of LLM (Kaplan et al., 2020).

5. Conclusion
In this work, we introduce KoopSTD, a similarity measure-
ment framework for analyzing dynamical similarity between
nonlinear systems across multiple timescales via Koopman
operator theory. Through extensive experiments on physical
systems, neural systems, brain networks, and language mod-
els, we demonstrate the effectiveness and broad applicability
of KoopSTD. Looking forward, KoopSTD shows promise
as a quantitative metric for knowledge distillation in large
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language models, potentially guiding the development of
more efficient architectures while preserving dynamic be-
haviors. The framework could be broadly applied to analyze
complex dynamical systems across disciplines, from charac-
terizing conformational changes in molecular dynamics and
protein folding to investigating neural dynamics in different
cognitive states and pathological conditions. These appli-
cations may provide valuable insights into the fundamental
principles governing both biological and artificial dynamical
systems.
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Impact Statement
The proposed KoopSTD framework represents a significant
advance in analyzing complex dynamical systems, with im-
plications that extend beyond its technical contributions.
This tool has the potential to accelerate scientific discover-
ies across multiple disciplines by enabling more accurate
analysis of complex systems in neuroscience, physics, and
artificial intelligence. In neuroscience, KoopSTD’s ability
to analyze brain dynamics could assist in the early detec-
tion of neurological disorders through the identification of
atypical dynamical patterns, potentially improving clinical
outcomes. Within AI research, the framework could guide
the development of more efficient neural architectures by
providing deeper insights into internal dynamics, potentially
reducing computational costs and the environmental impact
of AI systems.

However, these benefits come with important considerations
that warrant careful attention. The computational complex-
ity of KoopSTD may limit its accessibility to researchers
with limited computational resources, potentially exacer-
bating existing inequalities in research capabilities. While
the framework provides quantitative measures of dynamical
similarity, interpreting these results requires significant do-
main expertise, raising the risk of misuse or overconfidence
in conclusions if not properly understood. Additionally,
there is a potential for the tool to be misapplied in draw-
ing premature conclusions about complex systems without
appropriate statistical rigour. While acknowledging these
limitations, we believe the potential benefits of KoopSTD
outweigh the risks when used responsibly, particularly in
advancing our understanding of complex dynamical sys-
tems and developing more efficient AI technologies. The

framework’s success will ultimately depend on the research
community’s commitment to addressing these challenges
through continued development and responsible application.
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A. Proofs of Theoretical Properties
To give better proof to the theoretical analysis, we move the similarity metric provided in the main manuscript here.

Restatement of Definition 1. (KoopSTD). Let F1,F2 : RNd → RNd be two dynamical systems with their finite-dimensional
approximations of Koopman operators A1,A2. The dynamics dissimilarity between the two systems is defined as:

d(F1,F2) ≜ d (λ(A1), λ(A2)) , (15)

where λ(·) denotes the eigenvalue spectrum and d(·, ·) can be any symmetric, permutation-invariant metric (e.g., Wasserstein
distance or Jensen–Shannon divergence).

A.1. Notations

Table 2. Summary of Notations

Symbol Description Symbol Description

K Koopman operator F Original nonlinear mapping functions
ω probability measure of L2 H Ω Original state-space
g Observable function ◦ Composition function

(λ, ϕ,v) KMD triplet A Approximated operator
W,W ′ Snapshot data Λ,Φ Eigenvalue and eigenvector of A
X Sampled data in original space Z Time-frequency embedding
Nd The original feature dimension T The time dimension
Nf The frequency dimension Atf Approximated operator by KoopSTF

{λ̂j , v̂j}
Nf

j=1 Eigenvalue-eigenvector pair of Atf M,N ,O See Eq. (7)
B Size of the dataset d(F1,F2) The dissimilarity between two systems
p Power parameter in Wasserstein distance r The number of preserved eigenpairs
l STFT window length s STFT hop length

A.2. Proof to the Transformation-Invariant Property

Let X1[t + 1] = F1(X1[t]) and X2[t + 1] = F2(X2[t]) be two time-discrete dynamical systems with state variables
X1,X2 ∈ RNd , and they are governed by mappings F1,F2 : RNd → RNd . Now we prove that the distance d(F1,F2)
between two systems calculated by KoopSTD remains invariant under invertible linear transformations T , such that:

d(T (F1,F2)) = d(F1,F2), (16)

where T = {X 7→ XQ : Q ∈ GL(Nd,R)}. GL(Nd,R) denotes the general linear group of all invertible matrices
Q ∈ RNd×Nd .

Proof. Consider a dynamical system governed by the discrete-time evolution equation X[t + 1] = F(X[t]), where
X[t] ∈ RNd represents the state of the system at time t. The KoopSTD seeks to approximate the Koopman operator by
firstly mapping X ∈ RT×Nd into a time-frequency representation Z ∈ R(T−l

s +1)×( l
2+1)×Nd . Specifically, the entry Zm,k,n

corresponding to time frame m, frequency index k and feature index n is given by:

Zm,k,n =

l−1∑
t=0

X[t, n]w[t−m]cos(2πkt/l), (17)

where l, s respectively denote the length and step size of window function w[·] in STFT. By the linearity of the STFT, this
transformation can be expressed in matrix form as

Z = STFT(X) = LtfX, (18)
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where Ltf is the transformation matrix representing the STFT operation. Next, KoopSTD computes the right singular
vectors V of Z by solving SVD:

Z∗Z = (VΣU∗)(UΣV∗) = VΣ2V∗. (19)

The Koopman operator A can then be approximated based on temporal snapshots (i.e., WV and WV
′) of the right singular

vectors V of Z:
A = W′

VWV
†
. (20)

For the transformed representation XQ, we can also derive its time-frequency embedding ZT by substituting X = XQ into
Eq. (18):

ZT = STFT(XQ) = LtfXQ = ZQ. (21)

Similarly, to obtain VT , we substitute Z = ZT into Eq. (19):

Z∗
T ZT = (ZQ)∗ZQ = Q∗Z∗ZQ = (Q∗V)Σ2(V∗Q). (22)

Then, we derive the transformed right singular vectors VT and the temporal snapshots WV,T ,,W
′
V,T as:

VT = Q∗V,WV,T = Q∗WV,W′
V,T = Q∗W′

V. (23)

Finally, we express the transformed approximated Koopman operator in terms of AT :

AT = W′
V,T W

†
V,T = Q∗AQ. (24)

We observe that applying invertible linear transformations to the representational space within the KoopSTD framework
corresponds to a similarity transformation of the approximated Koopman operator. Consequently, the transformed operator
AT is similar to the original A, implying that they share the same eigenvalues:

λ(AT ) = λ(A). (25)

According to Definition 1, we have the following equivalence:

d(T (F1,F2)) = d(λ(A1,T ), λ(A2,T )) = d(λ(A1), λ(A2)) = d(F1,F2). (26)

Thus, we have proven that KoopSTD is invariant under a broad class of invertible linear transformations.

Since the following transformations on the feature dimension are also invertible linear transformations, we can deduce that
KoopSTD remains invariant to the following transformations,

• Isotropic scaling: TIS = {X→ XQ : Q = qINd
, q ∈ R+}.

• Rotations: TR = {X → XQ : Q ∈ O(Nd)}, where O(Nd) := {RNd×Nd ,QTQ = INd
} denotes the orthogonal

group.

• Permutations: TP = {X→ XQπ : π ∈ P (Nd)}, where P (Nd) is the set of permutations on {1, . . . , Nd}.

B. Koopman Spectral Residual Control
B.1. Related Works for Spectral Error Estimation

Spectral error estimation is critical for evaluating the fidelity of Koopman operator approximations, as spectral pollution
can distort interpretations of system dynamics. Such artifacts commonly result from finite-dimensional truncation and
suboptimal basis selection in approximation schemes (Klus et al., 2018; 2020; Philipp et al., 2023).
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In KoopSTD, we adopt the Galerkin approximation (Williams et al., 2015), a projection-based technique that has demon-
strated effectiveness in Residual Dynamic Mode Decomposition (ResDMD) (Colbrook & Townsend, 2024), to suppress
spectral pollution and eliminate spurious modes in the Koopman spectrum. By restricting the approximation to a well-chosen
subspace, this method enables finer control over spectral content and yields more robust representations of the system’s
dynamics. Nonetheless, the performance of Galerkin methods is inherently constrained by the expressiveness and scalability
of the basis functions (Davies & Stephens, 1983). A limited basis can potentially fail to capture intricate dynamics, while
increasing the basis size significantly raises computational costs, undermining efficiency.

Beyond Galerkin methods, several alternative approaches have been proposed to estimate spectral error bounds of Koopman
operators. For instance, sparse operator learning frameworks (Hou et al., 2023) target mixing stochastic processes and
leverage sparsity in reproducing kernel Hilbert spaces (RKHS) to balance interpretability and sample efficiency. On the other
hand, kernel-based methods (Klus et al., 2018; 2020; Kostic et al., 2022; Philipp et al., 2023) offer rigorous convergence
guarantees for the spectral approximation of Koopman or transfer operators, and are particularly suited for a variety of
stochastic settings, including Markov chains and stochastic differential equations. These methods offer complementary trade-
offs in terms of approximation accuracy, theoretical guarantees, computational scalability, and applicability to stochastic
dynamics. In future work, we plan to investigate the integration of these techniques into the KoopSTD framework to enhance
its robustness and precision in quantifying dynamical similarity.

B.2. Detailed Derivation of Eq. (7)

Here, we provide a step-by-step derivation of Eq. (7). ResDMD (Colbrook & Townsend, 2024) aims to discard modes
associated with large spectral residuals, as determined by their inconsistency with the spectral convergence properties
predicted by DMD’s quadrature-based approximation. Specifically, for a candidate eigenvalue-eigenvector pair (λ̂, v̂) of K,
the corresponding eigenfunction ϕ̂(x) =

∑Nf

i=1 gi(x)v̂i, where Nf represents the number of observables g(·), the accuracy
of (λ̂, v̂) can be estimated by the squared residual:

res(λ̂, v̂)2 =

∫
Ω

|Kϕ̂(x)− λϕ̂(x)|2 dω(x)

= ⟨(K − λ)ϕ̂, (K − λ)ϕ̂⟩ω
= ⟨Kϕ̂,Kϕ̂⟩ω − ⟨λ̂ϕ̂,Kϕ̂⟩ω − ⟨Kϕ̂, λ̂ϕ̂⟩ω + ⟨λ̂ϕ̂, λ̂ϕ̂⟩ω
= ⟨Kgv̂,Kgv̂⟩ω − λ̂⟨gv̂,Kgv̂⟩ω − λ̂⟨Kgv̂, gv̂⟩ω + |λ̂|2⟨gv̂, gv̂⟩ω.

(27)

In the framework of KoopSTD, the terms Kg and g respectively denote snapshots W ′
V and WV . Then, by substituting

M = W ′∗
V W ′

V , N = W ∗
V W

′
V and O = W ∗

V WV , we can derive:

res(λ̂, v̂)2 = ⟨Kgv̂,Kgv̂⟩ω − λ̂⟨gv̂,Kgv̂⟩ω − λ̂⟨Kgv̂, gv̂⟩ω + |λ̂|2(gv̂, gv̂)ω
= v̂∗[W ′∗

V W ′
V − λ̂W ∗

V W
′
V −

¯̂
λW ′∗

V WV + |λ̂|2W ∗
V WV ]v̂

= v̂∗[M− λ̂N ∗ − ¯̂
λN + |λ̂|2O]v̂.

(28)

Finally, the squared relative residual can be expressed as:

r̂es(λ̂, v̂)2 =
∥Kϕ̂− λ̂ϕ̂∥2

∥Kϕ̂∥2
=

v̂∗[M− λ̂N ∗ − ¯̂
λN + |λ̂|2O]v̂

v̂∗N v̂
. (29)

C. Detailed Experimental Settings
C.1. Alternative Similarity Metrics for Comparison

To demonstrate the versatility of the proposed KoopSTD in measuring dynamical similarity, we compare its clustering
performance against four existing similarity metrics based on their calculated dissimilarity matrices from datasets. Below,
we provide details for each metric:

• Dynamical similarity analysis based on Hankel Alternative View of Koopman (HAVOK-based DSA) Although
research on Koopman-based similarity analysis began a decade ago, HAVOK-based DSA proposed by (Ostrow et al.,
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Figure 7. Our dataset contains five distinct dynamical behaviors generated by the Lorenz system, each represented by its corresponding
trajectory in the phase space. The ”Periodic [1-1-2-2]” trajectory refers to a periodic orbit where the first equivalent point is visited twice,
followed by the second equivalent point being visited twice. In Figure 1, Periodic [1-1] and Periodic [1-1-2-2] are respectively denoted by
Periodic-1 and Periodic-2.

2024) forwards a step in leveraging the theoretically powerful HAVOK framework (Brunton et al., 2017) to capture the
intrinsic dynamics of measured systems. To achieve a linear representation of the dynamics, HAVOK first constructs a
Hankel representation by applying time-delay embedding to the original data. It then fits truncated-rank regression
models on the singular vectors of the Hankel matrix. The chosen truncation rank is claimed to provide an optimal linear
fit, forming a Koopman-invariant subspace. For more details of HAVOK, please refer to (Brunton et al., 2017). For the
implementation of HAVOK-based DSA, we utilize the official GitHub repository provided by (Ostrow et al., 2024).
The results presented in our paper reflect the best performance achieved after careful hyperparameter tuning, including
the number of delays, delay interval, and truncation rank.

• Cross-correlation (CC) Cross-correlation is defined as the normalized dot product between time series and it can be
efficiently computed using numpy.correlate. In our study, we define the dissimilarity between two dynamics as the
reciprocal of the maximum correlation value.

• Procrustes Analysis Procrustes Analysis is a specialized form of generalized shape metrics (Williams et al., 2021),
which quantifies the dissimilarity between two representations by optimally aligning them through orthogonal trans-
formation. By minimizing the sum of squared differences between corresponding elements, Procrustes Analysis
serves as a powerful tool for comparing geometric structures while preserving their relative spatial relationships. The
optimization in our study is implemented by Adam optimizer with a learning rate of 0.01.

• Centered Kernel Alignment (CKA) CKA quantifies the similarity between representations by evaluating the alignment
of their kernel matrices after centering. Since empirical evidence suggests that using a nonlinear kernel in CKA does
not offer significant advantages over the linear kernel (Davari et al., 2023), we opt for the linear kernel in our study to
maintain simplicity and efficiency.

C.2. Lorenz System

We use the Lorenz system to generate a dataset consisting of time series with various dynamic behaviors in the phase space.
Specifically, we set σ = 10 and β = 8

3 , while varying ρ to produce five distinct types of trajectories: line-like (ρ = 10),
ring-like (ρ = 20), periodic orbit [1-1] (ρ = 220), periodic orbit [1-1-2-2] (ρ = 152), and chaotic (ρ = 75).

For each ρ, we run simulations starting from the same initial point (−8, 8, 27) for a total of 800 seconds, with a time step of
dt = 1e − 3. We then retain the last 300 seconds, assuming that the dynamic behavior has stabilized. Their trajectories
are visualized in Figure 7. Next, we construct a dataset by extracting observations from these trajectories. Specifically, we
randomly clip 20-second segments and generate 30 time series instances, resulting in a total of 150 samples. Each sample
represents the system’s evolution over 20,000 timesteps in R3.

We apply KoopSTD to first transform the data by STFT with a window length of 500 and a hop length of 1. Next, we fit
the DMD model and preserve only the 10 eigenpairs of the approximated Koopman operator with the minimum spectral
residuals for the subsequent pairwise dissimilarity computation.
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Figure 8. The trajectories of single-trial samples (faint) and their condition-averaged counterparts (bold) for three Perceptual Decision-
making attractors (reproduced from (Ostrow et al., 2024)). The background black arrows indicate the vector field of each attractor system.

C.3. Perceptual Decision-making Attractors

We visualize the single-trial samples’ trajectories on the 2D space alongside their condition-average, red and blue respectively
denote different processes for making different decisions. While the condition-averaged trajectories of the three attractor
systems are optimized to appear nearly indistinguishable (detailed implementation refer to (Galgali et al., 2023; Ostrow
et al., 2024)), their underlying dynamics are markedly different, as highlighted by the vector fields (background arrows).
Specifically, the vector field of a bistable attractor has two stable fixed points (representing two decisions), with trajectories
converging toward one of these points based on initial conditions. In contrast, a line attractor’s vector field directs the
dynamics along a specific trajectory, with no tendency to diverge. A point attractor, on the other hand, has a vector field that
points inward toward a single fixed point, indicating that all trajectories globally converge to this point.

The dataset comprises 150 attractor systems, each with 100 trials, where each trial consists of two conditions evolving for
10,000 timesteps in R2. The proposed KoopSTD effectively separates three distinct attractor systems using the STFT with a
window size of 1,024, and a hop length of 128. Additionally, we retain the top 5 eigenpairs from the fitted operator matrix
obtained via DMD.

C.4. 3-bit Flip-Flop Recurrent Neural Networks

In the 3-bit Flip-Flop task, as shown by Figure 9, three separate input streams (grey) deliver occasional pulses with values of
-1 or 1 at random intervals. The network is required to retain the most recent pulse value from each channel and continuously
output it until a new pulse arrives (dark green solid line), triggering a state switch. The task tests the network’s ability to
maintain memory over time while adapting to unpredictable and asynchronous changes, pushing its capacity for dynamic
memory retention and updating.

We train a population of RNNs with three network architectures: a vanilla RNN with tanh activation, an LSTM, and a GRU.
Each network consists of a single recurrent layer with 256 hidden units, followed by a linear readout layer. Following the
experimental setup in (Schuessler et al., 2024), we inject zero-mean, isotropic white noise into the hidden states during
training to promote robust and stable recurrent dynamics. The initial recurrent and output weights are drawn from centered
normal distributions. Each network is trained with a batch size of 32 and a learning rate of 0.01, with different random seeds.
To ensure task performance, we only save checkpoints where the MSE falls below 0.001.

According to (Maheswaranathan et al., 2019), while the geometry of RNN activations can be highly sensitive to variations in
network architectures, the underlying computational dynamics—such as the topological structure of fixed points—often
remain consistent. To explore this, we visualize the hidden states of well-trained RNNs with different architectures in
Figure 10. By reducing the dimensionality to three using PCA, we observe that the resulting trajectories exhibit qualitatively
similar structures across architectures, tracing the corners of a three-dimensional cube. This cube is further characterized by
eight stable fixed points (Golub & Sussillo, 2018), highlighted in black.

16



KoopSTD: Dynamical similarity measurement via approximating Koopman Spectrum with Timescale Decoupling

Figure 9. Illustration of the input-output scheme for the 3-bit Flip-Flop task. The input pulse sequence is shown in dark gray, the ground
truth is represented by a dark green solid line, and the output of a well-trained model is depicted by a yellow dashed line.

Figure 10. The PC3 hidden states trajectories of Vanilla RNN, LSTM, and GRU when solving 3-bit Flip-Flop task.
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For each trained network, we extract hidden layer outputs using the same batch of inputs. The hidden representation for
each trial is denoted as h ∈ R125×256, where 125 corresponds to the time dimension. We present the result of KoopSTD
with parameters l = 10, s = 1, r = 10; however, our method remains robust to hyperparameter selection.

C.5. Auditory Cortex

Our experiments utilize the Narratives dataset (Nastase et al., 2021), a comprehensive collection of auditory story-listening
fMRI data comprising recordings from 345 unique participants across 28 naturalistic spoken stories, each lasting approx-
imately 3 to 56 minutes. For details on data acquisition and preprocessing please refer to the original paper. To analyze
auditory cortical regions, we extract fMRI recordings from five areas—A1, LBelt, MBelt, PBelt, and RI—defined on the
cortical surface in fsaverage6 space using a multimodal cortical parcellation. For simplicity, we use a subset of the data,
specifically from 68 participants listening to the ”Pieman” story, which has a duration of 450 seconds. With an fMRI
sampling rate of 0.67 Hz, each recording consists of 300 time points.

With l = 10, s = 1, r = 50, the result illustrated in Figure 4 by KoopSTD can be reproduced.

C.6. Large Language Models

GPT-2. GPT-2 (Generative Pre-trained Transformer 2) (Radford et al., 2019) is a large-scale language model developed by
OpenAI, designed for natural language understanding and text generation. It is based on the Transformer architecture and
trained on a diverse corpus of internet text using unsupervised learning. GPT-2 features multiple model sizes, ranging from
124M to 1.5B parameters, and generates coherent, contextually relevant text given a prompt. Unlike traditional task-specific
models, GPT-2 excels in zero-shot and few-shot learning, demonstrating strong performance across various NLP tasks
without fine-tuning. To measure the dynamic discrepancy between models, we apply KoopSTD on the hidden representation
of their last layer, using the hyperparameters l = 150, s = 1, r = 10.

LLaMA. LLaMA (Large Language Model Meta AI) (Dubey et al., 2024) is a family of open-weight language models
developed by Meta, designed for efficient and scalable natural language processing. It offers strong performance across
various NLP tasks while being more accessible and resource-efficient than many proprietary models. In our experiments, we
use LLaMA 3.2 for the 1B and 3B models and LLaMA 3.1 for the 8B model. The measured results by KoopSTD presented
in Figure 6 can be reproduced by the hyperparameters l = 50, s = 1, r = 10.

D. Detailed Experimental Results

Structural functional relationship between cortical regions. To better illustrate the functional-structural coupling patterns
in the auditory cortex identified by KoopSTD in Sec. 4.4, we present the anatomical organization and myelin distribution of
early auditory regions in Figure 11. This structural homogeneity aligns with their shared functional properties observed in
our analysis, where A1, MBelt and LBelt areas are characterized by comparable high myelin content (shown in red-yellow).
In contrast, RI and PBelt regions exhibit distinct myelination patterns, suggesting their relative independence in both
structural and functional aspects. This anatomical evidence, particularly the myelin distribution pattern, provides additional
support for our KoopSTD-based findings regarding the hierarchical organization and functional coupling within the auditory
cortical network.

E. Ablation Study
We demonstrate that KoopSTD better captures system dynamics compared to the recent HAVOK-based DSA (Ostrow et al.,
2024), which relies on truncated-rank regression of time-delay embeddings (detailed in C.1). KoopSTD’s advantage stems
from two key aspects: decomposing system transitions across multiple timescales using time-frequency transformation, and
filtering out spurious modes based on their spectral residuals. To validate, we conduct ablation studies on comparing different
trajectories generated by the Lorenz system using HAVOK-based DSA, time-delay embedding with residual-controlled
Koopman spectrum (an ablation), time-frequency transformation with truncated Koopman spectrum (another ablation), and
the proposed KoopSTD.

Figure 12(a) demonstrates that both time-frequency transformation and residual-controlled Koopman spectrum contribute to
KoopSTD’s performance on the Lorenz system. By filtering spurious dynamical modes, KoopSTD successfully distinguishes
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Figure 11. The early auditory regions are displayed on a folding map in Panel A, while Panel B presents myelin mapping scaled from 4%
to 96% to emphasize variations in myelin density within the heavily myelinated auditory cortical regions (reproduced from (Glasser et al.,
2016)).

between line-like and ring-like trajectories. This step results in a more concentrated eigenvalue distribution on the complex
plane (i.e., ring-like trajectory denoted by green triangles, Figure 12(b)), preserving only the modes that capture essential
dynamics. Meanwhile, the time-frequency transformation effectively reveals the disparity between complex dynamical
patterns through the multi-scale temporal analysis (i.e., chaotic behavior denoted by red circles, periodic orbits denoted by
yellow triangles and purple squares, Figure 12(c)).
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Figure 12. Ablation study on time-frequency transformation and residual-controlled Koopman spectrum, each columns from left to right
corresponds to one of the ablations.
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