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Abstract

Protein structure prediction often hinges on multiple sequence alignments (MSAs),
which underperform on low-homology and orphan proteins. We introduce PLAME,
a lightweight MSA design framework that leverages evolutionary embeddings from
pretrained protein language models to generate MSAs that better support down-
stream folding. PLAME couples these embeddings with a conservation–diversity
loss that balances agreement on conserved positions with coverage of plausible
sequence variation. Beyond generation, we develop (i) an MSA selection strategy
to filter high-quality candidates and (ii) a sequence-quality metric that is comple-
mentary to depth-based measures and predictive of folding gains. On AlphaFold2
low-homology/orphan benchmarks, PLAME delivers state-of-the-art improvements
in structure accuracy (e.g., lDDT/TM-score), with consistent gains when paired
with AlphaFold3. Ablations isolate the benefits of the selection strategy, and case
studies elucidate how MSA characteristics shape AlphaFold confidence and error
modes. Finally, we show PLAME functions as a lightweight adapter, enabling
ESMFold to approach AlphaFold2-level accuracy while retaining ESMFold-like
inference speed. PLAME thus provides a practical path to high-quality folding for
proteins lacking strong evolutionary neighbors.

1 Introduction

Understanding complex and variable protein structures is central to target identification, validation,
and drug–target interaction studies in drug design [1, 2, 3]. Recent advances such as AlphaFold
have transformed structural biology, achieving near-experimental accuracy across a wide range of
proteins and complexes [3, 4, 5]. However, most state-of-the-art folding pipelines depend critically on
evolutionary information encoded in Multiple Sequence Alignments (MSAs) [3, 5]. As a consequence,
their accuracy tracks the quality and depth of the available MSAs, leading to failure modes for low-
homology families and orphan proteins where evolutionary neighbors are sparse or absent [6, 7]. In
practice, while MSA depth (e.g., effective sequence count) often correlates with predicted confidence
(such as pLDDT), this relationship becomes highly unstable in sparse regimes where a few noisy or
misaligned sequences can dominate the signal.

Historically, two classes of techniques have been used to mitigate weak homology. Physics-based
modeling seeks low-energy conformations under hand-crafted or learned force fields, but is often
computationally intensive and limited by approximations in the energy landscape [8, 9]. Template-
based approaches leverage homology detection and profile–profile alignment to transfer structural
priors from known folds [10, 11], yet degrade in regimes with poor evolutionary signal and are thus
ill-suited to orphan proteins. These limitations have motivated data-driven strategies focused on
improving the MSA itself rather than only the downstream folding network.
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Recent MSA design methods fall broadly into two lines (Figure 1). Sequence-space inpainting
approaches (e.g., MSA Generator, EvoGen) complete or augment partial alignments by learning
patterns directly in the discrete sequence space, aiming to reconstruct evolutionary constraints from
observed MSAs [12, 13]. Prompt-based conditional generation (e.g., MSAGPT, EvoDiff) uses
pretrained models conditioned on MSA-style prompts to synthesize additional sequences [14, 15].
These approaches can deepen alignments and improve folding when homologs exist. An orthogonal
line of work bypasses explicit MSAs by constructing implicit evolutionary representations from single
sequences via large protein language models, as in ESMFold [16]. While MSA-free models avoid the
homology bottleneck, they also forgo explicit template usage and enhanced homology signals, which
can cap ultimate folding accuracy in challenging regimes.
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Category I: Sequence space inpainting
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Category II: Prompt-based conditional generation

Category III: Evolution space de novo generation
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Figure 1: Taxonomy of MSA designers. Prior work
models the discrete MSA distribution via sequence
inpainting or prompt-based generation. PLAME
operates in an evolutionary embedding space to de
novo generate MSAs without requiring sequence
prompts.

Despite progress, two gaps remain for MSA
design aimed at improving folding. (i) Bi-
ased supervision: Methods trained primarily
on extant MSA databases inherit coverage bi-
ases toward well-studied families, offering lim-
ited guidance for low-homology and orphan
proteins. This restricts the learned evolution-
ary manifold and hampers generalization ex-
actly where better MSAs are most needed. (ii)
Weak alignment–folding linkage: There is lim-
ited understanding—and few lightweight met-
rics—connecting MSA characteristics to down-
stream folding outcomes. As a result, generation
objectives (e.g., likelihood in sequence space)
can be misaligned with what most improves
structure accuracy. While fine-tuning folding
models with generated data (e.g., MSAGPT) par-
tially closes the loop [14], the compute cost is
high and does not yield general, model-agnostic
criteria for selecting helpful MSAs. Closing
this loop by retraining or adapting a folding
model for each candidate MSA is prohibitive
at scale, preventing iterative design-and-select
cycles across large target sets.

We introduce PLAME (PLm Aligner for MSA
Enhancement), a lightweight MSA designer tar-
geted at low-homology and orphan proteins.
PLAME departs from discrete sequence modeling and instead generates in an evolutionary embed-
ding space derived from pretrained protein language models, then decodes to MSAs for downstream
folding. This design enables PLAME to synthesize plausible evolutionary neighborhoods even when
observed homologs are scarce, while remaining compatible with template-using pipelines.

• Enriched evolutionary spaces. PLAME conditions on evolutionary embeddings from
pretrained protein language models [17, 18, 19], providing richer contextual signals than
sparse MSAs for low-homology targets. We introduce a conservation–diversity loss that
explicitly balances agreement at conserved positions with appropriate sequence variability,
steering generation toward biologically plausible and alignment-friendly MSAs.

• Linking alignment to folding. We propose a complementary sequence-quality assessment
metric that captures alignment properties predictive of folding gains, and we operationalize
these insights with HiFiAD (High-Fidelity Appropriate Diversity), an MSA selection strategy
that filters candidates to maximize downstream structure accuracy.

• Broad, model-agnostic validation. Across challenging low-homology and orphan datasets,
PLAME improves folding accuracy with both AlphaFold2 and AlphaFold3. Ablations
isolate the effects of the conservation–diversity loss and HiFiAD on MSA quality and
folding outcomes, and case studies spanning general and de novo proteins elucidate how
specific MSA characteristics modulate AlphaFold confidence and error modes.
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Figure 2: Overview of PLAME framework. PLAME captures ESM-2 evolutionary representations,
generating MSAs for augmenting the original MSAs. The augmented MSAs serve as the homology
template for folding softwares for folding enhancement. In each block of the T5-architecture,
additional row-attention and col-attention are applied to capture co-evolutionary information.

2 Method

2.1 Problem Formulation

Protein structure prediction relies heavily on high-quality MSAs to provide evolutionary information,
but the accuracy of folding software Fω significantly drops when MSAs are sparse or insufficient.
Given proteins P = {s,x,M}, where s ∈ S are query sequences, x ∈ X are 3D structures, and
M = {m1,m2, . . . ,mN} ∈ M are MSAs with each mi as an aligned homologous sequence. The
goal of MSA design models pθ : M → M is designing augmented MSAs Maug that enhances
evolutionary information to obtain more accurate structures x′ using folding software Fω .

M′ = pθ(M), x′ = Fω(s,Maug) (1)

where the augmented MSAs are composed of original MSAs M and generated MSAs M′, denoted
as Maug = {M,M′}. The quality of the enhanced structures is evaluated using several metrics,
including RMSD, TM-score, and pLDDT.

The key to high-fidelity MSA generation lies in constructing an informative evolutionary distribution
zevo, which serves as the foundation for generating augmented MSAs Maug. Current methods utilize
deep neural networks fθ to learn hidden evolutionary distributions directly from existing MSAs.

zevo = fθ(M) (2)

However, relying solely on sequence-level information from MSAs fails to capture the complete
evolutionary landscape, particularly when MSA coverage is sparse or incomplete. To overcome
this limitation, we propose an evolutionary space based on evolutionary embeddings derived from
pretrained protein language models (PLMs) gϕ.

zevo = fθ(gϕ(s)) (3)

2.2 Model Architecture

PLAME employs an encoder-decoder transformer architecture similar to MSA Transformer [20],
with adjustments to the T5 block structure [21]. The encoder and decoder incorporate additional
row-wise and column-wise attention mechanisms, designed to better capture evolutionary patterns in
MSA data (detailed in Fig 2). Additional mechanisms are introduced as follows.

Row Attention The row attention mechanism models inter-sequence dependencies within the
evolutionary space, summarizing sequence relationships across the depth of the input representation.
Given an input tensor Henc ∈ RL×N×D×h, where L is the sequence length, N is the number of
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MSAs, D is the depth, and h is the hidden dimension, a global representation Hr is computed by
averaging the hidden states along the depth dimension:

Hr =
1

D

D∑
d=1

Hd
enc, Hr ∈ RL×N×h. (4)

Here, Hr encodes the evolutionary space, facilitating cross-attention during decoding. The cross-row
attention (Row-Attn) is defined as:

Row-Attn(Qr,Kr,Vr) = softmax
(
QrK

⊤
r√

h

)
Vr. (5)

where Qr,Kr,Vr denote the Query, Key, and Value matrices, respectively.

Column Attention Column attention captures conservation patterns across columns in the MSA,
focusing on evolutionary signals at specific positions. To implement this mechanism, the input
representation matrix Xdec ∈ RD×N×L×h is first transposed to X⊤

dec ∈ RL×N×D×h. The self and
cross-column attention mechanisms operate on this transformed representation.

For cross-column attention, the query, key, and value matrices Qc,Kc,Vc and their corresponding
projection weights Wq,Wk,Wv are defined as:

Qc = X⊤
decWq, Kc = H⊤

encWk, Vc = H⊤
encWv. (6)

The column attention is computed as:

Col-Att(Qc,Kc,Vc) =

(
softmax

(
QcK

⊤
c√

h

)
Vc

)⊤

(7)

Generation & Inference In our implementation, ESM-2 (gϕ) encodes the query sequence s into
high-dimensional evolutionary embeddings, denoted as Hinput. These embeddings are processed by
the encoder through N layers of modified T5 blocks, iteratively refining contextualized representa-
tions:

H
(l)
Enc = Enc(l)(H(l−1)), l = 1, . . . , N, H(0) = Hr. (8)

The final encoder output, H(N), captures comprehensive sequence context and is passed to the
decoder for autoregressive generation. The decoder generates tokens sequentially, conditioned on the
encoder output H(N)

Enc and previously generated tokens:

yt = Dec(y<t,H
(N)
Enc ). (9)

The T5 blocks with row and column attention enable the decoder to compute output embeddings,
which are then passed through a softmax layer to produce token probabilities for the next position.

2.3 Conservation-Diversity Training Loss

We introduce a position-aware causal inference approach for diverse MSA generation, integrating
a PSSM-Weighted Cross-Entropy Loss and a Diversity Regularization Loss to balance focus on
conserved regions with sampling diversity.

PSSM-Weighted Cross Entropy (PCE) Loss The PSSM-Weighted Cross Entropy Loss empha-
sizes accurate predictions in conserved regions of the MSA, which are critical for maintaining protein
structure and function. For a single sequence, it is defined as:

Lseq = −
L∑

l=1

wl · log p(yl | y<l), (10)

where L is the sequence length, yl is the true label at position l, and p(yl | y<l) is the predicted
probability of yl.
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The position-specific weights wl are derived from the Position-Specific Scoring Matrix (PSSM) and
reflect the conservation level at each position. These weights are normalized to the range [1−δ, 1+δ],
where δ controls sensitivity to conservation. Specifically,

wl = 1 + δ · freql − min(freq)
max(freq)− min(freq)

. (11)

where freq denotes the residue-frequency of 20 types of amino acids. During model training, we
apply δ = 0.5, assigning higher weights to conserved positions and lower weights to less conserved
ones. For a batch of N sequences, the PCE loss averages over all sequences and positions:

LPCE = − 1

N

N∑
j=1

Lj∑
l=1

w
(j)
l · log p(y(j)l | y(j)<l ), (12)

where Lj is the length of the j-th sequence, and w
(j)
l is the weight for position l in sequence j. This

loss emphasizes conserved regions while allowing flexibility in less conserved areas.

Diversity Regularization (DIRE) Loss The Diversity Regularization Loss promotes biological
diversity in MSAs by maximizing the entropy of predicted amino acid distributions. For a single
sequence, the entropy at position l is calculated as:

Hl = −
∑
a∈A

p(a | y<l) log p(a | y<l), (13)

where p(a | y<l) is the predicted probability of amino acid a at position l, and A is the set of all
amino acids. To encourage diversity across a batch of N sequences, we compute the average entropy
over all positions and sequences:

Ldiversity = − 1

N

N∑
j=1

1

Lj

Lj∑
l=1

H
(j)
l , (14)

where Lj is the length of sequence j, and H
(j)
l is the entropy at position l in sequence j. This loss

encourages the model to capture the natural amino acid diversity in homologous sequences.

Combined Loss Function The combined loss function balances conservation and diversity:

L = α · LPCE + (1− α) · LDIRE, (15)

where α ∈ [0, 1] controls the trade-off between the two terms. We set α = 0.9 in our experiments,
prioritizing conservation while maintaining sufficient diversity. This design ensures the generated
MSAs accurately capture conserved regions and retain natural sequence variability. Our theoretical
analysis in Appendix A demonstrates that PCE Loss enhances the model’s understanding of evolu-
tionary information (MSA profile), while DIRE Loss functions as a regularizer to prevent neglect of
variable regions.

2.4 MSA Selection Method – HiFiAD

Existing MSA generation models struggle in ensuring the quality of generated MSAs. Different
methods capture MSA distributions with varying effectiveness, and excessive concatenation of virtual
MSAs can degrade the quality of the original MSA. This, in turn, restricts the ability of protein
structure prediction software to interpret evolutionary distributions. While MSAGPT has explored
MSA selection in its ablation studies, existing approaches lack a clear definition of MSA quality and
fail to propose systematic selection methods based on sequence-level quality metrics [14].

During MSA augmentation, virtual MSAs inevitably introduce noise, limiting the performance of
folding software. A common issue with current models is the generation of over-conserved sequences
that closely resemble the query sequence. When these sequences are over-concatenated, they distort
the evolutionary distribution of the original MSA. This issue was highlighted in MSAGPT’s studies,
which showed that performance plateaued once the number of generated MSAs exceeded 32. To
address this, balancing recovery rate distributions by selecting sequences with both high and low
recovery rates has proven more effective than focusing exclusively on one or the other.
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To address these issues, we propose HiFiAD to balance fidelity and diversity for MSA selection while
maintaining efficiency. For orphan proteins without original MSAs (termed zero-shot cases), we
select the top-k sequences with the highest SBLOSUM, along with sequences from the top and bottom
k/2 of the recovery rate distribution. The BLOSUM substitution score is calculated as:

SBLOSUM(mi, s) =

L∑
j=1

B(sj ,mij), ∀mi ∈ M, (16)

where B is the BLOSUM matrix (BLOSUM62 in our case); sj represents the j-th amino acid of
sequence S with length L, and mij refers to the j-th position of the i-th MSA sequence with length L.
For proteins with existing MSAs (termed few-shot cases), we limit the total number of concatenated
MSAs to reduce noise in the original MSA distribution. Specifically, we cap the number of MSA
sequences Naugmax

at max(16, 2N). If fewer than Naugmax
virtual MSAs are available, we retain all

generated MSAs to ensure sufficient diversity for downstream analysis.

Table 1: Performance metrics across different modes and models. The best results in each folding
mode are highlighted in bold. Zero and Few indicate zero-shot (proteins without MSAs) and few-shot
cases (proteins with existing MSAs), respectively.

pLDDT GDT TMscore RMSD LDDT pTM

Zero Few Zero Few Zero Few Zero Few Zero Few Zero Few
ESMFold 66.26 62.62 0.6 0.53 0.6 0.57 9.58 12.04 0.62 0.59 / /

Mode1
AF2 MSA 60.07 62.14 0.50 0.52 0.50 0.57 12.34 12.16 0.54 0.58 0.44 0.49
EvoDiff 58.68 61.83 0.46 0.50 0.46 0.54 13.81 12.95 0.50 0.56 0.40 0.48
MSAGPT 59.81 61.18 0.48 0.51 0.48 0.56 12.62 12.35 0.53 0.57 0.43 0.48
PLAME 66.54 66.08 0.53 0.54 0.53 0.58 11.48 12.14 0.57 0.60 0.49 0.52

Mode2
AF2 MSA 66.56 66.32 0.51 0.55 0.52 0.60 12.06 11.84 0.55 0.61 / /
EvoDiff 61.98 65.83 0.48 0.53 0.48 0.58 14.23 11.82 0.52 0.59 / /
MSAGPT 64.88 65.96 0.51 0.56 0.51 0.60 12.60 11.90 0.55 0.61 / /
PLAME 67.77 67.48 0.53 0.55 0.54 0.60 12.62 11.90 0.57 0.61 / /

Mode3
AF2 MSA 70.31 69.61 0.57 0.60 0.57 0.64 10.53 10.24 0.60 0.65 / /
EvoDiff 64.39 68.54 0.51 0.57 0.51 0.61 13.20 10.81 0.54 0.62 / /
MSAGPT 68.39 69.30 0.57 0.60 0.56 0.64 11.05 10.40 0.59 0.64 / /
PLAME 71.50 70.48 0.58 0.59 0.58 0.64 11.41 10.62 0.60 0.64 / /

3 Experiment

Baselines To evaluate PLAME’s capability in generating high-fidelity and diverse MSAs, we
compared it with several state-of-the-art AI-based MSA generation methods and AlphaFold2’s MSA
pipeline [3]. The baselines include AF2 MSA, and open-source methods including EvoDiff and
MSAGPT [14, 15]. Additionally, to assess the potential advantages of leveraging AlphaFold2’s
knowledge base in protein structure prediction, we included ESMFold [16], an MSA-free folding
software, as reference.

Evaluation Metric We apply the following metrics for structure assessment: 1) local metrics
including pLDDT and LDDT; 2) global metrics including GDT, TM-Score, pTM, and RMSD. To
comprehensively evaluate the effectiveness of augmented MSAs, we tested three AF2 folding mode,
progressing from computationally efficient, basic settings to more comprehensive configurations: 1)
Mode1: Folding using pTM-3 model without using templates; 2) Mode2: Folding using the default 5
models without using templates; 3) Mode3: Folding using the default 5 models with templates. To
evaluate the quality of generated multiple sequence alignments (MSAs), we employ four sequence-
based metrics to quantify alignment fidelity and diversity: 1) Conservation Score measures the
degree of residue conservation at each alignment position. It is defined as Ci =

Freqmax(i)
N , where
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Freqmax(i) is the frequency of the most common residue at position i, and N is the total number of
sequences. A high score indicates strong conservation, often reflecting functional or evolutionary
constraints, while a low score suggests positional variability. 2) Gap Proportion quantifies the
fraction of gaps at each alignment position, calculated as Gi =

G(i)
N , where G(i) is the number of

gaps at position i. Lower values indicate better alignment quality with fewer missing data or alignment
errors. 3) Substitution Compatibility assesses the evolutionary plausibility of aligned residues using
BLOSUM62 substitution scores SBLOSUM (Eq. 16). Higher scores indicate evolutionary compatibility
and alignment biological relevance. 4) Alignment Entropy captures residue diversity at each position
using Shannon entropy:

Hi = −
∑

r∈{Ri}

p(r) log2 p(r),

where {Ri} is the set of unique residues at position i, and p(r) = count(r)
N is the relative frequency

of residue r. Higher entropy signifies greater positional diversity, indicating weaker functional
constraints, whereas lower entropy denotes stronger conservation, often associated with functional or
evolutionary significance.

Datasets For the training dataset, we use the PDB and UniClust30 subsets from the open-source
OpenProteinSet as our data source [22]. The pre-searched MSAs from OpenFold training are also
included. We only retain data with at least 64 MSA sequences. To avoid overlap with the test cases,
we removed sequences with over 90% similarity using MMSeqs based on UniClust30 clustering
results [23, 24]. This process yields an initial dataset of 293,979 samples, which are split into training
and validation sets with a 90:10 ratio. For the test dataset, we adopt the curated test cases from
MSAGPT [14], which consist of 200 protein samples from three benchmarks: CASP14&15, CAMEO
[25], and PDB [26]. Any > 90% redundancy between the test cases and training dataset is eliminated.

3.1 PLAME as High-quality MSA Designer

General folding performance We conducted experiments across three AF2 folding modes and
evaluated six folding-related metrics. Results are shown in Table 1. We analyze the quality of
MSAs generated by different methods and their performance in various scenarios. 1) Performance
Superiority: PLAME achieved state-of-the-art performance on most metrics across all modes.
This demonstrates that PLAME-generated MSAs effectively enhance AF2 folding, particularly in
scenarios involving low-homology or orphan proteins, where significant improvements in prediction
accuracy were observed. In contrast, EvoDiff and MSAGPT struggled to produce high-quality
MSAs under these conditions. By leveraging the evolutionary latent space provided by ESM-2,
PLAME generated biologically meaningful virtual MSAs, outperforming baselines on key metrics
such as pLDDT and RMSD. 2) Diminishing Returns: As more advanced folding configurations
were employed (e.g., with more powerful AF2 models or the inclusion of templates), the benefits
of MSA augmentation gradually decreased. In Mode3, where templates were used, certain metrics
exhibit performance decrease. This is likely because template information already captures much
of the necessary sequence and evolutionary information, reducing the marginal utility of additional
MSA augmentation. Furthermore, the noise introduced by low-quality MSAs can be amplified in
stronger baselines, further impacting performance. 3) Metric Discrepancies: The enhancement
effects across different metrics were not entirely consistent. For instance, the trends for pLDDT
and RMSD diverged. While pLDDT, as a confidence metric, reflects the model’s confidence in
its predictions, RMSD measures the global deviation of the predicted structure from the ground
truth. MSA augmentation improved local prediction quality (leading to higher pLDDT), but had
limited impact on reducing global structural deviation (resulting in minimal RMSD improvement).
Nevertheless, pLDDT alone is sufficient to demonstrate the high quality of the generated MSAs. 4)
Noise Issues: EvoDiff and MSAGPT produced MSAs that consistently underperformed compared to
the original AF2 MSAs across all modes. This was particularly evident in low-homology protein
scenarios, where the generated MSAs failed to accurately capture evolutionary distributions and
often included irrelevant sequences. When concatenated with the original AF2 MSAs, these low-
quality sequences introduced additional noise, disrupting the model’s inference. This aligns with
the hypothesis presented in Section 3.4, where low-quality MSAs were predicted to introduce noise,
ultimately impairing folding performance. 5) Few/Zero-shot Consistency: In Few-shot scenarios,
EvoDiff and MSAGPT performed relatively better due to the presence of initial MSAs that provided
additional homology information to guide the generation process. In contrast, PLAME does not
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rely on initial MSA searches and directly generates high-quality MSAs through its evolutionary
latent space. This enables PLAME to excel in Zero-shot scenarios while maintaining consistent
performance in Few-shot cases. This advantage significantly reduces runtime costs while ensuring
robust enhancements across all scenarios.

3.2 PLAME as MSA-free ESMFold Adapter to AlphaFold2

The comparative analysis between PLAME and ESM-Fold demonstrates PLAME’s growing advan-
tage as the folding modes become more advanced. In Mode1 and Mode2, PLAME outperforms
ESMFold in key metrics such as pLDDT and RMSD, with obvious gains in pLDDT. In Mode3, the
introduction of structural templates amplifies PLAME’s advantage, achieving better results across
all metrics. For instance, pLDDT of PLAME increases from 66.54 to 71.50, surpassing ESMFold’s
66.26. These results validate PLAME’s ability to merge ESMFold’s computational efficiency with
AF2’s performance by generating high-quality virtual MSAs. Acting as an adaptive network, PLAME
transforms ESMFold’s single-sequence inference into AF2’s MSA-based folding, integrating evolu-
tionary information to enhance prediction accuracy. Thus, PLAME overcomes ESMFold’s limitations
by introducing virtual MSA generation, achieving significant improvements in Mode3 and providing
an efficient and accurate solution for protein structure prediction.

Table 2: Ablation study over different MSA selection approaches.
pLDDT GDT TMscore RMSD LDDT pTM

Zero Few Zero Few Zero Few Zero Few Zero Few Zero Few
Random-16 63.61 62.63 0.52 0.51 0.52 0.56 12.01 12.67 0.55 0.58 0.46 0.49
Blosum-8 61.04 62.71 0.5 0.52 0.51 0.57 12.53 12.69 0.55 0.58 0.45 0.50
Blosum-32 62.97 62.40 0.50 0.50 0.51 0.55 12.28 12.84 0.55 0.57 0.45 0.48
Top-Rec-16 62.04 62.93 0.51 0.51 0.51 0.55 12.15 12.48 0.55 0.57 0.45 0.49
Top-down-Rec-16 63.43 63.10 0.52 0.52 0.51 0.57 11.97 12.15 0.55 0.58 0.46 0.49
HiFiAD 66.54 66.08 0.53 0.54 0.53 0.58 11.48 12.14 0.57 0.60 0.49 0.52

3.3 Ablation on Selection Methods

To evaluate the impact of MSA quality (2.4), we perform an ablation study using different MSA
selection strategies. The results are summarized in Table 2. The selection methods are based on
sequence similarity metrics (Rec) and BLOSUM substitution scores (BLOSUM). Additionally, Top
and Down refer to the highest- and lowest-scoring cases. The experiments lead to the following
key observations. 1) Effective HiFiAD filtering: HiFiAD achieves superior performance across
all metrics compared to other filtering methods, demonstrating that the combination of high fidelity
and balanced diversity is essential. 2) High-fidelity: Compared to the Top-down-Rec method and
random selection, HiFiAD identifies more high-fidelity cases, validating the importance of leveraging
in-distribution MSAs. 3) Diverse samples: Compared to BLOSUM-based methods and Top-Rec,
HiFiAD selects more diverse samples. This balanced diversity prevents the conservation distribution
from being overly deterministic, which could potentially correct the augmented MSA distribution.
Among sequence-metric-based filtering methods, HiFiAD dynamically adjusts to Few- and Zero-shot
scenarios, as well as varying MSA quality levels, making it a simple yet effective approach for MSA
selection. More ablation results are shown in Table 9 in Appendix.

4 Conclusion

We introduce PLAME, the first model to leverage evolutionary embeddings for MSA sequence
generation. PLAME bridges single-sequence inference and MSA-based methods, improving protein
folding performance. PLAME-generated MSAs outperform existing methods in conservation and
diversity metrics, achieving significant improvements in structure prediction accuracy across protein
families. PLAME serves as both an MSA augmenter and an AlphaFold adapter, eliminating MSA
searches while providing fast, accurate, scalable structure prediction. Our quality metrics and
experiments reveal the relationship between MSA characteristics and folding performance, clarifying
how sequence information translates to structural accuracy.
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A Proof of Theorem

We provide additional statements to demonstrate the superiority of the Conservation-Diversity
Training Loss. Firstly, we demonstrate that the PCE Loss as a conservation-aware weighted loss by
position in the perspective of MSA profiles.

Lemma 1. Let P (l, a) be the empirical amino–acid distribution for residue a∈A, and let Qθ(l, a)
denote the model distribution at the residue (i.e. the conditional probability pθ(a | y<l) after taking
expectation over prefixes). Assign each column a weight wl ∈ [ 1 − δ, 1 + δ ] obtained from its
conservation score. Then PCE loss directs optimization preferentially toward conserved positions by
minimizing a weighted KL divergence and scaling gradient magnitudes in proportion to wl.

Proof. For a sufficiently large set of N homologous sequences sampled from P , the expected
cross-entropy loss is

E[LCE] = −
L∑

l=1

∑
a∈A

P (l, a) logQθ(l, a). (17)

Re-expressing each column term as −
∑

a P logQ = H
(
P (l,·)

)
+ KL

(
P (l,·)∥Qθ(l,·)

)
, we obtain

E[LCE] =

L∑
l=1

KL
(
P (l,·)∥Qθ(l,·)

)
+

L∑
l=1

H
(
P (l,·)

)
. (18)

For the PCE loss,

E[LPCE] = −
L∑

l=1

wl

∑
a∈A

P (l, a) logQθ(l, a), (19)

which can analogously be rewritten as the position-wise weighted KL

E[LPCE] =

L∑
l=1

wl KL
(
P (l,·)∥Qθ(l,·)

)
+

L∑
l=1

wl H
(
P (l,·)

)
. (20)

Let θ denote the model parameters. The gradient of the CE loss for column l is

∂LPCE,l

∂θ
= −

∑
a∈A

P (l, a)
1

Qθ(l, a)

∂Qθ(l, a)

∂θ
. (21)

For PCE the gradient is simply scaled by wl:

∂LPCE,l

∂θ
= −wl

∑
a∈A

P (l, a)
1

Qθ(l, a)

∂Qθ(l, a)

∂θ
= wl

∂LCE,l

∂θ
. (22)

Consequently, in highly conserved columns the gradient magnitude is amplified by 1 + δ, whereas in
variable columns (wl ≈ 1− δ) it is attenuated, focusing optimization effort on conserved regions.

Based on the understanding of the PCE Loss, we then demonstrate that PCE Loss is expected to
capture evolutionary information (MSA profile) with less error–measured by KL-Divergence.

Theorem 1. Let P (l, a) be the true amino–acid distribution in column l (l = 1, . . . , L) of an MSA
and let Qθ(l, a) be the distribution produced by a parametrised generative model Qθ. Denote the
column–wise Kullback–Leibler divergence by

KL
(
P (l, ·) ∥Qθ(l, ·)

)
=

∑
a∈A

P (l, a) log
P (l, a)

Qθ(l, a)
. (23)

Let
θ⋆CE = argmin

θ
LCE(θ), θ⋆PCE = argmin

θ
LPCE(θ). (24)
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Define the average profile KL divergence

Davg
KL (θ) :=

1

L

L∑
l=1

KL
(
P (l, ·) ∥Qθ(l, ·)

)
. (25)

Under the assumption that both optimization problems are solved to global optimality, the model
trained with PCE Loss captures the MSA profile with less divergence Davg

KL :

Davg
KL (θ

⋆
PCE) ≤ Davg

KL (θ
⋆
CE) (26)

Proof. Rewrite two losses in the form of KL-Divergence
∑

a P logQ = H
(
P (l, ·)

)
+

KL
(
P (l, ·)∥Qθ(l, ·)

)
, we have:

LCE(θ) = C0 +

L∑
l=1

KL
(
P (l, ·)∥Qθ(l, ·)

)
,

LPCE(θ) = Cw +

L∑
l=1

wl KL
(
P (l, ·)∥Qθ(l, ·)

)
,

(27)

where C0 =
∑

l H(P (l, ·)) and Cw =
∑

l wl H(P (l, ·)) are constants independent of θ. Hence
minimizing LPCE is equivalent to minimizing the weighted KL

Dw(θ) :=

L∑
l=1

wl KL
(
P (l, ·)∥Qθ(l, ·)

)
, θ⋆PCE = argmin

θ
Dw(θ). (28)

Then, since every wl is bounded, we can establish the relations:

(1− δ)

L∑
l=1

KL
(
P (l, ·)∥Qθ(l, ·)

)
≤ Dw(θ) ≤ (1 + δ)

L∑
l=1

KL
(
P (l, ·)∥Qθ(l, ·)

)
. (29)

Dividing by L gives:

(1− δ)Davg
KL (θ) ≤ Dw(θ)

L
≤ (1 + δ)Davg

KL (θ). (∗)

Based on the fact that θ⋆PCE minimizes Dw, denote ∆w := Dw(θ
⋆
CE)−Dw(θ

⋆
PCE) ≥ 0. By applying

(∗) to both optimal parameters and subtracting, we obtain:

(1− δ)
[
Davg

KL (θ
⋆
CE)−Davg

KL (θ
⋆
PCE)

]
≤ ∆w

L
. (30)

Since ∆w ≥ 0 and 1− δ > 0; it is strictly positive whenever ∆w > 0, Therefore,

Davg
KL (θ

⋆
PCE) ≤ Davg

KL (θ
⋆
CE), (31)

which completes the proof.

A natural challenge emerges when applying the PCE Loss—the model tends to accurately capture the
distribution of conserved regions while neglecting the distribution of variable regions. To address this
issue, we demonstrate that the DIRE Loss effectively enhance the modeling in the variable regions.
Theorem 2. For l = 1, . . . , L let P (l, a) denote the empirical amino-acid distribution and Qθ(l, a)
any model. When each amnio acid site is optimized independently, the minimizer is

Q⋆
α(l, a) =

P (l, a)τl∑
b∈A

P (l, b)τl
, τl =

αwl

αwl + (1− α)
∈ (0, 1). (32)

Moreover,
H
(
P (l, ·)

)
≤ H

(
Q⋆

α(l, ·)
)
≤ log |A|, (33)

with the entropy increase largest when wl is small (variable regions). Thus LDIRE counter-acts the
entropy suppression of LPCE and serves as a principled regularizer on variable regions.
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Proof. Since the combined loss Lα sums over amino acid positions, we may analyze a single site
independently, denoting P (a) = P (l, a), Q(a) = Q(l, a) and w = wl. For each site we minimize,
we have

F (Q) = αw
∑
a

P (a) log
P (a)

Q(a)
+ (1− α)

∑
a

Q(a) logQ(a), (34)

subject to the normalization constraint
∑

a Q(a) = 1.

Introducing a Lagrange multiplier λ and setting the derivative with respect to Q(a) to zero yields

−αwP (a)

Q(a)
+ (1− α)

(
1 + logQ(a)

)
+ λ = 0. (35)

Solving this equation reveals a "temperature-like" solution based on τ :

Q(a) ∝ P (a)τ , τ =
αw

αw + (1− α)
∈ (0, 1), (36)

which is exactly the optima Q⋆
α(l, ·) mentioned earlier.

Since 0 < τ < 1, this transformation always increases entropy unless P is already uniform:

H
(
P (l, ·)

)
≤ H

(
Q⋆

α(l, ·)
)

≤ log |A|. (37)

The entropy gain is larger when w is small (in the variable regions). Consequently, the (1−α),LDIRE
term counteracts the over-confidence induced by LPCE in variable regions, serving as an adaptive
entropy-based regularizer.

B Training and Sampling Details

Training Details We trained our model based on a Transformer T5 architecture, incorporating axial
attention and task-specific modifications to enhance performance. The model consists of 12 encoder
layers and 12 decoder layers, with a hidden size of 1024, 12 attention heads, and a feedforward
dimension of 2048. The feedforward projection employs a gated-GELU activation function. During
training, we employed the AdamW optimizer with a learning rate of 5e-5, a weight decay of 1e-5,
and a polynomial decay scheduler with a 1% warmup ratio. Training was conducted on four NVIDIA
A40 GPUs for up to 200,000 steps, with a batch size of 4 per device for both training and evaluation.

Sampling details The sampling process was configured with the following parameters: we generate
16 MSAs for 4 trials per generation. The sampling used a repetition penalty of 1.0, a temperature of
1.0, and top-p sampling with a threshold of 0.95. Beam search was performed with 4 beams and 1
beam group. Sampling was executed on an A40 GPU.

C Related Works

Protein Structure Prediction Protein structure prediction methods fall into three main categories:
physics-based, homology-based, and deep learning approaches. Physics-based methods, such as
AMBER and CHARMM, use molecular physics and energy optimization to simulate protein folding
[9, 27]. While offering detailed folding insights, they are computationally expensive and sensitive
to initial conditions, often yielding suboptimal results [28, 29, 30]. Homology modeling tools, like
Rosetta and HHpred, use MSAs and evolutionary data to predict structures by refining templates
from known experimental structures [8, 10]. These methods perform well with suitable templates but
struggle with orphan proteins and low-homology families [7, 1]. Deep learning-based methods, such
as AlphaFold2 and OmegaFold, use advanced neural architectures and protein templates to achieve
near-experimental accuracy with greater speed and scalability [3, 5, 31]. Despite their success, they
still depend on high-quality MSAs and struggle with low-homology proteins.

AlphaFold-based Enhancement Building on AlphaFold’s success, researchers have developed
methods to refine specific modules, aiming to improve accuracy or efficiency. These advancements
can be grouped into three main categories. The first category focuses on homology expansion
techniques, such as MMSeq2 and DeepMSA2, which expand the evolutionary search space to
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enhance prediction accuracy. However, these methods often slow down inference despite their modest
performance gains [32, 24, 33, 34]. The second category targets search acceleration, with methods
like ColabFold and ESMFold bypassing the MSA search process to enhance computational efficiency.
However, this speedup often results in incomplete evolutionary data, potentially reducing prediction
accuracy [16, 35]. The third category leverages generative models to capture protein homology and
augment input data, especially for orphan proteins and low-homology families. While promising
in specific scenarios, these models struggle with extremely limited evolutionary signals, and their
artificial sequences often deviate from traditional MSA distributions, limiting broader applicability
[15, 13, 12, 14].

D Sequence Quality Assessments

Figure 3: Comparison of sequence-based metrics
for AF2 MSAs and MSAs generated by EvoDiff,
MSAGPT, and PLAME.

To evaluate generated MSA quality, we designed
a set of metrics focusing on MSA fidelity and di-
versity. These metrics aim to investigate which
factors correlate most strongly with protein fold-
ing performance, especially given the lack of
standardized criteria for such evaluations. Our
study provides an initial exploration into this
problem. Figure 3 illustrates the evaluation re-
sults.

PLAME-generated MSAs outperform other
methods on fidelity metrics, with distributions
closest to AF2 MSAs in Conservation Score,
Gap Proportion, and Substitution Compatibility.
Specifically, PLAME achieves higher Conser-
vation Scores and Substitution Compatibility,
reflecting its ability to better capture evolution-
ary and functional constraints. Moreover, its
lower Gap Proportion indicates higher alignment completeness, which can be attributed to the la-
tent evolutionary space providing richer homology information. These results highlight PLAME’s
superior alignment with the evolutionary constraints of the target protein.

We analyzed Alignment Entropy as a measure of diversity. While greater diversity is generally
expected to enhance homologous information, our results show that PLAME’s diversity levels
are closer to those of AF2 MSAs, rather than exceeding methods like EvoDiff. This supports
our assumption in 2.4 that excessive diversity can introduce noise and diminish the information
enrichment effect of generated MSAs. Therefore, achieving a balance between fidelity and moderate
diversity is crucial for MSA generation models that struggle to capture high-quality distributions.

E Extensive Benchmark Results

E.1 Comparison to AI-based MSA Retrieval Methods

We further compare the folding enhancement by MSAs retrieved by AI-based approaches [19].
Without filtering, DHR’s performance is generally higher than AF2 MSA, EvoDiff, and MSAGPT,
demonstrating the effectiveness of applying evolutionary embeddings like ESM2.

Zero/Few pLDDT GDT TMscore RMSD LDDT
DHR Zero 63.64 0.51 0.52 12.04 0.55
DHR Few 62.60 0.52 0.57 11.92 0.59
PLAME Zero 66.54 0.53 0.53 11.48 0.57
PLAME Few 66.08 0.54 0.58 12.14 0.60

Table 3: Comparison of folding enhancement to AI-based MSA retrieval method.
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E.2 Comparison on Inference Speed and Memory Usage

To further demonstrate PLAME’s efficiency, we calculated the inference time and memory cost
of each method. We used ENZYME 1.2.1.50 (EC Number) with length 488 as the test case. The
results show that PLAME achieved the fastest speed among all AI-based methods while consuming
only 4.5GB of memory. The processing speed is comparable to traditional methods like MMSeq2
and AI-based retrieval methods like DHR. Compared to retrieval-based methods, PLAME does not
require downloading or building databases in advance, nor does it need preprocessing steps. This
makes it more lightweight and efficient for deployment.

Method Time per MSA (s) GPU Memory (Gb)
PLAME 0.10 4.5
DHR 0.16 + 358.61 (Alignment) 1.9
MMSeq2 0.48 0.0
MSAGPT 62.46 41.6
EvoDiff 478.24 4.0

Table 4: Comparison on inference speed and memory.

E.3 Ablation on HiFiAD Filtering

To demonstrate the effectiveness of HiFiAD, we conducted ablation experiments on filtering methods
for other baselines. Among the benchmarks, PLAME maintains SOTA performance, and DHR-
HiFiAD and PLAME show comparable performance across multiple metrics. Several metrics of
EvoDiff, MSAGPT, and DHR (AI-based MSA retrieval methods) all demonstrate improvement after
HiFiAD filtering compared to their original filtering methods, which directly proves the benefit of
HiFiAD rules for MSA in AF-series structure prediction. This insight can help future work develop
higher-quality MSA sequences.

Zero/Few pLDDT GDT TMscore RMSD LDDT
DHR-HiFiAD Zero 66.01 0.53 0.53 11.48 0.57
DHR-HiFiAD Few 66.08 0.55 0.60 12.14 0.60
EvoDiff-HifiAD Zero 58.24 0.46 0.46 13.74 0.51
EvoDiff-HifiAD Few 60.89 0.49 0.54 12.39 0.56
MSAGPT-HifiAD Zero 60.16 0.48 0.48 12.54 0.53
MSAGPT-HifiAD Few 62.63 0.52 0.57 12.18 0.59

Table 5: Ablation on HiFiAD filtering.

E.4 Ablation on Protein Length

We listed the performance of PLAME and AF2 MSA in different length ranges, and found that
PLAME shows overall improvement, with the largest improvement in the 100-300 range, followed
by the >300 and <100 ranges. We believe this is due to our MSA training data being mainly
concentrated in the 100-300 length range.

Length Range pLDDT GDT TMscore RMSD LDDT
AF2 MSA <100 71.03 0.64 0.52 7.77 0.61
AF2 MSA 100-300 59.50 0.49 0.53 12.46 0.54
AF2 MSA >300 56.29 0.43 0.51 15.67 0.53
PLAME <100 74.12 0.63 0.52 7.49 0.61
PLAME 100-300 65.55 0.53 0.58 11.58 0.58
PLAME >300 58.31 0.45 0.53 16.16 0.54

Table 6: Ablation on protein length.
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F Extensive Case Studies

F.1 Case Study on Successful Designs

To further explore the key pattern of the MSA augmentation, we provide a series of sequence and
structure visualization in Appendix I. We select representative cases collected from different datasets
and range from different lengths to comprehensive evaluate the samples.

Among these cases, we can generally observe that most generated MSA sequences maintain high
similarity with the query sequence. Furthermore, the generated MSAs provide good enhancement
at the originally conserved sites. This indicates that protein language models can still retain some
evolutionary information even for proteins with low homology, although the diversity they can provide
is more limited due to homology constraints.

Additionally, we identified several patterns in the sampled MSAs that clearly deviate from the original
distribution, such as consecutive gaps (in 8ehb_F), repeated HHHHHH sequences (in 8okw_B),
and repeated SSSSSSSSS (in 7xrl_A). We believe these erroneous generations are related to the
autoregressive generation method, where the model tends to produce excessive hallucinations after
getting trapped in incorrect local probability distributions. We also observed that these failure patterns
occur more frequently in longer sequences, possibly due to insufficient training on cases with greater
length. These represent an area requiring further improvement.

F.2 AlphaFold3 Folding Experiment

To further validate PLAME is an universal MSA generation framework for different folding software,
we conduct extensive experiment on AlphaFold3 [5]. We use the same generated MSAs filtered by
HiFiAD, augmenting the original MSAs for folding enhancement. Results follow the same trend as

pLDDT GDT TMscore RMSD LDDT pTM
AF2 MSA 68.872 0.578 0.596 10.818 0.617 0.529
PLAME 70.887 0.578 0.595 10.740 0.623 0.539

Table 7: Comparison of folding enhancement based on AlphaFold3

AF2 Mode 3. The stronger the folding baseline, the smaller the performance gain. Improvements
are mainly in pLDDT and RMSD, indicating our enhanced MSA primarily improves local structural
regions while preserving the global protein architecture.

F.3 Folding Enhancement on Average Proteins

To probe the effectiveness of PLAME on average proteins, we firstly build a dataset from PDB
validation set with 36 proteins. These protein MSAs don’t have sequence similarity over 90%
compared to the PLAME training set. We randomly employ 32 MSAs for each protein and augment
them with designed MSAs after HiFiAD filtering. The results are shown in Table 8. From the

pLDDT GDT TMscore RMSD LDDT pTM
AF2 MSA 83.156 0.767 0.785 5.243 0.753 0.718
PLAME 83.328 0.775 0.795 5.028 0.757 0.723

Table 8: Comparison of folding enhancement on average proteins

experimental results, the effects of augmentation align with our initial assumptions, demonstrating
modest improvements. While the overall topological structure remains unchanged, minor adjustments
can be observed in the structural details. As reported in MSAGPT, performance gains approach
saturation between 16 and 32 augmentations. The relatively small improvements observed when
applying our method to the average protein MSA can be attributed to the fact that these original
MSAs already provide sufficient evolutionary information to AlphaFold2’s MSA Transformer, thus
limiting the potential impact of additional augmentation.
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F.4 Further Ablation on MSA Filtering

We further validate the effectiveness of filtered high-quality MSAs by comparing the performance
with the more randomly selected MSAs (64 for each protein). From Table 9 and 2, We can observe a

pLDDT GDT TMscore RMSD LDDT pTM
More Random MSAs 63.620 0.512 0.533 12.692 0.563 0.473
HiFiAD 66.349 0.534 0.553 11.755 0.581 0.506

Table 9: Comparison of folding enhancement based on different filterings.

slight performance enhancement compared to Random-16 filtering approach according to pLDDT
and LDDT. Conversely, the performance on global metric decreases. From the results, more co-
evolutionary information may lead to better local geometric conformation, but it will disturb the
modeling of the global conformations due to the bias during generation.

F.5 Failure Case Analysis

Other than analyzing successful cases, we analyzed four representative failure cases (3bog_B,
7sxb_A, 8gzu_AN, 8gzu_T3) with the largest performance drops, which includes three zero-shot
and one few-shot examples. From the detailed results, we observe a clear mismatch between global
metric, including GDT, TMScore, and RMSD, and local metric, including pLDDT, LDDT, and
pTM on 3bog_B and 8gzu_T3. It is consistent with the metric discrepancies we observed in the
main experiment. Among the visualized MSA cases, we observed that generated MSAs contained

pLDDT GDT TMscore RMSD LDDT pTM
AF2 MSA

3bog_B 41.493 0.150 0.130 22.443 0.148 0.129
7sxb_A 84.931 0.739 0.757 2.559 0.661 0.753
8gzu_AN 58.189 0.390 0.488 17.630 0.700 0.406
8gzu_T3 59.533 0.591 0.668 14.030 0.659 0.597

PLAME
3bog_B 32.918 0.169 0.148 17.522 0.158 0.118
7sxb_A 53.956 0.358 0.358 9.988 0.369 0.359
8gzu_AN 51.542 0.393 0.491 17.238 0.513 0.414
8gzu_T3 55.169 0.377 0.480 20.930 0.691 0.394

Table 10: Comparison of folding enhancement on failure cases.

extremely similar sequences (>90% similarity). Specifically, these high-similarity sequences caused
all sites to appear more conserved, resulting in a lack of covariation patterns necessary for AlphaFold2
to infer structural contacts. This pattern was evident across all four cases. Notably, for 3bog_B and
8gzu_T3, the generated high-similarity MSAs further enhanced the conservation of already conserved
regions, which consequently led to improvements in global metrics.

F.6 De novo Protein Folding Enhancement

We conduct further experiments on De Novo protein cases, where almost of them are orphan.
Examples of de novo proteins include 8SK7 (RFDiffusion), 8TNM/8TNO (Chroma), and 8CYK
(ProteinMPNN). We followed the same augmentation pattern as the main experiment. From Table

pLDDT GDT TMscore RMSD LDDT pTM
AF2 MSA 89.27 0.886 0.904 1.658 0.781 0.800
HiFiAD 88.33 0.924 0.940 1.483 0.824 0.800

Table 11: Comparison of folding enhancement on de novo proteins.

11, we observed that PLAME experiences a slight decrease in pLDDT scores while simultaneously
showing improvements in other metrics. The generated MSA visualizations in Figures 4 and 5 reveal
that most generated sequences maintain > 70% similarity to the query sequences. This phenomenon
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may be attributed to these test cases being highly Out-Of-Distribution (OOD) relative to the training
dataset. Nevertheless, the diverse sampling strategy still effectively enhances the profile information
of orphan proteins, resulting in substantial performance improvements. Furthermore, we visualized
specific local regions where PLAME achieves superior alignment performance as measured by
TMscore. Analysis revealed that across all augmented profiles, these high-performing local regions
exhibit remarkable conservation, suggesting a strong correlation between sequence conservation
patterns and structural alignment quality.

8cyk_A

8sk7_C

AF2 MSA

AF2 MSA

PLAME

PLAME

pLDDT: 89.189

TMscore: 0.881

RMSD: 1.837

pLDDT: 91.395

TMscore: 0.854

RMSD: 2.066

pLDDT: 93.419

TMscore: 0.954

RMSD: 0.623

pLDDT: 90.733

TMscore: 0.953

RMSD: 0.628

Figure 4: Comparison of structure enhancement of De Novo proteins.

G Discussion

G.1 Limitations

Recent advancements in MSA generation models have shown promising results in enhancing protein
folding predictions. However, several challenges remain to be addressed for broader applications
and improved performance. 1) Limited quality by current model architectures, data constraints,
and generation strategies, such as relying on small MSA prompts, hinders the overall richness
and informativeness of the generated MSAs. Future methods should focus on constructing more
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8tnm_A

8tno_A

pLDDT: 83.343

TMscore: 0.959

RMSD: 0.951

pLDDT: 82.094

TMscore: 0.839

RMSD: 2.334

pLDDT: 87.353

TMscore: 0.966

RMSD: 2.520

pLDDT: 92.869

TMscore: 0.945

RMSD: 1.605

AF2 MSA

AF2 MSA

PLAME

PLAME

Figure 5: Comparison of structure enhancement of De Novo proteins.

expressive evolutionary latent spaces to better capture the complexity of protein sequence relationships
and improve the informativeness of generated MSAs. 2) Distribution gaps still exist between the
diversity and quality of generated MSAs and their natural counterparts, limiting their utility in broader
applications. While current methods show potential in folding tasks, future models should focus
on zero-shot generation capabilities to produce MSAs with distributions closer to natural MSAs,
enabling broader applications such as conserved residue identification, mutation effect prediction,
and functional annotation. 3) Assessing MSA quality remains an unresolved issue, as current
evaluations primarily rely on downstream folding performance to infer quality. Developing direct
and robust quality assessment metrics will be crucial for systematically evaluating and improving
MSA generation methods, enabling the selection of high-quality MSAs for specific applications and
paving the way for next-generation models with enhanced accuracy, broader applicability, and greater
biological relevance.

G.2 Social Impact

PLAME advances multiple sequence alignment (MSA) generation for proteins, offering significant
potential benefits for protein structure prediction and engineering applications. This capability

19



could accelerate therapeutic protein development, enhance drug design processes, and facilitate the
exploration of novel functional protein sequences. However, we acknowledge important limitations
and risks associated with this technology. The model may occasionally generate hallucinated
sequences that could mislead downstream protein design efforts if not properly validated. Furthermore,
like many powerful biotechnology tools, there exists potential for misuse in designing harmful
biological entities.
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H Structure Comparison Visualization

PLAME

pLDDT: 75.64

TMscore:  0.749

RMSD: 3.218

pLDDT: 41.35

TMscore:  0.563

RMSD: 4.462

MSAGPT AF2MSA

pLDDT: 36.25

TMscore:  0.359

RMSD: 9.653

pdb_id: 8ehb_F

Figure 6: Structure comparison visualization of 8ehb_F.

pdb_id: 8okh_B

pLDDT: 69.67

TMscore:  0.812

RMSD: 2.774

pLDDT: 32.02

TMscore:  0.205

RMSD: 19.49

pLDDT: 28.67

TMscore:  0.198

RMSD: 21.09

PLAME MSAGPT AF2MSA

Figure 7: Structure comparison visualization of 8okh_B.
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pdb_id: 8b4k_C

PLAME

pLDDT: 79.43

TMscore:  0.743

RMSD: 6.10

pLDDT: 31.49

TMscore:  0.209

RMSD: 15.37

AF2MSA

Figure 8: Structure comparison visualization of 8b4k_C.

pdb_id: 8fjf_A

PLAME

pLDDT: 91.56

TMscore:  0.974

RMSD: 0.783

pLDDT: 64.56

TMscore:  0.734

RMSD: 3.193

AF2MSA

Figure 9: Structure comparison visualization of 8fjf_A.
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pdb_id: 8eoz_B

PLAME

pLDDT: 88.24

TMscore:  0.958

RMSD: 0.127

pLDDT: 48.10

TMscore:  0.290

RMSD: 15.338

MSAGPT

Figure 10: Structure comparison visualization of 8eoz_B.

pdb_id: 8okw_B

PLAME

pLDDT: 86.18

TMscore:  0.945

RMSD: 1.408

pLDDT: 52.90

TMscore:  0.658

RMSD: 12.459

MSAGPT

Figure 11: Structure comparison visualization of 8okw_B.
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I Augmented MSA Visualization

To provide an intuitive understanding of the MSAs generated by PLAME, we selected several
representative cases for visualization. These cases demonstrate consistent improvements in folding
accuracy compared to the MSAs provided by AF2 and cover a range of sequence lengths, including
short (<100), medium (100-300), and long (>300) sequences, as well as cases under few-shot
and zero-shot settings. For each visualization, the generated MSAs are highlighted with a black
box. Additionally, the upper portion of each figure presents conservation information alongside the
corresponding gap information. The protein information is provided in the left-top corner at each
figure.

8ehb_F

Figure 12: Augmented MSA visualization of 8ehb_F.

8okh_B

Figure 13: Augmented MSA visualization of 8okh_B.
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8okw_B

Figure 14: Augmented MSA visualization of 8okw_B.

8fih_C

Figure 15: Augmented MSA visualization of 8fih_C.
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7opb_D T1119_D

Figure 16: Augmented MSA visualization of 7opb_D and T1119_D.

7xr1_A

Figure 17: Augmented MSA visualization of 7xr1_A.

8e0n_F

Figure 18: Augmented MSA visualization of 8e0n_F.
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J Failure Case MSA Visualization

7sxb_A

Figure 19: Failure Case MSA visualization of 7sxb_A.
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8gzu_T3

Figure 20: Failure Case MSA visualization of 8gzu_T3.
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3bog_B

Figure 21: Failure Case MSA visualization of 3bog_B.
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8gzu_AN

Figure 22: Failure Case MSA visualization of 8gzu_AN.
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