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Abstract

We propose Context-Adaptive Multi-Prompt Embedding, a novel approach
to enrich semantic representations in vision-language contrastive learning.
Unlike standard CLIP-style models that rely on a single text embedding,
our method introduces multiple structured prompts, each containing a
distinct adaptive token that captures diverse semantic aspects of the input
text. We leverage a pretrained LLM as the text encoder within the CLIP
framework, processing all prompts jointly in a single forward pass. The
resulting prompt embeddings are combined into a unified text represen-
tation, enabling semantically richer alignment with visual features. To
further promote semantic diversity and representation quality, we incorpo-
rate a diversity regularization loss and a negation-aware loss, encouraging
specialization across prompts and improving contrastive discrimination.
Our method achieves consistent improvements on both image-text and
video-text retrieval benchmarks.

1 Introduction

Contrastive vision-language models, such as CLIP (Radford et al., 2021), have become
foundational for zero-shot image-text and video-text retrieval. These models align visual
and textual representations by maximizing similarity between paired modalities. However,
most approaches rely on a single text embedding per input, which can limit the ability to
capture the full range of semantic cues in natural language descriptions.

Effective alignment between text and image or video often requires nuanced, multi-aspect
matching. A caption may describe the main subject, relevant objects, or background context,
highlighting the need for expressive and semantically rich text embeddings. Pretrained
Large Language Models (LLMs), especially decoder-only architectures like GPT (Achiam
etal.,, 2023; Dubey et al., 2024; Team et al., 2024), offer strong semantic reasoning capabilities,
making them promising candidates for text encoders in this setting.

However, using LLMs for CLIP requires careful adaptation. The causal structure of decoder-
only LLMs limits their ability to summarize entire sequences using standard pooling strate-
gies like first-token or mean pooling. To overcome this, recent methods have proposed
prompt-based last-token pooling (Jiang et al., 2023a; Lei et al., 2024a), which guide the model
to produce more meaningful representations by prompting it to summarize the input at the
final token position. While these methods improve representation quality, they typically use
a single prompt or fixed prompt templates, limiting adaptability. This restricts their ability
to capture diverse semantic views aligned with visual inputs. Meanwhile, retrieval tasks
often require recognizing multiple aspects of a visual-text pair, such as subjects, objects, or
scene-level cues.

To address this, we propose Context-Adaptive Multi-Prompt Embedding, a method that
introduces multiple structured prompts, each with a distinct adaptive token trained to
specialize in a unique semantic aspect of the input. These prompts are processed by a
pretrained LLM, and their embeddings are combined into a unified representation aligned
with the visual embedding. To further enrich alignment, we introduce two additional
learning objectives: a diversity regularization loss that encourages semantic diversity across
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prompt embeddings, and a negation-aware loss that introduces additional contrastive
signals using negated prompt variants. Our method does not require additional text-only
pretraining (e.g. SImCSE (Gao et al., 2021)) and generalizes well to both image-text and
video-text retrieval. Extensive experiments on standard retrieval benchmarks demonstrate
consistent performance gains over CLIP-style baselines and ablation variants, confirming
the benefit of semantically diverse alignment in vision-language contrastive learning.

2 Related Work

2.1 Vision-Language Contrastive Learning

Contrastive learning has become a foundational approach for aligning visual and textual
modalities, driven by the success of CLIP (Radford et al., 2021) and its variants. These
models optimize contrastive losses over large-scale image-text or video-text pairs, enabling
robust retrieval performance across domains. Subsequent works have explored architectural
and training improvements (Li et al., 2021; Jia et al., 2021; Yu et al., 2022), as well as
extensions to the video domain by incorporating temporal components into the dual-
encoder architecture (Xu et al., 2021; Luo et al., 2022; Wang et al., 2022; Kim et al., 2025).
While these methods are effective, they typically rely on simple text encoders. Our work
enhances this framework by leveraging rich language representations from pretrained LLMs
through multiple context-adaptive prompt embeddings, optimized within a vision-language
contrastive setting.

2.2 Decoder-Only LLMs for Text Embeddings

Decoder-only large language models (LLMs) such as GPT (Brown et al., 2020), LLaMA (Tou-
vron et al., 2023), Gemini (Comanici et al., 2025) and Gemma (Team et al., 2024) have
demonstrated impressive capabilities in generative tasks. However, leveraging them as
effective encoders for text representation remains challenging due to their unidirectional
causal attention mechanism. A common approach is to use the hidden state of the final token
as a sentence embedding (Neelakantan et al., 2022; Ma et al., 2023; Wang et al., 2023), though
this can yield suboptimal semantic summarization. Several studies have proposed archi-
tectural adjustments to address this issue, such as relaxing the attention mask or enabling
partial bidirectional attention in later layers (Li et al., 2023; Duki¢ & énajder, 2024). Other
works explore prompt-based strategies (Jiang et al., 2023b; Lei et al., 2024b; Zhuang et al.,
2024; Zhang et al., 2024) to better guide the final token’s representation. PromptEOL (Jiang
etal., 2023b) proposes summarization prompts such as “This image means just in one word:”
to steer the final token representation toward semantic abstraction. MetaEOL (Lei et al.,
2024b) expands this idea using a diverse set of fixed task-oriented prompts. Additional
strategies include Echo (Springer et al., 2024), which duplicates the input to simulate bidirec-
tional context, and LLM2Vec (BehnamGhader et al., 2024), which enhances representations
through hybrid attention during supervised contrastive learning. While these methods
are designed for text-only embedding tasks, we extend this direction to vision-language
contrastive learning by introducing multiple context-adaptive prompts that are learned to
enhance semantic diversity and improve alignment with visual content.

2.3 LLMs in Vision-Language Contrastive Models

Recent efforts explore the integration of LLMs as text encoders in vision-language contrastive
models. JinaCLIP (Xiao et al., 2024) and LLM2CLIP (Wu et al.) replace the CLIP text encoder
with off-the-shelf LLMs such as Jina-v2 or OPT (Zhang et al., 2022). These methods typically
apply additional text-text contrastive learning such as SimCSE (Gao et al., 2021) before
adapting to vision-language training. E5-V (Jiang et al., 2024b) uses a fixed prompt to
extract LLM embeddings and fuses them with frozen vision features at the Multimodal
LLM layer. While these works demonstrate that LLMs can be effective text encoders for
CLIP-style tasks, most approaches rely on single fixed prompts or require pretraining
on additional text-text contrastive tasks. Our approach directly learns multiple context-
adaptive prompt embeddings within a vision-language contrastive learning. We further



Published as a conference paper at COLM 2025

/— «{’ Vision-text contrastive learning ~ Prompt diversity Negation-augmented contrastive learning
@‘_, » (PAEN()(EE regularization EOERPEE
s q:) + q1) +
=\ q2 + f .\ oz +
: + : +
—
B T S P g—8  Gii1;
LCon LDiv LNeg
p n
concat concat
0 0 D 0 0 D

Unfrozen last layer

LLM (causal & prompt-wise masked attention)

*
caption-text prompt-1 prompt-2 prompt-K negated-1 negated-2 negated-K ‘

caption-text : a young boy looking at two little dogs sitting in large sneakers.

prompt-i : the [APT-i] of this image means:
negated-i : the [APT-i] of this image does NOT mean: “

Figure 1: Overview of our method. Given an input text, we construct multiple structured
prompts, each with a distinct adaptive prompt token [APT-i] (Sec. 3.2). The entire sequence
is processed jointly in a single LLM forward pass via prompt-wise attention masking
(Sec. 3.3). This yields K embeddings of size D /K, concatenated into a D-dimensional text
embedding. A ViT encoder with attention pooling (Sec. 3.1) produces a matching image
or video embedding. Training combines contrastive loss (Lco,) with a prompt diversity
regularization loss (Lg;,, Sec. 3.4) and a negation-aware loss (Lyeq, Sec. 3.5) to encourage
semantic variation and incorporate contrastive signals from negated prompts.

enhance this framework with prompt diversity regularization and negation-aware prompt
embeddings, leading to more discriminative representations for vision-language alignment.

3 Method

We introduce Context-Adaptive Multi-Prompt Embedding for vision-language alignment,
a novel approach designed to enhance semantic richness in vision-language contrastive
learning frameworks such as CLIP. Our method leverages pretrained Large Language
Models (LLMs) to extract multiple diverse semantic embeddings for each textual input,
significantly improving semantic alignment with visual information.

3.1 Leveraging Pretrained LLMs for Text Embeddings

Standard CLIP models typically employ Transformer architectures with bidirectional at-
tention (similar to BERT (Devlin et al., 2018)) for text encoding. These models prepend a
special token, such as [CLS], to the input text and utilize the hidden state of this token (first-
token pooling) as the text embedding. In contrast, recent large language models (LLMs),
such as GPT variants, adopt decoder-only architectures with causal attention. Due to the
unidirectional nature of causal attention, first-token pooling is ineffective as the embedding
of the first token cannot summarize subsequent text.

To obtain high-quality embeddings from decoder-only LLMs, alternative pooling strategies
are required. Last-token pooling is intuitively suitable for such models, as only the last
position potentially contains information about the entire text. However, decoder-only
models trained via next-token prediction inherently align the embedding at the last position
primarily toward predicting subsequent tokens, rather than summarizing previous semantic
content. To mitigate this, prompt-based last pooling methods, such as PromptEOL (Jiang
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et al., 2023a), introduce explicitly structured prompts to guide the model toward semantic
summarization at the last position. PromptEOL employs prompts such as: "[input_text].
This image means just in one word:", thereby instructing the model to succinctly sum-
marize input text semantics. Similarly, MetaEOL (Lei et al., 2024b) introduces multiple
manually designed prompts to generate richer semantic embeddings.

Adopting pretrained LLMs as textual encoders in vision-language frameworks such as CLIP
provides significant advantages. These LLMs have been extensively pretrained on vast
textual datasets, equipping them with rich semantic knowledge and strong generalization
capabilities. By leveraging such pretrained LLMs, our model can effectively transfer their
deep semantic understanding to vision-text alignment tasks.

3.2 Context-Adaptive Multi-Prompt Embedding

Existing prompt-based embedding methods, such as PromptEOL (Jiang et al., 2023a) and
MetaEOL (Lei et al., 2024a), rely on fixed, manually designed prompts to guide repre-
sentation learning. While effective in text-only settings, these approaches limit flexibility
when extended to vision-language contrastive learning. In vision-language tasks, textual
embeddings are directly trained to align with visual features. This setup presents a new
opportunity: prompts can be learned and adapted during training to better reflect the
semantic alignment between text and image or video content.

To leverage this, we introduce a context-adaptive multi-prompt embedding strategy that
dynamically learns K distinct prompts during vision-text contrastive training. Each prompt
contains an Adaptive Prompt Token [APTi], a special token whose representation is learned
to capture distinct semantic aspects of the input text. These tokens are trained in the context
of aligning textual and visual representations, enabling the prompts to specialize in diverse
and complementary interpretations. The structured prompt follows the format:

"[input_text]. The [APT-i] of this image means:"

Each prompt is processed by the pretrained LLM, and we apply last-token pooling to extract
a single embedding per prompt. This embedding is then passed through a projection layer to
produce an embedding of size D/K, where D is the target embedding size that matches the
CLIP visual embedding. The K projected embeddings are concatenated along the channel
dimension to form a single text embedding of size D. This concatenation preserves the
distinct semantics of each prompt while enabling specialized alignment with the visual
representation. Since contrastive learning operates through element-wise dot product
between text and visual embeddings, each prompt embedding is matched to a specific
channel segment of the visual embedding. This design encourages each [APT-i] to specialize
and align with distinct visual-semantic concepts, as demonstrated later in Sec. 4.5.

Both text and vision embeddings are L2 normalized resulting in p and g, respectively. The
cosine similarity of the embeddings in batch B, scaled by a learnable temperature T forms
the input to the InfoNCE loss (Oord et al., 2018; Radford et al., 2021), defined as:

1y exp(piqi/ T) ) 1y ( exp(qipi/7) )
Lpr=—=) lo ,Lpr=—=) lo )
= Bi=21 g(Z]B-1 exp(pigj/7)) "~ B 2 los L exp(qipj/ )

The final contrastive loss is averaged as Lco, = (L7 + LioT) /2.

3.3 Efficient Prompt-Wise Attention Masking

Computing embeddings from multiple distinct prompts conventionally requires multiple
forward passes through the LLM, which is computationally inefficient. To address this, we
introduce prompt-wise attention masking, enabling efficient computation of all embeddings
within a single forward pass. Specifically, we concatenate multiple prompts into one
sequence. A representative concatenated prompt is:

[input_text]. The [APT-1] of this image means:" [APT-2] of this image means:" ...
[APT-K] of this image means:"
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In this concatenated prompt, the initial prefix tokens ([input_text]. The) are globally acces-
sible and shared among all prompt segments. However, the subsequent prompt-specific
segments ([APT-i] of this image means:”) are masked from attending to tokens in other
segments ([APT+] of this image means:”). Then, each prompt’s embedding is independently
computed from the last token (") position of each segment.

To further optimize training efficiency and model size, we freeze most layers of the pre-
trained LLM, only unfreezing its last transformer layers.

3.4 Encouraging Prompt Diversity with Regularization

To explicitly promote semantic diversification among the prompt embeddings, we introduce
a Diversity Loss Lj;,. Given K embeddings from distinct prompts, we compute pairwise
cosine similarities among these embeddings. Specifically, we calculate K(K-1) similarity
scores, averaging them to yield a single scalar representing the mean similarity. By mini-
mizing this similarity, we encourage each prompt embedding to capture unique semantic

aspects effectively. The diversity loss is thus: Ly, = ﬁ ZII»;]» CosSim(Emb;, Emb;).

3.5 Negation-Aware Prompt Embedding

Vision-language models often struggle with distinguishing fine-grained semantic differences
or explicitly negated scenarios, as typical training does not encourage embeddings to clearly
represent these contrasts. Without explicitly guiding the model to differentiate between
what the image does and does not represent, embeddings may become overly generalized
or ambiguous. To enhance the discriminative capabilities of vision-language embeddings,
we propose a Negation Prompt Embedding strategy. Our approach explicitly generates
embeddings representing semantic concepts excluded or negated by the original prompt.
Specifically, we construct structured negation prompts such as:

[input_text]. The [APT-i] of this image does NOT mean:"

This explicit negation approach aims to encourage embeddings that explicitly capture
semantics irrelevant to or diverging from the original input. We create negation prompts
corresponding directly to each of the K original prompts, resulting in K additional negation
embeddings {7, }. Each negation embedding undergoes dimensional projection to D/K and
are then concatenated, forming a single negation embedding of size D.

Specifically, for each vision embedding g;, we contrast it both the original text embeddings
pi, and their corresponding negation embeddings ;. This effectively doubles the number
of text embeddings in the contrastive training. The negation-aware contrastive 10ss Lyeg

image-to-text only) is computed as: Lyee = — % Y2, lo exp(q:pi/T) .
(imag y)is comp neg = 8 Li=1 18 | T Goplqupy )+ explan, )
Consequently, this encourages the vision-language model to differentiate between accurate
and negated semantic content, improving semantic discrimination and retrieval accuracy.

3.6 Training Objective

Our total loss function integrates the standard CLIP contrastive loss with the diversity loss
and negation-aware 10ss: Lyoq) = Leon + & - Lgip + B - Lueg- We set the coefficients a and B to
0.1. Our experiments show this combined objective further improves semantic alignment.

3.7 Video-Text Contrastive Learning

To extend our approach to video-text alignment, we adapt the vision encoder to handle
video inputs while keeping the text encoder unchanged. Each video frame is independently
processed by the ViT encoder, yielding token embeddings of shape T x N x D, where
T is the number of frames and N is the number of tokens per frame. To incorporate
temporal information, we add learnable temporal positional encodings of shape T x 1 x
1 before flattening the frame-wise tokens into a sequence of TN x D. These are then
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passed through the same attention pooling layer used in the image encoder, resulting in
a single video-level embedding of dimension D. The text encoder continues to leverage
our multi-prompt embedding mechanism, allowing it to produce rich, context-adaptive
representations aligned with the video content.

4 Experiments

We evaluate our context-adaptive multi-prompt embedding method on image-text and
video-text retrieval tasks. Our experiments include comparisons with CLIP baselines and
ablation variants to demonstrate the contribution of our approach.

41 Implementation Details

We train contrastive image-text models from scratch using ViT-B/16 as the image encoder
(D =768) and LAION (Schuhmann et al., 2022) as the training dataset. Images are resized to
224 x 224, with visual embeddings obtained via attention pooling. The vanilla CLIP uses
a 12-layer Transformer text encoder, following standard practices of Radford et al. (2021);
Yu et al. (2022). In our method, we replace the text encoder with the pretrained Gemma 2B
LLM (Team et al., 2024), freezing all layers except the last L Transformer layers. We use L=2
for Gemma 2B backbone. Due to the model’s causal attention, we apply last-token pooling
with structured prompts. The output of the LLM text encoder is first passed through a
linear projection layer to reduce its feature dimension to D /K, where D is the embedding
dimension of the ViT visual encoder and K is the number of adaptive prompts. We use
AdamW with a learning rate of 5e-4, linear warmup for 10k steps, training for 500k iterations.
We use batch size 1024 unless otherwise noted. For video-text training, we initialize from the
pretrained image-text CLIP and finetune on VideoCC3M (Nagrani et al., 2022) for 50k steps
with a learning rate of le-5, batch size 128, and 16 uniformly sampled frames per video. We
evaluate under zero-shot settings on Flickr30K (Plummer et al., 2015) and MSCOCO (Chen
et al., 2015) for image-text retrieval, and MSR-VTT (Jun Xu & Rui, 2016) for video-text
retrieval.

4.2 Ablation Studies

We perform several ablation experiments to demonstrate the contribution of our context-
adaptive prompting strategy. We use Gemma-2B text encoder and batch size 1024 unless
otherwise noted.

Baseline Comparisons.  As shown in Table 1, replacing the vanilla CLIP text encoder
with a fully frozen pretrained LLM leads to a substantial drop in retrieval performance,
likely due to insufficient adaptation to the vision-text alignment objective. Allowing partial
adaptation by unfreezing the last transformer layers of the LLM helps reducing this gap.
Additional gains are observed by applying prompt-based last-token pooling using the
template [input_text]. This image means: ". Our method also builds on this prompt-
based last pooling approach, extending it with multiple context-adaptive prompts.

Number of Prompts (K). Introducing our context-adaptive multi-prompt embedding
leads to clear performance improvements. Our method uses structured prompts of the form
"[input_text]. The [APT-i] of this image means:", where each adaptive prompt token
([APT-i]) dynamically captures distinct semantic aspects. As shown in Table 2, retrieval
accuracy significantly increases as the number of prompts grows 1 to 6. We select K=6, since
further increases yield minimal additional benefit.

Prompt Design and Text Embedding Construction. Table 3 presents ablations on prompt
structure and embedding construction strategies. All variants use K=6. Using a single shared
[APT] token across all K prompts leads to redundant representations and yields limited
performance similar to using a single prompt (K=1). Employing K manually crafted fixed
prompts (e.g. [input_text]. The main category of the image means:", or [input_text].
The primary object in the image means:") improves performance, but remains suboptimal
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Flickr R@1 MSCOCO Re1
backbone pooling img-to-txt  txt-to-img | img-to-txt  txt-to-img
Vanilla CLIP mean 61.4 43.7 38.3 24.0
LLM-frozen last 414 28.6 21.6 134
LLM-unfrozen last layers mean 60.6 43.4 36.6 23.4
LLM-unfrozen last layers last 54.0 37.8 32.6 20.3
LLM-unfrozen last layers | prompt-last 54.5 38.0 32.8 20.8

Table 1: Baseline image-text retrieval performance. We compare vanilla CLIP and CLIP variants
with a pretrained LLM text encoder.

Flickr R@1 MSCOCO R@1
# Prompts (K) img-to-txt  txt-to-img img-to-txt  txt-to-img
1 54.7 38.1 32.8 20.9
3 60.3 421 36.7 23.0
6 66.0 471 41.0 25.2
12 66.1 471 40.8 25.3

Table 2: Effect of the number of adaptive prompts (K).

Flickr R@1 MSCOCO R@1
method img-to-txt  txt-to-img | img-to-txt  txt-to-img
Shared [APT] token 54.6 38.3 33.0 20.8
Fixed prompts 64.1 447 39.7 243
Minimal prompts 63.0 43.5 38.9 24.1
Averaged K embeddings 56.8 39.2 35.1 22.3
Context-adaptive prompts (Ours) 66.0 47.1 41.0 25.2

Table 3: Ablation on prompt design and embedding construction. All methods use K=6.

compared to our adaptive prompts. We further evaluate a minimal variant that removes
contextual phrasing, using a simplified format: [input_text]. [APT-i]:". Although this
setup performs competitively, it underperforms the full structured version, highlighting
the utility of explicitly guiding the LLM to extract “[APT-i] of the image”. We also study a
variant where K adaptive prompt embeddings (each of size D instead of D/K) are averaged
element-wise instead of concatenated. While this approach brings some improvement
over a single prompt, it still underperforms our method. In contrast, our channel-wise
concatenation of K adaptive prompt embeddings achieves the best performance. This
design allows each [APT-i] to specialize and align with distinct channel segment of the
visual embedding, encouraging semantically diverse alignment as further shown in Sec. 4.5.

Prompt Diversity Regularization. We study the effect of our diversity regularization
loss Ljj, in Table 4. Introducing moderate diversity regularization improves retrieval
performance, demonstrating the benefit of explicit encouraging diversity among adaptive
prompts. We set the regularization weight a = 0.1, as higher values do not yield additional
improvements.

Negation-Aware Embedding and Loss Combination. In Table 5, we evaluate the impact
of incorporating negation-aware embeddings and the loss L;.;. Adding this negation
embedding improves retrieval performance, showing that explicitly modeling semantic
negation improves semantic discrimination. Combining both negation embedding and
diversity regularization further boosts performance, achieving our best overall results.

LLM Text Encoder Size. Table 6 presents the effect of increasing the size of the LLM
backbone from Gemma-2B to Gemma-9B. Using a larger pretrained language model clearly
improves retrieval results.

Contrastive Batch Size. Table 7 studies how our method scales by varying contrastive
batch sizes. our method consistently outperforms the vanilla CLIP baseline across different
batch sizes (1024 and 4096). Increasing the batch size to 4096 clearly improves retrieval
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Flickr R@1 MSCOCO R@1
method img-to-txt  txt-to-img | img-to-txt  txt-to-img
a=0(w/0o Lyj) 66.0 47.1 41.0 252
a=0.1 66.8 48.2 41.7 25.9
a=1.0 65.8 47.3 41.2 25.6

Table 4: Token diversity regularization loss (L;;,).

Flickr R@1 MSCOCO R@1
method img-to-txt  txt-to-img | img-to-txt  txt-to-img
Leon 66.0 47.1 41.0 25.2
Leon & Lyeg 67.2 48.0 41.8 26.0
Leon & Lyjp & Lueg 68.3 48.6 42.3 26.4

Table 5: Negation-aware embedding (L;,¢) and loss combination.

Flickr R@1 MSCOCO R@1
LM backbone | img-to-txt  txt-to-img | img-to-txt  txt-to-img
Gemma-2B 68.3 48.6 423 26.4
Gemma-9B 70.3 52.7 44.8 27.6

Table 6: Effect of text encoder size.

performance, highlighting our method’s capability to effectively leverage large batch size in
contrastive learning.

Number of Trainable LLM Layers. Table 7 also examines the effect of the number of
unfrozen LLM layers (L), with and without the learnable vocabularies (tokenizer weights).
On top of unfreezing a few last layers, making the vocabulary learnable provides additional
improvements. This shows that allowing more of the LLM to adapt to the contrastive
objective is beneficial, though a balance must be struck with computational cost.

4.3 Image-Text Retrieval Results

We further evaluate the scalability of our method on image-text retrieval by increasing the
contrastive batch size to 16384. For reference, OpenAl CLIP (Radford et al., 2021) leverages
an even larger batch size of 32768. As shown in Table 8, our method continues to benefit
from this scaling, achieving stronger performance than baseline models. We also include
comparisons with other ViT-B-based CLIP methods, highlighting the effectiveness of our
approach to capture diverse semantic signals for vision-language alignment.

4.4 Video-Text Retrieval

We extend our approach to video-text retrieval by initializing from the image-text pretrained
model (with Gemma-2B as text encoder) and further training on the VideoCC3M (Nagrani
et al., 2022) dataset. We evaluate on the MSR-VTT (Jun Xu & Rui, 2016) benchmark under
a zero-shot setting. As shown in Table 9, our method brings substantial improvements
compared to the vanilla CLIP baseline, demonstrating its effectiveness in aligning video
and text through semantically diverse prompt embeddings.

4.5 Attention Visualization

Our text embedding is constructed by concatenating K adaptive prompt embeddings along
the channel dimension. During contrastive training, the textual and visual embeddings
are matched through element-wise dot product, aligning each prompt embedding with a
corresponding channel segment of the visual embedding. To better understand how these
adaptive prompts evolve, we visualize attention patterns from the final attention pooling
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batch | #unfrozen  Learn. Flickr R@1 MSCOCO Re@1 ZS INet
size layers (L) vocab. | img-to-txt txt-to-img | img-to-txt txt-to-img | Top-1 acc.
1024 | Vanilla CLIP Y | 614 437 | 383 24.0 | 531
1024 0 N 46.5 32.2 27.6 17.7 44.2
1024 2 N 68.3 48.6 42.3 26.4 52.4
1024 0 Y 65.1 46.2 39.1 24.5 52.3
1024 1 Y 66.6 47.9 42.5 26.3 53.5
1024 2 Y 69.1 49.6 43.5 27.1 54.0
1024 8 Y 75.4 53.4 48.3 29.6 55.9
4096 | Vanilla CLIP Y | 810 602 | 515 34.8 | 673
4096 2 Y 81.3 63.9 54.6 36.1 67.7
4096 8 Y 84.3 66.2 60.4 39.4 68.1

Table 7: Effect of contrastive batch size, number of unfrozen last layers (L), and learnable vocab-
ularies. K = 6 is used.

Flickr R@1 MSCOCO R@1
method img-to-txt txt-to-img | img-to-txt txt-to-img
OpenAlI CLIP-B (Radford et al., 2021) 81.9 62.1 52.4 33.1
LongCLIP-B (Xiao et al., 2024) 85.8 70.6 56.9 409
E5-V (Jiang et al., 2024a) 79.5 67.8 51.6 41.2
JinaCLIP-B (Xiao et al., 2024) 80.6 67.4 55.6 41.1
Ours | 847 68.7 | 585 414

Table 8: Zero-shot image-text retrieval and classification. Batch size 16k, K=6, L=2 is used.

MSR-VTT R@1
method text-to-video  video-to-text
OpenAlI CLIP-B (Radford et al., 2021) 23.3 43.3
SocraticModel-B (Zeng et al., 2022) - 46.9
CLIP4Clip (Luo et al., 2022) 32.0 -
VideoCoCa-B (Yan et al., 2022) 31.2 -
Vanilla CLIP (Sec. 3.7) 31.6 45.1
Ours (Sec. 3.7) 35.8 48.7

Table 9: Zero-shot video-text retrieval.

layer of the ViT encoder. By dividing the visual embedding channels into K segments, we
obtain K attention maps, each averaged over all attention heads in its segment. We use
384 x 384 input images (24 x 24 resolution attention maps) for visualization. We observe that
different adaptive prompts focus on different semantic areas: some prompts emphasize
subjects (e.g. [APT-1]), others highlight relevant objects (e.g. [APT-2]), and some capture
broader contextual background elements.

5 Conclusion

We presented Context-Adaptive Multi-Prompt Embedding, a novel approach for enhancing
textual representations in vision-language contrastive learning. Our method leverages
pretrained LLMs to generate multiple prompt-guided embeddings that dynamically adapt
during training, allowing for richer semantic alignment with visual content. By introduc-
ing context-adaptive prompt tokens, prompt diversity regularization, and negation-aware
embeddings, we improve the model’s ability to capture discriminative semantics. Ex-
tensive experiments on image-text and video-text retrieval benchmarks demonstrate the
effectiveness of our approach.
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[APT-3] [APT-4] [APT-5]

Figure 2: Attention maps from the visual encoder corresponding to each adaptive prompt
token [APT-i]. For each input image (row), we visualize the attention from the ViT attention
pooling layer segmented by the K=6 prompt-specific embedding channels (columns). Each
map shows how a specific APT-i attends to different spatial regions such as objects, subjects,
or background, reflecting diverse visual-textual alignments.
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