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Abstract

Conditional text generation is a non-trivial task,
which is until now predominantly performed
with latent-variable generative models. In this
work, we intend to explore several choices that
are shown to affect the two essential aspects
of model performance: expressivity and con-
trollability. We propose to experiment with a
series of latent-variable models built around
simple design changes under a general unified
framework, with a particular focus on prior
distributions based on Energy-Based Models
instead of the usual standard Gaussian. Our
experiments validate the claim that this richer
prior allows for a better representational power,
but it exhibits difficult training. We provide
a comprehensive analysis of these difficulties
and a close comparison with recent work on
EBM-based priors for conditional text genera-
tion!.

1 Introduction

Conditional (or controllable) text generation con-
sists in generating realistic textual language while
controlling an attribute variable. There is a large va-
riety of attributes that one could condition content
generation on, depending on the application: we
can mention dialog models, with control over in-
tent in the conversation (Zhao et al., 2017), or story
generation, with control over the persona (Chandu
et al., 2019), among others. In controllable text
generation, attributes are commonly encoded as
control vectors (Prabhumoye et al., 2020). In this
setting, it is natural to use generative models based
on latent representations (Bowman et al., 2016;
Kim et al., 2018; Pelsmaeker and Aziz, 2020). In-
stead of estimating directly the data distribution
in the observation space, latent-variable generative
models define a continuous latent variable and learn
its distribution. Then, text can be generated by sam-
pling a prior in the case of Variational Autoencoder

"We will release our code upon publication to facilitate
future work.

(VAEs) (Kingma and Welling, 2014; Rezende et al.,
2014). Adapting these approaches to conditional
generation can be achieved by integrating an addi-
tional latent attribute variable into the model.

In conditional text generation, model perfor-
mance can be assessed against two properties: 1)
the quality of the generated text, which should be
realistic, but also diverse and ii), the ability of the
approach to effectively generate content that cor-
responds to the attribute value. Firstly, the qual-
ity of the generated text depends greatly on the
latent-variable model used. On that matter, most
models (Bowman et al., 2016; Yang et al., 2017;
Kim et al., 2018) use a simple prior distribution
like the standard Gaussian, or the uniform distri-
bution. There is a large number of works investi-
gating more expressive priors, with several of them
focusing on text, leading to improved results on
text modeling tasks (Zhao et al., 2018; Ding and
Gimpel, 2021). Secondly, controllability offers a
particular challenge, as continuous latent variables
are not naturally adapted to represent discrete at-
tributes. Several ideas (Hu et al., 2017; Li et al.,
2020; Duan et al., 2020) have been proposed to
facilitate controlled generation: however, those ap-
plied to latent-variable generative models usually
need to use supplementary classifiers or generators,
which requires many more parameters, or to opti-
mizing simultaneously an adversarial objective or
a regularization term, which is difficult and may
lead to poor control abilities.

In this paper, we are interested in exploring how
simple factors in model design affect those two as-
pects of model performance, away from more elab-
orate solutions recently proposed in the literature.
To achieve this, we propose a framework based on
a latent-variable generative model, in which we pro-
pose to vary (1) the complexity of the prior; (2) the
way the attribute and latent representation interact;
(3) the learning procedure. We thus aim at provid-
ing a clear view of the impact and usefulness of



each design choice on conditional text generation
tasks. We choose to make our framework general-
ize a very recent work (Pang and Wu, 2021) investi-
gating conditional text generation with a model that
learns the prior distribution of the latent space with
an Energy-Based Model (EBM) (Fahlman et al.,
1983; Smolensky, 1986; Zhu et al., 1998; Salakhut-
dinov and Hinton, 2009; Rosenfeld et al., 2001;
Wang et al., 2015; Lu et al., 2016; Wang and Ou,
2017), which was previously explored by Pang et al.
(2020) for unconditional generation. We will first
explore the related literature and motivate our de-
sign choices in Section 2; then, state our problem
and detail our framework in Sections 3 and 4. In
Section 5, we check the performance of our mod-
els experimentally by measuring the quality of the
generated text and evaluating how well it is able
to control the attribute of sentences through the
accuracy of an external classifier. Finally, we dis-
cuss the particular issues raised by the training of
an EBM prior and expand on the comparison with
the work of Pang and Wu (2021) in Section 6. To
summarize, our contributions are as follows:

1. Taking a step back from the often complex lit-
erature on the subject, we provide a clear view
of how several factors impact the performance
of latent-variable models for conditional text
generation.

2. We experiment with various models within our
framework on two datasets; in particular, we pro-
vide a comprehensive study of the EBM-based
prior and draw a fine-grained comparison with
a recently published work also employing this
prior for the same task (Pang and Wu, 2021).

3. We find out that while it has a better representa-
tional power, an EBM-based prior is very diffi-
cult to train, and that our best performing model
is akin to the S-VAE (Kingma et al., 2014).

2 Related Works

2.1 Expressivity in latent-variable generative
models

Among latent-variable models, VAEs are often
thought of as having their expressivity limited by
simplistic priors — they usually employ simple
gaussian distributions — and by the restrictive as-
sumption it puts on their latent posterior (Ding
and Gimpel, 2021). Researchers have tried to
improve the representational expressivity of their

models through the use of more complex priors,
such as mixture of gaussians (Wang et al., 2019),
the Dirichlet distribution (Burkhardt and Kramer,
2019) or the Variational Mixture of Posteriors Prior
(VampPrior) (Tomczak and Welling, 2018), but
also recently with priors based on on normaliz-
ing flows (Ding and Gimpel, 2021). Another way
to do so is to directly learn a parametrized model
as prior: the Variational Lossy Autoencoder (Chen
et al., 2017) parameterizes the prior with a learn-
able autoregressive flow from a simple gaussian
distribution, while ARAE (Zhao et al., 2018) learns
the prior through a generator model with adversar-
ial learning. This is also the idea behind the EBM-
based prior of Pang et al. (2020): interestingly, the
authors do not use variational inference, but re-
sort to sampling for exact posterior inference with
Markov Chain Monte Carlo (MCMC). Thus, they
are avoiding any assumption about the form taken
by the posterior distribution, which is also the mo-
tivation behind the work of Fang et al. (2019): they
propose to learn implicitly the posterior, to avoid it
being gaussian-based. In this work, we propose to
investigate the use of a flexible EBM-based prior,
and to compare it to the usual gaussian prior. How-
ever, given the assumptions accompanying both
gaussian priors and variational inference, we be-
lieve we should not make such a change without
also investigating how it interacts with the learning
process. Hence, we train our models with both
Expectation-Maximization (EM), and Variational
Inference (VI).

2.2 Controllability in conditional text
generation

Most of the existing approaches to conditional
text generation are based on latent-variable mod-
els: however, they vary greatly in how they deal
with attribute information. Some integrate the at-
tribute into the latent space; for example Shi et al.
(2020) uses a gaussian mixture prior, where to each
component corresponds an attribute class. They
add a dispersion term to the training objective to
avoid mode collapse and force latent representa-
tions corresponding to different attributes into well-
separated clusters. Contrarily, attributes may come
from an external source. Then, models differ in
how they make the attribute information interact
with the latent representation: Hu et al. (2017);
Li et al. (2020) are focused on disentangling the
attribute information from the rest of the representa-



tion, using an auxiliary classifier that discriminates
between the generated examples matching the at-
tribute and those that do not. For each possible
attribute, Duan et al. (2020) map the latent space of
a pre-trained VAE into a smaller attribute-exclusive
space with an individual plugin VAE, which has the
advantage of allowing for semi-supervised learning,
as attribute information is only needed for train-
ing these plugins. Recent approaches based on
large language models also fit in this second cate-
gory: similarly to Li et al. (2020), Keskar et al.
(2019) use control codes as a separate input to
the model (which implies training it from scratch),
while Dathathri et al. (2020) uses gradient infor-
mation from a classifier trained on the desired at-
tributes to explore the hidden space of a pre-trained
model. In this work, we propose avoid any compli-
cated solution and to only make a simple change to
how an external attribute variable and the latent rep-
resentation interact, by making them independent,
or conditionally independent given the observation,
and compare the behaviour of both approaches.

2.3 EBMis for text generation

Energy-based models have often been used for se-
quence modeling (Wang et al., 2015; Wang and Ou,
2017), with a recent growth in popularity: with au-
toregressive generative models, for calibration (He
et al., 2021), efficient scoring (Clark et al., 2020);
but also for non-autoregressive general purpose text
generation (Deng et al., 2020), or in machine trans-
lation (Tu et al., 2020). However, the discrete space
of textual data implies using methods like Noise-
Contrastive Estimation (Gutmann and Hyvérinen,
2010). Pang et al. (2020) moves the energy model-
ing into a continuous latent space, of much lower
dimension, making it easier to apply the model to
textual data. The closest existing approach to our
work, the Symbol-Vector Coupling Energy-Based
Model (SVEBM) of Pang and Wu (2021), uses an
inference network to approximate the intractable
posterior distribution of the latent variable, and
regularization based on the information bottleneck
to ensure the latent representation contains infor-
mation from the controlling attribute. However,
the attribute directly intervenes in the EBM, which
actually models both the attribute and the prior
jointly. In this paper, we adopt a wider approach
and propose an EBM prior separated from the at-
tribute. We also carry out a thorough comparison
of our framework with the SVEBM of Pang and

Wu (2021).

3 Problem and notations

All along this paper, we represent a text sequence
by a random sequence X over a vocabulary V. In
general, an observed text sequence of size L is a
realization of X denoted by x = (')~ |, where
each word/token x! belongs to V. In this paper,
the attribute Y is a categorical variable taking its
values in the set ) = {1, ..., m}. Generating text
conditioned on an attribute can be seen as draw-
ing a family of conditional distribution (P x|, ),ey-
We assume to observe pairs (z;,y;) € X x ) for
1 = 1,...n where y; is the attribute value on which
the generation of the text sequence x; has been
conditioned. In this setting, our goal is to learn a
parametric model of the family of conditional dis-
tributions (P x, ),y from a set of n observations

D,, = {(=;, yi)znzl}‘

4 Latent-variable Generative Model for
Conditional Generation

To address the learning problem described above,
latent-variable generative models seek to obtain an
internal representation that explains the observa-
tion x, through a random latent variable Z. In this
work, we restrict ourselves to the case where Z
is continuous, taking its values in R, and we de-
fine a probabilistic graphical parametric model Py
to estimate the joint distribution of observed data
variable X, condition variable Y and latent unstruc-
tured variable Z. py(x,y, z) is the density of the
model, and can be factorized as p(2) X pg(z, y|2).
The following section is dedicated to the definition
of the models we will study within this framework,
varying with respect to (1) how to model the la-
tent prior p,(z), (2) the further factorization of
pa(z,y|z) and (3) the learning procedure.

4.1 Latent prior p,(z)

The usual choice for the latent distribution p,(z)
is a standard Gaussian (0, I), following the VAE
(Kingma and Welling, 2014) and S-VAE (Kingma
et al., 2014) models; in that case, the parameter
of the distribution « is fixed beforehand. In Pang
et al. (2020); Pang and Wu (2021), the density of
the EBM serving as prior for the latent space Z is
defined as follows:

exp(fa(2)) x N(2;0,I) (1)

o) = o
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x ~ ps(z|z)

O

x ~ pg(zly, 2)

Figure 1: Conditional generation with different factor-
ization: ind(left) and cond-ind(right).

where C'(a) = [exp(fa(z))dz is the partition
function and function f,, : R — R is often param-
eterized as a multi-layer perceptron (MLP) with
parameters « learned from observed data. How-
ever, it should be noted that Equation 1 defines a
middle-ground model, where a Gaussian distribu-
tion is included as reference. In this work, we are
interested in studying the behaviour of a pure EBM
prior, where the Gaussian term is removed. We
name this latter prior EBM, and the previous one
EBM-Gaussian.

4.2 Factorization of ps(x,y|z)

Having y as an attribute external to the latent space,
there exists two approaches we can follow to model
this interaction: the first assumes the independence
between the variables Y and Z, while the latter
one assumes the conditional independence of X
and Y given Z. Intuitively, the first case forces
z and y to be disentangled, while in the second
case, z contains all the necessary information for
the generation of the observation z. These two
conflicting ways of modeling ps(y, x|z) can be
reduced to a difference in the factorization of the
associated probabilistic graphical model, which are
represented in Figure 1. We write them as follows:

e ind: pg(x,y|z) = ps(xly, 2) X ps(y)
e cond-ind: pﬁ(x,y\Z) = pg(x\z) X pg(y\z)

They result in the following generation process: (1)
The condition y is sampled from some fixed distri-
bution p(y); (2) In the case of ind, a latent continu-
ous vector z is sampled from the distribution p, (2);
in the case of cond-ind, we sample z instead from
un-parameterized posterior p(z|y) with Langevin
Monte Carlo (LMC), requiring the computation of
V. log pg(z|y), which can be solved with the help

of pa(2) and pg(y|2):

V. logpe(zly) = V. [log pa(z) + log pg(y|z)]
()

(3) Noting u = {z} or {z,y} depending on the fac-
torization, the sequence x is sampled from the con-
ditional distribution pg(z|u) which parametriza-
tion is usually referred to as generator network.
With the observation x being a sequence of L
words, the generator network takes the form of
a conditional autoregressive model parameterized
by a recurrent network, of parameters 3, as follows:

L
pp(x|u) = H@g(xl]xl, N ) N &)
=1

Thus, the generation process consists in succes-
sively sampling tokens 2! from the categorical dis-
tribution over the vocabulary, ®3. On the other
hand, the distribution of attribute y, pg(y|2) is de-
fined as categorical distribution parameterized by a
MLP.

4.3 Learning algorithm

The latent-variable models described above are
trained through Maximum-Likelihood estimation
of the marginal density:

main E(2.y)~panee [ 108 Do (7, Y)] “)

With the presence of latent variable Z, the log
marginal likelihood is written as an intractable in-
tegral:

log po(z,v) —logépa(Z)pﬁ(x,y\Z)dz (5)

The integral presented in Equation 5 is often in-
tractable when Z is high-dimensional and py is
parameterized by a neural network. The dominant
surrogate approaches to optimizing this objective
are Expectation Maximization (EM) and, more re-
cently, Variational Inference (VI).

Expectation Maximization. The EM algorithm
is an iterative procedure based on repeatedly opti-
mizing the expected complete data likelihood given
the current parameters. This quantity is computed
in the E-step:

E(Ivy)"‘pdata Ez’\’pgt (ZI:&y) [logpa(z) (6)

+log pg(z,yl|2)]]

where ' is the estimate for 6 at current step t. The
inner expectation in Equation 6 can be further ap-
proximated through Monte Carlo (MC) estimation:



53" (o palz) + logps(e,ulz) (1)
p=1

where z, denotes the samples drawn from the poste-
rior distribution pg: (2|, y) estimated at the current
step. In order to efficiently obtain these samples,
we can use the LMC (Rossky et al., 1978; Parisi,
1981). 2 Then, in the M-step, we simply need to
maximize the quantity in Equation 7 with respect to
0 = {«, 5}. With the Stochastic Gradient Descent
(SGD), the M-step can be replaced by a single gra-
dient update: it is indeed possible to prove that?

Vologpo(@,y) = E.vpy(zley) Vo logpa(z, y, 2)
3)

which is in fact equal to the gradient of the inner
expectation computed during the E-step.

Variational Inference. As it is impossible to
compute the exact posterior py(z|z,y), we can
introduce an approximate posterior g4(z), which
is called the variational distribution and is usu-
ally chosen to be a multivariate Gaussian with
diagonal covariance: g4(z) = N (z; u, 0*I) with
¢ = {u,0?}. Asitis often done, we use Amor-
tised Variational Inference (AVI) (Gershman and
Goodman, 2014) scale up VI by learning a function
g~ that transforms each data point (z,y) into the
parameters of the approximate posterior:

45(2) = N(2; 94(,9)) ©)

where g, is often referred to as inference network,
parameterized as a recurrent neural network in our
case. We can then maximize a lower bound of
log pg(x,y), called the Evidence Lower Bound, or
ELBO:

~ D (g0(2) [pa(2))

(10)
The recent literature on VAEs usually employs the
ELBO under the form shown in Equation 10, as
the KL divergence can be computed analytically
when both ¢4 and p,, are Gaussians, which is not
always the case in our framework. To facilitate the
deduction of the surrogate loss functions for all our
models, we rewrite the ELBO as follows:

E.gy(2) [l0gPa(2) + log ps(z, y[2)] + H(gy(2))
(11)

2See Appendix A for more details about the Langevin
Monte Carlo algorithm and Appendix B for a description of
its application to posterior sampling.

3See Appendix C for a detailed derivation.

IEzwq(b(z) [log ps (:L', y|2’)}

Then, an advantage of our particular choice of vari-
ational distribution is that it can provide a closed-
form expression for several terms, among which
the entropy:

d
H(gy(2)) = glog 27) + Zl—i—logo (12)

J=1

N

where d is the dimension of Z.

4.4 Loss functions

To summarize, for each parameter update we need
to compute, when using EM:

P
ap Z log pa(2p) + logpg(x, y|zp))

(13)
and the following gradient when using VI:
v%ﬁ@ [ - Ez~q¢(z) [lOg Pa (Z) (14)
+logps(z,ylz) | — H(gp(2)) |

In both cases, the computation of the gradient
Vo logpa(z) can be problematic when we adopt
an EBM as prior, since the partition function makes

the computation of logp,(z) intractable. This

leads us to expand the gradient as follows*:

valogpa(z) = afa( ) zwpa [ afa( )]
(15)

which can also be approximated through MC esti-
mation:

Q
Va Inga(Z> ~ Vq fa(z) - 22 Zfa(ZQ)
q=1

(16)

where the z; are the samples drawn from the distri-
bution p,,(z) with the LMC algorithm. In addition,
in the case of VI, since ¢4 (2) and g, (z) are chosen
to be respectively A (u, 0?) and N'(0,1), we can
simplify the related expectation by:

Ez~q¢(z) [logpa(z)] =
d
d 1
_flog (2) 22; ,u]—i—a a7n
J:

We now have all the information needed for the
computation of surrogates to the loss functions as-
sociated with the possible scenarios in our frame-
work. Given the number of possibilities involved,

*See chapter 18.1 of Goodfellow et al. (2016) for a detailed
derivation.



Alg. Fact. Prior Surrogate loss function
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Table 1: Surrogate loss functions for the set of models experimented with in Section 5.

and especially because of the large computation
time expected with the MC estimation in our EM
algorithm, we explore a restricted set of combina-
tions: we only compare both factorizations when
learning with VI. We also only include the EBM-
Gaussian prior with VI, as it is supposed to mitigate
the fact that and EBM prior does not fit the assump-
tion made by VI. This set, and the list of associated
surrogate loss functions, is detailed in Table 1.

5 Application to conditional text
generation

5.1 Experimental setup

Datasets. To evaluate our models on conditional
text generation, we use two datasets: Yelp and
News Aggregator (Dua and Graff, 2017). Yelp con-
sists of restaurant reviews; we use the version pre-
processed by Shen et al. (2017) which includes only
two polarity sentiment labels (Positive and Nega-
tive) and sentences that are no longer than 15 words.
News Aggregator is a collection of news articles
from four categories: Business, Sci-tech (science
and technology), Entertainment and Health. We
use only the titles of the articles for text generation:
in this setting, the dataset is usually referred to as
News Titles”.

Evaluation metrics. In this paper, we consider
the following aspects: the realism of the gener-
ated sentences, their diversity, and the ability of the
model to control sentence attribute. For the realism
of sentences, and their diversity, we use respec-
tively Forward BLEU and Backward BLEU, which
were first proposed by Shi et al. (2018) for the
evaluation of unconditional text generation. For-
ward BLEU computes the BLEU score (Papineni

3See Appendix D for more details about these two datasets.

et al., 2002) of each generated text by using the
whole test set as reference and takes the average,
while Backward BLEU takes all the generated sen-
tences as reference and computes the BLEU score
of each test sentence. In order to evaluate the abil-
ity of the model to control sentence attribute, we
use a FastText (Joulin et al., 2017) classifier® which
will measure how consistent are the attributes of
our generated sentences. We pre-train the Fast-
Text classifier on real-world data and then use it
as an oracle classifier. We reserve a subset of the
training data exclusively in order to pre-train the
classifier, and not to be used to train the generative
model”. Our FastText classifier achieves accuracies
of respectively 96.7% and 91.3% on Yelp and News
Titles. To easily summarize results, we compute
the geometric mean of these three metrics. When
evaluating, for each dataset, model, and possible at-
tribute, we generate the same number of sentences
as there is in the associated test set.

Details on models and optimization®. We
model the EBM scoring function f, using a MLP
with GELU activations and the generator pg with
a GRU (Cho et al., 2014) with one hidden layer.
In the case of the ind factorization, we represent
the attribute y with a one-hot encoding and use
it both to initialize the hidden state of the GRU,
and concatenated to the word embedding inputs.
Concerning the optimization of models with EBM
priors, we add a hyperparameter A for weighting
the EBM-term in the loss function, in order to be
able to stabilize the training. For each different ex-
periment, the hyper-parameters were searched with

See Appendix E for more details on the oracle classifier.

"Details on datasets splits can be found in Appendix D.

8Further details about the optimization, regularization, and
hyper-parameter search can be found in Appendix F.



Dataset  Algorithm Factorization Prior Acct F-BLEUT B-BLEU?1T G-mean?
M o Gaussian 09852  0.5816 02369 05139
EBM 09574  0.8254 03396  0.6450
Yelp o Gaussian 09786  0.8074 04476  0.7072
v EBM 0.9646  0.8010 03763  0.6625
Gaussian 09046  0.8327 04286  0.6860
cond-ind EBM 08771  0.6451 0.3307 0.5719
EBM-Gaussian  0.9066  0.8428 04157  0.6823
o Gaussian ~ 0.9547  0.4892 02210  0.4690
O . EBM 09119  0.4309 0.1778 04119
Gaussian 0.7683 0.4576 0.2197 0.4259
cond-ind EBM 06971  0.3382 01322 03147
EBM-Gaussian 0.8376  0.5001 02056  0.4416

Table 2: Conditional text generation results on Yelp and News Titles. Experiments with EM on News Titles were not
included because of the large runtime required by posterior inference.

a random search strategy (Bergstra and Bengio,
2012), with 16 runs.

5.2 Results

We base model selection on the G-mean of our
three metrics computed on the validation set, and
present the performance of the selected models” on
test sets in Table 2. First, we observe that when
training the model with the EM algorithm on Yelp,
an EBM prior results in a substantial improvement
of the conditional generative performance with re-
spect to all the metrics. This seems to confirm the
hypothesis that an EBM can learn a more flexible
prior, which increases the representational expres-
SiVitle. However, with VI, the models based on
an EBM prior perform worse. We conjecture that
the reason is two-fold: firstly, training an EBM on
high-dimensional data is difficult, and all the more
when the EBM is moved into latent-space; we will
develop this point in Section 6.1. Secondly, with
VI, we make a Gaussian assumption on the poste-
rior distribution; minimizing the KL divergence be-
tween the posterior and the prior is hence restrictive
when learning an EBM-based prior. This explains
the better performance of the EBM-Gaussian prior,
which is almost identical to the Gaussian prior. Fi-
nally, a comparison of the results for both factoriza-

°See Appendix H for samples of sentences generated by
the different models.

"However, we could not confirm those results in a reason-

able time on News Titles, given the large runtime required by
the posterior inference.

tions shows that the models based on ind generally
perform better in classification accuracy than those
based on cond-ind. A possible explanation is that
the posterior LMC sampling z ~ py(z|y) necessary
for conditional generation adds a supplementary
difficulty to the process, since the LMC sampling
hardly converges in high dimension. Overall, the
model variant [VI e ind e Gaussian] (i.e, S-VAE)
is the best performing in our framework, on both
datasets.

6 Discussion

6.1 Training of EBM-based priors

Despite their flexibility for generative modeling,
EBMs are notorious for their unstable training, es-
pecially when it comes to high dimensional spaces.
When the modeling takes place directly in the ob-
served data space, previous works (Xie et al., 2016;
Du and Mordatch, 2019; Grathwohl et al., 2020)
using LMC on EBMs observed that short-run LMC
chains with a Contrastive Divergence (CD) or Per-
sistent CD initialization can eventually generate
realistic samples, even though the model has not
converged!'. However, moving an EBM into the
latent space introduces additional components to
the loss to be optimized, and this difficulty to con-
verge can no longer be ignored: other parts of the

""The recent work of Nijkamp et al. (2020) shows that
despite this, the energy of a trained EBM which has not con-
verged does not necessarily approximate the real density well.
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Figure 2: Influence of dimension of the latent space on
the G-mean for models with gaussian and EBM-based
priors trained with VL.

loss can easily be affected as they are optimized
jointly. It forces us to try to circumvent the issue
through strategies such as setting a small weight
for the EBM-related term of the loss, or diminish-
ing the dimension of the latent space. While these
solutions allowed the training to stabilize, they in
turn slow the learning of the prior and limit its ex-
pressive ability. This is very significant with VI'2,
as we can see on Figure 2: the performance of the
gaussian prior increases with the latent dimension,
while the performance of the EBM prior plummets.

6.2 Comparison with SVEBM

The Symbol-Vector Coupling Energy-Based Model
(SVEBM) of Pang and Wu (2021) uses both an
EBM-based prior and employs VI to approximate
the posterior distribution for the application of
attribute-controlled text generation. Within our
framework, the variant [VI e Cond-ind e EBM-
Gaussian] is the most similar to the SVEBM: we
will from now on refer to it as VCEG. However,
differently from our separate parameterizations of
prior p, () and classifier pg(y|z), the SVEBM for-
mulates the joint distribution p,,(y, z) as an EBM
Pa(y.2) = gy oxp((y, fa(2)) X N(2:0,1) As
such, it can be seen as using a Joint Energy-based
Model (JEM) (Grathwohl et al., 2020) in the latent
space. In addition, Pang and Wu (2021) proposes to
improve learning with a regularization mechanism
based on the information bottleneck (SVEBM-IB).
However, on attribute-controlled text generation,
Pang and Wu (2021) only report the accuracy of
an oracle classifier on generated sentences for the
SVEBM-IB, leaving out the base model. To ob-

2These solutions were not required with EM: see Ap-
pendix F for the details of the latent dimensions selected by
the hyper-parameter search in each setting.

tain a more complete picture, we compare in Table
3 the performances of the related models with re-
spect of our three metrics. VCEG obtains the best
performance among all the models. However, our
implementation of the SVEBM performs slightly
worse than the original implementation. Still, com-
paring the first two rows clearly shows us that using
joint energy modeling in the latent space harms the
controllability of the model, rendering necessary
the information bottleneck trick, which, in turns,
reduces its expressivity.

Model Acc F-BLEU B-BLEU G-mean
VCEGTY 0.9066  0.8428 0.4157 0.6823
SVEBM+ 0.8206 0.7624 0.3858 0.6226
SVEBM: 0.7590  0.8296 0.4406 0.6522
SVEBM-IB: 0.8580  0.8912 0.3782 0.6613

Table 3: Performance of the SVEBM-related models on
the Yelp dataset. t refers to our own implementation. §
refers to the implementation of Pang and Wu (2021) '°.

7 Conclusion

In this work, we have sought to clarify how several
key factors in the design of latent-variable gener-
ative models (complexity of the prior, interaction
between the attribute and the latent representation,
learning method) affect their performance on con-
ditional text generation tasks. We experiment in
particular with EBM-based priors, and show that
while these priors indeed have greater representa-
tional power than the usual Gaussian priors, they
are currently hard to exploit on account of their
problematic training. Our experiments also show
that coupling attribute and latent variable, as done
in the SVEBM (Pang and Wu, 2021) is not an op-
timal solution. Finally, in our unified framework,
we observe that the best performing model remains
the earliest, corresponding to the design of the S-
VAE (Kingma et al., 2014).
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A Langevin Monte Carlo

Let 7 be a target density distribution, expressed as:

m(z) =e U@/ [ eVWqy (18)
R4

where U : R? — R; sampling from 7 can
be achieved through MCMC methods, such as
Hastings-Metropolis algorithm (Metropolis et al.,
1953; Hastings, 1970), Gibbs sampling (Geman
and Geman, 1984) or Hamiltonian Monte Carlo
(Duane et al., 1987; Neal and others, 2011). LMC
(also called Unadjusted Langevin Algorithm) pro-
poses to construct the Markov chain (X*);>¢
given for all £ € N by:

XF = xF _AVU(XF) +V2XGFT (19)

where A > 0 is the constant stepsize and (G*);>1
is a sequence of 1.i.d. standard d-dimensional Gaus-
sian vectors. In fact, LMC is a special case of
Metropolis-Hastings algorithm by taking the pro-
posal distribution N’ (X —AVU (Xy), vV2A1,). To
avoid long Markov chain mixing time, and reduce
significantly the numbers of steps necessary to con-
verge, Contrastive Divergence (CD) (Hinton, 2002)
takes the data samples as initial states while Per-
sistent Contrastive Divergence (PCD) (Tieleman,
2008) takes instead the negative samples generated
by the model distribution in the previous learning
step; in this work, we use the latter.

B LMC for posterior sampling

In order to sample from py(z|z,y) with LMC, we
can rewrite py(z|x, y) = exp(log pp(z|x,y)) in the
form of EBM, considering log pg(z|z, y) as the en-
ergy function. The calculation of V, log py(z|z, y)
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is thus involved when applying LMC:

V:logpy(z|z,y) = V. log Polz.9.2)
po(z,y)
= V. logpy(z,y,2)
= V. logps(z,y|2) X pa(z)
= V.logps(z,y|z) + V:log pa(z)
= V. logps(z,y|z) + V. 1log fa(z) — V. log C(a)
= V:logps(z,y|z) + V. log fa(z) (20)

where pg(x,y|z) and f(z) can be computed by
conducting the forward propagation of the neural
network.

C Deduction of Equation 8

Taking the gradient of the single log-likelihood, we
have

Vo logps(z,y) = logpe(z,y) /QA(Z)dZ

/QA(Z)VG log pg(x,y)d=z

= Eg,(-)Volog po(z,y)

po(z,y,2)
=E4 (»)Velo
VOO ey
=E,,(»)[Vologpy(z,y,2) — Vologpo(z|z,y)]
Since E,, (2|2, Velogpe(z|z,y) = 0, taking

po(z|z,y) as gx(z), we have:

Vologpo(2,y) = Ep,(:jey) Vo log po(2,y, 2)

D Additional details about datasets

We have carried out experiments on three text
datasets: Yelp 14 and News Titles ', and lastly,
Name '©. Yelp dataset is a subset of Yelp’s busi-
nesses, reviews, and user data, originally pro-
vided by Yelp Dataset Challenge !”. Multiple pre-
processed versions exist for different purpose. We
use the one processed by Shen et al. (2017), which
contains two sentiment labels (negative and posi-
tive) and reviews no longer than 15 words. News

“Link to downloadable dataset:
//github.com/shentianxiao/
language-style-transfer/tree/master/
data/yelp

SLink to downloadable dataset: https://archive.
ics.uci.edu/ml/datasets/News+Aggregator

SLink to downloadable dataset: https://github.
com/spro/practical-pytorch/tree/master/
data/names.

"https://www.yelp.com/dataset

https:
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Oracle classifier

Generative models

Dataset Attributes
Ntrain ~ Mvalidation Ntrain Nvalidation ~ Tltest
french 55 26 117 38 41
Name (Toy) dutch 65 26 124 42 40
Yel negative 31701 3519 141567 25278 50278
P positive 48237 5364 213713 38205 76392
business 20838 2260 74278 9257 9334
News Title science and technology 19545 2193 69409 8759 8597
entertainment 27582 3036 97752 12165 12293
health 8163 970 29241 3654 3611
Table 4: Statistics of datasets used in experiments
Titles (Dua and Graff, 2017) it should be noted that Hyper-parameter Name (Toy) YELP News Title

the version of used in our experiments is different
than the one in Duan et al. (2020). We don’t filter
out titles longer than 15 words and we keep also Sci-
ence and Technology category for the experiments,
which retains the complexity of the origin dataset.
Lastly, Name dataset is a collection of names from
18 languages of origin. We select French names
and Dutch names among them to build a dataset
with only two classes. We use it as a "toy dataset"
for supplementary experiments and vizualisations
of the learned density in latent space, shown in Ap-
pendix G. We present the data splitting details of
all the datasets in Table 4.

E Oracle classifier

We utilize the FastText (Joulin et al., 2017) classi-
fier to evaluate the generated sentences of all the
models in our experiments. FastText is a linear
classfier with word embeddings, updated at train-
ing time. A bag of n-grams is used as additional
feature during the training. The choice of FastText
is natural: it’s efficient for both training and predic-
tion with a reasonably accuracy. It can be trained
on more than one billion words in less than ten
minutes using a standard multicore CPU, and clas-
sify half a million sentences among 312K classes
in less than a minute (Joulin et al., 2017). Besides,
its simple model architecture makes it sharing less
similarity with the generative model it is used to
evaluate. The training hyper-parameters were not
heavily tuned; we present them in Table 5.

F Hyper-parameters of generative models

In all our models, input embeddings are initial-
ized with the Glorot normal initializer (Glorot and
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Training epochs 43 26 50
Learning rate 1.0 0.16 0.5
Word n-grams 5 3 3

Table 5: Hyper-parameters details for oracle classifier

Bengio, 2010). For Yelp and News Titles, For all
the model variants in our framework, we use one-
layer bidirectional GRU of hidden dimension of
512 for both decoder and encoder when VI is em-
ployed. We parametrize the classifiers pg(y|z) and
EBMs p,(z) with MLPs of two hidden-layers of
dimension 256 except for the EBM on News Ti-
tles where the number of hidden layer is set to
one. The word dimension is set to 256 for all
the experiments. As for the training, we train
the models with a batch size of 128 and with
an Adam optimizer of 5; = 0.9, B2 = 0.9 and
e = 1 x 1078, Concerning regularization, we
adopt weight annealing for the regularization of
the KL divergence % Z?zl (logo? — o7 — pi3) and
entropy % 2?21 (log 0]2). We also employ weight
decay (L9 penalty) to help regularization and gra-
dient clipping (Pascanu et al., 2013) to deal with
the exploding gradient problem. The coefficient of
L penalty is set to 0.1 while the maximum norm
for the gradient clipping is set to 1. Other hyper-
parameters are searched by random search strategy
(Bergstra and Bengio, 2012) with the following
distributions:

* We chose a dimension of latent space from
[1,128] uniformly.

* We chose a learning rate log-uniformly from
107° to 1072



* We chose a number of LMC update step from
[31, 150] uniformly.

* We chose a LMC step-size log-uniformly be-
tween 1072 and 10.

We chose a weight coefficient for EBM loss
log-uniformly from 10~% to 10~°. The reason
for this choice of search space is the fact that
a large EBM weight loss will let the model
diverge quickly, with extreme detriment to
model performance, which can be observed in
Figure 3.

* We chose a word dropout rate uniformly from
[0,0.5].

* We chose a number of annealing step from
[1,20000] uniformly.

—=— EBM Prior

10-°
EBM loss weight

10-8 1077 10-° 1074

Figure 3: Influence of the dimension of the latent space
on the G-mean for models with an EBM-based prior,
trained with VI.

We conducted 16 trails of experiments for the
search of hyper-parameters, for each model. The
number of training steps were chosen with the early
stopping strategy. For all the datasets used by our
model in the experiments, those hyper-parameters
of the best performance on the validation set can
be found in Table 6.

G Visualization of learned latent space by
EBM

In order to study further the behaviour of EBM
in the latent space, we experiment on a simple
(toy) dataset, Name, for which a 2-dimensional
latent space is enough. Visualisation of the latent
densities learned by different models with an EBM
prior, shown in Figure 4, allows us to confirm that
the distribution learned are in this case very distinct
from the isotropic Gaussian distribution A(0, I3).
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Additional quantitative results on this dataset are
detailed in Table 7.

H Generated sentences samples

We present the sentences samples generated by
different models in Table 8 and Table 9.



Dataset Algo Facto Prior dimension learning rate  LMC nge, LMC step-size  EBM weight  word dropout  nannealing  Mtraining

EM ind Gaussian 65 0.00105057 120 0.00239995 0.23167361 — 8000
EBM 123 0.00411451 92 0.01358318 2.1e-06 0.06516866 — 2000
Yelp ind Gaussian 49 0.000579 — — 0.068292 17399 16000
VI EBM 7 0.0008852 58 0.09894774 4.0e-08 028912746 13460 8000
Gaussian 15 0.001114 149 0.003522 0.147971 17258 16000
cond-ind EBM 7 0.0008852 58 0.09894774 4.0e-08 028912746 13460 2000
EBM-Gaussian 72 0.00044611 141 0.01327672 6.0e-08 025625266 19128 20000
ind Gaussian 49 0.000579 — — — 0.068292 17399 20000
: EBM 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 18000
News Titles VI
Gaussian 15 0.001114 149 0.003522 — 0.147971 17258 20000
cond-ind EBM 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 2000
EBM-Gaussian 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 18000
Table 6: Hyper-parameters for the generative models
ind with EM 0.81 ind with VI 5.4 cond-ind with VI 3.60 N0, I5) 0.14
0.72 48 315 )
42 0.12
o 3.6 270 0.10
0.54 . .
2.25
0.45 3.0 180 0.08
0.36 / 2.4 1'35 0.06
-10 0.27 =10 4 1.8 -10 : -10
0.18 1.2 0.90 0.04
-20 009 % 06 20 0.45 |20 0.02
0.00 -20 -10 © 0 20 0.0 -20 -10 © 10 20 0.00 -20 -10 O 10 20 0.00

Figure 4: Left: Energy functions exp(f,(z)) (proportional to density) of the latent space Z learned by different
EBM variants in our framework. Right: Probability density of N'(0, I5).

Dataset Learning algorithm Factorization Prior Acc F-BLEU B-BLEU G-mean
EM ind Gaussian 0.9984  0.5083 0.1344 0.4086
EBM 0.8275  0.3866 0.5418 0.5576
Name Gaussian ~ 0.8594 03778  0.5410  0.5600
VI ind EBM 0.8314  0.3965 0.4055 0.5113
EBM-Gaussian 0.9611  0.6239 0.2206 0.5095
cond-ind EBM 0.8126  0.3657 0.5572 0.5491

Table 7: Conditional text generation results on Name.
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Algo.  Facto. Prior

Attribute

Sentence samples

Gaussian

EM ind

Positive

thanks chapel for your expertise !
i love this place !
great meal .
amazing !

Negative

i was so disappointed .
worst apartment cleaners i ’ve ever been to .
unfortunately i "'m not going back .
do n’t waste your time .

EBM

Positive

i love this place !
it ’s just very clean and the staff is very nice .
the service is always great and the food is always fresh .
so , i will not recommend this place .

Negative

s0 , i will not recommend this place .
i ’m not sure that i will not be back .
i ’m not sure that they have been to least .
the food was mediocre and the service was terrible .

Gaussian

ind

Positive

what a great place .
and if you want to be a regular , this is a great place .
they take care of their customers to make their own and feel very comfortable .
staff is friendly and the staff is always friendly and helpful .

Negative

i ordered _num_ , and _num_ minutes for the first time .
they have_num_ people in my office and i never return .
my experience was taken off to our order .
we will not be coming back for a few years .

EBM

Positive

i was so happy with .
i recommend the food and the food and they have always been great .
it is a very good experience with a smile .
the eggs benedict is also good and too .

Negative

the chicken was not a good thing to have ever had .
it was cooked and it was not cooked and tough .
customer service was horrible .

i gave the _num_ % of the reviews and they were .

VI

Gaussian

Positive

its always a nice place to get a date .
the owner is a great guy and has a great attitude .
this is the best , fast , and delicious .
the sauce was perfect , and the sauce was very good .

Negative

i asked for a new car and she said it was n’t too busy .
i am not sure to this place .
avoid this place at all !
the only thing on the menu is good , but the food is very overpriced .

cond-ind
EBM

positive

it was all of it was perfect .
highly recommend .
happy hour the service !
recommend this place , hands down .

Negative

we ordered a salad and it was pretty good .
but not really much good !
also , too , and no , and no sense of a smile .
the worst part is the worst experience .

EBM-Gaussian

positive

this is the worst i "ve ever been to in my life .
overall , a very good experience .
great time to start with the service .
they have great food and the service is friendly .

Negative

at the end of the place i could have been to _num_ minutes .
worst pizza hut i have ever had in a while .
i would not recommend it .
i could n’t even eat it to eat .

Table 8: Sentence samples generated by conditioning on sentiment attribute. The models are trained on Yelp. The

sentences are random selected with the help of RANDOM.SHUFFLE().
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Algo.  Facto. Prior Attribute

Sentence samples

fed’s fisher to end up, but not to be strengthened
Business barclays shunned by fitch
european stocks rise ahead of yellen testimony

apple to unveil a new smart home platform for the next week
Sci-tech windows phone 8.1 update with android 4.4.2 update and cortana support
Gaussian first look at the new android wear

lady gaga’s tony bennett album release date, plus more details emerge
Entertain a “mrs. doubtfire’ sequel in ’star wars: episode vii’ is not a sequel
jada pinkett smith: ’covert pedophiles’ over willow smith

red robin thicke’s new album in the works with new video
ind Health duval county, other health care tips for global warming
study: diabetic heart attacks, strokes falling

update: mothercare rejects takeover bid for astrazeneca’s takeover offer
Business warren buffett’s berkshire pay gap in talks with astrazeneca
disney buys klout for $280 million

ohio’s state’s ceo says google glass to be affected by...
Sci-tech hon hai, pegatron on apple, ibm, and other tech giants
EBM how to watch the empire state building, and the world wide web?

rob kardashian and justin bieber and t.i. brawl in vegas brawl over t.i. brawl over t.i. brawl
Entertain kim kardashian and kanye west
one of thrones: george rr martin’s new chapter

ohio state’s first class seat to save lives
Health officials: 1.8m pounds of ground beef products, including west africa
exact sciences’ deep-c data on cobimetinib

malaysia airlines flight 370 pilot flying down
Business justin bieber caught in deposition video
A us supreme court rules against aereo in court

microsoft surface mini 2: surface pro 3
Sci-tech update: american apparel ceo dov charney’s termination letter to american apparel
Gaussian apple iphone 6 rumors: 5.5-inch iphone 6 screens to enter production

rolf harris’ disguised as’ as he’s’ sickened ’by 18-year-old
Entertain khloe kardashian and french montana embrace family feud
prince harry and cressida bonas are dating, but dating?

why we should not trust care about tobacco
Health sa news briefs
nintendo apologizes for 'misleading’ loss

us sanctions
Business alibaba’s ipo: amazon to buy the ipo

the irs: astrazeneca’s’ to pay ’astrazeneca’ in china’s...
cond-ind

at & t’s ceo’s new york, the new york, and the new...
Sci-tech best (ipad)
EBM samsung galaxy s5 price for india, price and gear 2...

"how i met your mother finale is the finale is the first time you need you need??
Entertain netflix ceo to $100 million in the us, but it’s new york, but it’s...
fce prices continue to be on again

los angeles attorney foods, says it’s $1 million in new york...
Health us county county county’s death toll to continue to...
nintendo posts $10.2bn million loss of $3.8 billion

us economy to grow up by 2.9% in first quarter, but still critical to...
Business at & t agrees to buy directv for $48.5bn deal
update 1-valeant shares soar after sycamore partners with verizon

us supreme court rules on aereo, ’right to be forgotten’ ruling in the...
Sci-tech facebook manipulated users emotions in secret
EBM-Gaussian google’s self-driving car prototype: no steering wheel, no steering wheel

captain america: the winter soldier "sets april record with $96.2m in...
Entertain ’game of thrones’ season 4 episode 4 recap: ’the lion and the rose’
taylor swift’s’ music music ’is a paid for $50 millione

google’s self-driving cars are mastering city streets: study
Health stephen colbert to replace david letterman on ’the late show’
neil patrick harris poses for a rolling stone ’in the face

Table 9: Sentence samples generated by conditioning on sentiment attribute. The models are trained on News Titles.
The sentences are random selected with the help of RANDOM.SHUFFLE().
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