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Abstract
Conditional text generation is a non-trivial task,001
which is until now predominantly performed002
with latent-variable generative models. In this003
work, we intend to explore several choices that004
are shown to affect the two essential aspects005
of model performance: expressivity and con-006
trollability. We propose to experiment with a007
series of latent-variable models built around008
simple design changes under a general unified009
framework, with a particular focus on prior010
distributions based on Energy-Based Models011
instead of the usual standard Gaussian. Our012
experiments validate the claim that this richer013
prior allows for a better representational power,014
but it exhibits difficult training. We provide015
a comprehensive analysis of these difficulties016
and a close comparison with recent work on017
EBM-based priors for conditional text genera-018
tion1.019

1 Introduction020

Conditional (or controllable) text generation con-021

sists in generating realistic textual language while022

controlling an attribute variable. There is a large va-023

riety of attributes that one could condition content024

generation on, depending on the application: we025

can mention dialog models, with control over in-026

tent in the conversation (Zhao et al., 2017), or story027

generation, with control over the persona (Chandu028

et al., 2019), among others. In controllable text029

generation, attributes are commonly encoded as030

control vectors (Prabhumoye et al., 2020). In this031

setting, it is natural to use generative models based032

on latent representations (Bowman et al., 2016;033

Kim et al., 2018; Pelsmaeker and Aziz, 2020). In-034

stead of estimating directly the data distribution035

in the observation space, latent-variable generative036

models define a continuous latent variable and learn037

its distribution. Then, text can be generated by sam-038

pling a prior in the case of Variational Autoencoder039

1We will release our code upon publication to facilitate
future work.

(VAEs) (Kingma and Welling, 2014; Rezende et al., 040

2014). Adapting these approaches to conditional 041

generation can be achieved by integrating an addi- 042

tional latent attribute variable into the model. 043

In conditional text generation, model perfor- 044

mance can be assessed against two properties: i) 045

the quality of the generated text, which should be 046

realistic, but also diverse and ii), the ability of the 047

approach to effectively generate content that cor- 048

responds to the attribute value. Firstly, the qual- 049

ity of the generated text depends greatly on the 050

latent-variable model used. On that matter, most 051

models (Bowman et al., 2016; Yang et al., 2017; 052

Kim et al., 2018) use a simple prior distribution 053

like the standard Gaussian, or the uniform distri- 054

bution. There is a large number of works investi- 055

gating more expressive priors, with several of them 056

focusing on text, leading to improved results on 057

text modeling tasks (Zhao et al., 2018; Ding and 058

Gimpel, 2021). Secondly, controllability offers a 059

particular challenge, as continuous latent variables 060

are not naturally adapted to represent discrete at- 061

tributes. Several ideas (Hu et al., 2017; Li et al., 062

2020; Duan et al., 2020) have been proposed to 063

facilitate controlled generation: however, those ap- 064

plied to latent-variable generative models usually 065

need to use supplementary classifiers or generators, 066

which requires many more parameters, or to opti- 067

mizing simultaneously an adversarial objective or 068

a regularization term, which is difficult and may 069

lead to poor control abilities. 070

In this paper, we are interested in exploring how 071

simple factors in model design affect those two as- 072

pects of model performance, away from more elab- 073

orate solutions recently proposed in the literature. 074

To achieve this, we propose a framework based on 075

a latent-variable generative model, in which we pro- 076

pose to vary (1) the complexity of the prior; (2) the 077

way the attribute and latent representation interact; 078

(3) the learning procedure. We thus aim at provid- 079

ing a clear view of the impact and usefulness of 080
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each design choice on conditional text generation081

tasks. We choose to make our framework general-082

ize a very recent work (Pang and Wu, 2021) investi-083

gating conditional text generation with a model that084

learns the prior distribution of the latent space with085

an Energy-Based Model (EBM) (Fahlman et al.,086

1983; Smolensky, 1986; Zhu et al., 1998; Salakhut-087

dinov and Hinton, 2009; Rosenfeld et al., 2001;088

Wang et al., 2015; Lu et al., 2016; Wang and Ou,089

2017), which was previously explored by Pang et al.090

(2020) for unconditional generation. We will first091

explore the related literature and motivate our de-092

sign choices in Section 2; then, state our problem093

and detail our framework in Sections 3 and 4. In094

Section 5, we check the performance of our mod-095

els experimentally by measuring the quality of the096

generated text and evaluating how well it is able097

to control the attribute of sentences through the098

accuracy of an external classifier. Finally, we dis-099

cuss the particular issues raised by the training of100

an EBM prior and expand on the comparison with101

the work of Pang and Wu (2021) in Section 6. To102

summarize, our contributions are as follows:103

1. Taking a step back from the often complex lit-104

erature on the subject, we provide a clear view105

of how several factors impact the performance106

of latent-variable models for conditional text107

generation.108

2. We experiment with various models within our109

framework on two datasets; in particular, we pro-110

vide a comprehensive study of the EBM-based111

prior and draw a fine-grained comparison with112

a recently published work also employing this113

prior for the same task (Pang and Wu, 2021).114

3. We find out that while it has a better representa-115

tional power, an EBM-based prior is very diffi-116

cult to train, and that our best performing model117

is akin to the S-VAE (Kingma et al., 2014).118

2 Related Works119

2.1 Expressivity in latent-variable generative120

models121

Among latent-variable models, VAEs are often122

thought of as having their expressivity limited by123

simplistic priors – they usually employ simple124

gaussian distributions – and by the restrictive as-125

sumption it puts on their latent posterior (Ding126

and Gimpel, 2021). Researchers have tried to127

improve the representational expressivity of their128

models through the use of more complex priors, 129

such as mixture of gaussians (Wang et al., 2019), 130

the Dirichlet distribution (Burkhardt and Kramer, 131

2019) or the Variational Mixture of Posteriors Prior 132

(VampPrior) (Tomczak and Welling, 2018), but 133

also recently with priors based on on normaliz- 134

ing flows (Ding and Gimpel, 2021). Another way 135

to do so is to directly learn a parametrized model 136

as prior: the Variational Lossy Autoencoder (Chen 137

et al., 2017) parameterizes the prior with a learn- 138

able autoregressive flow from a simple gaussian 139

distribution, while ARAE (Zhao et al., 2018) learns 140

the prior through a generator model with adversar- 141

ial learning. This is also the idea behind the EBM- 142

based prior of Pang et al. (2020): interestingly, the 143

authors do not use variational inference, but re- 144

sort to sampling for exact posterior inference with 145

Markov Chain Monte Carlo (MCMC). Thus, they 146

are avoiding any assumption about the form taken 147

by the posterior distribution, which is also the mo- 148

tivation behind the work of Fang et al. (2019): they 149

propose to learn implicitly the posterior, to avoid it 150

being gaussian-based. In this work, we propose to 151

investigate the use of a flexible EBM-based prior, 152

and to compare it to the usual gaussian prior. How- 153

ever, given the assumptions accompanying both 154

gaussian priors and variational inference, we be- 155

lieve we should not make such a change without 156

also investigating how it interacts with the learning 157

process. Hence, we train our models with both 158

Expectation-Maximization (EM), and Variational 159

Inference (VI). 160

2.2 Controllability in conditional text 161

generation 162

Most of the existing approaches to conditional 163

text generation are based on latent-variable mod- 164

els: however, they vary greatly in how they deal 165

with attribute information. Some integrate the at- 166

tribute into the latent space; for example Shi et al. 167

(2020) uses a gaussian mixture prior, where to each 168

component corresponds an attribute class. They 169

add a dispersion term to the training objective to 170

avoid mode collapse and force latent representa- 171

tions corresponding to different attributes into well- 172

separated clusters. Contrarily, attributes may come 173

from an external source. Then, models differ in 174

how they make the attribute information interact 175

with the latent representation: Hu et al. (2017); 176

Li et al. (2020) are focused on disentangling the 177

attribute information from the rest of the representa- 178
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tion, using an auxiliary classifier that discriminates179

between the generated examples matching the at-180

tribute and those that do not. For each possible181

attribute, Duan et al. (2020) map the latent space of182

a pre-trained VAE into a smaller attribute-exclusive183

space with an individual plugin VAE, which has the184

advantage of allowing for semi-supervised learning,185

as attribute information is only needed for train-186

ing these plugins. Recent approaches based on187

large language models also fit in this second cate-188

gory: similarly to Li et al. (2020), Keskar et al.189

(2019) use control codes as a separate input to190

the model (which implies training it from scratch),191

while Dathathri et al. (2020) uses gradient infor-192

mation from a classifier trained on the desired at-193

tributes to explore the hidden space of a pre-trained194

model. In this work, we propose avoid any compli-195

cated solution and to only make a simple change to196

how an external attribute variable and the latent rep-197

resentation interact, by making them independent,198

or conditionally independent given the observation,199

and compare the behaviour of both approaches.200

2.3 EBMs for text generation201

Energy-based models have often been used for se-202

quence modeling (Wang et al., 2015; Wang and Ou,203

2017), with a recent growth in popularity: with au-204

toregressive generative models, for calibration (He205

et al., 2021), efficient scoring (Clark et al., 2020);206

but also for non-autoregressive general purpose text207

generation (Deng et al., 2020), or in machine trans-208

lation (Tu et al., 2020). However, the discrete space209

of textual data implies using methods like Noise-210

Contrastive Estimation (Gutmann and Hyvärinen,211

2010). Pang et al. (2020) moves the energy model-212

ing into a continuous latent space, of much lower213

dimension, making it easier to apply the model to214

textual data. The closest existing approach to our215

work, the Symbol-Vector Coupling Energy-Based216

Model (SVEBM) of Pang and Wu (2021), uses an217

inference network to approximate the intractable218

posterior distribution of the latent variable, and219

regularization based on the information bottleneck220

to ensure the latent representation contains infor-221

mation from the controlling attribute. However,222

the attribute directly intervenes in the EBM, which223

actually models both the attribute and the prior224

jointly. In this paper, we adopt a wider approach225

and propose an EBM prior separated from the at-226

tribute. We also carry out a thorough comparison227

of our framework with the SVEBM of Pang and228

Wu (2021). 229

3 Problem and notations 230

All along this paper, we represent a text sequence 231

by a random sequence X over a vocabulary V . In 232

general, an observed text sequence of size L is a 233

realization of X denoted by x = (xt)Ll=1, where 234

each word/token xt belongs to V . In this paper, 235

the attribute Y is a categorical variable taking its 236

values in the set Y = {1, . . . ,m}. Generating text 237

conditioned on an attribute can be seen as draw- 238

ing a family of conditional distribution (PX|y)y∈Y . 239

We assume to observe pairs (xi, yi) ∈ X × Y for 240

i = 1, . . . n where yi is the attribute value on which 241

the generation of the text sequence xi has been 242

conditioned. In this setting, our goal is to learn a 243

parametric model of the family of conditional dis- 244

tributions (PX|y)y∈Y from a set of n observations 245

Dn = {(xi, yi)ni=1}. 246

4 Latent-variable Generative Model for 247

Conditional Generation 248

To address the learning problem described above, 249

latent-variable generative models seek to obtain an 250

internal representation that explains the observa- 251

tion x, through a random latent variable Z. In this 252

work, we restrict ourselves to the case where Z 253

is continuous, taking its values in Rd, and we de- 254

fine a probabilistic graphical parametric model Pθ 255

to estimate the joint distribution of observed data 256

variable X , condition variable Y and latent unstruc- 257

tured variable Z. pθ(x, y, z) is the density of the 258

model, and can be factorized as pα(z)×pβ(x, y|z). 259

The following section is dedicated to the definition 260

of the models we will study within this framework, 261

varying with respect to (1) how to model the la- 262

tent prior pα(z), (2) the further factorization of 263

pβ(x, y|z) and (3) the learning procedure. 264

4.1 Latent prior pα(z) 265

The usual choice for the latent distribution pα(z) 266

is a standard Gaussian N (0, I), following the VAE 267

(Kingma and Welling, 2014) and S-VAE (Kingma 268

et al., 2014) models; in that case, the parameter 269

of the distribution α is fixed beforehand. In Pang 270

et al. (2020); Pang and Wu (2021), the density of 271

the EBM serving as prior for the latent space Z is 272

defined as follows: 273

pα(z) =
1

C(α)
exp(fα(z))×N (z; 0, I) (1) 274
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x ∼ pβ(x|y, z)
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x ∼ pβ(x|z)

Figure 1: Conditional generation with different factor-
ization: ind(left) and cond-ind(right).

where C(α) =
∫
exp(fα(z))dz is the partition275

function and function fα : Rd → R is often param-276

eterized as a multi-layer perceptron (MLP) with277

parameters α learned from observed data. How-278

ever, it should be noted that Equation 1 defines a279

middle-ground model, where a Gaussian distribu-280

tion is included as reference. In this work, we are281

interested in studying the behaviour of a pure EBM282

prior, where the Gaussian term is removed. We283

name this latter prior EBM, and the previous one284

EBM-Gaussian.285

4.2 Factorization of pβ(x, y|z)286

Having y as an attribute external to the latent space,287

there exists two approaches we can follow to model288

this interaction: the first assumes the independence289

between the variables Y and Z, while the latter290

one assumes the conditional independence of X291

and Y given Z. Intuitively, the first case forces292

z and y to be disentangled, while in the second293

case, z contains all the necessary information for294

the generation of the observation x. These two295

conflicting ways of modeling pβ(y, x|z) can be296

reduced to a difference in the factorization of the297

associated probabilistic graphical model, which are298

represented in Figure 1. We write them as follows:299

• ind: pβ(x, y|z) = pβ(x|y, z)× pβ(y)300

• cond-ind: pβ(x, y|z) = pβ(x|z)× pβ(y|z)301

They result in the following generation process: (1)302

The condition y is sampled from some fixed distri-303

bution p(y); (2) In the case of ind, a latent continu-304

ous vector z is sampled from the distribution pα(z);305

in the case of cond-ind, we sample z instead from306

un-parameterized posterior p(z|y) with Langevin307

Monte Carlo (LMC), requiring the computation of308

∇z log pθ(z|y), which can be solved with the help309

of pα(z) and pβ(y|z):310

∇z log pθ(z|y) = ∇z [log pα(z) + log pβ(y|z)]
(2)311

(3) Noting u = {z} or {z, y} depending on the fac- 312

torization, the sequence x is sampled from the con- 313

ditional distribution pβ(x|u) which parametriza- 314

tion is usually referred to as generator network. 315

With the observation x being a sequence of L 316

words, the generator network takes the form of 317

a conditional autoregressive model parameterized 318

by a recurrent network, of parameters β, as follows: 319

320

pβ(x|u) =
L∏
l=1

Φβ(x
l|x1, · · · , xl−1, u) (3) 321

Thus, the generation process consists in succes- 322

sively sampling tokens xl from the categorical dis- 323

tribution over the vocabulary, Φβ . On the other 324

hand, the distribution of attribute y, pβ(y|z) is de- 325

fined as categorical distribution parameterized by a 326

MLP. 327

4.3 Learning algorithm 328

The latent-variable models described above are 329

trained through Maximum-Likelihood estimation 330

of the marginal density: 331

min
θ

E(x,y)∼pdata [− log pθ(x, y)] (4) 332

With the presence of latent variable Z, the log 333

marginal likelihood is written as an intractable in- 334

tegral: 335

log pθ(x, y) = log

∫
Z
pα(z)pβ(x, y|z)dz (5) 336

The integral presented in Equation 5 is often in- 337

tractable when Z is high-dimensional and pθ is 338

parameterized by a neural network. The dominant 339

surrogate approaches to optimizing this objective 340

are Expectation Maximization (EM) and, more re- 341

cently, Variational Inference (VI). 342

Expectation Maximization. The EM algorithm 343

is an iterative procedure based on repeatedly opti- 344

mizing the expected complete data likelihood given 345

the current parameters. This quantity is computed 346

in the E-step: 347

E(x,y)∼pdata

[
Ez∼pθt (z|x,y) [log pα(z)

+ log pβ(x, y|z)]]
(6) 348

where θt is the estimate for θ at current step t. The 349

inner expectation in Equation 6 can be further ap- 350

proximated through Monte Carlo (MC) estimation: 351
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352

1

P

P∑
p=1

(log pα(zp) + log pβ(x, y|zp)) (7)353

where zp denotes the samples drawn from the poste-354

rior distribution pθt(z|x, y) estimated at the current355

step. In order to efficiently obtain these samples,356

we can use the LMC (Rossky et al., 1978; Parisi,357

1981). 2 Then, in the M-step, we simply need to358

maximize the quantity in Equation 7 with respect to359

θ = {α, β}. With the Stochastic Gradient Descent360

(SGD), the M-step can be replaced by a single gra-361

dient update: it is indeed possible to prove that3362

363

∇θ log pθ(x, y) = Ez∼pθ(z|x,y)∇θ log pθ(x, y, z)
(8)364

which is in fact equal to the gradient of the inner365

expectation computed during the E-step.366

Variational Inference. As it is impossible to367

compute the exact posterior pθ(z|x, y), we can368

introduce an approximate posterior qϕ(z), which369

is called the variational distribution and is usu-370

ally chosen to be a multivariate Gaussian with371

diagonal covariance: qϕ(z) = N (z;µ, σ2I) with372

ϕ = {µ, σ2}. As it is often done, we use Amor-373

tised Variational Inference (AVI) (Gershman and374

Goodman, 2014) scale up VI by learning a function375

gγ that transforms each data point (x, y) into the376

parameters of the approximate posterior:377

qϕ(z) = N (z; gγ(x, y)) (9)378

where gγ is often referred to as inference network,379

parameterized as a recurrent neural network in our380

case. We can then maximize a lower bound of381

log pθ(x, y), called the Evidence Lower Bound, or382

ELBO:383

Ez∼qϕ(z) [log pβ(x, y|z)]− DKL(qϕ(z)||pα(z))
(10)384

The recent literature on VAEs usually employs the385

ELBO under the form shown in Equation 10, as386

the KL divergence can be computed analytically387

when both qϕ and pα are Gaussians, which is not388

always the case in our framework. To facilitate the389

deduction of the surrogate loss functions for all our390

models, we rewrite the ELBO as follows:391

Ez∼qϕ(z) [log pα(z) + log pβ(x, y|z)] +H(qϕ(z))
(11)392

2See Appendix A for more details about the Langevin
Monte Carlo algorithm and Appendix B for a description of
its application to posterior sampling.

3See Appendix C for a detailed derivation.

Then, an advantage of our particular choice of vari- 393

ational distribution is that it can provide a closed- 394

form expression for several terms, among which 395

the entropy: 396

H(qϕ(z)) =
d

2
log(2π)+

1

2

d∑
j=1

(1+log σ2
j ) (12) 397

where d is the dimension of Z . 398

4.4 Loss functions 399

To summarize, for each parameter update we need 400

to compute, when using EM: 401

∇α,β

− 1

P

P∑
p=1

(log pα(zp) + log pβ(x, y|zp))


(13) 402

and the following gradient when using VI: 403

∇α,β,ϕ [ − Ez∼qϕ(z) [log pα(z) (14) 404

+ log pβ(x, y|z) ]−H(qϕ(z)) ] 405

In both cases, the computation of the gradient 406

∇α log pα(z) can be problematic when we adopt 407

an EBM as prior, since the partition function makes 408

the computation of log pα(z) intractable. This 409

leads us to expand the gradient as follows4: 410

∇α log pα(z) = ∇αfα(z)− Ez∼pα(z) [∇αfα(z)]
(15) 411

which can also be approximated through MC esti- 412

mation: 413

∇α log pα(z) ≈ ∇α

fα(z)− 1

Q

Q∑
q=1

fα(zq)


(16)

414

where the zi are the samples drawn from the distri- 415

bution pα(z) with the LMC algorithm. In addition, 416

in the case of VI, since qϕ(z) and qα(z) are chosen 417

to be respectively N (µ, σ2) and N (0, I), we can 418

simplify the related expectation by: 419

Ez∼qϕ(z) [log pα(z)] = 420

− d

2
log(2π)− 1

2

d∑
j=1

(µ2
j + σ2

j ) (17) 421

We now have all the information needed for the 422

computation of surrogates to the loss functions as- 423

sociated with the possible scenarios in our frame- 424

work. Given the number of possibilities involved, 425

4See chapter 18.1 of Goodfellow et al. (2016) for a detailed
derivation.
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Alg. Fact. Prior Surrogate loss function

EM ind
Gaussian E(x,y)∼pdata

[
−
(

1
P

∑P
p=1 log pβ(x|y, zp) + log pβ(y)

)]
EBM E(x,y)∼pdata

[
−
(

1
P

∑P
p=1(log pβ(x|y, zp) + fα(zp))− 1

Q

∑Q
q=1 fα(zq) + log pβ(y)

)]

VI

ind
Gaussian E(x,y)∼pdata

[
−
[
Ez∼qϕ(z) [log pβ(x|y, z) + log pβ(y)] +

1
2

∑d
j=1(log σ

2
j − σ2

j − µ2
j )
]]

EBM E(x,y)∼pdata

[
−
[
Ez∼qϕ(z) [log pβ(x|y, z) + log pβ(y) + fα(z)]− 1

Q

∑Q
q=1 fα(zq) +

1
2

∑d
j=1(log σ

2
j )
]]

EBM-G E(x,y)∼pdata

[
−
[
Ez∼qϕ(z) [log pβ(x|y, z) + log pβ(y) + fα(z)]− 1

Q

∑Q
q=1 fα(zq) +

1
2

∑d
j=1(log σ

2
j − σ2

j − µ2
j )
]]

cond-ind
Gaussian E(x,y)∼pdata

[
−
[
Ez∼qϕ(z) [log pβ(x|z) + log pβ(y|z)] + 1

2

∑d
j=1(log σ

2
j − σ2

j − µ2
j )
]]

EBM E(x,y)∼pdata

[
−
[
Ez∼qϕ(z) [log pβ(x|z) + log pβ(y|z) + fα(z)]− 1

Q

∑Q
q=1 fα(zq) +

1
2

∑d
j=1(log σ

2
j )
]]

EBM-G E(x,y)∼pdata

[
−
[
Ez∼qϕ(z) [log pβ(x|z) + log pβ(y|z) + fα(z)]− 1

Q

∑Q
q=1 fα(zq) +

1
2

∑d
j=1(log σ

2
j − σ2

j − µ2
j )
]]

Table 1: Surrogate loss functions for the set of models experimented with in Section 5.

and especially because of the large computation426

time expected with the MC estimation in our EM427

algorithm, we explore a restricted set of combina-428

tions: we only compare both factorizations when429

learning with VI. We also only include the EBM-430

Gaussian prior with VI, as it is supposed to mitigate431

the fact that and EBM prior does not fit the assump-432

tion made by VI. This set, and the list of associated433

surrogate loss functions, is detailed in Table 1.434

5 Application to conditional text435

generation436

5.1 Experimental setup437

Datasets. To evaluate our models on conditional438

text generation, we use two datasets: Yelp and439

News Aggregator (Dua and Graff, 2017). Yelp con-440

sists of restaurant reviews; we use the version pre-441

processed by Shen et al. (2017) which includes only442

two polarity sentiment labels (Positive and Nega-443

tive) and sentences that are no longer than 15 words.444

News Aggregator is a collection of news articles445

from four categories: Business, Sci-tech (science446

and technology), Entertainment and Health. We447

use only the titles of the articles for text generation:448

in this setting, the dataset is usually referred to as449

News Titles5.450

Evaluation metrics. In this paper, we consider451

the following aspects: the realism of the gener-452

ated sentences, their diversity, and the ability of the453

model to control sentence attribute. For the realism454

of sentences, and their diversity, we use respec-455

tively Forward BLEU and Backward BLEU, which456

were first proposed by Shi et al. (2018) for the457

evaluation of unconditional text generation. For-458

ward BLEU computes the BLEU score (Papineni459

5See Appendix D for more details about these two datasets.

et al., 2002) of each generated text by using the 460

whole test set as reference and takes the average, 461

while Backward BLEU takes all the generated sen- 462

tences as reference and computes the BLEU score 463

of each test sentence. In order to evaluate the abil- 464

ity of the model to control sentence attribute, we 465

use a FastText (Joulin et al., 2017) classifier6 which 466

will measure how consistent are the attributes of 467

our generated sentences. We pre-train the Fast- 468

Text classifier on real-world data and then use it 469

as an oracle classifier. We reserve a subset of the 470

training data exclusively in order to pre-train the 471

classifier, and not to be used to train the generative 472

model7. Our FastText classifier achieves accuracies 473

of respectively 96.7% and 91.3% on Yelp and News 474

Titles. To easily summarize results, we compute 475

the geometric mean of these three metrics. When 476

evaluating, for each dataset, model, and possible at- 477

tribute, we generate the same number of sentences 478

as there is in the associated test set. 479

Details on models and optimization8. We 480

model the EBM scoring function fα using a MLP 481

with GELU activations and the generator pβ with 482

a GRU (Cho et al., 2014) with one hidden layer. 483

In the case of the ind factorization, we represent 484

the attribute y with a one-hot encoding and use 485

it both to initialize the hidden state of the GRU, 486

and concatenated to the word embedding inputs. 487

Concerning the optimization of models with EBM 488

priors, we add a hyperparameter λ for weighting 489

the EBM-term in the loss function, in order to be 490

able to stabilize the training. For each different ex- 491

periment, the hyper-parameters were searched with 492

6See Appendix E for more details on the oracle classifier.
7Details on datasets splits can be found in Appendix D.
8Further details about the optimization, regularization, and

hyper-parameter search can be found in Appendix F.
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Dataset Algorithm Factorization Prior Acc ↑ F-BLEU ↑ B-BLEU ↑ G-mean ↑

Yelp

EM ind
Gaussian 0.9852 0.5816 0.2369 0.5139

EBM 0.9574 0.8254 0.3396 0.6450

VI

ind
Gaussian 0.9786 0.8074 0.4476 0.7072

EBM 0.9646 0.8010 0.3763 0.6625

cond-ind
Gaussian 0.9046 0.8327 0.4286 0.6860

EBM 0.8771 0.6451 0.3307 0.5719

EBM-Gaussian 0.9066 0.8428 0.4157 0.6823

News Titles VI

ind
Gaussian 0.9547 0.4892 0.2210 0.4690

EBM 0.9119 0.4309 0.1778 0.4119

cond-ind
Gaussian 0.7683 0.4576 0.2197 0.4259

EBM 0.6971 0.3382 0.1322 0.3147

EBM-Gaussian 0.8376 0.5001 0.2056 0.4416

Table 2: Conditional text generation results on Yelp and News Titles. Experiments with EM on News Titles were not
included because of the large runtime required by posterior inference.

a random search strategy (Bergstra and Bengio,493

2012), with 16 runs.494

5.2 Results495

We base model selection on the G-mean of our496

three metrics computed on the validation set, and497

present the performance of the selected models9 on498

test sets in Table 2. First, we observe that when499

training the model with the EM algorithm on Yelp,500

an EBM prior results in a substantial improvement501

of the conditional generative performance with re-502

spect to all the metrics. This seems to confirm the503

hypothesis that an EBM can learn a more flexible504

prior, which increases the representational expres-505

sivity10. However, with VI, the models based on506

an EBM prior perform worse. We conjecture that507

the reason is two-fold: firstly, training an EBM on508

high-dimensional data is difficult, and all the more509

when the EBM is moved into latent-space; we will510

develop this point in Section 6.1. Secondly, with511

VI, we make a Gaussian assumption on the poste-512

rior distribution; minimizing the KL divergence be-513

tween the posterior and the prior is hence restrictive514

when learning an EBM-based prior. This explains515

the better performance of the EBM-Gaussian prior,516

which is almost identical to the Gaussian prior. Fi-517

nally, a comparison of the results for both factoriza-518

9See Appendix H for samples of sentences generated by
the different models.

10However, we could not confirm those results in a reason-
able time on News Titles, given the large runtime required by
the posterior inference.

tions shows that the models based on ind generally 519

perform better in classification accuracy than those 520

based on cond-ind. A possible explanation is that 521

the posterior LMC sampling z ∼ pθ(z|y) necessary 522

for conditional generation adds a supplementary 523

difficulty to the process, since the LMC sampling 524

hardly converges in high dimension. Overall, the 525

model variant [VI • ind • Gaussian] (i.e, S-VAE) 526

is the best performing in our framework, on both 527

datasets. 528

6 Discussion 529

6.1 Training of EBM-based priors 530

Despite their flexibility for generative modeling, 531

EBMs are notorious for their unstable training, es- 532

pecially when it comes to high dimensional spaces. 533

When the modeling takes place directly in the ob- 534

served data space, previous works (Xie et al., 2016; 535

Du and Mordatch, 2019; Grathwohl et al., 2020) 536

using LMC on EBMs observed that short-run LMC 537

chains with a Contrastive Divergence (CD) or Per- 538

sistent CD initialization can eventually generate 539

realistic samples, even though the model has not 540

converged11. However, moving an EBM into the 541

latent space introduces additional components to 542

the loss to be optimized, and this difficulty to con- 543

verge can no longer be ignored: other parts of the 544

11The recent work of Nijkamp et al. (2020) shows that
despite this, the energy of a trained EBM which has not con-
verged does not necessarily approximate the real density well.
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Figure 2: Influence of dimension of the latent space on
the G-mean for models with gaussian and EBM-based
priors trained with VI.

loss can easily be affected as they are optimized545

jointly. It forces us to try to circumvent the issue546

through strategies such as setting a small weight547

for the EBM-related term of the loss, or diminish-548

ing the dimension of the latent space. While these549

solutions allowed the training to stabilize, they in550

turn slow the learning of the prior and limit its ex-551

pressive ability. This is very significant with VI12,552

as we can see on Figure 2: the performance of the553

gaussian prior increases with the latent dimension,554

while the performance of the EBM prior plummets.555

6.2 Comparison with SVEBM556

The Symbol-Vector Coupling Energy-Based Model557

(SVEBM) of Pang and Wu (2021) uses both an558

EBM-based prior and employs VI to approximate559

the posterior distribution for the application of560

attribute-controlled text generation. Within our561

framework, the variant [VI • Cond-ind • EBM-562

Gaussian] is the most similar to the SVEBM: we563

will from now on refer to it as VCEG. However,564

differently from our separate parameterizations of565

prior pα(z) and classifier pβ(y|z), the SVEBM for-566

mulates the joint distribution pα(y, z) as an EBM567

pα(y, z) =
1

C(α) exp(⟨y, fα(z)⟩)×N (z; 0, I) .As568

such, it can be seen as using a Joint Energy-based569

Model (JEM) (Grathwohl et al., 2020) in the latent570

space. In addition, Pang and Wu (2021) proposes to571

improve learning with a regularization mechanism572

based on the information bottleneck (SVEBM-IB).573

However, on attribute-controlled text generation,574

Pang and Wu (2021) only report the accuracy of575

an oracle classifier on generated sentences for the576

SVEBM-IB, leaving out the base model. To ob-577

12These solutions were not required with EM: see Ap-
pendix F for the details of the latent dimensions selected by
the hyper-parameter search in each setting.

tain a more complete picture, we compare in Table 578

3 the performances of the related models with re- 579

spect of our three metrics. VCEG obtains the best 580

performance among all the models. However, our 581

implementation of the SVEBM performs slightly 582

worse than the original implementation. Still, com- 583

paring the first two rows clearly shows us that using 584

joint energy modeling in the latent space harms the 585

controllability of the model, rendering necessary 586

the information bottleneck trick, which, in turns, 587

reduces its expressivity. 588

Model Acc F-BLEU B-BLEU G-mean

VCEG† 0.9066 0.8428 0.4157 0.6823
SVEBM† 0.8206 0.7624 0.3858 0.6226

SVEBM‡ 0.7590 0.8296 0.4406 0.6522
SVEBM-IB‡ 0.8580 0.8912 0.3782 0.6613

Table 3: Performance of the SVEBM-related models on
the Yelp dataset. † refers to our own implementation. ‡
refers to the implementation of Pang and Wu (2021) 13.

7 Conclusion 589

In this work, we have sought to clarify how several 590

key factors in the design of latent-variable gener- 591

ative models (complexity of the prior, interaction 592

between the attribute and the latent representation, 593

learning method) affect their performance on con- 594

ditional text generation tasks. We experiment in 595

particular with EBM-based priors, and show that 596

while these priors indeed have greater representa- 597

tional power than the usual Gaussian priors, they 598

are currently hard to exploit on account of their 599

problematic training. Our experiments also show 600

that coupling attribute and latent variable, as done 601

in the SVEBM (Pang and Wu, 2021) is not an op- 602

timal solution. Finally, in our unified framework, 603

we observe that the best performing model remains 604

the earliest, corresponding to the design of the S- 605

VAE (Kingma et al., 2014). 606
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A Langevin Monte Carlo953

Let π be a target density distribution, expressed as:954

955

π(x) = e−U(x)/

∫
Rd

e−U(y)dy (18)956

where U : Rd → R; sampling from π can957

be achieved through MCMC methods, such as958

Hastings-Metropolis algorithm (Metropolis et al.,959

1953; Hastings, 1970), Gibbs sampling (Geman960

and Geman, 1984) or Hamiltonian Monte Carlo961

(Duane et al., 1987; Neal and others, 2011). LMC962

(also called Unadjusted Langevin Algorithm) pro-963

poses to construct the Markov chain (Xk)k≥0964

given for all k ∈ N by:965

Xk+1 = Xk − λ∇U(Xk) +
√
2λGk+1 (19)966

where λ > 0 is the constant stepsize and (Gk)k≥1967

is a sequence of i.i.d. standard d-dimensional Gaus-968

sian vectors. In fact, LMC is a special case of969

Metropolis-Hastings algorithm by taking the pro-970

posal distribution N (Xk−λ∇U(Xk),
√
2λId). To971

avoid long Markov chain mixing time, and reduce972

significantly the numbers of steps necessary to con-973

verge, Contrastive Divergence (CD) (Hinton, 2002)974

takes the data samples as initial states while Per-975

sistent Contrastive Divergence (PCD) (Tieleman,976

2008) takes instead the negative samples generated977

by the model distribution in the previous learning978

step; in this work, we use the latter.979

B LMC for posterior sampling980

In order to sample from pθ(z|x, y) with LMC, we981

can rewrite pθ(z|x, y) = exp(log pθ(z|x, y)) in the982

form of EBM, considering log pθ(z|x, y) as the en-983

ergy function. The calculation of ∇z log pθ(z|x, y)984

is thus involved when applying LMC: 985

∇z log pθ(z|x, y) = ∇z log
pθ(x, y, z)

pθ(x, y)
986

= ∇z log pθ(x, y, z) 987

= ∇z log pβ(x, y|z)× pα(z) 988

= ∇z log pβ(x, y|z) +∇z log pα(z) 989

= ∇z log pβ(x, y|z) +∇z log fα(z)−∇z logC(α) 990

= ∇z log pβ(x, y|z) +∇z log fα(z) (20) 991

where pβ(x, y|z) and fα(z) can be computed by 992

conducting the forward propagation of the neural 993

network. 994

C Deduction of Equation 8 995

Taking the gradient of the single log-likelihood, we 996

have 997

∇θ log pθ(x, y) = log pθ(x, y)

∫
qλ(z)dz 998

=

∫
qλ(z)∇θ log pθ(x, y)dz 999

= Eqλ(z)∇θ log pθ(x, y) 1000

= Eqλ(z)∇θ log
pθ(x, y, z)

pθ(z|x, y)
1001

= Eqλ(z)[∇θ log pθ(x, y, z)−∇θ log pθ(z|x, y)] 1002

Since Epθ(z|x,y)∇θ log pθ(z|x, y) = 0, taking 1003

pθ(z|x, y) as qλ(z), we have: 1004

∇θ log pθ(x, y) = Epθ(z|x,y)∇θ log pθ(x, y, z) 1005

D Additional details about datasets 1006

We have carried out experiments on three text 1007

datasets: Yelp 14 and News Titles 15, and lastly, 1008

Name 16. Yelp dataset is a subset of Yelp’s busi- 1009

nesses, reviews, and user data, originally pro- 1010

vided by Yelp Dataset Challenge 17. Multiple pre- 1011

processed versions exist for different purpose. We 1012

use the one processed by Shen et al. (2017), which 1013

contains two sentiment labels (negative and posi- 1014

tive) and reviews no longer than 15 words. News 1015

14Link to downloadable dataset: https:
//github.com/shentianxiao/
language-style-transfer/tree/master/
data/yelp

15Link to downloadable dataset: https://archive.
ics.uci.edu/ml/datasets/News+Aggregator

16Link to downloadable dataset: https://github.
com/spro/practical-pytorch/tree/master/
data/names.

17https://www.yelp.com/dataset

12

https://doi.org/10.1023/A:1007925832420
https://doi.org/10.1023/A:1007925832420
https://doi.org/10.1023/A:1007925832420
https://doi.org/10.1023/A:1007925832420
https://doi.org/10.1023/A:1007925832420
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp
https://archive.ics.uci.edu/ml/datasets/News+Aggregator
https://archive.ics.uci.edu/ml/datasets/News+Aggregator
https://github.com/spro/practical-pytorch/tree/master/data/names
https://github.com/spro/practical-pytorch/tree/master/data/names
https://github.com/spro/practical-pytorch/tree/master/data/names
https://www.yelp.com/dataset


Dataset Attributes
Oracle classifier Generative models
ntrain nvalidation ntrain nvalidation ntest

Name (Toy)
french 55 26 117 38 41
dutch 65 26 124 42 40

Yelp
negative 31701 3519 141567 25278 50278
positive 48237 5364 213713 38205 76392

News Title

business 20838 2260 74278 9257 9334
science and technology 19545 2193 69409 8759 8597

entertainment 27582 3036 97752 12165 12293
health 8163 970 29241 3654 3611

Table 4: Statistics of datasets used in experiments

Titles (Dua and Graff, 2017) it should be noted that1016

the version of used in our experiments is different1017

than the one in Duan et al. (2020). We don’t filter1018

out titles longer than 15 words and we keep also Sci-1019

ence and Technology category for the experiments,1020

which retains the complexity of the origin dataset.1021

Lastly, Name dataset is a collection of names from1022

18 languages of origin. We select French names1023

and Dutch names among them to build a dataset1024

with only two classes. We use it as a "toy dataset"1025

for supplementary experiments and vizualisations1026

of the learned density in latent space, shown in Ap-1027

pendix G. We present the data splitting details of1028

all the datasets in Table 4.1029

E Oracle classifier1030

We utilize the FastText (Joulin et al., 2017) classi-1031

fier to evaluate the generated sentences of all the1032

models in our experiments. FastText is a linear1033

classfier with word embeddings, updated at train-1034

ing time. A bag of n-grams is used as additional1035

feature during the training. The choice of FastText1036

is natural: it’s efficient for both training and predic-1037

tion with a reasonably accuracy. It can be trained1038

on more than one billion words in less than ten1039

minutes using a standard multicore CPU, and clas-1040

sify half a million sentences among 312K classes1041

in less than a minute (Joulin et al., 2017). Besides,1042

its simple model architecture makes it sharing less1043

similarity with the generative model it is used to1044

evaluate. The training hyper-parameters were not1045

heavily tuned; we present them in Table 5.1046

F Hyper-parameters of generative models1047

In all our models, input embeddings are initial-1048

ized with the Glorot normal initializer (Glorot and1049

Hyper-parameter Name (Toy) YELP News Title

Training epochs 43 26 50
Learning rate 1.0 0.16 0.5
Word n-grams 5 3 3

Table 5: Hyper-parameters details for oracle classifier

Bengio, 2010). For Yelp and News Titles, For all 1050

the model variants in our framework, we use one- 1051

layer bidirectional GRU of hidden dimension of 1052

512 for both decoder and encoder when VI is em- 1053

ployed. We parametrize the classifiers pβ(y|z) and 1054

EBMs pα(z) with MLPs of two hidden-layers of 1055

dimension 256 except for the EBM on News Ti- 1056

tles where the number of hidden layer is set to 1057

one. The word dimension is set to 256 for all 1058

the experiments. As for the training, we train 1059

the models with a batch size of 128 and with 1060

an Adam optimizer of β1 = 0.9, β2 = 0.9 and 1061

ϵ = 1 × 10−8. Concerning regularization, we 1062

adopt weight annealing for the regularization of 1063

the KL divergence 1
2

∑d
j=1(log σ

2
j − σ2

j − µ2
j ) and 1064

entropy 1
2

∑d
j=1(log σ

2
j ). We also employ weight 1065

decay (L2 penalty) to help regularization and gra- 1066

dient clipping (Pascanu et al., 2013) to deal with 1067

the exploding gradient problem. The coefficient of 1068

L2 penalty is set to 0.1 while the maximum norm 1069

for the gradient clipping is set to 1. Other hyper- 1070

parameters are searched by random search strategy 1071

(Bergstra and Bengio, 2012) with the following 1072

distributions: 1073

• We chose a dimension of latent space from 1074

J1, 128K uniformly. 1075

• We chose a learning rate log-uniformly from 1076

10−5 to 10−2. 1077
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• We chose a number of LMC update step from1078

J31, 150K uniformly.1079

• We chose a LMC step-size log-uniformly be-1080

tween 10−3 and 10.1081

• We chose a weight coefficient for EBM loss1082

log-uniformly from 10−8 to 10−5. The reason1083

for this choice of search space is the fact that1084

a large EBM weight loss will let the model1085

diverge quickly, with extreme detriment to1086

model performance, which can be observed in1087

Figure 3.1088

• We chose a word dropout rate uniformly from1089

[0, 0.5].1090

• We chose a number of annealing step from1091

J1, 20000K uniformly.1092

10 8 10 7 10 6 10 5 10 4

EBM loss weight

0.1

0.2

0.3

0.4

0.5

0.6

G-
m

ea
n

EBM Prior

Figure 3: Influence of the dimension of the latent space
on the G-mean for models with an EBM-based prior,
trained with VI.

We conducted 16 trails of experiments for the1093

search of hyper-parameters, for each model. The1094

number of training steps were chosen with the early1095

stopping strategy. For all the datasets used by our1096

model in the experiments, those hyper-parameters1097

of the best performance on the validation set can1098

be found in Table 6.1099

G Visualization of learned latent space by1100

EBM1101

In order to study further the behaviour of EBM1102

in the latent space, we experiment on a simple1103

(toy) dataset, Name, for which a 2-dimensional1104

latent space is enough. Visualisation of the latent1105

densities learned by different models with an EBM1106

prior, shown in Figure 4, allows us to confirm that1107

the distribution learned are in this case very distinct1108

from the isotropic Gaussian distribution N (0, I2).1109

Additional quantitative results on this dataset are 1110

detailed in Table 7. 1111

H Generated sentences samples 1112

We present the sentences samples generated by 1113

different models in Table 8 and Table 9. 1114
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Dataset Algo Facto Prior dimension learning rate LMC nstep LMC step-size EBM weight word dropout nannealing ntraining

Yelp

EM ind
Gaussian 65 0.00105057 120 0.00239995 — 0.23167361 — 8000

EBM 123 0.00411451 92 0.01358318 2.1e-06 0.06516866 — 2000

VI

ind
Gaussian 49 0.000579 — — — 0.068292 17399 16000

EBM 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 8000

cond-ind
Gaussian 15 0.001114 149 0.003522 — 0.147971 17258 16000

EBM 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 2000

EBM-Gaussian 72 0.00044611 141 0.01327672 6.0e-08 0.25625266 19128 20000

News Titles VI

ind
Gaussian 49 0.000579 — — — 0.068292 17399 20000

EBM 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 18000

cond-ind
Gaussian 15 0.001114 149 0.003522 — 0.147971 17258 20000

EBM 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 2000

EBM-Gaussian 7 0.0008852 58 0.09894774 4.0e-08 0.28912746 13460 18000

Table 6: Hyper-parameters for the generative models
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Figure 4: Left: Energy functions exp(fα(z)) (proportional to density) of the latent space Z learned by different
EBM variants in our framework. Right: Probability density of N (0, I2).

Dataset Learning algorithm Factorization Prior Acc F-BLEU B-BLEU G-mean

Name

EM ind
Gaussian 0.9984 0.5083 0.1344 0.4086

EBM 0.8275 0.3866 0.5418 0.5576

VI
ind

Gaussian 0.8594 0.3778 0.5410 0.5600

EBM 0.8314 0.3965 0.4055 0.5113

EBM-Gaussian 0.9611 0.6239 0.2206 0.5095

cond-ind EBM 0.8126 0.3657 0.5572 0.5491

Table 7: Conditional text generation results on Name.
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Algo. Facto. Prior Attribute Sentence samples

EM ind

Gaussian

Positive

thanks chapel for your expertise !
i love this place !

great meal .
amazing !

Negative

i was so disappointed .
worst apartment cleaners i ’ve ever been to .

unfortunately i ’m not going back .
do n’t waste your time .

EBM

Positive

i love this place !
it ’s just very clean and the staff is very nice .

the service is always great and the food is always fresh .
so , i will not recommend this place .

Negative

so , i will not recommend this place .
i ’m not sure that i will not be back .

i ’m not sure that they have been to least .
the food was mediocre and the service was terrible .

VI

ind

Gaussian

Positive

what a great place .
and if you want to be a regular , this is a great place .

they take care of their customers to make their own and feel very comfortable .
staff is friendly and the staff is always friendly and helpful .

Negative

i ordered _num_ , and _num_ minutes for the first time .
they have_num_ people in my office and i never return .

my experience was taken off to our order .
we will not be coming back for a few years .

EBM

Positive

i was so happy with .
i recommend the food and the food and they have always been great .

it is a very good experience with a smile .
the eggs benedict is also good and too .

Negative

the chicken was not a good thing to have ever had .
it was cooked and it was not cooked and tough .

customer service was horrible .
i gave the _num_ % of the reviews and they were .

cond-ind

Gaussian

Positive

its always a nice place to get a date .
the owner is a great guy and has a great attitude .

this is the best , fast , and delicious .
the sauce was perfect , and the sauce was very good .

Negative

i asked for a new car and she said it was n’t too busy .
i am not sure to this place .

avoid this place at all !
the only thing on the menu is good , but the food is very overpriced .

EBM

positive

it was all of it was perfect .
highly recommend .

happy hour the service !
recommend this place , hands down .

Negative

we ordered a salad and it was pretty good .
but not really much good !

also , too , and no , and no sense of a smile .
the worst part is the worst experience .

EBM-Gaussian

positive

this is the worst i ’ve ever been to in my life .
overall , a very good experience .

great time to start with the service .
they have great food and the service is friendly .

Negative

at the end of the place i could have been to _num_ minutes .
worst pizza hut i have ever had in a while .

i would not recommend it .
i could n’t even eat it to eat .

Table 8: Sentence samples generated by conditioning on sentiment attribute. The models are trained on Yelp. The
sentences are random selected with the help of RANDOM.SHUFFLE().
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Algo. Facto. Prior Attribute Sentence samples

VI

ind

Gaussian

Business
fed’s fisher to end up, but not to be strengthened

barclays shunned by fitch
european stocks rise ahead of yellen testimony

Sci-tech
apple to unveil a new smart home platform for the next week

windows phone 8.1 update with android 4.4.2 update and cortana support
first look at the new android wear

Entertain
lady gaga’s tony bennett album release date, plus more details emerge

a ’mrs. doubtfire’ sequel in ’star wars: episode vii’ is not a sequel
jada pinkett smith: ’covert pedophiles’ over willow smith

Health
red robin thicke’s new album in the works with new video

duval county, other health care tips for global warming
study: diabetic heart attacks, strokes falling

EBM

Business
update: mothercare rejects takeover bid for astrazeneca’s takeover offer

warren buffett’s berkshire pay gap in talks with astrazeneca
disney buys klout for $280 million

Sci-tech
ohio’s state’s ceo says google glass to be affected by...
hon hai, pegatron on apple, ibm, and other tech giants

how to watch the empire state building, and the world wide web?

Entertain
rob kardashian and justin bieber and t.i. brawl in vegas brawl over t.i. brawl over t.i. brawl

kim kardashian and kanye west
one of thrones: george rr martin’s new chapter

Health
ohio state’s first class seat to save lives

officials: 1.8m pounds of ground beef products, including west africa
exact sciences’ deep-c data on cobimetinib

cond-ind

Gaussian

Business
malaysia airlines flight 370 pilot flying down

justin bieber caught in deposition video
us supreme court rules against aereo in court

Sci-tech
microsoft surface mini 2: surface pro 3

update: american apparel ceo dov charney’s termination letter to american apparel
apple iphone 6 rumors: 5.5-inch iphone 6 screens to enter production

Entertain
rolf harris’ disguised as’ as he’s’ sickened ’by 18-year-old
khloe kardashian and french montana embrace family feud

prince harry and cressida bonas are dating, but dating?

Health
why we should not trust care about tobacco

sa news briefs
nintendo apologizes for ’misleading’ loss

EBM

Business
us sanctions

alibaba’s ipo: amazon to buy the ipo
the irs: astrazeneca’s’ to pay ’astrazeneca’ in china’s...

Sci-tech
at & t’s ceo’s new york, the new york, and the new...

best (ipad)
samsung galaxy s5 price for india, price and gear 2...

Entertain
’how i met your mother finale is the finale is the first time you need you need??

netflix ceo to $100 million in the us, but it’s new york, but it’s...
fcc prices continue to be on again

Health
los angeles attorney foods, says it’s $1 million in new york...

us county county county’s death toll to continue to...
nintendo posts $10.2bn million loss of $3.8 billion

EBM-Gaussian

Business
us economy to grow up by 2.9% in first quarter, but still critical to...

at & t agrees to buy directv for $48.5bn deal
update 1-valeant shares soar after sycamore partners with verizon

Sci-tech
us supreme court rules on aereo, ’right to be forgotten’ ruling in the...

facebook manipulated users emotions in secret
google’s self-driving car prototype: no steering wheel, no steering wheel

Entertain
captain america: the winter soldier ’sets april record with $96.2m in...

’game of thrones’ season 4 episode 4 recap: ’the lion and the rose’
taylor swift’s’ music music ’is a paid for $50 millione

Health
google’s self-driving cars are mastering city streets: study

stephen colbert to replace david letterman on ’the late show’
neil patrick harris poses for a rolling stone ’in the face

Table 9: Sentence samples generated by conditioning on sentiment attribute. The models are trained on News Titles.
The sentences are random selected with the help of RANDOM.SHUFFLE().
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