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ABSTRACT

Humans excel at leveraging past experiences to learn new skills, while artificial
neural networks suffer from the phenomenon of catastrophic forgetting during
sequential learning. Efforts have been made to alleviate forgetting by introducing a
rehearsal buffer into the model, but this way is impractical in real-world scenarios
with data privacy. Recently, pre-trained model-based continual learning methods
have provided new insights into addressing this issue by effectively utilizing the
powerful representational capabilities of pre-trained models to avoid catastrophic
forgetting without a rehearsal buffer. In this work, we propose a novel pre-trained
model-based continual learning framework, HyperAdapter, which utilizes a hyper-
network to generate adapters based on the current input, adapting the pre-trained
model to the corresponding task. This paradigm requires fewer additional param-
eters as the number of tasks increases, which is a critical advantage for scaling
to long sequences continual learning. Unlike methods that partition task-related
knowledge into relatively independent subspaces, it promotes positive knowledge
transfer across tasks. Comprehensive experiments across various datasets demon-
strate that HyperAdapter consistently outperforms all existing methods and even
exceeds the upper bounds of multi-task learning, establishing a new state-of-the-art
for pre-trained model-based continual learning. Our code will be released.

1 INTRODUCTION

Humans exhibit remarkable abilities for constantly acquiring new knowledge in the dynamically
changing real world, which helps them grasp new skills more easily with a richer knowledge base.
However, when trained on successive task stages, neural networks tend to overfit on the current task
and perform poorly on previous ones, a problem known as catastrophic forgetting (McCloskey &
Cohen, 1989). Continual learning aims to learn new tasks while retaining past knowledge (De Lange
et al., 2021; Mai et al., 2022). Inspired by the replay process in the hippocampus, some approaches
rely on a rehearsal buffer to store samples from previous tasks (Buzzega et al., 2020; Cha et al., 2021;
Chaudhry et al., 2019). These samples are then combined with data from the current task to mitigate
forgetting. While these methods have shown promising results, they face challenges in real-world
scenarios with privacy concerns (Shokri & Shmatikov, 2015) or memory constraints (Smith et al.,
2021). The need for rehearsal-free methods to address continual learning in practical settings remains.

Without a rehearsal buffer, methods need to focus on the parameters and architecture of the model.
Drawing inspiration from synaptic consolidation in the neocortex, EWC (Kirkpatrick et al., 2017)
prevents forgetting of critical past knowledge by applying regularization to the model weights. While
regularization-based methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017) offer new insights into
rehearsal-free continual learning, they alleviate forgetting at the expense of model plasticity, leading
to suboptimal performance when learning new tasks. Recent advances in pre-training (Chen et al.,
2020; He et al., 2020; Bao et al., 2021; Xie et al., 2022; He et al., 2022a) inspire the community to
integrate pre-trained models into continual learning, aiming to prevent forgetting while efficiently
learning new tasks. In particular, prompt-based methods (Wang et al., 2022b;a; Smith et al., 2023) can
even outperform rehearsal-based methods. These methods maintain a prompt pool for the pre-trained
backbone, selecting prompts based on input samples to instruct the learning of corresponding tasks.
However, a small pool may lead to forgetting, while a large one burdens memory and hinders positive
knowledge transfer between tasks, presenting the stability-plasticity dilemma (Jung et al., 2023).
EASE (Zhou et al., 2024) introduces the adapter into continual learning to enhance the adaptability
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Figure 1: Motivation of HyperAdapter. Inspired by the CLS of human brain, we utilize a hypernetwork
to generate adapters to adapt the pre-trained backbone to different tasks. In our framework, the task
dictionary functions akin to episodic memory in the hippocampus, while the hypernetwork represents
the neocortex, storing past knowledge. The rapidly updating task-specific embeddings and the slowly
updating general hypernetwork work together to achieve rehearsal-free continual learning.

of pre-trained models across different tasks. However, it is impractical for learning large numbers of
tasks, as the number of adapters involved during inference is proportional to the number of tasks.

In this paper, we propose a novel pre-trained model-based framework named HyperAdapter, for
rehearsal-free continual learning. Our method consists of a pre-trained backbone, a hypernetwork,
and a set of task embeddings. For any given input, representative features from the pre-trained model
are leveraged as queries to identify the most similar task embedding, thus eliminating the necessity
of knowing the task identities during inference. Subsequently, the hypernetwork generates a series
of adapter parameters based on the obtained task embedding to adapt the pre-trained model to the
corresponding task. Our design elegantly addresses the problems of existing methods while inheriting
all their advantages. The frozen pre-trained model effectively prevents catastrophic forgetting,
adapters enhance the model’s expressive ability and adaptive capacity compared to prompts, and the
design of hypernetwork avoids the excessive number of adapters in EASE.

According to the Complementary Learning Systems (CLS) theory (Kumaran et al., 2016; McClelland
et al., 1995), humans achieve continual learning through the synergy of two systems: the rapidly
updating hippocampus focuses on learning task-specific representations, while the slowly updating
neocortex specializes in learning more general representations based on past experiences. As
shown in Figure 1, task embeddings can be likened to episodic memories in the hippocampus,
selectively invoked based on different inputs, while the hypernetwork acts as the neocortex of brain,
storing past knowledge in the form of neural connections and updating slowly through the indirect
optimization of its generated adapters. Finally, the pre-trained model represents the prior knowledge
acquired before learning, aiding the model in better acquiring new tasks. Without a fixed-size prompt
pool, the hypernetwork effectively expands model capacity, facilitating positive knowledge transfer.
Furthermore, for each new task, our method requires only the addition of a learnable task embedding
vector, making it highly suitable for continual learning scenarios involving long sequences and large
task numbers. Our empirical results demonstrate that HyperAdapter surpasses the performance of
all existing works, offering a significant step forward in rehearsal-free continual learning. In our
proposed CL-100 benchmark, HyperAdapter outperformes the previously best DAP and EASE by
2.24% and 3.07% in average final accuracy, respectively. On the larger ImageNet-R and DomainNet,
HyperAdapter surpasses the previous SOTA CODA-P and EASE, by 1.06% and 4.80% respectively.

Our main contributions can be summarized as follows:

1. We propose HyperAdapter, a novel rehearsal-free continual learning framework. The method
leverages a hypernetwork to generate adapters, adapting the pre-trained model to each task
effectively, thereby mitigating forgetting and facilitating positive knowledge transfer.

2. Extensive experiments on various datasets demonstrate that HyperAdapter consistently
outperforms all existing methods and even surpasses the multi-task learning upper bound in
some cases, establishing a new SOTA for rehearsal-free continual learning. Moreover, the
hypernetwork design makes it suitable for continual learning with longer task sequences.

3. To the best of our knowledge, this is the first work leveraging hypernetworks to unlock
the potential of pre-trained models in the field of continual learning. We expect that our
approach provides a novel perspective on continual learning of pre-trained models.
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2 RELATED WORK

2.1 PRE-TRAINED MODEL-BASED CONTINUAL LEARNING

In recent years, continual learning has emerged as a focal point in the field of machine learning,
with the primary challenge being how to incorporate new information effectively without forgetting
prior knowledge. Traditional continual learning methods (Rolnick et al., 2019; Rebuffi et al., 2017;
Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018b; Aljundi et al., 2019; Chaudhry et al., 2019)
typically rely on the rehearsal of old data, which can raise privacy and storage issues. Although
carefully designed regularations (Li & Hoiem, 2017; Lopez-Paz & Ranzato, 2017) have addressed
forgetting to some extent, regularation-base methods still underperform rehearsal-based ones.

With advancements in model pre-training, an increasing number of studies begin to explore inte-
grating knowledge from pre-trained models into continual learning, achieving comparable results
even without a rehearsal buffer. Some approaches (Wang et al., 2022b;a; Smith et al., 2023; Jung
et al., 2023) facilitate continual learning by providing appropriate visual prompts (Jia et al., 2022) to
pre-trained models. However, these prompt-based methods typically focus on instance-level enhance-
ments, which offer limited overall benefits to the model. Recently, adapter-based techniques (Zhou
et al., 2024; Gao et al., 2024) have shown promising results, outperforming prompt-based ones. The
modular design of adapters (Pfeiffer et al., 2021; Chen et al., 2022) allows to retain and leverage
the knowledge from pre-trained models more effectively, although they also suffer from limited
adaptability and scalability. Leveraging a hypernetwork to generate adapters, HyperAdapter proposes
a novel rehearsal free mechanism with the capable of generalization.

2.2 COMPLEMENTARY LEARNING SYSTEMS

The Complementary Learning Systems (CLS) theory reveals that humans achieve continual learning
through the synergy of two systems that update at different frequencies. Inspired by CLS, several
methods (Parisi et al., 2018; Pham et al., 2021; Arani et al., 2022) incorporate multiple networks
along with rehearsal buffers, regularization constraints, or other components that expand with the
task number. FearNet (Kemker & Kanan, 2017), for instance, employs a three-network structure: one
hippocampal network for recalling recent instances, one PFC network for long-term memories, and
one additional network for deciding between the two for specific cases. Gomez-Villa et al. (2024)
proposes to train an expert network that, unburdened by the task of retaining prior knowledge, focuses
on excelling in new tasks. Closer to our approach, Gurbuz et al. (2024) introduces a contextual
encoding for rehersal-free scenarios. However, all the methods above do not take pre-trained models
into consideration, thus lack of powerful representational capabilities and outstanding performance.

2.3 HYPERNETWORKS

Hypernetworks (Ha et al., 2016) were initially proposed for network compression, aimed at gen-
erating smaller sets of weights to reduce the computational and storage demands. In efficient
fine-tuning (Mahabadi et al., 2021; Zhmoginov et al., 2022; He et al., 2022b; Zhang et al., 2022;
Üstün et al., 2022), federated learning (Zhang et al., 2023) and few-shot learning tasks (Sendera et al.,
2023), hypernetworks have been employed to dynamically generate parameters, achieving significant
performance. These applications demonstrate that hypernetworks can not only adjust models for
new tasks but also retain memory of old knowledge. Following this strategy, some hypernet-based
continual learning methods (Chandra et al., 2023; Ksiażek & Spurek, 2023; Hemati et al., 2023)
generate new parameters for the entire network to adapt to new tasks, but these methods may not fully
exploit the prior knowledge of pre-trained models. Different from previous works, HyperAdapter
leverages representative features from pre-trained models, thus eliminating necessity of knowing the
task identities during inference or the dependence on any rehearsal buffers.

3 PRELIMINARIES

3.1 CONTINUAL LEARNING

Continual learning requires the model to learn a sequence of tasks in order of arrival. For a sequence
of T tasks D = {D1, . . . ,DT }, where each task Dt = {(x, y)} contains tuples of the input sample

3
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x ∈ X and its corresponding label y ∈ Y , a single model fθ : X → Y parameterized by θ needs
to learn on D sequentially and predicts the label y = f(x;θ) given input sample x from arbitrary
task. Data from previous tasks will not be seen anymore when training future tasks, requiring the
model to avoid forgetting old knowledge while learning new tasks. Depending on the differences
in task transition, continual learning can be further categorized into multiple settings. In this work,
we focus on the more challenging class-incremental learning setting, where task identities are only
known during training, which is more common in real-world scenarios.

3.2 ADAPTER TUNING

Adapter Tuning, which first emerged in NLP (Houlsby et al., 2019), achieves efficient adaptation to
downstream tasks by freezing pre-trained weights and inserting lightweight bottleneck modules into
the model. AdaptFormer (Chen et al., 2022) later introduces adapters to visual recognition tasks. The
vanilla Vision Transformer consists of a series of blocks, each containing a multi-head self-attention
layer (MHSA) and a feed-forward network (FFN). The processing of FFN can be formalized as:

x = MLP(LN(x′)) + x′ (1)

where x′ ∈ Rd is the output of MHSA in the same block. AdaptFormer replaces the MLP in
FFN with AdaptMLP, which includes an adapter with a down-projection matrix D ∈ Rd×r and an
up-projection matrix U ∈ Rr×d, where r is the bottleneck dimension satisfying r ≪ d. The process
of extracting adapted features can be represented as:

x̃ = GELU(x′ ·D) ·U (2)

All features are then passed through residual connection to obtain the final output of AdaptMLP:

x = MLP(LN(x′)) + s · x̃+ x′ (3)

where s is a scale factor to ensure convergence.

4 METHOD

We propose HyperAdapter as a hypernetwork-based method for rehearsal-free continual learning.
The overall framework is illustrated in Figure 2. We first introduce task-conditional embeddings
and the query-key matching mechanism in Section 4.1. Then, we explain how the hypernetwork
utilizes these embeddings to generate task-oriented adapters in Section 4.2. And we further extend
the hypernetwork to a block-wise implementation in Section 4.3, significantly reducing forgetting
and improving the performance. Finally, we present the overall optimization objective in Section 4.4.

4.1 TASK-CONDITIONAL EMBEDDINGS

The hypernetwork requires task-conditional embeddings as inputs to generate task-specific adapter
parameters. These embeddings serve as episodic memories in the hippocampus, selectively activated
based on different inputs, and fed into the hypernetwork storing past knowledge to accomplish
any task. To achieve input-dependent selection of task embeddings, we maintain a dictionary
C = {(k1, z1), (k2, z2), . . . , (kT , zT )} of length T , where each entry contains a key k ∈ Rd and a
value z ∈ Re, both being learnable parameter vectors. For task embedding selection, we employ a
query-key matching mechanism following the previous work. Given a query q ∈ Rd, we search for
the closest key in the dictionary:

k̃ = argmin
k∈K

γ(q,k) (4)

where K = {ki}Ti=1 is the set of all keys in the dictionary C and γ is the distance metric (we use
the negative cosine similarity in our experiments). The corresponding z̃ for the retrieved k̃ is then
the task embedding corresponding to that query. This design decouples the learning of keys and
values and allows adjusting the total parameters of the hypernetwork through the dimension of task
embeddings, providing greater flexibility to the entire framework.

For any given input, we aim for the generated query to be relatively fixed, as this facilitates the
learning of task keys. Hence, we simply utilize the pre-trained model as a frozen feature extractor

4
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Figure 2: Framework of HyperAdapter. First, inputs from any task are matched to the most similar
task embedding through a query. It is then fed into the hypernetwork along with the layer position
embedding to generate a set of adapters. The input image is processed through the model with these
adapters, and the output is finally obtained via the classifier. We do not update the classifier weights
related to previous tasks. And layer embeddings are not included in the block-wise HyperAdapter.

q(x) = f(x)[CLS], where [CLS] represents the class token. In this way, the same input consistently
yields the same query, preventing forgetting during the query generation. Moreover, a powerful
pre-trained feature extractor also ensures that similar inputs produce similar queries, which aids the
model in obtaining the correct task embeddings. And the matching loss can be formulated as:

Lmatch(x,kt) = γ(q(x),kt), x ∈ Dt (5)
During training, since the task identities are known, we use ground truth task embeddings zt as input
to the hypernetwork. In inference, the trained task dictionary C can be used to obtain input-dependent
task embeddings z̃, eliminating the need for task identities and making the entire method applicable
to the more challenging class-incremental learning.

4.2 TASK-ORIENTED HYPER-ADAPTERS

With the task embeddings, we can adapt the pre-trained model to each task for continual learning
using task-oriented hyper-adapters. According to the theory of CLS, humans learn continually
through the synergy of two systems. Here we use a hypernetwork to play the role of the neocortex,
taking the task embedding zt as input and generating a set of adapter parameters {(Dl

t,U
l
t )}Ll=1

for the task Dt. This design enables the hypernetwork to continuously retain past knowledge and
promote positive knowledge transfer through information sharing across different tasks.

To increase the model capacity, we introduce a set of positional embeddings P = {pl ∈ Re}Ll=1 for
each layer. In practice, we simply add these positional embeddings to the task embedding:

I l
t = zt + pl (6)

With this combined embedding I l
t ∈ Re, the hypernetwork can generate different parameters for each

layer, helping the model better adapt to specific tasks. Furthermore, to prevent forgetting, considering
that different pl are used only to help the hypernetwork distinguish between different layers, we
freeze all the positional embeddings P after learning the first task D1.

The neocortex stores knowledge in the form of neural connections. Inspired by this, we use a large
linear layer as the hypernetwork h. Specifically, for the down- and up-projection layers of the adapter,
we use two linear layers WD ∈ R(d×r)×e and WU ∈ R(r×d)×e to generate the adapter parameters:

(Dl
t,U

l
t ) = h(I l

t) = (WD,WU )I
l
t (7)

Additionally, we include an extra layer normalization LNl after the adapter to enhance the model’s
ability to learn new tasks, which is crucial for the performance of continual learning, as detailed in
the ablation study. Overall, our task-oriented hyper-adapters can be represented as:

x̃ = LNl(GELU(x′ ·Dl
t) ·U l

t ) (8)
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4.3 BLOCK-WISE HYPER-ADAPTERS

While incorporating a single hypernetwork for the entire model is consistent with the original
intention of the hypernetwork design, which is to compress the parameters of the network, we find
that introducing a separate hypernetwork for each layer significantly enhances the continual learning
performance. Since continual learning itself does not impose strict requirements on the number
of parameters, this approach effectively decouples task-specific knowledge from position-related
knowledge, further mitigating forgetting. Particularly, we introduce a hypernetwork hl for each
layer of the model, comprising two linear layers W l

D ∈ R(d×r)×e and W l
U ∈ R(r×d)×e, to generate

adapter parameters for a specific layer:

(Dl
t,U

l
t ) = hl(zt) = (W l

D,W l
U )zt (9)

The block-wise hyper-adapters improve performance at the cost of increased parameters. We refer to
this method as HAblock, whereas the method described in Section 4.2 is referred to as HAmodel.

4.4 OPTIMIZATION OBJECTIVE

During training, for an input x from task Dt, we use the ground truth task key kt to compute the
matching loss in the class-incremental setting. Then we combine the input with the corresponding task
embedding zt and positional embeddings P (excluded in HAblock) and pass it through the pre-trained
model fθ and the hypernetwork h. The output is then fed into the classifier gϕ for prediction, are
compared with the labels y to calculate the task loss. In summary, the overall optimization objective
for HyperAdapter can be expressed as:

min
C,P,WD,WU ,ϕt

L(gϕt ◦ f(x;θ, h(It;WD,WU )), y) + λLmatch(x,kt), (x, y) ∈ Dt (10)

where L represents the task loss, Lmatch is the matching loss defined in Section 4.1, and λ is a scalar
loss weight balancing term (we set it to 0.1 by default). The parameters to be updated include the
task dictionary C, the positional embeddings P (frozen after learning the first task), the hypernetwork
WD,WU , and the classifier ϕ. Notably, consistent with previous works, we do not update the
weights in the classifier related to past tasks, with the remaining parts for the t-th task denoted as ϕt.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct extensive experiments on seven datasets with varying data scales and task
sequence lengths. The first five datasets are uniformly restricted to 100 classes each and combined to
form the CL-100 benchmark. More details of the datasets are provided in the appendix.

• CL-100 Benchmark: We select 5 commonly used datasets and combined them into a new
benchmark CL-100, for a more comprehensive evaluation. These datasets vary in scale,
listed from small to large: Oxford Flowers 102 (Nilsback & Zisserman, 2008), Caltech-
101 (Fei-Fei et al., 2006), Stanford Dogs (Dataset, 2011), CIFAR-100 (Krizhevsky et al.,
2009), and Food-101 (Bossard et al., 2014). We restrict these datasets to 100 classes each,
with each class containing between 20 to 750 training images. For continual learning, the
CL-100 benchmark is splitted into 10 tasks by default, each containing 10 classes.

• Large Benchmarks: To validate the effectiveness of methods in more challenging scenarios,
we include two larger benchmarks: Split ImageNet-R (Hendrycks et al., 2021) and Split
DomainNet (Peng et al., 2019). The Split ImageNet-R benchmark is build upon the test
set of the ImageNet-R, containing a total of 200 classes and 30,000 images. It is splitted
into 10 tasks by default, each with 20 classes. The Split ImageNet-R dataset presents a
substantial divergence from the dataset used for backbone pre-training (i.e. ImageNet-21k),
and the significant intra-class diversity imposes higher demands on rehearsal-free continual
learning methods. The Split DomainNet benchmark comprises over a hundred thousand
images across 345 classes from 6 different domains. It is splitted into 15 tasks by default,
each containing 23 classes. The Split DomainNet dataset includes images in various styles,
which is beneficial for evaluating the generalization ability of model across distinct domains.
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Comparing Baselines. We compare our method against several rehearsal-free baselines and SOTA
methods, including regularization- and architecture-based (e.g. prompt and adapter) approaches. All
methods use the same ViT-B/16 backbone pre-trained on ImageNet-21K (Deng et al., 2009). For
completeness, we also include two naive baselines. More details can be found in the appendix.

• Naive Baselines: We present Full-seq and Linear-seq as two naive baselines. Full-seq
denotes the fully sequential training, while Linear-seq refers to a version based on the
pre-trained backbone, where only the classifier is updated during sequential training.

• Regularization-Based Methods: We choose the classical EWC (Kirkpatrick et al., 2017)
and LwF (Li & Hoiem, 2017) as our regularization-based baselines, both of which introduce
certain regularization to model parameters during sequential training to prevent forgetting.

• Prompt-Based Methods: There are many prompt-based methods utilizing pre-trained
models for continual learning. We select L2P (Wang et al., 2022b), DualPrompt (Wang
et al., 2022a), CODA-Prompt (Smith et al., 2023), and DAP (Jung et al., 2023) as the current
SOTA methods for comparison.

• Adapter-Based Methods: We choose EASE (Zhou et al., 2024), the only adapter-based
continual learning method prior to our work for a fair comparison.

• Upper Bound: Following previous works, we use the multi-task learning results as the
upper bound to demonstrate the exceptional performance of our method.

Evaluation Metrics. Following DAP, we employ three widely used metrics for method evaluation:
final accuracy (Fnl. Acc. ↑) of the accuracy after the last task as final performance, forgetting rate
(Forgetting ↓) of the ability to alleviate forgetting (negative transfer inhibition), and learning accuracy
(Lrn. Acc. ↑) of the ability to acquire new information (positive transfer promotion). We repeat
each experiment three times and report the average values with standard errors. Please refer to the
appendix for more details on the evaluation metrics.

Implementation Details. We train HyperAdapter using Adam with β1, β2 of 0.9, learning rate of
0.01 and batch size of 128. All input images are resized to 224× 224. For smaller datasets, we train
every task for 30 epochs to ensure convergence, while for others, we train each task for 10 epochs.
In the task dictionary, we maintain only 1 key and 1 embedding for each task. Following previous
works, we use a single classifier and do not update the weights corresponding to classes of past tasks.
For model-wise HyperAdapter, we set the dimension of both task embeddings and adapter bottleneck
to 32, while for block-wise HyperAdapter, we set them to 16. The hyperparameters s in Equation 3
and λ in Equation 10 are both set to 0.1. All experiments are conducted on NVIDIA A100 GPUs.

5.2 MAIN RESULTS

CL-100 Benchmark. Table 1 presents a comprehensive comparison between HyperAdapter and
other methods on CL-100 benchmark. Our method consistently outperforms all baselines, establishing
a new SOTA for rehearsal-free continual learning. In Table 1(a), which shows the final accuracy,
HyperAdapter leds all other methods. Specifically, it surpasses the regularization-based methods
EWC and LwF by 37.20% and 32.39% in average accuracy. Moreover, compared to more advanced
prompt-based and adapter-based methods, HyperAdapter exceeds the previous best DAP and EASE
by 2.24% and 3.07%. The block-wise HyperAdapter further achieves a 1.77% improvement over
model-wise HyperAdapter through more parameters. Notably, compared to the multi-task learning
upper bound, HyperAdapter even achieved an improvement of 0.78-2.94% on larger datasets (with
more than 10,000 training images).

Table 1(b) shows the forgetting performance. With the help of a pre-trained backbone and task
dictionary, the model-wise HyperAdapter significantly reduced the forgetting rate by more than 20%
compared to regularization-based methods. Benefiting from the decoupling of task and position
information, block-wise HyperAdapter further reduced the forgetting rate by 1.11%, reaching an
astonishing 1.30%, significantly lower than the previous best DAP (2.26%) and EASE (3.18%).
Table 1(c) reflects the ability to learn new tasks based on old knowledge. The design of the hyper-
network enables HyperAdapter to better facilitate positive knowledge transfer between tasks. Both
versions of HyperAdapter surpass DAP and EASE, as well as Full-seq, in learning accuracy.

7
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Table 1: Results on CL-100 benchmark. Datasets are sorted with their scales in ascending order.

Dataset Split Flowers-100 Split Caltech-100 Split Dogs-100 Split CIFAR-100 Split Food-100
Method (a) Final Accuracy (↑) Mean (↑)
Full-seq 35.64± 1.92 27.04± 1.25 22.67± 0.96 30.39± 1.92 26.90± 0.51 28.53
Linear-seq 78.95± 0.58 76.17± 0.08 66.22± 0.16 68.43± 0.09 60.58± 0.32 70.07
EWC 69.79± 1.76 57.96± 1.83 45.72± 1.26 59.60± 1.27 55.27± 1.06 57.67
LwF 71.78± 1.98 63.26± 1.37 48.97± 1.23 68.22± 1.63 60.15± 0.66 62.48
L2P 94.53± 1.23 89.34± 1.78 76.59± 1.32 83.05± 1.02 70.48± 1.38 82.80
DualPrompt 95.25± 0.82 91.52± 0.87 78.36± 0.63 84.77± 0.69 75.31± 0.57 85.04
CODA-P 97.02± 0.39 91.44± 0.34 84.41± 1.44 86.25± 0.74 77.58± 1.18 87.34
DAP 96.49± 0.05 97.23± 0.33 87.02± 1.12 94.05± 1.19 88.37± 0.63 92.63
EASE 97.53± 0.16 96.54± 0.47 88.31± 0.82 87.81± 0.23 88.82± 1.47 91.80
HAmodel 97.57± 0.68 96.44± 0.15 87.14± 0.29 95.85± 0.37 88.64± 0.54 93.13
HAblock 98.04 ± 0.42 97.66 ± 0.24 89.32 ± 0.68 97.14 ± 0.35 92.20 ± 0.45 94.87
Upper Bound 98.83± 0.75 98.32± 0.16 88.54± 0.35 94.20± 0.80 90.40± 1.24 94.06

Method (b) Forgetting Rate (↓) Mean (↓)
Full-seq 67.53± 0.53 68.97± 1.14 73.12± 1.27 69.21± 0.18 75.70± 0.55 70.91
Linear-seq 21.93± 0.14 23.66± 0.26 25.78± 0.35 17.34± 0.57 20.69± 0.61 21.88
EWC 23.73± 3.00 26.34± 3.39 29.26± 1.64 24.65± 0.07 23.67± 1.12 25.53
LwF 25.14± 2.42 24.63± 0.75 33.42± 1.86 15.44± 1.48 17.15± 0.62 23.16
L2P 2.12± 0.14 4.86± 0.49 6.93± 0.44 7.21± 0.16 9.09± 0.44 6.04
DualPrompt 1.40± 0.32 2.85± 0.31 4.84± 0.11 5.60± 0.40 8.76± 0.21 4.69
CODA-P 1.16± 0.18 2.73± 0.48 4.03± 2.11 4.67± 0.26 7.58± 1.23 4.03
DAP 0.41± 0.07 0.92± 0.09 2.52± 0.80 2.28± 0.96 5.19± 0.52 2.26
EASE 0.52± 0.04 1.41± 0.58 3.48± 1.52 5.40± 0.96 5.07± 0.37 3.18
HAmodel 1.25± 0.79 1.45± 0.14 3.56± 0.25 2.08± 0.37 3.73± 1.17 2.41
HAblock 0.40 ± 0.12 0.54 ± 0.07 2.08 ± 0.46 0.80 ± 0.44 2.66 ± 0.49 1.30
Method (c) Learning Accuracy (↑) Mean (↑)
Full-seq 97.93± 1.84 94.87± 2.87 89.48± 0.18 97.75± 1.39 94.04± 0.03 94.81
Linear-seq 96.01± 0.20 92.58± 0.05 83.20± 1.24 89.50± 1.38 80.20± 0.24 88.12
EWC 93.47± 1.98 86.29± 0.89 74.23± 1.56 81.78± 1.29 75.49± 0.14 82.25
LwF 97.14± 0.17 88.01± 0.08 89.51± 0.57 82.05± 0.07 75.59± 0.21 86.46
L2P 97.37± 0.19 93.54± 0.54 89.78± 0.81 89.13± 0.07 78.65± 0.45 89.69
DualPrompt 97.72± 0.16 96.52± 0.41 90.11± 0.23 90.61± 0.13 82.82± 0.03 91.56
CODA-P 98.06± 0.24 96.89± 1.42 90.61± 0.51 91.79± 0.68 87.80± 1.56 93.03
DAP 96.74± 0.11 97.87± 0.28 89.17± 0.48 96.37± 0.74 93.03± 0.58 94.64
EASE 98.07± 0.12 96.67± 1.07 90.36± 0.24 92.60± 1.54 93.67± 1.24 94.27
HAmodel 98.24± 0.56 97.70± 0.21 90.26± 0.07 97.71± 0.06 94.83± 0.02 95.75
HAblock 98.32 ± 0.49 98.04 ± 0.20 91.10 ± 0.42 97.82 ± 0.07 94.59 ± 0.12 95.97

Table 2: Results on Split ImageNet-R and Split DomainNet.

Dataset Split ImageNet-R Split DomainNet
Method Fnl. Acc. (↑) Forgetting (↓) Lrn. Acc. (↑) Fnl. Acc. (↑) Forgetting (↓) Lrn. Acc. (↑)
Full-seq 21.09± 3.45 54.89± 2.31 75.96± 1.32 27.89± 3.21 72.89± 2.72 89.58± 1.98
Linear-seq 55.21± 1.59 19.89± 0.45 74.32± 1.45 72.15± 1.98 12.15± 0.89 84.15± 2.72
L2P 60.98± 0.70 9.93± 0.43 69.23± 0.78 80.67± 0.85 5.33± 0.87 85.14± 0.99
DualPrompt 68.97± 2.87 4.66± 2.15 72.85± 2.27 81.89± 0.63 5.21± 1.17 87.27± 1.80
CODA-P 75.45± 0.56 1.64 ± 0.10 77.90± 1.97 76.52± 0.78 6.83± 0.10 82.53± 0.24
DAP 70.12± 2.24 2.90± 2.70 73.24± 2.81 83.51± 1.07 5.30± 0.52 88.77± 0.79
EASE 73.23± 1.65 6.79± 1.19 76.97± 1.25 86.76± 1.29 4.67± 0.92 91.74± 1.28
HAmodel 75.65± 2.67 5.78± 2.94 79.22 ± 0.96 89.20± 0.54 4.18± 0.49 93.10± 0.24
HAblock 76.51 ± 1.32 3.83± 1.46 77.97± 0.81 91.56 ±0.11 2.18 ± 0.10 93.58 ± 0.12
Upper Bound 77.13± 1.54 - - 90.65± 0.98 - -

Interestingly, the sequential learning method that only updates the classifier (known as linear probing)
also reaches an impressive final accuracy of 70.07%, surpassing the classic regularization-based
methods EWC and LwF, which fully demonstrates the tremendous potential of pre-trained models.

ImageNet-R and DomainNet. To further demonstrate the performance of HyperAdapter, we
conduct experiments on two larger benchmarks: Split ImageNet-R and Split DomainNet, with results
shown in Table 2. On both datasets, HyperAdapter surpasses the previous best methods, CODA-P and
EASE, by 1.06% and 4.80%, respectively. This fully demonstrates the capability of HyperAdapter to
handle more categories and longer task sequences. Moreover, HyperAdapter closely approaches the
upper bound of multi-task learning on ImageNet-R and even surpasses the upper bound on the larger
DomainNet dataset. Experimental results on longer sequences are provided in the appendix.
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Table 3: LoRA results on CL-100 benchmark. HLA stands for the LoRA version of HyperAdaper.

Dataset Split Flowers-100 Split Caltech-100 Split Dogs-100 Split CIFAR-100 Split Food-100
Method (a) Final Accuracy (↑) Mean (↑)
HLAmodel 95.86± 0.00 93.13± 0.49 86.07± 0.08 92.20± 0.69 87.64± 0.18 90.98
HLAblock 96.21 ±1.21 97.93 ±0.14 90.04 ±0.13 97.80 ±0.01 93.72 ±0.14 95.14

Method (b) Forgetting Rate (↓) Mean (↓)
HLAmodel 2.24± 0.03 0.45± 1.08 5.64± 0.28 2.06± 0.93 3.73 ±0.21 2.82
HLAblock 1.18 ±0.33 0.54 ±0.03 2.06 ±0.07 0.40 ±0.00 2.14 ±0.14 1.30

Method (c) Learning Accuracy (↑) Mean (↑)
HLAmodel 99.22± 0.01 97.85± 0.08 91.03± 0.10 97.60± 0.00 94.11 ±0.03 95.96
HLAblock 99.32 ±0.38 98.12 ±0.06 91.72 ±0.00 98.18 ±0.00 95.65 ±0.02 96.60

Table 4: Ablation studies on core designs.

Dataset Split CIFAR-100 Split ImageNet-R
Method Fnl. Acc. (↑) Forgetting (↓) Lrn. Acc. (↑) Fnl. Acc. (↑) Forgetting (↓) Lrn. Acc. (↑)
HAmodel 95.85± 0.37 2.08± 0.37 97.71± 0.06 75.65± 2.67 5.78± 2.94 79.22± 0.96
w/o task dictionary 66.32± 1.61 33.46± 1.84 96.43± 0.06 45.48± 5.35 35.06± 5.35 77.19± 5.58
w/o position embedding 94.43± 0.11 2.30± 0.17 96.57± 0.11 69.18± 1.20 9.09± 0.74 76.39± 2.29
w/o adapter LN 29.58± 2.73 22.84± 1.49 50.13± 3.89 13.01± 0.46 6.80± 0.88 18.85± 0.69

5.3 HYPERADAPTER WITH LORA

To verify that the hypernetwork-based design of our HyperAdapter is not confined to any specific
adapter structure, we choose Low-Rank Adaptation or LoRA (Hu et al., 2021), an adapter structure
initially proposed for efficiently fine-tuning large language models. We refer to the LoRA version
of our approach as HyperLoRA or HLA, which is also divided into model-wise and block-wise
versions. The results on CL-100 benchmark are shown in Table 3. In this experiment, we followed the
original settings in Hu et al. (2021), applying LoRA to the query and value matrices in ViT’s attention
mechanism, with the rank set to half of the bottleneck dimension in HA’s adapter to ensure that the
learnable parameters of there two versions are consistent. All other hyperparameters remained the
same as in the HA experiments. The results show that our method also achieves excellent performance
when applied to LoRA, even outperforming the HA version without hyperparameter tuning, fully
demonstrating the versatility of our design.

5.4 ABLATION STUDIES

Core Design. To validate the effectiveness of the core designs in HyperAdapter, we conduct ablation
studies on the Split CIFAR-100 and ImageNet-R datasets, all based on the model-wise version. As
shown in Table 4, row 1 represents the complete version of HyperAdapter. In row 2, we remove the
task dictionary and use an additional MLP to project queries to the specified dimension, providing
instance embeddings to the hypernetwork as input. This MLP is frozen after learning the first task.
The results indicate that removing task embeddings has a minor impact on learning accuracy, but
overly diverse inputs easily lead to forgetting in the hypernetwork, resulting in ∼ 30% drop in
final accuracy. Row 3 removes the position embedding from each layer, causing the hypernetwork
to always generate the same adapter. While repeated adapters have a minimal effect on model
performance, due to the minimal parameter count of position embeddings, we ultimately chose the
performance improvement brought by diverse adapters. In row 4, we remove the layer normalization
(LN) after each adapter. The results demonstrate that this design has a significant impact on the final
performance, with removing it resulting in over 60% performance loss. Since learning accuracy also
decreases, it indicates that the LN is more for stabilizing the training of the adapters.

Parameter Scale. In Figure 3, we show the impact of parameter scale on performance. Figure 3(a)
and (b) represent two different versions of HyperAdapter. It can be observed that model performance
is positively correlated with parameter scale, which means more parameters lead to higher accuracy.
However, as the parameter scale continues to increase, this marginal benefit gradually diminishes. To
strike a balance between parameters and performance, we set both the task embedding and adapter
bottleneck dimension of model-wise HyperAdapter to 32, while both dimensions of block-wise
HyperAdapter are set to 16. Figure 3(c) demonstrates the performance change when fixing one
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Figure 3: Further analysis on parameter scales on Split CIFAR-100.

dimension and only altering the other one. It can be seen that when the parameter scale reaches a
certain threshold, the final performance no longer increases and may even decrease.

5.5 VISUALIZATIONS
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Figure 4: Visualizations on task embeddings and the selection on Split CIFAR-100.

t-SNE. In Figure 4(a), we present t-SNE results of input queries and task keys. To enable the
hypernetwork to generate corresponding adapters for different tasks, we adopt a query-key matching
mechanism to obtain task embeddings, which can be viewed as clustering based on the pre-trained
model. Due to the gap between pre-training data and downstream tasks, the pre-trained model may
not always distinguish inputs from different classes well. Moreover, since a task comprises data
from different classes, the large inter-class gap can make the clustering process more challenging.
Nevertheless, this matching mechanism still plays a crucial role in our method, as shown in Table 4.

Task Embedding Selection. In Figure 4(b), we further show the instance-level selection frequency
of different task embeddings. Most tasks correctly select their corresponding embeddings, and the
noise from a few incorrect selections do not significantly impact model performance, benefiting from
the similarity-based matching mechanism. Even if the matching is incorrect, the matched task is still
highly similar, and the embedding can provide enough information for the current task to achieve
correct classification. Improving this selection mechanism is left as a direction for future work.

6 CONCLUSION

In this paper, we propose HyperAdapter as a novel rehearsal-free continual learning method, utilizing
a hypernetwork to generate adapters to adapt the pre-trained model to different tasks. This work
represents the first attempt to employ a hypernetwork for continual learning based on pre-trained
models, providing a feasible approach for the continual learning of large-scale pre-trained models.
We establish a new SOTA on our newly curated CL-100 benchmark and two commonly used large
benchmarks, even surpassing the multi-task learning upper bound in some cases. This highlights the
immense potential of pre-trained models in continual learning and marks a significant step forward in
the application of neural networks in real-world scenarios.
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